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Abstract

Biclustering has become a very popular data mining technique due to its
ability to explore at the same time two different dimensions, as opposed to
clustering techniques, that make use of only one dimension. Gene expression
data offer a suitable framework for the application of biclustering algorithms,
where enormous amount of information are being produced due to technolog-
ical advances. Microarray technology offers the possibility of quantifying the
expression levels of thousand of genes simultaneously. Furthermore, several
experimental conditions may be taken into account, producing thus numer-
ical matrices of expression in which one dimension refers to genes (rows)
and the other refers to samples or experimental conditions (columns). This
constitutes an ideal scenario for applying biclustering since exploring both
dimensions simultaneously would provide the analyst with useful knowledge
(subset of genes showing a common tendency under a subset of conditions).
Different heuristics have been proposed in order to discover interesting bi-
clusters in data. Many of them are guided by a measure that determines
the quality of biclusters. Thus, defining a quality measure represents a key
factor in the search of biclusters. The most widespread measure for biclus-
tering of gene expression data has been the mean squared residue (MSR),
that can identify correctly some types of patterns, but fails at discovering
others. In this PhD Thesis we plan to first make an overview of the most
used biclustering techniques for gene expression data, and second to propose
a both effective and efficient quality bicluster measure, together with a fully
customizable evolutionary biclustering technique. The evaluation measures
we propose (named VE and VEt) are based on the use of a standardization
procedure in order to perform a comparison among the genes and conditions
tendencies, with independence of their specific expression values. On the
other hand, our search heuristic (called Evo-Bexpa) offers the possibility of
guiding the search towards certain desired characteristics in the biclusters,
by adjusting several weights that give preference to some bicluster features
over others. Also, new objectives can be easily incorporated into the search.
Our work also include a wide set of experimental tests which helps us to
validate our proposal, both statistically and biologically.
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Chapter 1

Introduction

1.1 Motivation

DNA Microarray technologies are used to analyse the expression level of many
genes in a single reaction quickly and in an efficient manner. Different types
of microarray chips have been designed for different investigations, being ex-
pression chips the most common application. They are used to determine the
expression patterns of genes that correspond to different samples or exper-
imental conditions, where the samples may vary according to experimental
conditions and/or physiological states. They may even be extracted from
different individuals, tissues or developmental stages (Lesk (2008)). The ap-
plications of this kind of microarrays involve determine genes functions, find
new genes, study genes regulation and assess how they have evolved over
time.

The raw data of a microarray experiment is an image, in which the colours
and intensities reflect the expression level of each gene and each sample. This
image is processed in order to obtain a numerical gene expression matrix, in
which rows correspond to the genes under study and the columns refers the
different samples or experimental conditions. A special characteristic of these
expression matrices is that they are very unbalanced, in the sense that the
number of genes is much larger (usually thousands of genes) than the number
of samples (usually less than a hundred) (Watson (2003)). Therefore, ana-
lysing these kind of matrices implies understand the relationships of a space
of lots of variables (genes) from only a few measured points (experimental
conditions).

In order to obtain relevant knowledge from microarray data, similarities
among genes and samples need to be carried out in many different ways,
depending on the specific application. Focussing the analysis on the genes,

17



18 Chapter 1. Introduction

one of the most studied goals is to extract information on how gene expression
patterns vary among the different samples, finding groups of co-expressed
genes. If two different genes show similar expression patterns across the
samples, this suggests a common pattern of regulation, possibly reflecting
some kind of interaction or relationship between their functions (Baldi &
Hatfield (2002)).

Within data mining techniques it is possible to differentiate two main
sets of algorithms, depending on the use (supervised learning) or not (non-
supervised learning) of previous knowledge on the data. Classification has
been extensively studied within gene expression data as a supervised tech-
nique [Golub et al (1999); Ben-Dor et al (2000); Asyali et al (2006); Schacht-
ner et al (2008); Buness et al (2009)], where labelled data is used to create
an algorithm able to assign any new input data to its proper class.

On the other hand, non-supervised learning is used when no previous
assignations are available; the goal is to divide the data into clusters of
samples and to identify the differences between the genes that characterize
such groups. The application of clustering techniques to gene expression data
has also been broadly studied in the literature [Jiang et al (2004); Xu et al
(2005); Handl et al (2005)]. Nevertheless, there exists two main restrictions
in the use of clustering algorithms: (1) genes are grouped together according
to their expression patters across the whole set of samples, and (2) each gene
must be clustered into exactly one group. This last limitation is two-fold:
firstly, it means that a certain gene cannot be present in different groups,
thus forbidding overlapping among clusters; secondly, it confines each gene
to be a member of any cluster, even if it is not co-regulated with any of the
other genes in the cluster.

