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Abstract. Discrete bright breathers are well known phenomena. They are
localized excitations that consist of a few excited oscillators in a lattice and the
rest of them having very small amplitude or none. In this paper we are interested
in the opposite kind of localization, or discrete dark breathers, where most of the
oscillators are excited and one or a few units of them have very small amplitude.
We investigate, using band analysis, Klein–Gordon lattices at frequencies not
close to the linear ones. Dark breathers at low coupling are shown to be stable
for Klein–Gordon chains with soft on-site potentials and repulsive dispersive
interaction, and with hard on-site potentials and attractive dispersive interactions.
At higher coupling dark breathers lose their stability via subharmonic, harmonic
or oscillatory bifurcations, depending on the model. However, most of these
bifurcations are harmless in the sense that they preserve dark localization. None
of these bifurcations disappear when the system is infinite. Dark breathers in
dissipative systems are found to be stable for both kinds of dispersive interaction.

1. Introduction

It is well known that intrinsic localized modes (also called discrete breathers) are exact, periodic
and localized solutions that can be obtained in a large variety of nonlinear discrete systems.
They are becoming a new paradigm for understanding many aspects of the behaviour of discrete
systems (for a review, see, e.g., [1, 2]). Mackay and Aubry [3] proved analytically their existence
and the conditions for their stability [1], under rather general hypotheses. Since then, many
accurate numerical methods have been used to obtain breathers as exact numerical solutions up
to machine precision [4], which permits the analysis of breather properties. Thus, for a given
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model, it is possible to perform a numerical study of the ranges of existence and stability in the
parameter space.

The term discrete breather is usually understood as a localized, periodic solution in a discrete
system, but with a small number of excited oscillators. When only one oscillator has large
amplitude it is known as a one-site breather. When more than one oscillator has large amplitude,
the term multibreather is used. Hereafter, we will use the term bright breather when there are
one or a few oscillators vibrating with large amplitude whereas the rest of them oscillate with
small amplitude.

However, localization can be manifested in a different way, which consists of all the
oscillators vibrating with large amplitude except one or a few of them oscillating with very
small amplitude. The natural name for these entities is dark breathers, analogously to the well
known term dark solitons. For the nonlinear Schrödinger equations, which govern both nonlinear
optical modes in fibres and dilute Bose–Einstein condensates, two different kinds of scalar soliton
solution, bright and dark, are known [5, 6]. Thus, a dark soliton is a solution which has a point
with zero amplitude, that is, a soliton defining the absence of matter or energy. Since then, many
papers have appeared referring to theoretical and experimental results relating to these entities.
The effects of discreteness on the properties and propagation dynamics of dark solitons have
been analysed in the discrete nonlinear Schrödinger (DNLS) equation, which is thought to be a
good approximation for frequencies close to the linear frequency [7]–[11], the last one also with
numerics on actual Klein–Gordon systems. It is worth remarking that some examples of dark
localization have been observed experimentally [12], and some structural properties have been
analysed in [13].

In this paper, we perform an analysis of the existence and stability of dark breathers for
different models based on the properties of the band structure of the Newton operator. We have
found that there exist stable dark breathers for a variety of one-dimensional Klein–Gordon
lattices. For soft on-site potentials, dark breathers are stable only for repulsive dispersive
interaction and for hard on-site potentials the stability found is for attractive interaction. These
results agree with the ones that have been found for the DNLS approximation in [14] as a
consequence of the modulational instability of the constant amplitude background.

It is not clear in which physical systems dark breathers can play a significant role. A
possibility is DNA; we conjecture that dark breathers can occur in DNA chains at high
temperature, close to thermal denaturation [15]. In this situation, a great number of molecules
are vibrating with high amplitude, whereas a few of them could be almost at rest.

This paper is organized as follows: in section 2, we describe the proposed Klein–Gordon
models and the resulting evolution equations. In section 3, we expose the tools for calculating
dark breathers, and we explicitly show that the theorem of existence of Mackay and Aubry gives
an affirmative answer to the question of existence of dark breathers. In section 4, we expose
the method for the analysis of the linear stability of breather solutions using both the Floquet
multipliers and Aubry band theory. In section 5, we investigate the stability of dark breathers for
chains with soft on-site potential and attractive interactions between the particles. We show that
it is not possible to obtain stable dark breathers for every value of the coupling parameter. This
negative result suggested us to consider the study of chains with repulsive interactions between
particles. Our results confirm that in this case there exist stable dark breathers up to significant
values of the coupling. In section 6, lattices with hard on-site potentials are considered. For these
cases, dark breathers are stable provided that particles interact through an attractive potential.
Dark breathers become unstable through subharmonic, harmonic and oscillatory bifurcations
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depending on the type of on-site potential. In section 7, we show that neither subharmonic nor
oscillatory bifurcations disappear in infinite systems. Section 8 shows that dark breathers in
dissipative systems are stable. The paper concludes with a short summary of the main results
and some prospects in section 9.

