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In the present work, we consider the dynamics of dark solitons as one mode of a defocusing photorefractive
lattice coupled with bright solitons as a second mode of the lattice. Our investigation is motivated by an experiment
that illustrates that such coupled states can exist with both components in the first gap of the linear band spectrum.
This finding is further extended by the examination of different possibilities from a theoretical perspective, such
as symbiotic ones where the bright component is supported by states of the dark component in the first or second
gap, or nonsymbiotic ones where the bright soliton is also a first-gap state coupled to a first or second gap state
of the dark component. While the obtained states are generally unstable, these instabilities typically bear fairly
small growth rates, which enable their observation for experimentally relevant propagation distances.

DOI: 10.1103/PhysRevA.83.063816 PACS number(s): 42.65.Tg, 05.45.Yv, 42.82.Et, 63.20.Pw

I. INTRODUCTION

The examination of the Hamiltonian continuum model with
periodic potentials and its discrete analog of lattice dynamical
systems has been a topic of increasing popularity over the last
few years [1]. This is mainly due to their wide applicability
in diverse physical contexts including, but not limited to, the
spatial dynamics of optical beams in coupled waveguide arrays
[2], optically induced photonic lattices in nonlinear optics [3],
temporal evolution of Bose-Einstein condensates (BECs) in
optical lattices in soft-condensed matter physics [4], and the
DNA double strand in biophysics [5].

A principal research theme in this direction is the study
of existence and stability of coherent structures in these
models and their feasibility in experiments. Several years
ago, fabrication of nonlinear optical AlGaAs waveguide
arrays [6] provided a first prototype through which many
initial investigations arose, such as discrete diffraction, Peierls
barriers, diffraction management [7], and gap solitons [8]. So
far numerous fundamental investigations have been pursued in
waveguide arrays, including modulational instability [9] and
four-wave-mixing effects arising from the coupling of multiple
components [10], as well as the study of interactions of solitary
waves with surfaces [11]. Subsequently the formation of
optically induced photonic lattices in photorefractive crystals
became an ideal platform for the observation of various types
of solitonic structures. The theoretical proposal [12] and rapid
experimental realization of such (mainly two-dimensional)
lattices [13,14] enabled the observation of, among other
things, dipole [15], necklace [16], and rotary [17] solitons
as well as discrete [18,19] and gap [20] vortices. Recently
waveguide arrays in lithium niobate (LiNbO3) crystal, which
possess a self-defocusing nonlinearity, have found significant

applications in the study of modulation instability [21], beam
interactions [22], dark discrete solitons [23], bright gap
solitons [24], and dark solitons in higher gaps [25], as well
as Rabi oscillations [26].

Our goal in this work is to consider the case of vec-
tor solitons. Although they have been studied both in the
focusing case of bright-vector solitons in strontium barium
niobate [27] and in the defocusing case of bright-gap-vector
solitons in LiNbO3 [28], much less work has been done in
multicomponent settings. Instead of mixtures of two solitary
waves of the same type as in the above cases, we aim to
examine the mixture of a bright with a dark soliton in photore-
fractive defocusing waveguide arrays. Such dark-bright states
were first created in the absence of lattices in photorefractive
crystals more than a decade ago [29], and their interactions
were partially monitored [30]. In the context of BECs such
solitary waves were also predicted theoretically [31], and
generalizations thereof were considered as well (such as
the dark-dark-bright or bright-bright-dark spinor variants of
Ref. [32]). However, it was only quite recently that such
structures were experimentally observed [33–36]. This has
led to a renewed interest in this theme, by addressing
the interactions of dark-bright solitons from an integrable
theory [37] or numerical [38] perspective, as well as their
higher-dimensional generalizations [39]. To the best of our
knowledge, there is no earlier investigation of such states
in models with a periodic potential except in the context of
nonlinear dynamical lattices [40].