However, genes might be relevant only for a subset of samples. This is
essential for numerous biological problems, such as the analysis of genes con-
tributing to certain diseases, assigning biological functionalities to genes or
when the conditions of a microarray are diverse (Wang et al (2002)). Thus,
clustering should be performed on the two dimensions (genes and conditions)
simultaneously. Also, many genes may be grouped into diverse clusters (or
none of them) depending on their participation in different biological process-
es within the cell (Gasch & Eisen (2002)). These characteristics are covered
by biclustering techniques, which have also been largely applied to microarray
data [Madeira & Oliveira (2004); Tanay et al (2005); Busygin et al (2008)].
The groups of genes and samples found by biclustering approaches are called
biclusters.

Finding significant biclusters in a microarray is a much more complex
problem than clustering (Divina & Aguilar-Ruiz (2006)). In fact, it has been
proven to be a NP-hard problem (Tanay et al (2002)). Consequently, the
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majority of the proposed techniques are based on optimization procedures as
the search heuristic. The development of both a suitable heuristic and a good
cost function for guiding the search is essential for discovering interesting
biclusters in an expression matrix. In order to design an effective evaluation
measure for biclusters, we have focused our research on the study of the
different types of expression patterns in the literature, being the most general
situation given by the so-called shifting and scaling pattern, which combines
both the additive and multiplicative models (Aguilar-Ruiz (2005)). This
combined pattern summarises in a mathematical formula the different type
of bicluster formulations in the literature. This way, every expression value
in a bicluster would be the result of applying both multiplicative and additive
factors per sample to a characteristic value of each gene. In section 4.2 we
give a formal definition of a shifting and scaling pattern for gene expression
data.

In this PhD Thesis we present an efficient evaluation measure for biclus-
ters based on the concept of behavioural patterns, as well as an evolutionary
heuristic with combines several objectives for the search of biclusters in gene
expression microarray data. The main novelty of our approach regarding the
existing ones is its capability of adjusting the system behaviour depending
on desired characteristics of the results.
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1.2 Hypotheses

Our work has been mainly based on three hypotheses, regarding two different
existing problems within biclustering of gene expression data.

First hypothesis: It is possible to develop effective quality measures for
biclusters capable of capturing both shifting and scaling patterns simul-
taneously.

This hypothesis covers the problem that supposes the lack of a quality
metric for biclusters able to recognize all the possible kind of patterns in gene
expression data. In order to fully comprehend this problem we first drew up
an in-depth description of all the possible patterns in gene expression da-
ta, according to the literature. Afterwards, we studied different possibilities
of grouping all these patterns into a single mathematical formula or proce-
dure, consisting thus as our start point for developing a quality measure for
biclusters.

In order to conduct our research for finding a both effective and effi-
cient quality metric for biclusters based on the patterns concepts, we started
studying the equation for shifting and scaling combined pattern presented in
a previous work of Aguilar-Ruiz (2005). We also analysed some biclusters
obtained by several authors (Cheng & Church (2000); Bleuler et al (2004);
Divina & Aguilar-Ruiz (2006)), observing that the range of expression values
assumed by genes can vary substantially depending on the specific microar-
ray. Therefore, in order to do an appropriate comparison between each gene
and the pattern, it would be desirable to define a mechanism for moving the
expression levels to a common range. This mechanism would also be respon-
sible for softening every gene behaviour, since the most important aspect is
to characterize their tendency rather than their numerical values. For these
reasons, we focused our research in the application of a standardization based
procedure in order to assess the similarity of the data in a bicluster to its
closest perfect combined pattern.

The use of an appropriate bicluster evaluation measure together with a
search heuristic made us think in a second hypothesis:

Second hypothesis: The use of a quality measure with the characterictics
presented in the first hypothesis within an evolutionary strategy would
guide the search towards significant biclusters.

This second hypothesis states that the combination of a good metric
together with an evolutionary heuristic would produce quality biclusters.
Once the metric to be used in the procedure has been defined, the problem
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consists in finding the best configuration of an evolutionary based algorithm
for the search of biclusters in a microarray. The main reason for focusing
our research on evolutionary computation is the fact that biclustering has
been proven to be a NP-hard problem by Tanay et al (2002). Evolutionary
algorithms suit very well to this kind of problems, where a group of candidate
solutions are iteratively improved with regard to a given measure of quality
(fitness function) (Floreano & Mattiussi (2008)).

Third hypothesis: It is possible to desing an effective parametrization of
an evolutionary biclustering algorithm which would guide the search
towards biclusters with certain features specified by the user.