2. Models

We study one-dimensional, anharmonic, Hamiltonian lattices of the Klein–Gordon type. The
Hamiltonian is given by

H =
∑
n

(1
2 u̇

2
n + V (un)) + εW (u) (1)

where un are the coordinates of the oscillators referred to their equilibrium positions; V (un)
represents the on-site potential; u represents the set of variables {un} and εW (u) represents the
coupling potential, with ε being a parameter that describes the strength of the coupling. We
suppose initially that ε is positive and W (u) is given by

W (u) = 1
2

∑
n

(un+1 − un)2. (2)

This interaction is attractive because a nonzero value of a variable tends to increase the values
of the neighbouring variables with the same sign. The on-site potential is given by

V (un) = 1
2ω

2
0u

2
n + φ(un) (3)

with φ(un) being the anharmonic part of the potential. The variables are scaled so that all the
particles in the lattice have mass unity and the linear frequency ω0 = 1. The dynamical equations
for this system are

ün + ω2
0un + φ′(un) + ε(2un − un−1 − un+1) = 0. (4)

These equations do not have analytical solutions and must be solved numerically. The solutions
depend obviously on the chosen potentials V (un) and W (u). We will analyse the system for
several V (un) and coupling interactions W (u). These models appear in many physical systems;
a known example, with a suitable on-site potential V (un), is the Peyrard–Bishop model for
DNA [15], where the variables un represent the stretching of the base pairs.

3. Dark breather existence

We look for spatially localized, time-reversible and time-periodic solutions of equations (4) with
a given frequency ωb and a continuous second derivative. Therefore, the functions un(t) can be
obtained up to machine precision by truncated Fourier series of the form

un(t) = z0 +
k=km∑
k=1

2zk
n cos(kωbt). (5)

We distinguish three types of solution of the isolated oscillators that can be coded in the
following way: σn = 0 for an oscillator at rest (un(t) = 0, ∀t); σn = +1 for an excited oscillator
with frequency ωb and un(0) > 0; finally, σn = −1 for an excited oscillator with frequency ωb and
un(0) < 0. Time-reversible solutions of the whole system at ε = 0 (anticontinuous limit) can be
referred to by a coding sequence σ = {σn}. Therefore, σ = {0, . . . , 0, 1, 0, . . . , 0} corresponds
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to a one-site breather. Other codes can be σ = {0, . . . , 0, 1, 1, 0, . . . , 0} for a symmetric two-site
breather, and σ = {1, . . . , 1, 0, 1, . . . , 1} for a one-site dark breather (this case correspond to the
background in phase).

The method for calculating dark breathers is based on the general methods for obtaining
breathers [4, 16]–[19].

The existence theorem by MacKay and Aubry [3] establishes that every solution at the
anticontinuous limit corresponding to a code sequence can be continued up to a certain value of
the coupling parameter εc �= 0, as long as the following two hypotheses are fulfilled.

• The orbits of the uncoupled excited oscillators with the chosen frequency have to be such
that ∂ωb

∂I
�= 0, where I =

∫
p dq is the action variable of the oscillator. That is, the oscillator

is truly nonlinear at that frequency.

• The frequency of the orbit must be such that pωb �= ω0 for any integer p. That is, none of
the breather harmonics coincide with the linear frequency ω0.

Therefore, this theorem gives an immediate answer to the question of the existence of
dark breathers as they are obtained by continuation of the configuration mentioned above
σ = {1, . . . , 1, 0, 1, . . . , 1} . However, the theorem does not give an estimate for the value
of the coupling εc where the dark breather ceases to exist. Dark breathers have to be calculated
numerically for each value of the coupling parameter, also it is worth investigating whether dark
breathers are stable or not, and if they are stable, up to which value of the coupling parameter.

