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Collective coordinates theory for discrete soliton ratchets in the sine-Gordon model
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A collective coordinate theory is developed for soliton ratchets in the damped discrete sine-Gordon model
driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of
the soliton, is assumed as an approximated solution of the discrete nonlinear equation. The dynamical equations
of these two collective coordinates, obtained by means of the generalized travelling wave method, explain the
mechanism underlying the soliton ratchet and capture qualitatively all the main features of this phenomenon.
The numerical simulation of these equations accounts for the existence of a nonzero depinning threshold, the
nonsinusoidal behavior of the average velocity as a function of the relative phase between the harmonics of the
driver, the nonmonotonic dependence of the average velocity on the damping, and the existence of nontransporting
regimes beyond the depinning threshold. In particular, it provides a good description of the intriguing and complex
pattern of subspaces corresponding to different dynamical regimes in parameter space.
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I. INTRODUCTION

Soliton ratchet [1–3] is a generalization of the ratchet effect
[4] to spatially extended systems described by nonlinear partial
differential equations (PDE). In these systems, nonlinear
coherent excitations play a key role for transport properties
and the ratchet effect appears as a directed motion of solitons
under the influence of zero mean forces, due to the breaking of
the spatiotemporal or field symmetries of the system [2,5,6].

This phenomenon has been observed experimentally in long
Josephson junctions (JJ) devices. In this system, a spatially
asymmetric sawtooth ratchet potential can be emulated using
an inhomogeneous magnetic field [7], giving rise to drift
dynamics of fluxons (magnetic flux quanta) similar to that
observed for particle-point ratchets. The break of the spatial
symmetry can also be achieved by properly injecting an
external current [8] or by introducing a modulation of the
coupling between junctions [9,10]. Another means to obtain
a fluxon ratchet is that of breaking the temporal symmetry.
That was performed in an annular JJ using a biharmonic force
accomplished with microwaves [11].

The mechanism underlying soliton ratchets in continuous
systems has been clarified in detail by a collective coordinates
(CC) theory [5,12–15]. In this theory, the center of mass, X(t),
and the width, l(t), of the soliton are independent dynamical
variables and the initial PDE is reduced to a pair of coupled
nonlinear ordinary differential equations (ODE) for the two
CCs. Net soliton motion becomes possible when the indirect
driving resonates with one of the available frequencies of the
soliton internal vibrations. If this resonant condition is fulfilled,
the energy pumped by the driver into the soliton internal
vibration is converted into net motion through its coupling
with the translational degree of freedom.
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Soliton ratchets have also been investigated in discrete
systems [16–20]. In contrast with the continuous case, the
interplay between discreteness and nonlinearity introduces
new features such as nonzero depinning threshold [21], piece-
wise dependence of the mean velocity on system parameters,
chaotic or intermittent ratchetlike dynamics, and the intriguing
phenomenon of the existence of nontransporting regimes
beyond the depinning threshold [17]. However, most studies
are numerical due to the lack of an adequate analytical
approximation for strongly discrete systems. The aim of this
paper is to take a first step in that direction by developing a
two CC theory that captures all the rich phenomenology of the
discrete soliton ratchets in the Frenkel-Kontorova model.

The paper is organized as follows. In Sec. II the damped
Frenkel-Kontorova model driven by an external biharmonic
force is introduced. An ansatz with two collective coordinates
is suggested as an approximated solution of this system, and
the ODEs, which govern the evolution of the CCs, are obtained
by means of the generalized travelling wave method (GTWM).
Section III is devoted to simulations of the original PDE
and their comparison with the numerical simulations of the
ODEs for the two CCs. The dependence of the soliton mean
velocity on various system parameters is studied in detail and
particular emphasis is laid on the transition from the very
discrete limit to the continuous limit. Section IV summarizes
the main conclusions of the paper.