Evolutionary environments have already been used in biclustering, due to
its appropriateness to the problem, where populations of potential solutions
allow the exploration of a greater portion of the search space. In section 4.4
we review the most important evolutionary-based biclustering approaches.
Nevertheless, none of them allow the user to choose the objectives involved
in the search. In this sense, this hypothesis made us work towards the devel-
oping of a customizable evolutionary biclustering approach, where different
objectives might be weighted by the user depending on the desired results.
This objectives include volume, gene variance or overlapping level among bi-
clusters. Furthermore, it would also be very easy for the user to incorporate
new objectives into the search.

1.3 Summary of Contributions

The main contributions of this PhD Thesis correspond to the problems sum-
marized in the hypotheses: the need for an efficient evaluation measure for
biclusters capable of capturing shifting and scaling patterns simultaneously,
and the inclusion of a metric with these characteristic in an evolutionary
environment.

The research in this PhD Thesis has been supported by grants TIN2004-
00159 and TIN2007-68084-C02-00 from the Ministry of Science and Tehnol-
ogy, and also by grant TIN2011-28956-C02 from the Spanish Ministry of
Economy and Competitiveness, which is currently an ongoing project.

During the development of this PhD Thesis work, our first tasks were
oriented towards the design of an effective bicluster evaluation measure. This
way, Maximal Standard Area (MSA) and Virtual Error (VE) were our first
approximations, being both of them based on standardization procedures.
Finally, applying matrix transpositions before computing VE we came up to
Transposed Virtual Error (VEt), which has been proven to identify shifting
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and scaling patterns simultaneously in biclusters. These works have been
backed up by the publication of several conference and journal papers, in
which these evaluation measures were included in other author heuristics.

After having developed VEt, we focused our efforts upon the design of a
fully customizable evolutionary approach for the search of biclusters in gene
expression microarrays named Evo-Bexpa, from Evolutionary Biclustering
based on Expression Patterns, using VEt as the main objective. Further-
more, Evo-Bexpa includes a guide on how the algorithm can be guided to-
wards different kind of solutions, by using configuring parameters. Through
the manipulation of several input parameters, the user can change the sys-
tem behaviour, producing thus biclusters with different volumes, overlapping
levels or gene variances, among others. It is even possible to add new user-
defined objectives to the search, if available.

Our contributions can therefore be enumerated as a list of three differ-
ent metrics for the evaluation of biclusters and a biclustering heuristic based
on evolutionary computation, configurable with parameters. Furthermore,
other related works to this PhD Thesis include a study on two overlapping
control mechanisms for biclusters and a parallel work on clustering over pro-
tein interaction networks, a piece of research carried out during the leave of
absence required to obtain the European doctoral dissertation.

We summarize in the following the list of conference and journal publica-
tions mentioned above:

• Evaluation measures for biclusters based on the concept of
expression patterns:

– Maximal Standard Area (MSA). This evaluation measure was
published in the proceedings of the IEEE International Fuzzy Sys-
tems Conference of 2007 (Giraldez et al (2007)), and also in the II
Congreso Español de Informática (CEDI) (Pontes et al (2007c)).

– Virtual Error (VE). VE was first published in the internation-
al journal Evolutionary Computation, Machine Learning and Data
Mining in Bioinformatics (Pontes et al (2007a)) and also in the na-
tional workshop IV Taller Nacional de Mineŕıa de Datos y Apren-
dizaje (TAMIDA) Pontes et al (2007b)), within the II Congreso
Español de Informática (CEDI) national conference. A further
study on VE and its inclusion into a multi-objective approach has
been finally published in the Computers in Biology and Medicine
international journal (Divina et al (2012)). This work contains an
in-depth comparative of VE and MSR with seven different real
datasets, also including biological validation of the results. This
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validation proves that significant results are obtained, covering
thus the second hypothesis.

– Transposed Virtual Error (VEt). VEt was originally pre-
sented in the international journal Pattern Recognition in Bioin-
formatics (Pontes et al (2010a)), together with an experimental
comparison in which two other evaluation measures were includ-
ed. It has also been published in the VII Congreso Español sobre
Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados national
conference (Pontes et al (2010b)). The definition of VEt in these
works covers our first stated hypothesis.

• Customizable evolutionary biclustering algorithm:

– Evolutionary Biclustering based on Expression Patterns
(Evo-Bexpa). This work present our final contribution to this
PhD Thesis, since it makes use of VEt at the same time as presents
a fully customizable evolutionary biclustering algorithm, which
covers our third hypothesis. Biological validation is also including,
which also proves the second hypothesis. A preliminary version
of this work was presented in the 11th international conference on
Intelligent Systems Design and Applications (ISDA) (Pontes et al
(2011)). The complete work presented in chapter 7 has been sent
to the international journal Algorithms for Molecular Biology and
has already been accepted for publication.

