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Abstract— This paper present the application of Pulse Stream Tech-
niques (PSTs) to the hardware implementation of a Cellular Neural
Network. The time differential equation of this networks suggests
that the dynamic of one neuron status can be emulated by adding
discretized packets of charge to a capacitor. This task can be carried
out by driving a current source with a pulse stream signal.

I. INTRODUCTION

Different strategies of design have been used for inte-
grated electronic implementation of Neural Networks
(NNs). Based on digital or/and analog technologies,
many arquitectures have been described in the liter-
ature. The advantages and drawbacks of analog and
digital computing are well–known. To overcome these
drawbacks, Pulse Stream Techniques (PSTs) have been
proposed [1]. PSTs take the advantages of both, digi-
tal and analog implementations, as the information is
carried by digital signals and analog circuitry is used
to control them.

The most common PSTs are Stochastic Logic (SL) and
Pulse Width Modulation (PWM). In SL, a signal is rep-
resented by a stochastic pulse stream which takes the
value 1 with a probability proportional to the instan-
taneous value of the signal. The main advantage of
SL relies on the fact that the product of two stochas-
tic signals can be implemented by means of a simple
AND gate. On the other hand, there is not a direct
way to implement the summation in a digital way. In
[2], a digital circuit called F was proposed, which is
able to make the summation of n stochastic pulses in
one clock cycle, at the cost of some hardware com-
plexity. A more efficient implementation can be made
if current–mode analog summation is used, as shown
bellow.

If one of the two stochastic signals in the input of a
AND gate is replaced by a Pulse Width Modulation
(PWM) signal, the AND gate still carries out the mul-
tiplication operation. The product signal can be used
to switch on/off a constant current which feeds a ca-
pacitor. In this way it is possible to carry out the

sysnapses product of a Neural Network. Based on
this principles, the basic architecture of one neuron is
presented in this paper. In section II the architecture
is used to build an efficient implementation of a Cel-
lular Neural Network (CNN). A detailed description of
the basic modules and the result obtained from sim-
ulations are presented in section III, and finally some
conclusions are discussed in section IV.

II. THE NEURON STATE OF A CNN
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Figure 1: Block diagram of a neuron

A Cellular Neural Network (CNN) is an analog dy-
namic processor array, where the processing elements
interact within a finite local neighborhood. The orig-
inal CNN paradigm was first proposed by Chua and
Yang in [3] and [4]. A concise tutorial on CNNs can
be found in [5]. A review of selected communications
in the field of CNN theory and applications, and a
simulator with many examples, can be found in [6].
Integrated implementation of CNNs can be found in
[7]–[15]. An implementation based on Pulse Stream
current mode can be found in [16]

The differential equations governing the (i; j)–th neu-
ron in a CNN is given by [3]:
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where vxij , vyij and vuij are the status, output and
input of cell (i; j), respectively. C and Rx are CNN
parameters. Ioff is a bias term. Nr(i; j) is a neighbor-
hood of radius r around the (i; j)–th cell. A(i; j;k; l)
and B(i; j; k; l) are the feedback and forward matri-
ces associated to the cell (i; j), respectively [3]. The
piece-wise linear function f is a saturated activation
function. The time discretized charging equations (1)
and (2) of a CNN is implemented electronically by the
circuit shown in figure 1. This architecture reproduces
the behavioural of one unipolar neuron. (Note that
CNNs with bipolar neurons are easily converted to
unipolar neurons, with only a change in the bias term
Ioff ).

The stochactic signal SA(i;j;k;l) and the PWM signal
Pvykl are pulse streams which represent the values of
A(i; j; k; l) and vykl, respectively. So, the gate AND1
performs the product A(i; j; k; l)� vykl. The product
pulse drives a bipolar current source and, depend-
ing on the sign of A(i; j; k; l), charges o discharges a
summation capacitor. In a space–invariant CNN, the
templates A and B are shared by all the neurons, so
that the stochastic pulses SA(i;j;k;l) and SB(i;j;k;l) are
obtained only once in a common module and later
propagated to the rest of the chip with a considerable
saving in silicon area. Note that a broadcast propaga-
tion is possible in our implementation, because these
pulse streams are digital signals.