Our motivation, presented in Sec. II, stems from an
experiment in defocusing LiNbO3 waveguide arrays where
a dark soliton state in the first gap (we will refer to this type of
state as a “bubble” in this paper) is coupled to a bright soliton
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in the same gap. We will show that these two waveforms
coexist as a solitonic entity. Also, we will present conditions
under which such a molecule may break up in its constituents.
This, in turn, motivates a more detailed theoretical study of
the different types of dark-bright states that can exist in the
system. Such coupled states will be identified between either
a bubble (in the first gap) or a higher-gap (i.e., the second
gap in this case) dark soliton in the one component with
either a regular bright soliton or a bright gap soliton. When a
bubble or dark soliton couples to a regular bright one, we refer
to these solitons as symbiotic because the bright component
cannot exist without the supporting dark component (due to
the defocusing nature of the nonlinearity). For the coupling
with a bright-gap soliton, because both components can persist
individually, we refer to these states as nonsymbiotic. We
find such multicomponent solitary waves to be only weakly
unstable, which is consonant with our ability to experimentally
observe case examples of such states. In Sec. III, we set up the
model problem and benchmark it against experimental data by
identifying its linear band spectrum. In Sec. IV the numerical
results for the above soliton families will be given. Finally, in
Sec. V we summarize our findings and present conclusions as
well as relevant directions for future study.

II. EXPERIMENTAL MOTIVATION

To experimentally investigate such molecular solitonic
states of dark and bright solitons, we used a one-dimensional
waveguide array (WA) fabricated on an iron-doped lithium
niobate (LiNbO3) substrate by in-diffusion of titanium at
high temperature. Arising from the bulk photovoltaic effect,
the substrate crystal displays a saturable type of defocusing
nonlinearity [41]. The transverse direction z is parallel to the
ferroelectric c axis. The direction of light propagation is along
the y axis. The array investigated in the following experiments
consists of 250 channels and has a grating period � = 8.5 µm,
which is the summation of the channel width of 5 µm and a
spacing of 3.5 µm between adjacent channels. One of the end
facets of the waveguide array sample is polished to optical
quality to allow for direct observation of the out-coupled light
from the array with the help of a CCD camera.

In our experimental setup, we employed the prism-coupler
scheme, with which we can selectively excite different Bloch
modes in any desired band. Furthermore, with this method we
can determine accurately the band structure of the waveguide
array [42]. The experimental layout is sketched in Fig. 1.
First, the input light with a wavelength of 532 nm from a
frequency-doubled Nd:YVO4 laser is expanded by a beam
expander into a plane wave and then split into two separate
beams. One beam propagates through a phase mask covering
half of the beam along the transverse direction z. As a
consequence, the covered half of the input beam experiences an
additional π phase shift, and thus a dark notch is generated at
the center of the intensity profile. Another beam is modulated
by an oscillating mirror driven by a function generator. With
applied external modulation, this beam is mutually incoherent
with respect to the other beam: Since the phase modulation
is much faster than the build-up time of the nonlinearity of
our photorefractive crystal, no stationary interference pattern
forms with the other beam. With the combination of two
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FIG. 1. Schematic experimental setup: HW, half-wave plate; P,
polarizer; BE, beam expander; Ms, mirrors; BSs, beam splitters; OM,
oscillating mirror; FG, function generator; PM, phase mask; S, screen;
L1 and L2, cylindrical lenses; MOs, microscopic objectives; CCDs,
CCD cameras; PD, photodiode; WA, waveguide array.

cylindrical lenses L1 and L2, the beam passing the phase mask
is then imaged onto the waveguide. Here the focal lengths of
the two lenses are chosen in order to generate an ideal width of
the dark notch covering about two channels, which is the input
light pattern for the excitation of a dark soliton. The other
beam is focused meanwhile by lens L2 with a diameter of
roughly 10 µm and serves as the excitation light for the bright
soliton. Both beams are coupled into the waveguide array and
copropagate until they reach the end facet of the sample. With
a high-resolution CCD camera, in combination with a 20×
microscopic objective lens, we can monitor around 25 channels
of the intensity distribution on the end facet. With this setup,
it is possible to adjust the input light distribution for both, the
bright soliton and the dark soliton separately, for example, the
relative locations of the two solitons on the waveguide array as
well as different excitation angles for modes originating from
different bands.