4. Dark breather stability

The stability analysis of a given breather solution can be performed numerically [1, 19]–[21].
The linearized equations corresponding to perturbations of this solution are

ξ̈n + ω2
0ξn + φ′′(un)ξn + ε(2ξn − ξn−1 − ξn+1) = 0 (6)

where ξ = {ξn(t)} represents a small perturbation of the solution of the dynamical equations,
u(t) = {un(t)}. The linear stability of these solutions can be studied by finding the eigenvalues
of the Floquet matrix F0, called Floquet multipliers. The Floquet matrix transforms the column
matrix with elements given by ξn(0) and π(0) ≡ ξ̇n(0) into the corresponding column matrix
with elements ξn(Tb) and π(Tb) ≡ ξ̇n(Tb) for n = 1, . . . , m and Tb = 2π/ωb, that is( {ξn(Tb)}

{πn(Tb)}

)
= F0

( {ξn(0)}
{πn(0)}

)
. (7)

The Floquet matrix F0 can be obtained, choosing zero initial conditions except for one position
or momentum equal to unity, and integrating numerically equation (6), a time span of a breather
period. The final positions and momenta give the elements of the corresponding column of the
Floquet matrix. In order to get accurate results [22], we have used a symplectic integrator.
Equation (6) can be written as an eigenvalue equation

(N (u(t), ε) · ξ)n = Eξn (8)

where N (u(t), ε) is called the Newton operator. The solutions of equation (6) can be described
as the eigenfunctions of N for E = 0. The fact that the linearized system is Hamiltonian and real
implies that the Floquet operator is a real and symplectic operator. The consequence is that if λ
is an eigenvalue, then 1/λ, λ∗ and 1/λ∗ are also eigenvalues, and therefore a necessary condition
for linear stability is that every eigenvalue has modulus one, that is, they are located at the unit
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Figure 1. Floquet multipliers at zero coupling for (left) a bright breather and
(right) a dark breather with the numbers of identical multipliers.

circle in the complex plane. Besides, there is always a double eigenvalue at 1 + 0i from the fact
that the derivative {u̇n(t)} is always a solution of (8) with E = 0.

The Floquet multipliers at the anticontinuous limit (ε = 0) can be easily obtained for bright
and dark breathers. If an oscillator at rest is considered, equation (6) becomes

ξ̈n + ω2
0ξn = 0 (9)

with solution ξ(t) = ξ0eiω0t, and therefore, the corresponding eigenvalue of F0 is λ =
exp(i2πω0/ωb). If an oscillator is excited, equation (6) becomes

ξ̈n + ω2
0ξn + φ′′(un)ξn = 0. (10)

This equation has u̇n(t) as a solution, which is periodic and therefore with Floquet multiplier
λ = 1. Thus, for a bright breather, we have, taking into account their multiplicity, 2(N − 1)
eigenvalues corresponding to the rest oscillators at exp(±i2πω0/ωb) and two at +1 corresponding
to the excited one. For a dark breather at the anticontinuous limit there are 2(N −1) eigenvalues
at +1, and a couple of conjugate eigenvalues at exp(±i2πω0/ωb).

Figure 1 shows the Floquet multipliers for both a bright and a dark breather at the anti-
continuous limit ε = 0. When the coupling ε is switched on, these eigenvalues move on the
complex plane as continuous functions of ε, and an instability can be produced only in three
different ways [1]:

(a) a couple of conjugate eigenvalues reaches the value 1+0i (θ = 0) and leaves the unit circle
along the real line (harmonic bifurcation);

(b) a couple of conjugate eigenvalues reaches −1 (θ = ±π) and leaves the unit circle along the
real line (subharmonic bifurcation);

(c) two pairs of conjugate eigenvalues collide at two conjugate points on the unit circle and
leave it (Krein crunch or oscillatory bifurcation).

It must be remembered that a bifurcation involving two eigenvalues with the same sign of the
Krein signature κ(θ) = sign(i(ξ̇ · ξ∗ − ξ̇∗ · ξ)) is not possible [1].

The basic features of the Floquet multipliers at the anti-continuous limit for bright and dark
breathers are the following.
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• For bright breathers, there are N − 1 Floquet multipliers corresponding to the oscillators at
rest. They are degenerate at θ = ±2πω0/ωb). The eigenvalues at 0 < θ < π have κ > 0
while the ones at −π < θ < 0 have κ < 0. If θ = 0 or π, κ = 0. In addition, there are two
eigenvalues at 1 + 0i, corresponding to the excited oscillator.