II. MODEL AND COLLECTIVE COORDINATES THEORY

We will focus on the paradigmatic case of the damped
discrete sine-Gordon (sG) system [22–24],

φ̈n − κ�dφn + dV (φn)

dφn

= −αφ̇n + F (t),

(1)
n = 1,2, . . . ,N.

which can be used, for instance, to describe a parallel array of
JJs [25] or to model a circular array of underdamped JJs when
F is a constant force [26]. Here φn is a scalar field, φ̇ is the
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derivative with respect to time, �dφn ≡ φn+1 + φn−1 − 2φn

is the discrete Laplacian, κ is the coupling constant that
measures the discreteness of the lattice, α is the dissipation
parameter, F (t) is a time-periodic external driving, and
dV (φn)

dφn
= sin(φn) + λ cos(2φn) is the derivative of a potential,

which will be asymmetric in case parameter λ �= 0. For F = 0
and λ �= 0, a mechanical analog of Eq. (1) in terms of a chain of
double pendulum was given in Ref. [27]. All these magnitudes
and parameters are in dimensionless form.

In this system, net motion of topological nonlinear excita-
tions (kinks or antikinks) can arise when the symmetries of
Eq. (1), which relate kink solutions with opposite velocities,
are broken. In order to describe the resulting ratchet dynamics,
a CC theory is presented based on the idea that perturbations of
the system act essentially on the center of mass, X(t), and the
width, l(t), of the unperturbed discrete kink. In the same spirit
as that of the Rice ansatz [28] for the continuous sG equation,
the discrete kink is approximated with the ansatz [29]

φn(t) = 4 arctan[exp(θn)], (2)

where

θn = κ−1/2 n − X(t)

l(t)
(3)

and equations of motion for the CCs are derived using the
so-called GTWM. A more complex ansatz, which includes
a modulation of the Goldstone mode, was used in Ref. [29]
to study the evolution of a propagating kink in the Frenkel-
Kontorova model without perturbations. Since only the case
of one kink is to be considered, periodic boundary conditions
φn+N (t) = φn(t) + 2π are also adopted, which correspond, for
instance, to a circular array of JJs with only one fluxon [11,30].

The GTWM was introduced in a general way in Ref. [31]
and was successfully applied to study the zero-temperature
dynamics [31] and thermal diffusion [32] of magnetic vortices
in the two-dimensional anisotropic Heisenberg model. Closer
to our problem, the GTWM has also been used to explain
various phenomena of kink dynamics in continuous ϕ4 and
sG models [33]. In short, according to the GTWM, given
an ansatz with M collective coordinates A1,A2, . . . ,AM , the
procedure to obtain the evolution equation for each CC, Aj

(j = 1, . . . ,M), involves three steps: (i) insert the ansatz
in the equation that governs the dynamic of the field φn,
(ii) multiply the resulting equation by ∂φn

∂Aj
, and (iii) integrate

over the spatial coordinate (sum over all elements n of the lat-
tice in the discrete case). Thus, applying this prescription, after
straightforward but cumbersome algebra (see the appendix for
details), the following equations for X(t) and l(t) are attained:

Ẍ +
[
J1(κ,l)

l̇2

l
− J2(κ,l)Ẋ2 − J3(κ,l)

]
sin(2π

√
κ X)

−λ

2
J4(κ,l) cos(2π

√
κ X) − Ẋl̇

l

= −αẊ − π

4
lF (t) , (4)

l̈ − l̇2

2l
+ 6

π2

Ẋ2

l
+ J5(κ,l)Ẋl̇ sin(2π

√
κ X)

= −αl̇ + J6(κ,l), (5)

where

J1(κ,l) = π

4 sinh3(π2
√

κ l)

× [2+3π4κl2 + (−2+π4κ l2) cosh(2π2√κ l)],

(6)

J2(κ,l) = 2π3κl

sinh(π2
√

κ l)
, (7)

J3(κ,l) = J2(κ,l)l2 + π3(3 + 12κl2 + 2π2κl2)

6l sinh(π2
√

κ l)
, (8)

J4(κ,l) = 4π3κl3(2π2κl2 − 1)

3 cosh(π2
√

κ l)
, (9)

J5(κ,l) = 6π
√

κ

sinh3(π2
√

κ l)
[3π2√κ l + π2√κ l cosh(2π2√κ l)

− 2 sinh(2π2√κ l)], (10)

J6(κ,l) = 3[1 + 4κl2(1 − l2)]

2π2κl3
. (11)

Notice that the validity of the dynamical Eqs. (4) and (5)
for the CCs is not restricted to the case of sinusoidal forces.
They are also valid for constant forces or for any generic time-
dependent force. A simpler ansatz with only one CC, which
includes the Lorentz factor l(t) = l0

√
1 − Ẋ2, could have been

considered. However, this ansatz would lead to an equation of
motion for X(t) whose numerical treatment is much more
complex than that needed for the system of Eqs. (4) and (5).