In the experiment, a bright gap soliton was excited from the
first and a dark soliton from the second band (a “bubble”
according to our notation above), both at the edge of the
Brillouin zone. The centers of both solitons were carefully
adjusted to overlap on the same waveguide channel. We first
checked under low optical power (less than 2 nW per channel)
the linear diffraction behavior of both the dark component
[Fig. 2(a), top row] and bright component [Fig. 2(a), bottom
row]. Then, by blocking one of the input beams, we formed
individual gap solitons (either dark or bright) by increasing the
optical power to appropriately high values [Fig. 2(b)]. In all
nonlinear experiments, the dark soliton from the second band
was formed under 150 nW optical power per channel. In order
to analyze the existence interval of the bubble-bright composite
solitons, the input light power of the bright soliton was
varied, resulting in different power ratios of dark and bright
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FIG. 2. (Color online) Experimental results of light intensity
distribution on the output facet showing linear diffraction (a) and
soliton formation of individual bright and dark components (b).
When both beams are launched with a power ratio of 4:3, a robust
bubble-bright soliton is formed (c) where both bright and dark
components are centered on the same channel.

components. At first, a bright soliton was formed at 200 nW
per channel, yielding a power ratio to the bright and dark
solitons of 4:3. In this case we observe a robust coexistence
of the two components at the output facet, as shown in
Fig. 2(c).

However, when we excite the bright soliton at much higher
power (400 nW per channel, resulting in a power ratio of
8:3), the propagation constant µb of the bright component in
this scenario is further decreased below the existence threshold
(see also the theoretical analysis below), while the propagation
constant µd of the dark component’s bubble state remains
essentially unaffected. The result of the experiment in this
situation is a clear spatial shift of the bubble center by one
waveguide channel [Fig. 3(a)] due to the coupling with the
bright soliton. This shift may be understood as the initial phase

FIG. 3. (Color online) When the input power ratio is increased
(dominating bright component) a shift of the dark soliton center is
experimentally observed (a). A restoration of the center position of the
bubble state appears when the bright component is blocked (b). This
process is reversible in the experiment, and the bubble is forced to
shift again from the center position when the bright beam is switched
on again (c).

of a repulsive interaction of the two constituents and thus
suggests the nonexistence (or strong instability) of bubble-
bright solitons for these input conditions. After reaching
the steady state for the input power ratio 8:3, we blocked
the input beam used for excitation of the bright soliton.
Because the nonlinearity in lithium niobate is noninstanta-
neous, the negative defect formed by the bright beam is still
present and is only slowly erased due to the photoconductivity
generated by the remaining dark beam. As a consequence, in
the µd -µb plane (see the left panel in Fig. 6) we now move
upward (i.e., µb increases) on a vertical line, reaching back
to the existence regime of robust bubble solitary waves. We
thus observe a reversible effect, presented in Fig. 3(b): After
the bright soliton is blocked, the dark soliton is restored to its
original location. This restoration proves directly the repulsive
influence from the dominant bright soliton. When the bright
component is switched on again in Fig. 3(c), once again the
strong repulsion between bright and dark components forces
the dark soliton to be shifted by one channel.

III. MODEL SETUP

In the following discussion, we will consider composite
solitons with a dark (or bubble) wave in one component
coupled with a bright mode in the second component in the
context of TE-TE modes for the geometry of our waveguide
array. We start by presenting the underlying model in the full
dimensional form with the paraxial approximation, and then
we discuss the nondimensional variant of the model, which
will be used for our numerical computations.