• Other related works:

– Improved Biclustering on Expression Data through Over-
lapping Control. In this work we present a overlapping control
strategy for biclustering based on the use of a matrix of weights.
This strategy has been compared with the random replacement
in a greedy approach. A discussion on this topic together with
the obtained results have been published in the eight IEEE inter-
national conference on Hybrid Intelligent Systems (Pontes et al
(2008)) and also in the international journal of Intelligent Com-
puting and Cybernetics (Pontes et al (2009)).

– Describing the Orthology Signal in a PPI Network. This
work represents the results of a collaboration with professor Elena
Marchiori and her research group at the Department of Infor-
mation and Knowledge Systems (IRIS), in which we proposed a
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clustering-based methodology for protein-protein interaction net-
works. This work has been published in the international jour-
nal of Bioinformatics Research and Applications (Jancura et al
(2011)).

1.4 Document Structure

The contents of this PhD Thesis dissertation are organised into four different
parts, as follows:

• Part I: Preamble.

– Chapter 1: Introduction. This chapter corresponds to the
current one, in which the motivation, hypothesis and a summary of
the contributions of this PhD Thesis have already been presented.

– Chapter 2: Bioinformatics Background. An overview on
bioinformatics background is presented in this chapter. It starts
by describing some basic biological concepts needed to understand
the main research fields on bioinformatics, which are exposed af-
terwards. Finally, a summary on the most relevant data-mining
techniques used in this research field is also presented.

• Part II: Foundations. An study of the state of the art on the central
topics of this PhD Thesis is presented in this part. It has been divided
into three different chapters in the following way:

– Chapter 2: Microarray: Technology and Analysis. This
chapter exposes microarray technology and its applications, giv-
ing an special attention to gene expression microarrays. Regard-
ing microarray analysis, the focus has been put upon high-level
analysis based on data-mining techniques. Biological databases
for verification and interpretation of microarrays analyses output
have also been overviewed.

– Chapter 4: Biclustering Algorithms. An extensive survey
on biclustering algorithms for gene expression data is presented
in this chapter. Focus has been put on gene expression pattern,
describing the different kind of bicluster patterns in the literature
and also the most relevant bicluster evaluation measures capable
of identifying them. Biclustering approaches have been divided
into two categories, depending on being based on any bicluster
evaluation metric or not. Finally, the most common biological
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validation strategy for biclusters has also been introduced in this
chapter.

– Chapter 5: Evolutionary Computation. In this chapter the
basic notions of Evolutionary Computation (EC) are given. We
begin by describing the common features of EC, individuating af-
terwards four different paradigms. Three distinct evolution strate-
gies are also presented, as well as two advanced evolutionary al-
gorithms, the multi-objective and memetic approaches.

• Part III: Proposals.

– Chapter 6: Standardization-based Evaluation Measures.
This chapter gives formal definitions of our proposed evaluation
measures for biclusters. Since we have based all of them on a
previous bicluster standardization procedure, we begin the chapter
by defining the standardization procedure applied. Afterwards, we
describe three different evaluation metrics for biclusters, the latest
of which (VEt) has been proven to be effective for capturing the
combined patterns.

– Chapter 7: Evolutionary Biclustering based on Expres-
sion Patterns. We present in this chapter a fully customizable
evolutionary biclustering algorithm named Evo-Bexpa. VEt has
been used as the bicluster coherence evaluation measure, together
with other objectives such as the bicluster volume, gene variance
or overlapping level. The algorithm can be easily configurable to-
wards obtaining results with the desired characteristics, according
to the user preferences. Furthermore, new user-defined objectives
can also be incorporated into the search without any difficulties,
which makes our algorithm fully customizable. Experiments on
both synthetic and real datasets have also been conducted, demon-
strating Evo-Bexpa abilities to obtain meaningful biclusters.

– Chapter 8: Conclusions. This chapter summarizes the main
conclusions of the work carried out during the development of
this PhD Thesis. Furthermore, future works that we think will
be a very interesting continuation of the ones carried out are also
described.

• Part IV: Appendices. This part includes a related work carried out
during the development of this PhD Thesis, and which has already been
commented in the former section.
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– Appendix A: Improved Biclustering on Expression Data
through Overlapping Control. This work presents a study
on two different overlapping among biclusters control strategies:
random replacement and by using a matrix of weights. We pro-
pose a modified version of a very popular bicluster algorithm that
improves the original one by using a weight of matrix for the over-
lapping control.