Furthermore, in the equation for the kink center of mass
(4), one can identify the mechanism responsible for the ratchet
phenomenon. Indeed, in the right-hand side of that equation,
the external force, F (t), appears coupled to the internal degree
of freedom of the kink, l(t), giving rise to an effective force
l(t)F (t). When its average 〈l(t)F (t)〉 �= 0, then net kink motion
will appear.

By taking the limit κ → ∞ in Eqs. (4) and (5), one recovers
the CC equations in the continuous limit [12],

Ẍ − Ẋl̇

l
= −αẊ − π

4
lF (t), (12)

2ll̈ − l̇2 + 12

π2
Ẋ2 = −2αll̇ + 12

π2
(1 − l2). (13)

For a given external force F (t), this two-ODE system can be
studied using perturbative expansion [12]. In particular, for a
biharmonic force of the form

F (t) = ε[cos(ωt) + cos(2ωt + ϕ)], (14)

at first order in ε and after a transient time, the average velocity
is given by

〈v〉 ≡ lim
t→∞

1

t

∫ t

0
Ẋ(τ )dτ

	 3πε3

D

[
2 sin(ϕ + χ + δ1)√
α2ω2 + (

�2
R − ω2

)2

− sin(ϕ + χ − δ2)√
4α2ω2 + (

�2
R − 4ω2

)2

]
, (15)

042922-2



COLLECTIVE COORDINATES THEORY FOR DISCRETE . . . PHYSICAL REVIEW E 90, 042922 (2014)

where D = 256(α2 + ω2)
√

α2 + 4ω2,�2
R = 12/π2 is the so-

called Rice’s frequency, χ = 2 arctan(ω/α) − arctan(2ω/α),

and δm = arctan(�2
R−m2ω2

mαω
), m = 1,2. This expression correctly

predicts that, in the continuous limit and for small amplitudes
ε, 〈v〉 is proportional to ε3, depends sinusoidally on the
difference phase ϕ [34], and can exhibit current reversals by
properly varying the damping or the frequency. Equation (15)
will be used to identify the continuous regime in the numerical
simulations.

III. NUMERICAL STUDY

The aim of this section is to check the validity of the CC
theory by numerically integrating the system of coupled ODEs
(4) and (5) and by comparing the results with direct simulations
of the discrete sG lattice equation (1). We will focus on the
case of ratchets of discrete kinks driven by the biharmonic
force (14) of period T = 2π/ω. As it is well known, in the
damped sine-Gordon equation, this biharmonic force breaks
the temporal symmetry F (t) = −F (t + T/2) and can be used
to induce net kink transport. Consequently, the asymmetry
parameter λ will henceforth be taken equal to zero hereafter.

In order to carry out the comparison between the two
approaches, we need to determine the center of mass and the
width of the sG kink profile, φn, which map the collective
coordinates X and l, respectively. Those variables are defined
as follows:

X = �

∑
n n(φn+1 − φn−1)2∑
n(φn+1 − φn−1)2

, (16)

l = �

√
12

3

[∑
n n2(φn+1 − φn−1)2∑

n(φn+1 − φn−1)2
− X2

]1/2

, (17)

where � = 1/
√

κ is the discretization parameter.
A first and important test for the CC theory is the estimation

of the depinning threshold, i.e., the curve on the (κ,ε) plane
that separates pinned states from the transporting zone in
which moving kinks exist [21]. In Fig. 1 a blue continuous
line represents the exact depinning curve obtained from the sG
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0.02

0.04

0.06

0.08

ε

κ

FIG. 1. (Color online) Depinning curve in the plane (κ,ε) for ω =
0.1, α = 0.1, and ϕ = 0. Below the curve no mobile kinks exist.
The area above the curve corresponds to moving kinks with nonzero
average velocity. The depinning threshold computed from simulation
of the discrete sG Eq. (1) (blue solid line) is very well fitted by the
results obtained from numerical solutions of the CC equations (red
circles).