A. Dynamical equations

The paraxial equations for coupled TE-TE modes of the
two beams represented by Ed and Eb in this discussion are
given by

i∂XEd + 1

2k
∂ZZEd

+ k

ns

[
�n(Z) + �nnl

|Ed |2 + |Eb|2
1 + |Ed |2 + |Eb|2

]
Ed = 0,

(1)

i∂XEb + 1

2k
∂ZZEb

+ k

ns

[
�n(Z) + �nnl

|Ed |2 + |Eb|2
1 + |Ed |2 + |Eb|2

]
Eb = 0,

with �n(Z) the refractive index profile and the propagation
direction denoted as the x direction. One can find “stationary”
solutions of this system by defining

Ed (X,Z) = eiβdXu(Z), Eb(X,Z) = eiβbXv(Z), (2)

where βd,b are the propagation constants in the X direction
and u(Z) and v(Z) the amplitude profiles of each TE mode,
which, in turn, satisfy

−βdu+ 1

2k
∂ZZu+ k

ns

[
�n(Z) + �nnl

u2 + v2

1 + u2 + v2

]
u = 0,

(3)

−βbv + 1

2k
∂ZZv + k

ns

[
�n(Z) + �nnl

u2 + v2

1 + u2 + v2

]
v = 0,
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The values used in the experiments are the following:

ns = 2.2341, λ = 532 nm, � = 8.5 µm,

(4)

k = 2πns

λ
= 26.386 µm−1, �nnl = 2.5 × 10−4

(cf. also the discussion given in Sec. II) where ns is the
refractive index of the LiNbO3 substrate for extraordinary
polarized light, λ is the wavelength of the input light, � is
the period of the waveguide array, and �nnl is the maximum
refractive index change induced by the nonlinearity.

The refractive index profile can be determined by adjusting
the experimental Bloch bands showing the change of the
effective refractive index �neff ≡ neff − ns , with neff = βk0

and k0 = k/ns being the transverse wave vector in vacuum.
The refractive index is then given by

�n(Z) = �n0 + �n1V (Z) (5)

with

V (Z) = cos

(
2πZ

�

)
− 0.25 cos

(
4πZ

�

)
(6)

and

�n0 − ns = 27.567 × 10−4, �n1 = 8.35 × 10−4. (7)

Figure 4 shows the correspondence between the experimen-
tally observed Bloch bands [42] and the theoretically computed
ones. Clearly the above set of parameters offers a very good
handle on the linear part of the problem.

B. Nondimensional equations and parameters

The nondimensional version of the system of Eqs. (1) is
given by

i∂xu + 1

2
∂zzu + [η0 + ηV (z)]u + ν

u2 + v2

1 + u2 + v2
u = 0,

(8)

i∂xv + 1

2
∂zzv + [η0 + ηV (z)]v + ν

u2 + v2

1 + u2 + v2
v = 0,
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FIG. 4. (Color online) Bloch bands numerically (full lines) and
experimentally (circles) determined.

while the stationary states are solutions of

−µdu + 1

2
∂zzu + [η0 + ηV (z)]u + ν

u2 + v2

1 + u2 + v2
u = 0,

(9)

−µbv + 1

2
∂zzv + [η0 + ηV (z)]v + ν

u2 + v2

1 + u2 + v2
v = 0.

The nondimensional parameters are related to the experimental
ones by the following relations:

µd,b = k�2βd,b

α2
, ν = ±k2�2�nnl

α2ns

, (10)

η = k2�2�n1

α2ns

, η0 = k2�2�n0

α2ns

. (11)

The parameter α has been introduced so that the nondi-
mensional values are of O(1). Throughout the calculations, it
has been fixed to α = 10. The sign of ν indicates either self-
focusing (positive) or self-defocusing (negative). Additionally,
the nondimensional distances are given by

z = αZ/�, x = βd,b

µd,b

X = α2

k�2
X. (12)

The refractive index profile and parameters are given now by

V (z) = cos

(
2πz

α

)
− 0.25 cos

(
4πz

α

)
, (13)

η = 0.1880, η0 = 0.6207, ν = ±0.0563, (14)

and the change of the effective refractive index is

�neff = βd,bλ

2π
= α2λ2µd,b

4π2ns�2
(15)

for each (dark and bright) component.