Chapter 2

Bioinformatics Background

Bioinformatics is a relatively young multidisciplinary field, consisting of the
application of computer science techniques to solve diverse problems in biol-
ogy. In spite of being a young area of study, its pace of research is rapidly
increasing due to the large amounts of complex data generated by high-
throughput technologies in laboratories. The scope of bioinformatics research
moves beyond the study of individual biological components (genes or pro-
teins), allowing also the study of how different individual parts cooperate in
a more general scenario. In this context, systems biology integrates different
kind of biological data together, building up system models, seeking for the
interpretation of biological complexes (Lesk (2008)).

Due to the great complexity inherent to biological data, and also to the
enormous amount of information available, the application of computer sci-
ence technologies is essential for the discovery of meaningful knowledge. The
ultimate goal of bioinformatics is the design and development of new algo-
rithms and tools which help in the interpretation and analysis of many types
of biological data (Cohen (2004)). In fact, there exist a great variety of areas
in molecular biology in which computer science methodologies can be applied
in order to extract useful knowledge from raw data, including assembly of
sequence fragments, DNA or RNA analysis, prediction and analysis of pro-
tein sequence and function, or metabolic function and regulation analysis
and simulation. Among the different computational techniques that are cur-
rently being applied to discover relevant knowledge from biological data it is
important to cite modelling, simulation, data abstraction and manipulation
or pattern discovery.

In this chapter we summarise the main fields of research and resources
within bioinformatics, paying special attention to those related with this PhD
Thesis work, detailing first the biological theories and concepts necessary for
the understanding of the subsequent chapters.

27
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2.1 The Principles of Life

Life can be defined using several common characteristics of living beings.
These characteristics may be summarized in the following three:

• All living beings are made up of cells, and every cell is made up of
the same types of molecules. These molecules intervene in the forma-
tion of different cellular components, in metabolic reactions or in the
conservation and transmission of genetic information.

• Multicellular organisms have different levels of organization, ranging
from simplest (cells) to most complex (organisms). Individual cells
may perform specific functions and also work together for the good of
the entire organism, becoming thus dependent on one another.

• There are three basic or vital functions for every living being: nutri-
tion, relation and reproduction. Nutrition consist of constantly taking
nutrients to transform them into energy and organic compounds. Re-
lations means to interact with other organisms and the environment
by signal reception and interchanging and stimulus responses. Finally,
by means of reproduction, living organisms produce offspring, either
genetically identical (asexual reproduction) or by genetic interchange
among different sexual individuals (sexual reproduction).

Although the term cell was first introduced in 1665 by Robert Hooke,
who observed stark cells by means of a very rudimentary microscope, it
was during the XIX century when the study of the cell was propitiated by
microscopy technological advances. Cell theory refers to the idea as cells
are the basic unit of structure in every living being, from the most simplest
(micro-organisms) to most complex organisms like animals and plants. Cell
theory may be summarised in the following central ideas:

• All living being are made up of one or more cells.

• The cell is the fundamental unit of structure and function in all living
organisms.

• All cells arise from pre-existing cells by division. The new cell is iden-
tical to the one from which it is preceded.

• The cell is the more elemental independent unit of life.
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Nevertheless, in a more specific level, every living thing is made up of
biomolecules, which are also made up of biogenic elements, such as car-
bon, oxygen, hydrogen, nitrogen, phosphorous and sulphur. Biomolecules
can be categorized into inorganic biomolecules, such as water and mineral
salts, or organic biomolecules, which are exclusive for living beings. Organic
biomolecules can be classified in four different groups: carbohydrates, lipids,
proteins and nucleic acids.

Carbohydrates are made up of carbon, oxygen and hydrogen atoms, and
they are used for energy extraction. They can also be divided into monosac-
charides, which constitute a direct source of energy, and polysaccharides,
composed of long chains of monosaccharide units bound together,and are
mainly used as energy reserves. Lipids constitute a quite heterogeneous
group, though they share several properties, such as water insolubility. Among
their multiple functions it is important to cite energetic, structural or regu-
latory. Proteins are macromolecules built up using 20 different amino acids,
the order in which they are placed determines the specific protein, accord-
ing to the specie. Proteins are very specific, since different organisms have
different proteins, determining thus organisms biological identity. Protein
functions include structural, hormonal, transport, immunity, contractile or
homoeostatic. Many of them also acts as enzymes, favouring chemical reac-
tions. Finally, nucleic acids are mainly made up of carbon, hydrogen, oxygen,
nitrogen and phosphorous. They are responsible for every basic function of
living beings, since they have the information for carrying out every vital
process. There exist two different kind of nucleic acids, deoxyribonucleic and
ribonucleic acids, which we will discuss later.

2.1.1 Structural Cell Biology

As aforementioned, cells constitute the morphological, structural and func-
tional units of every living being. Despite the great variety of existing cells,
all of them share common structural and functional characteristics:

• They present a cell membrane or plasma membrane that separates the
interior of all cells from the outside environment. This membrane is
able to regulate what enters and exits the cell, thus facilitating the
transport of materials needed for survival.