equation (1) for a frequency ω = 0.1. It is computed by starting
from a pinned state and increasing ε, for a fixed value of κ ,
until the critical value for which the kink starts to propagate
is found. The same numerical experiment with the ODEs for
the CCs leads to the red circles, which fit the exact depinning
curve very well. As expected, the critical driving amplitude
for depinning tends to zero when κ → ∞ and the discreteness
effects disappear, while in the anticontinuum limit κ → 0 [35],
the depinning barrier becomes stronger and larger values of ε

are necessary to overcome this barrier.
Another distinctive feature of kink ratchets in discrete sys-

tems that is captured by the CC approximation is the piecewise
dependence of the mean velocity on system parameters. For
instance, in contrast with the continuous case in which 〈v〉 has a
sinusoidal dependence on the relative phase ϕ for small ampli-
tudes ε, in the discrete case 〈v〉 becomes zero in intervals whose
length increases as the damping is raised [16]. Figure 2(a)
shows the dependence of the mean kink velocity on ϕ for
κ = 2 and α = 0.1. Since this lies not far from the continuous
limit, the function 〈v〉(ϕ) computed from the sG equation (1)
(blue continuous line) clearly resembles a sinusoidal function.
The results obtained with the CC theory, plotted with red
circles, provide a good approximation and capture the size
of the interval without net transport very well.

When κ is decreased, 〈v〉(ϕ) loses its resemblance with
the sine function and the dependence on ϕ takes a more
complicated shape, as shown in Fig. 2(b) for κ = 1. One can
observe the existence of many pinning intervals, and also

0 0.5 1 1.5 2
−0.5

0

0.5

<
v>

T
/Δ

ϕ/π

(a)
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/Δ
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FIG. 2. (Color online) Dependence of the average kink velocity
on the relative phase for κ = 2 (a) and κ = 1 (b). The blue continuous
line represents results obtained from simulations of the sG equation
(1). Red circles correspond to results obtained from numerical
integration of the CC equations. Other parameters are ω = 0.1,
ε = 0.05, α = 0.1.
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FIG. 3. (Color online) Average kink velocity versus coupling
constant. Panels (a) and (b) correspond to the results from simulations
of the sG system (1) and from the equations of motion for the
CCs (4) and (5), respectively. Symbols refer to different dynamical
regimes: periodic or quasiperiodic regular transport (black •), chaotic
diffusive transport (red +), pinned states (blue ×), and rotating states
(green ∗). The thick magenta line represents the analytical expression
(15) for the average velocity in the continuous limit. The inset
shows more detailed behavior around κ = 1.16. Other parameters:
ω = 0.1,ε = 0.05,α = 0.1, and ϕ = 0.

the existence of many resonant plateaux at 〈v〉 = ±�/T ,
which correspond to kink motion that is perfectly locked
to the external driver frequency such that the kink moves
exactly one site per driving period. The prediction of the
CC theory is quantitatively poorer than in Fig. 2(a). This is
not surprising because the ansatz used is based on the exact
solution of the unperturbed system (1) on the continuous limit.
But, interestingly, the CC approximation provides a reasonable
description of what happens when one approaches the very
discrete limit.

In Fig. 3(a) the transition between the anticontinuous and
the continuous limit in the sG system (1) is studied in detail,
whereas in Fig. 3(b), this transition is considered through
solving the CC equations of motion. Remarkably, in spite of
the very complex scenario described below, the CC theory
captures all the existing dynamical regimes and provides a
reasonable qualitative picture of the whole transition. Along
the transition path different dynamical regimes appear. For
very small κ , below the depinning threshold, the center of the
kink remains pinned in a potential well oscillating around its
minimum (see blue ×). Above the threshold, regular transport
corresponding to periodic (or quasiperiodic) kink trajectories
dominates (dots). In this case, after an integer number � of
periods T , the kink travels k sites (or very approximately k
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FIG. 4. (Color online) Evolution of the center of mass and width
of the discrete sG kink for κ = 0.3 (top panels) and κ = 1.2 (bottom
panels). The former case corresponds to a pinning state, whereas
the latter constitutes an example of a nontransporting rotating state.
Fourier spectra for both coordinates are depicted in the right-hand-
side panels. Numerical integration of the CC equations (4) and (5)
leads to a quantitatively similar outcome. Other parameters are ω =
0.1, ε = 0.05, α = 0.1, and ϕ = 0.

sites) such that

〈v〉 = k�

�T
. (18)

Many sudden appearances (and disappearances) of chaotic
attractors (red +) leading to diffusive transport are found. The
magenta continuous line represents the analytical estimation
(15) of the average velocity at the continuous limit. Note that
for κ � 1.5, we are already very close to the continuous limit.