C. Stability equations

Once stationary solutions of the boundary value problem
(with periodic or antiperiodic boundary conditions, depending
on the nature of the examined solution) of Eqs. (9) are
identified, their linear stability is considered by means of a
Bogolyubov-de Gennes analysis. Namely, small perturbations
[of order O(δ), with 0 < δ � 1] are introduced in the form

Ed (z,x) = eiµdx{u0(z) + δ[P (z)eiωz + Q∗(z)e−iω∗z]},
(16)

Eb(z,x) = eiµbx{v0(z) + δ[R(z)eiωz + S∗(z)e−iω∗z]},
and the ensuing linearized equation are then solved to O(δ),
leading to the following eigenvalue problem:

ω

⎛
⎜⎝

P (z)
Q(z)
R(z)
S(z)

⎞
⎟⎠ =

⎛
⎜⎝

L1 L2 L3 L3

−L2 −L1 −L3 −L3

L3 L3 L4 L5

−L3 −L3 −L5 −L4

⎞
⎟⎠

⎛
⎜⎝

P (z)
Q(z)
R(z)
S(z)

⎞
⎟⎠ , (17)
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FIG. 5. (Color online) Soliton profiles for bubble-bright (top panels) and dark-bright (bottom panels) solitons. Profile of the electric field
for a NS-BBS with µb = 0.64 and µd = 0.49 (left panel in top line), S-BBS with µb = 0.66 and µd = 0.48 (right panel in top line), NS-DBS
with µb = 0.65 and µd = 0.33 (left panel in bottom line), and S-DBS with µb = 0.67 and µd = 0.32 (right panel in bottom line). Blue dashed
lines: input field of the bright component. Black solid lines: input field of the dark component. The red solid lines in each case illustrate a
rescaled form of V (x) to indicate the location of the potential wells.

for the eigenfrequency ω and the associated eigenvector
(P (z),Q(z),R(z),S(z))T , where Lj , j = 1 . . . 5 are the fol-
lowing operators:

L1 = −µd + 1

2

d2

dz2
+ [η0 + ηV (z)]

+ ν

[
u2

0 + v2
0

1 + u2
0 + v2

0

+ u2
0(

1 + u2
0 + v2

0

)2

]
,

L2 = ν
u2

0(
1 + u2

0 + v2
0

)2 ,

(18)
L3 = ν

u0v0(
1 + u2

0 + v2
0

)2 ,

L4 = −µb + 1

2

d2

dz2
+ [η0 + ηV (z)]

+ ν

[
u2

0 + v2
0

1 + u2
0 + v2

0

+ v2
0(

1 + u2
0 + v2

0

)2

]
,

L5 = ν
v2

0(
1 + u2

0 + v2
0

)2 ,

where it has been taken into account that u0(z),v0(z) ∈
R. Once the stationary solutions are found to be linearly
unstable (i.e., Im{ω} �= 0), then the dynamical manifestation
of the corresponding instabilities is monitored through direct
numerical simulations of Eq. (8). As we will see in the next
section, all of the analyzed solutions are unstable, although
their growth rates are so small that long propagation distances
x are needed in order to observe the emergence of the pertinent
instabilities.

IV. NUMERICAL RESULTS

We now present our results for the several types of coherent
structures considered in our system in the self-defocusing
setting (i.e., ν < 0). All of them are composed of a bright
soliton in the first band gap. The dark structure can be of
two types. It may be a bubble, located in the first band gap
and arising from the top of the second Bloch band, in which
case the overall phase shift between the two endpoints of the
domain is 0. Alternatively, it may be a (genuine) dark soliton,
which emerges from the bottom of the second Bloch band, and,
consequently, its propagation constant is found in the second
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FIG. 6. (Color online) Existence range for bubble-bright (left) and dark-bright (right) solitons. Relevant endpoints of the linear spectrum
(and cutoff points below which we were unable to continue the solution) are denoted by corresponding horizontal or vertical dashed lines.

band gap, and it bears a phase shift of π between the domain
endpoints.