• Inside the cell there exists a gel-like substance called the cytoplasm,
consisting of a colloidal dissolution of biomolecules.

• Within the cytoplasm and the nucleus the biochemical reactions needed
for life are carried out.
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• More evolved cells (eukaryotes) have organelles in their cytoplasm, in
charge of the realization of specific functions.

• All cells hold nucleic acids molecules, containing the genetic material
with the information for the regulation and coordination of all cell
activities.

Although these characteristics are shared by all cells in all organisms,
there exists many different types of cells having different functions, and there-
fore their structures are also different. For example, neurons are built and
work differently than muscle cells. This way, cell diversity refers to the wide
variety of cells and the differences between various cells, even in the same
organism.

Attending to their structural complexity it is possible to differentiate
two kind of cells, eukaryotes and prokaryotes, depending on the existence or
absence of an inner nucleus in the cytoplasm. There exists also other several
differences.

Prokaryotic Cells

Prokaryotic cells correspond to those organisms that do not have a membra-
ne-bound nucleus or membrane-bound organelles. They are characteristic
and exclusive of bacteria, and are usually small, the size of any eukaryotes
organelles.

Figure 2.1 shows the structure of a typical prokaryote. Apart from plasma
membrane and cytoplasm, in the figure it is possible to differentiate the
following elements:

• Cell wall, which surrounds the plasma membrane. It protects the
bacterial cell and gives it shape.

• Circular DNA or nucleoid region. This is the area of the cytoplasm
that contains the DNA molecule.

• Other elements. Several groups of bacteria also contain:

– Flagelum. Long protrusion that aids in cellular locomotion.

– Pilus. Hair-like structures on the surface of the cell that attach to
other bacterial cells.

– Capsule. Additional outer covering that protects the cell when it
is engulfed by other organisms. It also helps the cell to adhere to
surfaces and nutrients.
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Figure 2.1: Structure of a prokaryotic cell

– Internal membrane systems, such as ribosomes, responsible for
protein production.

Eukaryotic Cells

Eukaryotic cells correspond to those organisms whose cells contain a membrane-
bound nucleus and other membrane-bound organelles. The inclusion of or-
ganulles in cells allow them to carry out more functions than prokaryotes
can. Excluding bacteria, every living being present an eukaryotic organiza-
tion of their cell or cells. For animal cells, the cell surface consists of the
plasma membrane only, but plant cells have an additional layer called cell
wall, which is made up of cellulose and other polymers.

Figure 2.2 shows the structure of a typical eukaryotic cell, where it is
possible to differentiate the following characteristic elements:

• The cytoskeleton is a network of microtubules, corresponding to the
skeleton within the cell. Its functions include maintaining cells shape,
protecting the cell, enabling cell motion (using flagella) and intra-
cellular transport.

• Ribosomes are cellular structures involved in making proteins under
the instruction of DNA. They are found attached to the rough endo-
plasmic reticulum or floating free in the cytoplasm.

• Mitochondria and chloroplasts are responsible for the energy pro-
duction by breathing and photosynthesis processes. Chloroplasts are
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Figure 2.2: Structure of an eukaryotic cell

possessed only by plants, while mitochondria are typical of animal cells.

• Endomembrane System, consisting of a set of cellular organelles
working together for the manufacturing and transportation of materials
into, out of, and within the cell. It is made of the nuclear envelope,
rough and smooth endoplasmatic reticulum, the Golgi apparatus and
vesicles.

• Other membranous organelles within the cell are the lysosomes, con-
taining enzymes for materials digestion, and vacuoles, helping with
the transportation and storage of water and other materials.

• Nucleus. A double membrane-bound control center separating the
genetic material, DNA (deoxyribonucleic acid), from the rest of the
cell. Inside the nucleus is a fluid called nucleoplasm, a nucleolus, and
linear chromosomes forming structures known as nucleosomes. The
nucleolus is an area within the nucleus that is involved in the assembly
of ribosomal subunits, while the nucleosomes are part of what is called
chromatin, the DNA and proteins that make up the chromosomes.

2.1.2 Molecular Genetics

Molecular genetics is the field of biology and genetics that studies the struc-
ture and function of genes at a molecular level. In this section we summarise
the main concepts needed to understand gene expression and its regulation.
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Nucleic acids are the carriers of all biologic information, specifying both
physiological and morphological characteristics of every living being. De-
oxyribonucleic acid (DNA) passes this information from one generation to
the next (although some viruses use ribonucleic acid (RNA) for this purpose).
In order to distribute the information in the DNA, a process of replication is
carried out, in which a series of copies are distributed to the offspring cells,
sometimes including several variation or mutations.