Notice also the existence of significative intervals of
nontransporting rotating states (green ∗), which are far from
the depinning threshold. These correspond to periodic orbits in
which the kink center oscillates with an amplitude of typically
several sites of the lattice, i.e., during a period T the kink moves
k sites forward and afterwards moves backward, coming back
exactly to its starting position. The dynamic of this regime is
similar to that of a pendulum with oscillating rotations (i.e.,
it rotates k times in one direction, then k times afterwards in
the opposite direction, and so forth), contrary to the pinning
states, which resemble a librating pendulum. The dynamics
and Fourier spectra of both regimes are compared in Fig. 4.
Notice that when the kink is pinned (top panels), then the center
of mass oscillates with two harmonics of similar amplitude
and the width is almost constant (note the scale on the Y

axis). For this reason, the effective force acting on the center
of the kink, which is proportional to l(t)F (t) ≈ 1.21F (t), has
practically zero average. On the other hand, in the rotating
regime (bottom panels), the second harmonic of the center
of mass has lost weight, width fluctuations are significative
(about 5% of the average width), and the second harmonic of
the width has gained an importance that was lost by the fourth
harmonic. Since l(t) is a periodic function, it can be expanded
in a Fourier series l(t) = ∑

k�0 lk cos(kωt + ψk). Thus, the
effective force is 〈l(t)F (t)〉 = ε

2 [l1 cos(ψ1) + l2 cos(ψ2 − ϕ)]
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FIG. 5. (Color online) Top panel: Moduli of Floquet eigenvalues
versus coupling constant for the pinning states of Fig. 3(a). Bottom
panel: Moduli of Floquet eigenvalues for the rotating states stood out
in the inset of Fig. 3(a).

and, consequently, no transport appears because l1 cos(ψ1) +
l2 cos(ψ2 − ϕ) = 0.

Another significant difference arises when analyzing the
Floquet spectrum, which enables the spectral stability and
internal modes of periodic orbits to be determined. Floquet
analysis consists, first, of introducing a perturbation ξn to a
given solution φn of the lattice equations (1). The equation for
the perturbation therefore reads as follows:

ξ̈n − κ�ξn + (cos φn)ξn + αξ̇n = 0. (19)

The stability properties are given by the spectrum of the
Floquet operator M (whose matrix representation is called
monodromy) defined as follows:({ξn(T )}

{ξ̇n(T )}
)

= M
({ξn(0)}

{ξ̇n(0)}
)

. (20)

The 2N monodromy eigenvalues � = exp(iθ ) are dubbed as
Floquet multipliers, and θ are denoted as Floquet exponents.
The solution is orbitally stable if all the multipliers lie on or are
inside the unit circle. As shown in Ref. [36], if � is a multiplier,
then so are �∗, ρ/�, and ρ/�∗, with ρ = exp(−πα/ω).
Consequently, in the absence of bifurcations (in our model,
for small κ [21]), all the eigenvalues lie within a circle with
radius ρ.

As shown in Ref. [21], pinned states become mobile by
means of period-doubling or tangent bifurcations, leading
the former to chaotic states and the latter to phase-locked
transporting states. Period-doubling (tangent) bifurcations are
caused by Floquet multipliers departing at � = −1 (� = +1).
In Fig. 5(a), the dependence of the moduli |�| of the Floquet
multipliers are depicted with respect to κ for the pinning states
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0

0.02

0.04

0.06

0.08

FIG. 6. (Color online) Dynamical regimes of the kink ratchet
motion for various values of the coupling constant, κ , and the driving
amplitude, ε. Panel (a) corresponds to the results from simulations of
the discrete sG system (1), and panel (b) to the results from the CC
equations of motion. White area: The kink remains pinned; black:
periodic or quasiperiodic regular transport; red: chaotic diffusive
transport; green: rotating states. Other parameters are ω = 0.1,
α = 0.1, ϕ = 0.

of Fig. 3(a). It is observed that the kink remains stable until
κ ≈ 0.506. The transition to a transporting state is mediated by
an eigenvalue with exponent θ = 0 that abruptly departs from
the circle of radius ρ; that is, the Floquet multipliers stay the
whole interval on (or very close to) the ρ circle. However, in the
rotating states, there is always a multiplier with θ = 0 outside
the ρ circle. This is explicitly shown in Fig. 5(b) for the longer
interval of rotating states stood out in the inset of Fig. 3(a).
Destabilization of the rotating kink at the borders of such an
interval gives rise to transporting states with regular dynamics.