• For dark breathers, there are two eigenvalues at θ = ±2πω0/ωb corresponding to the
oscillator at rest, and there are 2(N − 1) eigenvalues at 1 + 0i corresponding to the excited
oscillators.

When the coupling is switched on, the evolution of the Floquet multipliers for bright
breathers is rather different from the case of dark breathers:

• For a bright breather, the Floquet eigenvalues corresponding to the oscillators at rest lose
their degeneracy and expand on two bands of eigenvalues, called the phonon bands. Their
corresponding eigenmodes are extended. These two bands move on the unit circle and
eventually cross each other. In this case, eigenvalues of different Krein signature can collide
and abandon the unit circle through subharmonic or oscillatory bifurcations. In addition,
some eigenvalues can abandon the bands and become localized [23]. A pair of complex
conjugate eigenvalues can collide at 1+0i leading to a harmonic bifurcation or collide with
the phonon band through a oscillatory bifurcation.

• For a dark breather, the eigenvalues corresponding to the excited oscillators, with extended
phonon eigenmodes, can either depart from the unit circle along the real axis (harmonic
bifurcation) or move along the unit circle. In the last case, they can collide with the
eigenvalue corresponding to the rest oscillator (with localized eigenmode) through a Krein
crunch. Eventually, if the on-site potential is non-symmetric, the eigenvalues collide at
−1 + 0i, leading to a cascade of subharmonic bifurcations.

The study of breather stability can be complemented by means of Aubry’s band theory [1].
It consists in studying the linearized system (8) for E �= 0, with the corresponding family of
Floquet operators FE . For each operator FE there are 2 × N Floquet multipliers. A Floquet
multiplier can be written as λ = exp(iθ). θ is called the Floquet argument. If θ is real then
| exp(iθ)| = 1 and the corresponding eigenfunction of (8) is bounded and corresponds to a
stability mode; if θ is complex, it corresponds to an instability mode. The set of points (θ, E),
with θ real, has a band structure. The breather is stable if there are 2 × N band intersections
(including tangent points with their multiplicity) with the axis E = 0. The bands are reduced
to the first Brillouin zone (−π, π] and are symmetric with respect to the axis θ = 0. The fact
that F0 has always a double +1 eigenvalue corresponding to the phase mode u̇(t) manifests as
a band which is tangent to the E = 0 axis.

For the uncoupled system, the structure of the stable and unstable bands is completely
explained by the theory (although it has to be calculated numerically). For the coupled system,
such structure is expected to change in a continuous way in terms of the parameter ε. We will
use band theory to predict the evolution of the eigenvalues of F0 when a model parameter is
changed.

At zero coupling, the bands corresponding to the oscillators at rest can be analytically
calculated from the equation

ξ̈n + ω2
0ξn = Eξn; (11)

they are given by E = ω2
0−ω2

bθ
2/(2π)2. The bands corresponding to the N−1 excited oscillators

are a deformation of the band corresponding to the oscillator at rest (which will be called rest

New Journal of Physics 4 (2002) 72.1–72.19 (http://www.njp.org/)

http://www.njp.org/


72.7

–2 –20 2
–1

–0.5

–1

–0.5

0

0.5

1

1.5

θ

E

N –1
2x1

N –1

 0 2
 

 

0

0.5

1

1.5

θ

1
2x(N–1)

1

Figure 2. Band scheme for bright (left) and dark (right) breathers with soft
potential. The continuous lines correspond to the excited oscillators and are
numbered downwards starting from zero. The dotted curves correspond to the
oscillator at rest.

bands) and one of them must be tangent to E = 0 axis at (θ, E) = (0, 0) [1]. The bands are
bounded from above and numbered starting from the top, the zeroth band being the first one. If
the on-site potential is soft the first band will be tangent to the E = 0 axis at (0, 0) with positive
curvature. If the on-site potential is hard, the tangent band at (0, 0) will be the second one, and
will have negative curvature [21]. At the anticontinuous limit the band scheme of a bright and a
dark breather are similar, differing only in the number of bands that corresponds to the oscillators
at rest or to the excited oscillators (excited bands) as shown in figures 2 and 3.

The bright breather has only one band tangent to the axis E = 0 and that band cannot
leave this position because, when the coupling is switched on, there must be a tangent band
corresponding to the phase mode. The situation is totally different for a dark breather: there are
N − 1 bands tangent to the E = 0 axis and N − 2 of them can move without any restriction. If
some of them move upwards, the intersection points disappear, which implies that some Floquet
arguments become complex or, equivalently, that some Floquet multipliers abandon the unit
circle and the breather becomes unstable.