DNA and RNA consist of a nucleotide sequence that are interpreted lead-
ing to specific characteristics at different levels of every organism. An indi-
vidual nucleotide itself has 3 components: a sugar, a phosphate and a base.
Nucleotides are hooked together to make a long sugar-phosphate backbone
with a sequence of bases sticking off. The sugar may be one of two kinds,
which distinguish DNA (the sugar is deoxyribose) from RNA (the sugar is
ribose). There are 5 kinds of bases, disposes in different ways in the nu-
cleotides sequences of both DNA and RNA. The bases in DNA are adenine
(A), cytosine (C), guanine (G) and thymine (T), while RNA has in place
of T another base called uracil (U). By studying the DNA, it was found to
have the shape of a helix with two strands, where the number of A’s was the
same as the number of T’s. Similarly, the number of C’s was equal to the
number of G’s. Adenine was observed to fit together with thymine, while
guanine paired with cytosine. In the case of RNA, uracil is complementary
to adenine.

The principle of complementarity is the key to replication, as well as to
the genes second main function: making proteins. A gene was defined as
a fragment of nucleic acid containing the information for a specific charac-
teristic. The place within de DNA in which each gene is located is referred
to as locus. The most important development in the understanding of the
relationship between genes and proteins was the discovery of the structure of
DNA by Watson & Crick in 1953 and the sequence hypothesis (Crick 1958),
which states that a simple congruence exists between the one-dimensional
nucleotide sequence of a gene and the one-dimensional amino acid sequence
of a protein. This hypothesis makes two predictions: 1) There will be a linear
correspondence between the gene and the protein it determines (collinearity).
2) Each amino acid will be specified by a given set of nucleotides. After sever-
al experiments, collinearity was established to be a correspondence between
three nucleotides for each amino acid, although some amino acids correspond
to different triplets of nucleotides.

The mechanism by which a sequence of amino acids is originated from a
sequence of nucleotides can be divided in two different steps: transcription
and translation. Transcription occurs in the nucleus (eukaryotes) or nucleoid
(prokaryotes) and is the process of creating a complementary mRNA copy of a
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sequence of nucleotides of a gen (DNA). Translation occurs in the ribosomes,
where messenger RNA (mRNA) produced by transcription is decoded to
produce a specific amino acid chain, that will later fold into an active protein.
This process constitutes the central dogma of molecular biology and is also
called gene expression.

If cells were constantly synthesizing every kind of proteins for which they
have information, metabolic chaos would occur. Consequently, there may
exists a gene expression regulation system, which will control the synthesis
of proteins depending on the special needs at a certain period of life time.
These needs also depend on both intra and extra cellular variations. Fur-
thermore, in multicellular organisms gene regulation drives the processes of
cellular differentiation and morphogenesis, leading to the creation of differ-
ent cell types that possess different gene expression profiles though they all
possess the same genome sequence. Since the amount of synthesized pro-
teins depends on the amount of mRNA in the cell, gene expression may be
regulated by regulating the production of mRNA. Therefore, the majority
of gene expression regulation process are based on the regulation of mRNA
production.

2.2 Bioinformatics Research Fields

The amount and variety of biological data now available, together with tech-
niques developed so far have enabled research in bioinformatics to move in
different biological scenarios. The areas where computer science can be ap-
plied range from assembly of sequence fragments, analysis of DNA, RNA and
protein sequences, prediction and analysis of protein sequence and function,
and the analysis and simulation of general metabolic function and regulation.
Most relevant and studied topics in bioinformatics are presented in the next
subsections, although the specified categories are not exclusive, since some
biological problems may be included in more than one subdivision. For exam-
ple, the problem of assigning new functionalities to proteins corresponds to
Protein Function Analysis category but is also related to Sequence Analysis.

2.2.1 Sequence Analysis and Comparison

Within the cell, DNA is transcribed into RNA and then translated into pro-
teins. This means millions of molecular sequences that present both great
opportunities and challenges. Analysing and comparing these kind of se-
quences allow the scientists to understand the biology of the organisms at
many different levels. For example, sequence analysis and comparison is used
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to find new genes, determine their functions, study their regulation or assess
their evolution over time, among others.

The development of methods of high-throughput production of gene and
protein sequences has exponentially increased the rate of addition of new
sequences to the databases. Nevertheless, this information by itself does not
provide any useful knowledge. Applying computer technologies to analyse
this kind of data is a key factor to generate new insights towards their un-
derstanding. Comparison between two or more sequences is usually carried
out using alignment procedures, where the sequences are lined up to achieve
a maximal level of identity. This process is called pair-wise alignment for
the comparison of two sequences or multiple alignment if more than two
sequences are used.