An extensive study of the existing dynamical regimes in
the parameter (ε,κ) plane is displayed in Fig. 6. It is restricted
to small values of ε because the CC theory fails for ε > 0.1.
This is in accordance with its perturbative nature and with the
fact that, in the discrete sG system, kinks are destroyed above
a critical driving by the chaotic dynamics of the whole lattice
[16]. Comparison between Figs. 6(a) and 6(b) shows that the
CC approximation overestimates the green, nontransporting
areas but, in general, satisfactorily captures the peculiar and
complex pattern in the parameter space.

Coming back to Fig. 3, another striking aspect is that
transport in the discrete system can be very effective. In
fact, although in the discrete case kinks have to overcome
an energy barrier to move through the lattice (the so-called
Peierls-Nabarro barrier), one can observe values in Fig. 3 of
the mean kink velocity that are an order of magnitude higher
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FIG. 7. (Color online) Dependence of the normalized average
kink velocity on the damping for κ = 2 (a) and κ = 1 (b). The blue
solid line represents results from the simulations of the discrete sG
equation (1) while the red circles correspond to numerical integration
of the CC equations. Other parameters: ω = 0.1, ε = 0.05, and ϕ = 0.

than in the continuous case for the same parameter values. This
is actually counterintuitive. In essence, the Peierls-Nabarro
barrier decreases exponentially with κ [23], and therefore one
could erroneously expect the kink velocity to be a monotonous
increasing function of κ . However, resonance regimes of type
(18) can induce very effective transport. Such resonant regimes
have also been found in the damped Frenkel-Kontorova model
driven by a piecewise constant force [37].

Finally, we have studied the dependence of the kink
velocity on the damping. Close to the continuous limit 〈v〉
displays a characteristic nonmonotonic behavior as shown
in Fig. 7(a) for κ = 2. If ϕ = 0, in the underdamped limit,
〈v〉 vanishes because the discrete sG system (1) becomes
invariant under the transformation t → −t and 〈v〉 changes
its sign. On the other hand, large damping strongly reduces
the mobility. As a consequence, transport is maximized for
intermediate values of damping [38]. The CC approach (red
dashed line) suitable describes this nonmonotonous behavior
and the location of the peak.

As the coupling is decreased, kinks lose their mobility
quickly and the ratchet effect persists only for small values
of damping. For instance, in Fig. 7(b), one can see that for
κ = 1 net transport exists basically for α � 0.1. In that region,
〈v〉 no longer varies smoothly on α but instead shows the
characteristic plateau structure of discrete systems. Although
the CC approximation gives the mobility range and the order of
magnitude of 〈v〉 correctly it fails, for small values of damping,
in the prediction of a current reversal, which is not observed
in the sG system (1).

IV. CONCLUSIONS

We have developed a CC theory for kink ratchets in the
damped discrete sine-Gordon equation driven by a biharmonic
force. Inspired in the Rice ansatz used in the continuum
sine-Gordon equation [28], a discrete ansatz is suggested with
two collective coordinates, the center and the width of the
soliton, as an approximated solution of our working discrete
nonlinear equation. The evolution of these two collective
coordinates has been obtained by means of the generalized
travelling wave method. The resulting CC theory explains
the mechanism underlying the discrete soliton ratchet (the
biharmonic force with zero average acts on the discrete sG
equation, whereas an effective force with, in general, nonzero
average acts on the center of kink and causes its motion) and
captures the distinctive features of kink motion in discrete
systems: namely the existence of a depinning threshold;
the piecewise dependence of the mean velocity on system
parameters; and the complicated structure of subspaces of
transporting and nontransporting regimes in parameter space.

The numerical study shows that the theory agrees well
with the results obtained from simulations of the discrete
sG equation close to the continuous limit (κ > 1) and for
small amplitudes of the biharmonic force (ε < 0.1). This is
consistent with the perturbative nature of the CC approach.
When κ � 1, the agreement is not good from a quantitative
point of view but the CC approximation still provides a
reasonable qualitative description of what happens in the very
discrete limit.