5. Dark breathers with soft on-site potentials

Let us consider a model with a cubic on-site potential given by

V (un) = 1
2ω

2
0u

2
n − 1

3u
3
n, (12)

that is, φ′(un) = −u2
n in the dynamical equations (4). Figure 4 represents the Floquet multipliers

for ε �= 0. The left side of the figure shows the Floquet multipliers of a stable bright breather
for a coupling ε = 0.1. However, as can be seen on the right side of the figure, the dark breather
experiences a multiple harmonic bifurcation as soon as the coupling is switched on. Therefore,
for a lattice with a cubic on-site potential and attractive interaction, dark breathers exist but they
are unstable for every value of the coupling.
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Figure 3. Band scheme for a dark breather with hard potential at zero coupling.
The continuous curves correspond to the excited oscillators and are numbered
downwards starting from zero. The dotted curves correspond to the oscillator at
rest.

This problem can be investigated by means of Aubry’s band analysis. It has given us an
explanation for the previous behaviour and also a guide for modifying the model in order to
obtain stable dark breathers. The bands at zero coupling can be seen in figure 5.

As explained above and shown in figure 4, the cubic dark breather becomes unstable for any
attractive coupling ε > 0 through harmonic bifurcations. This is easily understood in terms of
the band structure: N − 2 tangent bands move upwards, which is mathematically demonstrated
in [24]. They lose the tangent points with the E = 0 axis as figure 6 shows. Therefore, in
order that the breather can be stable all the excited bands except one have to move downwards,
transforming the points tangent to the E = 0 axis into intersection points. A straightforward
alternative is to change the sign of the parameter ε in (1). This is equivalent to using a dipole–
dipole coupling potential W (u) =

∑
n un+1un, i.e., the Hamiltonian can be written as

H =
∑
n

(1
2 u̇

2
n + 1

2ω
2
0u

2
n − 1

3u
3
n + 1

2ε(un+1un)) (13)

with ε > 0. This repulsive interaction has been used recently for DNA-related models [25]–[30].
The dynamical equations with repulsive interaction and cubic on-site potential become

ün + ω2
0un − u2

n + ε(un−1 + un+1) = 0, (14)

and the linear stability equations become

ξ̈n + ω2
0ξn − 2unξn + ε(ξn−1 + ξn+1) = 0. (15)

Figure 7 displays the band structure at ε = 0.015 for this system. The N − 2 bands that are
allowed to move will perform a downwards movement and therefore the breather is stable.
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Figure 4. Evolution of the Floquet multipliers with cubic on-site potential and
attractive interaction when the coupling is switched on for (left) the bright breather
at ε = 0.1, which is linearly stable, although reaching a possible bifurcation at
−1; (right) the dark breather at a much smaller coupling parameter ε = 0.004.
The breather frequency is ωb = 0.8.
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Figure 5. Band structure at zero coupling for a cubic on-site potential. The right
part of the figure plots the moduli of the unstable Floquet multipliers that are
smaller than 1, their inverses being the unstable multipliers. Frequency ωb = 0.8.

A further increase of ε leads to Krein crunches. They are caused by the mixing of the
rest bands and the excited bands, that produces ‘wiggles’ in the excited bands and gaps appear
between them [31]. When these bands move downwards and the ‘wiggles’ cross the E = 0
axis, intersection points are lost but recovered when the coupling increases. This manifests as
the appearance of ‘instability bubbles’. These instabilities depend on the size of the system, as
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Figure 7. Band structure of a dark breather with cubic on-site potential and
repulsive interaction at ε = 0.015. Frequency ωb = 0.8.

will be shown in section 7. The system will eventually become unstable through a cascade of
subharmonic bifurcations when the lower excited band goes below the E = 0 axis, losing the
intersection points at θ = ±π (see figure 8).
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bifurcations.

We have obtained dark breathers for systems with cubic on-site potential and attractive or
repulsive interaction even though dark breathers with attractive coupling are not stable. Figure 9
shows two different examples of dark breathers for these two types of coupling. Notice that the
oscillator with small amplitude is in phase with its neighbours when the system is unstable (left)
while it is in anti-phase when it is stable (right).