We make one more terminological distinction between the
different types of waveforms that can arise. In particular, the

emerging bubble (dark-bright) structures can be either symbi-
otic or not. In the first case, the bright soliton is unstaggered
and emerges from the top of the first band (zero mode).
These modes are called symbiotic because an isolated bright
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FIG. 8. (Color online) Top row: Propagation of the squared
modulus of the electric field for the dark (left) and bright (right)
components of a NS-BBS with µd = 0.48 and µb = 0.635. Second
row: Propagation of the squared electric field for the dark (left) and
bright (right) components of a S-BBS with µd = 0.48 and µb = 0.67.
Third row: Propagation of the squared modulus of the electric field
for the dark (left) and bright (right) components of a NS-DBS with
µd = 0.32 and µb = 0.64. Bottom row: Propagation of the squared
electric field for the dark (left) and bright (right) components of a
S-DBS with µd = 0.31 and µb = 0.66.

component would not exist in this form for the relevant values
of the propagation constant; it necessitates the formation of an
effective potential by its dark (or bubble) counterpart in order
to coexist with it. In the second (nonsymbiotic) case, the bright
soliton is staggered and emerges from the bottom of the first
band as a genuine gap soliton that would be sustained in the
system even in the absence of the other component.

These two distinctions (dark or bubble waves for the first
component, symbiotic or nonsymbiotic ones depending on the
nature of the second component) give rise to four possibilities
for the ensuing structures dubbed as follows: symbiotic or
nonsymbiotic bubble-bright soliton (S-BBS or NS-BBS) and
symbiotic or nonsymbiotic dark-bright soliton (S-DBS or NS-
DBS). Among the four, it is the NS-BBS that was observed

in our experimental motivation in Sec. II. Figure 5 shows
prototype examples of the input field profiles for each of these
four solutions.

As mentioned above, Fig. 4 shows the position of the
linear Bloch bands, which are also relevant for the iden-
tification of the nonlinear localized modes that arise in
the system. In particular, the first band is located in the
interval µ1d ≡ 0.6755 < µ < 0.6833 ≡ µ1u [3.00 × 10−3 <

neff < 3.03 × 10−3], the second one is µ2d ≡ 0.4614 <

µ < 0.5181 ≡ µ2u [2.05 × 10−3 < neff < 2.30 × 10−3], and
the third one at µ3d ≡ 0.1806 < µ < 0.3567 ≡ µ3u [0.80 ×
10−3 < neff < 1.58 × 10−3].

Our numerical computations show that, in absence of
coupling between the modes, the bright soliton can be
identified in the first gap for µ1d + ν < µb < µ1d (i.e.,
µb ∈ [0.6192,0.6755], and ν here as well as below denotes
an appropriate shift), whereas bubble-type solutions also
exist for µ2u + ν < µd < µ2u (i.e., µd ∈ [0.4618,0.5181]).
Due to the nonlinear shift of the excited second band
toward lower values of µ, the propagation constant of the
bubble falls into the range of first gap of the linear band
structure [43]. In turn, the dark soliton can be identified
for lower values of the propagation constant, namely, for
µ3u + ν < µd < µ3u (i.e., µd ∈ [0.3004,0.3567]). In the case
of the two coupled beam components within the waveguide
array, the existence interval is narrower. Furthermore, the
existence range depends qualitatively on the symbiotic or
nonsymbiotic character of the soliton. More specifically, the
accessible range of µd , for a given µb, is always wider for
symbiotic solitons than for nonsymbiotic ones. Additionally,
the existence range of symbiotic solitons is limited from above
by µ1u. Figure 6 depicts the existence range for dark-bright
and bubble-bright symbiotic as well as nonsymbiotic solitary
waves.