Particular attention has been devoted to the investigation
of the intriguing shape of areas corresponding to different
dynamical regimes in phase space. Comparison with exact
numerical results of the discrete sG system reveals that the
CC approach satisfactorily captures the peculiar and complex
structure of subspaces in the parameter plane (ε,κ).

Further development of the theory is needed in order to
extend the method to the case of kink ratchets in asymmetric
double sG potentials. In fact, it is easy to verify that the
system of CC equations (4) and (5) loses its dependence on
the asymmetry parameter, λ, when taking the continuous limit.
The challenge is to find an adequate ansatz for the asymmetric
discrete sG system that leads to a tractable system of ODEs
for the CCs.
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APPENDIX: DERIVATION OF THE EQUATIONS
OF MOTION FOR THE CCS

Direct application of the GTWM to the field equa-
tion (1) leads to the following equations for X(t)
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and l(t):

I4
Ẍ

l
+ I5

l̈

l
− (I3 + 2I5)

l̇2

l2
− I1

(
Ẋ2

l2
+ 1
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(
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12κl2
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1
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, (A2)

where the terms Ij (j = 1, . . . ,13) are functions of X(t) and
l(t), which can be defined by the following sums:

I1 =
N∑

n=1

dφn

dθn

sin φn = −4
N∑

n=1

sinh θn

cosh3 θn

, (A3)

I2 =
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dφn

dθn

θn sin φn = −4
N∑

n=1

θn

sinh θn

cosh3 θn

, (A4)
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, (A5)
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1
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, (A6)
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, (A7)
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, (A9)
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n=1

θn

sinh θn
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. (A15)

All these sums are periodic functions of X(t) and, therefore,
can be expressed as Fourier series that can be well approxi-
mated by their first non-null harmonic,

I1 = 16π3κ3/2l3
∞∑

n=1

n2

sinh(nπ2
√

κ l)
sin(2nπ

√
κX)

≈ 16π3κ3/2l3

sinh(π2
√

κ l)
sin(2π

√
κ X), (A16)
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√
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√

κ l)

]
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√
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I4 = 8
√

κ l + 16π2κl2
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n=1

n

sinh(nπ2
√

κ l)
cos(2nπ

√
κX)
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√

κ l, (A19)

I5 = 8π
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κ l
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1−nπ2√κ l coth(nπ2√κ l)

sinh(nπ2
√

κ l)
sin(2nπ

√
κX)

≈ 8πκ1/2l[1−π2√κ l coth(π2√κ l)]

sinh(π2
√

κ l)
sin(2π

√
κ X),

(A20)
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FIG. 8. (Color online) Amplitudes of the series I8, I7, I3, I1, I5,
I11, and I12 (from top to bottom) versus coupling. The amplitudes have
been evaluated at l(t) ≈ 1 due to the small size of the fluctuations of
l(t).
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I6 = 2π
√

κ l + 4π
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≈ 2π

√
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√

κ l− 4
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√
κX) ≈ 2

3
π2√κ l,
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κ X), (A26)
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√
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√
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I13 = I2 − 8
√

κ l −
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n=1

16nπ2κ l2

sinh(nπ2
√

κ l)

[
2(1 + 2n2π2κ l2) − nπ2√κ l(1 + n2π2κ l2) coth(nπ2√κ l)
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√
κX)
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√

κ l. (A28)

Clearly, since l(t) is an oscillating function around l0 ≈ 1, the sums I2,I4,I6,I9,I10, and I13 are O(κ1/2). In Fig. 8, we have
plotted the amplitudes of the remaining series, I8, I7, I3, I1, I5, I11, and I12 from top to bottom versus the coupling parameter κ

in order to weigh up the importance of each term in Eqs. (A1) and (A2). These amplitudes have been evaluated at l(t) ≈ 1 due
to the small size of the fluctuations of the kink width. From Fig. 8, it is clear that I5, I11, and I12 are much smaller than the rest
and can be dropped in Eqs. (A1) and (A2). Once the remaining Ij terms are replaced with their first non-null harmonics, then the
CC equations of motion (4) and (5) are finally obtained.
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