This type of behaviour is general for other soft on-site potentials as it can be obtained using,
for example, the Morse potential given by

V (un) = D(exp(−bun) − 1)2. (16)

For this system, dark breathers maintain their stability until the coupling parameter reaches the
value ε = 0.024. From this value Krein bifurcations appear. These bifurcations are harmless in
the sense that they preserve the dark localization, but the breather becomes quasiperiodic with
a frequency superimposed on the breather one. For ε > 0.033, the system becomes unstable
due to subharmonic bifurcations. Figure 10 shows this behaviour in terms of the corresponding
Floquet multipliers for two different values of the coupling. With this potential, it has been
described [11] that for values of the ωb close to the linear frequency ω0 (in fact, slightly above it),
oscillatory instabilities can bring about the movement of dark breathers, when the corresponding
eigenvalue is asymmetric and localized. This does not happen for frequencies far enough from
ω0 such as the ones of the order we present here.

An interesting variation of this scheme occurs if we consider symmetric on-site potentials
such as the quartic soft potential given by

V (un) = 1
2ω

2
0u

2
n − 1

4u
4
n. (17)
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Figure 9. Dark breather profile for a cubic potential with attractive interaction
(left) and with repulsive interaction(right), at ε = 0.023 . The last one is stable.
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Figure 10. Evolution of the Floquet eigenvalues for a Morse on-site potential and
repulsive coupling. Left: ε = 0.024; the system is still stable. Right: ε = 0.035;
the system becomes unstable due to subharmonic bifurcation and Krein crunches.

In this case the potential is symmetric and no subharmonic bifurcations at λ = ±1 occur because
the bands are gapless at θ = ±π. This characteristic enlarges the stability range (see figure 11).
The system eventually becomes unstable (apart from the reentrant instabilities due to Krein
crunches) through harmonic bifurcations.

6. Dark breathers with hard on-site potentials

The band scheme of a system with hard on-site potential at ε = 0 is shown in figure 3. There are
N − 1 bands tangent to the axis E = 0. It is clear that the breather will remain stable provided
that the tangent bands keep the intersection points when the degeneracy is raised with ε �= 0. In
this system it means that the N − 2 bands that can move will perform an upwards movement.
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Figure 11. Band structure for a dark breather with quartic soft on-site potential
and repulsive coupling. Note the absence of gaps at θ = ±π which enlarges the
stability range. Parameters: ε = 0.018 and ωb = 1.2.

Therefore, the dark breather will be stable with an attractive coupling potential. We have used
for the numerics the quartic hard on-site potential, that is

V (un) = 1
2ω

2
0u

2
n + 1

4u
4
n. (18)

The Hamiltonian is then

H =
∑
n

(1
2 u̇

2
n + 1

2ω
2
0u

2
n + 1

3u
3
n + 1

2ε(un+1 − un)2). (19)

Figure 12 shows that at ε = 0.01 the tangent bands have moved upwards and, therefore, the
stability of the system is maintained. The system loses its stability at ε = 0.022 where a harmonic
bifurcation appears. In figures 13 and 14 (left) the band structure and the corresponding Floquet
multipliers at ε = 0.041 are represented. The instability mode, shown in figure 14 with its
multipliers, is an asymmetric extended one. Simulations performed perturbing with it the dark
breather give rise to an small oscillation with both sides of the chain out of phase, superimposed
on the dark breather one, but the darkness is preserved. After that, there are Krein crunches due
to the band mixing with the usual properties.

7. Finite size effects

This final section is dedicated to commenting on some preliminary results relative to the finite
size effects on instability of dark breathers. Important differences appear with respect to the case
of bright breathers [31].

In the case of bright breathers, there are two kinds of size-dependent bifurcation. The
origin of these relies on the nature of the localization of the colliding eigenvalues. If the colliding
eigenvalues are extended, there appear ‘instability bubbles’, i.e. the Floquet eigenvalues abandon
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Figure 12. Band structure for a quartic hard on-site potential with attractive
interaction at ε = 0.01 and ωb = 1.2.
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Figure 13. Zoom of the band structure for a quartic hard on-site potential with
attractive interaction at ε = 0.041 and ωb = 1.2.

the unit circle after the collision but return afterwards. These bifurcations disappear when the
system is infinite. Alternatively, a localized eigenvalue can collide with a band of extended
eigenvalues. In this case, the instability bubbles also occur but they persist even though the
system is infinite.