We have examined the linear stability of the obtained
solutions, finding that the relevant waveforms are generically
unstable in the spectral sense; i.e., we have identified an
imaginary or complex eigenfrequency associated with the
linearization spectrum around these profiles; however, the
growth rate is typically fairly small ( <∼ 10−3 in nondimensional
units, i.e., <∼ 0.05 mm−1 in dimensional units) and always
less than 10−2 in nondimensional units corresponding to
0.5 mm−1 in dimensional ones. Consequently, instabilities
appear at a sufficiently large propagation distance X (inversely
proportional to the above growth rate). Figure 7 shows the
growth rate dependence with �neff,d and �neff,b for the
four analyzed structures; notice the color bar on the right
indicating the magnitude of the respective growth rates. In
order to test the effect of instabilities, a random perturbation
of magnitude ∼ 10−3 is introduced to the input field profile.
The main dynamical observed outcome is the mobility of
the dark component of the soliton. This implies a breakup
of the structure; however, there are two realizations thereof
depending on the symbiotic or nonsymbiotic nature of the
state. In the case of a nonsymbiotic solitons (i.e., for NS-BBS
and for NS-DBS), the bright component remains at rest,
forming a genuine bright gap soliton. On the other hand, in the
symbiotic solitons, this is impossible due to the nonexistence
of a bright waveform of this type. Hence, most of the bright
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FIG. 9. (Color online) Stability panels for the solitons of Fig. 8, namely for the NS-BBS in the top left, the S-BBS in the top right, the
NS-DBS of the bottom left, and S-DBS in the bottom right.

component energy moves toward the opposite direction of the
dark component in the case of the bubble (i.e., for S-BBS)
while part of the energy moves with the dark component. For
the S-DBS, most of the energy appears to move together with
the dark component. A summary of this scenario is shown in
Fig. 8. To indicate the growth rates and unstable eigenmodes
of the solutions dynamically followed in Fig. 8, we show in
Fig. 9 their respective spectral planes. It is worth remarking
that, in most cases, the instabilities are of exponential and
oscillatory type, except in the case of S-BBS, where most
of the instabilities are purely oscillatory. On the other hand,
to connect these results with the experimental motivation of
Sec. II, let us point out that for the NS-BBS considered therein
the increase of the power is tantamount to a larger instability
growth rate and hence the observation of the mobility of the
dark component, while the bright one forms a genuine gap
soliton in agreement with our numerics (top panel of Fig. 8).
This repulsive effect between the two components is also
evident through the blocking of the bright channel and the
restoration of the bubble at the center, while the reintroduction
of the interaction between the beams naturally and reversibly
reinstates the repulsive bubble mobility effect.

V. CONCLUSIONS AND FUTURE CHALLENGES

In the work presented in this paper, we have considered the
case of two-component dark-bright-type solitary wave states
in defocusing photorefractive waveguide arrays. Motivated by
experiments in LiNbO3 arrays, which illustrated a bubble-type
soliton state in one component coupled to a bright gap
solitary wave in the second one, we delved into a theoretical
examination of the different composite states that can emerge
in this system. In particular, we revealed the potential for four
distinct types of waves, namely, nonsymbiotic and symbiotic,
dark-bright and bubble-bright ones. We numerically revealed
(within a model benchmarked against the linear band structure)
the persistence boundaries of such solutions. We also analyzed
their linear stability, which exhibits a typically weak instability
in all of them (with fairly small growth rates). This instability
is so weak that it permits, apparently, the experimental observ-
ability of the states. Nevertheless, in suitable regimes even the
experimental dynamics manifests the potential breakup of the
composite states.

Naturally, this investigation paves the way for numerous
additional studies. On the one hand, from an experimental
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viewpoint it would certainly be interesting to identify the
other proposed structures. On the other hand, investigating
interactions of such composite structures would also offer
relevant insights as was done experimentally, e.g., with simpler
states in Ref. [22], or as was done numerically in Ref. [40]
and in different (BEC) dark-bright contexts in Refs. [36,38].
Generalizations of such states in two-dimensional waveguide
arrays with the formation of vortex-bright states [39] or of
genuinely discrete variants thereof [44] would also be an
exciting theme for future investigations.
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