III. BASIC MODULES OF THE NEURON STATE

PWM signals are associated to neuron outputs. PWM
coding has been selected, because it can be imple-
mented with a local ramp generator and a comparator
(figures 1 and 2). The comparator and the local ramp
generator are used to generate the PWM signalPvyij ,
which is fedback to drive the slave part of a high–
swing cascade current mirror (Fig.- 2). In this way it is
possible to take into account the effect of the resistor
Rx (equation 1) using the current IRx . A dummy tran-
sistor was used to reduce the charge–injection prob-
lem; the capacitor can be implemented by means of
the gate capacitance of a transistor in a digital CMOS
technology.

The circuit in figure 2 has been designed using a 1:0�m
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Figure 2: State of a CNN using a PST

Figure 3: Continuous time dimamic of a circuit RC and the circuit in
figure 2: a) Charging and b) Discharging.
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Figure 4: Current mirrors used for driving the cell capacitor.

5V , digital CMOS technology. The current Ioff was
adjusted to obtain a steady state value of 2:5V in
the capacitor. The simulation results (obtained from
HSPICE) of the circuit in Fig. 2 using two different ini-
tial values are depicted in figures 3.a and 3.b. The time
evolution of a RC circuit for the same initial values is
superimposed.

The current sources and the switches,which are driven
by the productsA(i; j;k; l)�vykl andB(i; j; k; l)�Vukl ,
have been built using two high–swing cascode current
mirrors as shown in figure 4. The pulse stream signals
�1 and �2 represent the synaptic products (outputs of
the gates AND2 and AND3 in Fig. 1, respectivelly)
associated to the cell in figure 4.

High–level language C simulations have shown that
the computational strategy proposed in this paper is
a good way for implementation Cellular Neural Net-
works. The simulated networks was able to success-
fully solve an edge extraction problem of a 21 � 21
picture.

The comparation of the evolution of the summation ca-
pacitance voltage when the results are obtained from
language C and HSPICE simulations are shown in fig-
ures 5.a and 5.b in two different cases. In both cases,
the same stochastic signals associated to the synap-
tic weight were used in C and HSPICE. In this way
we avoid that the simulation results were affected by
different behaviour due to the random nature of the
stochastic signals. The neighbor pixel values were cho-
sen so that the final values of the cell state voltage was
0V in the first case (Fig. 5.a) and 5V in the second case
(Fig. 5.b). Both figures verify that the pulse stream
computational strategy can be implemented using a
CMOS technology while preserving high accuracy.
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Figure 5: Comparation between the language C and HSPICE results
when the final values of the cell state voltage is (a) 0V and (b) 5V

IV. CONCLUSIONS

The application of Pulse Stream Techniques (PSTs) to
the hardware implementation of Cellullar Neural Net-
works has been presented in this paper. The main
features of the proposed architecture are:

� The information is codified by digital signals
which are very robust againts noise and inter-
ferences.

� The stochastic nature of some signals allow to im-
plement the multiplication using a simple AND
gate. The summation is performed in a current
mode approach. Both features allow to perform
the computation using a simple circuitry with
high accuaracy.

� The feedforward and feedback operators can be
stored in digital memory. In case of CNNs with
invariant templates, the number of these weights
is small and the efficiency in silicon area is pre-
served.

� Due to the stochastic codification of these
weights, they can be propagated through the
ASIC without corruption using a reduced num-
ber of physical lines.



High–level language simulations have been done in
order to check the behaviour of a network when it is
implemented using PSTs. Results of transistor–level
simulations have been compared with the results of
high–level simulations for the case of one neuron and
they have been demonstrated negligible non–ideal ef-
fect. PSTs seem to be a promising way to build large
arrays with programmable synapses. Presently we are
designing the neuron layout to build a 21 � 21 CNN
array using a 1� digital CMOS technology to experi-
mentally demonstrate the advantages of the proposed
architecture.
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