In order to study the case of dark breathers, we have chosen a Morse on-site potential with
repulsive interaction. As a result of this analysis, the collision of extended eigenvalues always
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Figure 14. Left: Floquet multipliers with a quartic hard on-site potential and
attractive interaction at ε = 0.041 and ωb = 1.2. A harmonic and a small Krein
instability appear. Right: the velocity components (the position ones are zero) of
the eigenvalue corresponding to the harmonic instability.

implies a cascade of subharmonic bifurcations (see section 4) independently of the size of the
system. This is because they are due to excited bands, whose Floquet arguments belong to the
first Brillouin zone, losing intersections at θ = π. This is different from the case of bright
breathers where this kind of instability is due to modes corresponding to oscillators at rest and
the bands must be reduced to the first Brillouin zone.

Also, an eigenvalue corresponding to an extended mode can collide with a localized mode.
In this case, the rest (localized mode) band and the excited (extended modes) bands mix (see
figure 15). There appear ‘wiggles’ that imply the opening of gaps in the band scheme, which
are the origin of the instability bubbles. However, when the size of the system is increased,
the wiggles widen until they occupy almost the width of the quasi-continuous extended mode
bands. This fact implies that, although the instability bubbles disappear, the Krein crunches are
unavoidable (see figure 16). Nevertheless, the breathers are robust despite the existence of these
instabilities.

8. Dark breather stability in dissipative systems

There appear some important differences in the study of the stability of dark breathers in
dissipative systems with respect to the Hamiltonian case.

In order to perform this study, we start from the dissipative Frenkel–Kontorova model [32]:

ün + γu̇n + V ′(un) + ε(2un − un+1 − un−1) = F sin ωbt (20)

where γ is a damping parameter and F the amplitude of an external force.
In the anticontinuous limit, there are no bands tangent to the E = 0-axis (figure 17(a)). This

implies that, when the coupling is introduced, there is no loss of intersections of the bands with
independence of the sign of the coupling constant (ε). Furthermore, the bands corresponding to
the oscillator at rest do not mix with the band of the background and oscillatory instabilities do
not appear. These phenomena are shown in figure 17.
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invisible because they occupy the width of the band.
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Figure 16. Moduli of the Floquet eigenvalues corresponding to the Krein
crunches for N = 21 and 101 and a Morse potential (ε = 0.02 and ωb = 0.8). The
appearance of instability bubbles can be observed when N = 21. However, these
bubbles transform into an instability that persists up to a value of the coupling for
which the breather is unstable because of the subharmonic bifurcations.

9. Conclusions

In this paper we have explored the existence and stability of dark breathers in one-dimensional
Klein–Gordon models, for frequencies far enough from the linear frequencies for the DNLS
approximation be justified . We have found stable dark breathers in several types of them. For
systems with soft on-site potential, there are no stable dark breathers if the coupling between
particles is attractive, but with a repulsive coupling the stability is assured for fairly high values
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Figure 17. Band diagrams in the anticontinuous limit (top) and for a coupling
ε = ±0.005 (bottom) for a dark breather in the Frenkel–Kontorova model. The
parameters are ωb = 0.2π, γ = 0.02 and F = 0.02. (b) An attractive interaction
potential; (c) a repulsive potential. The dark breather is stable in both cases.

of the coupling parameter ε. As ε increases, instability bifurcations due to Krein crunches
take place as a consequence of the band mixing between the rest oscillator band and the dark
background. Eventually, the system experiences subharmonic bifurcations at −1 that make
the breather unstable. If the soft on-site potential is symmetric the subharmonic bifurcations are
avoided and the final instability is caused by harmonic bifurcations. For systems with hard on-site
potentials, the situation is reversed and the dark breathers are stable with attractive coupling and
unstable with repulsive coupling. They experience harmonic bifurcations at +1 apart from the
Krein crunches. An analysis of larger systems shows that these bifurcations persist even though
the system is infinite. Dissipative systems are, however, stable for both types of coupling.

We are now engaged on the project of performing a wider study of dark breathers in
dissipative systems. Another interesting aspect is to study the relationship of the vibration
pattern of dark breathers with the hardness of the on-site potential and the type of coupling.
The ansatz un → (−1)nun, which transforms repulsive coupling into attractive and vice versa
for symmetric potentials, suggests, and it has been shown for the DNLS equations, and we also
have checked numerically, that the stability conditions are reversed are low coupling, but the
bifurcations for |ωb − ω0| large enough, highly asymmetric potentials as found in chemical and
biological systems and larger coupling are worth studying.
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