Sequence analysis includes a wide range of relevant topics, including ho-
mology search and identification of variations:

Homology search.

Sequences are called homologous if they have significant similarity and evolved
from a common ancestral sequence, but it is not always easy to determine.
The degree of similarity obtained by two sequences alignment can be useful
in determining the possibility of homology between to sequences. The appli-
cations of homology searches include function and conserved regions deter-
mination. Ping et al (2007) presented a review of many different algorithms
for homology searches.

Identification of sequence differences and variations.

Sequence difference variations include point mutations and Single Nucleotide
Polymorphisms (SNPs). The genome is full of single nucleotide differences,
called polymorphisms, or SNPs. The majority of SNPs are meaningless,
however, some of these genetic differences have proven to be very important
in the study of human health, for which then are being extensively studied.
They help in the prediction of individuals responses to certain drugs, sus-
ceptibility to environmental factors such as toxins, and risk of developing
particular diseases, and can also be used to track the inheritance of disease
genes within families. The National Center for Biotechnology Information
(NCBI) established the dbSNP database (Sherry et al (2001)), now it has
been incorporated into NCBI’s Entrez system and can be queried using the
same approach as the other Entrez databases such as PubMed and GenBank.
Johnson (2009) presented a review on different SNPs resources, dbSNP in-
cluded among them.
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2.2.2 Comparative Genomics

A genome is the collection of DNA that comprises an organism. Each indi-
vidual genome contains the genes and other DNA elements that define its
identity. Genomes range in size from the smallest viruses, which encode fewer
than 10 genes, to eukaryotes such as humans that have billions of base pairs
of DNA encoding tens of thousands of genes (Pevsner (2009)).

A genome does not capture the genetic diversity or the genetic polymor-
phism of a species. To learn what variations in genetic information underlie
particular traits or diseases requires comparisons across individuals. Com-
parative genomics is the analysis and comparison of genomes from different
species. The purpose is to gain a better understanding of how species have
evolved and to determine the function of genes and noncoding regions of the
genomes. Genome researchers look at many different features when compar-
ing genomes: sequence similarity, gene location, the length and number of
coding regions (exons) within genes, the amount of noncoding DNA in each
genome, and highly conserved regions maintained in organisms as simple as
bacteria and as complex as humans. For these purposes, the availability of
computer programs capable of lining up multiple genomes is essential. One of
the most widely used tools is BLAST (1), which comprises a set of programs
for performing similarity searches on sequence data.

Bacteriophage ϕX174 was the first genome to be sequenced in 1977, a
viral genome with only 5,368 base pairs (bp) (Sanger et al (1977)). Never-
theless, the first genome of a free-living organism was not sequenced until 17
years ago, in 1995. In this case the genome corresponded to the bacterium
Haemophilus influenzae Rd, with 1,830,137 base pairs (Fleischmann et al
(1995)).

In 1990, the Human Genome Project (HGP) 2 was organized to map
and to sequence the human genome. The project was coordinated by the
U.S. Department of Energy and the National Institutes of Health, and was
planned to last 15 years. However, rapid technological advances accelerated
the completion date to 2003, although the first draft was published in 2001
(Venter et al (2001)). Human genome is made up of 3,200,000,000 base pairs.
Researchers used DNA samples from a number of donors, male and female,
because all humans share the same basic set of genes and other DNA regions,
this reference sequence represents every person.

The amount of sequence data that are generated continues to accelerate
rapidly. For many genomes, even unfinished genomic sequence data are im-
mediately available to the scientific community. There exist a great variate

1http://blast.ncbi.nlm.nih.gov/Blast.cgi
2http://www.ornl.gov/sci/techresources/Human Genome/home.shtml
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of web resources for the access and study of genomes. Among them, it is
interesting to cite the European Bioinformatics Institute (EBI) 3, the Na-
tional Center for Biotechnology Information (NCBI) 4, the Comprehensive
Microbial Resource (CMR) 5, focuses on prokaryotic projects, or the genome
browser at the University of California 6, putting their emphasis on verte-
brate genomes.

The aim of comparative genomics is the use of related genomes to better
understand each individual genome in the set, being the most fruitful method
of understanding the functional content of genomes studying them in the
context of related genomic sequences. Both intra and interspecific sequence
comparisons are based on a variety of computational methods, including
alignment, phylogenetic reconstruction, and coalescent theory (Haubold &
Wiehe (2004)).

Among the multiple applications of comparative genomics in bioinfor-
matics (see Chain et al (2003) for a review) we would like to bring out Phy-
logenetics and Population Analysis. We would also pay a special attention
to Next Generation Sequencing technology, responsible for the production of
massive genomic data.

Phylogenetics.

Phylogenetics is the study and identification of evolutionary relatedness spe-
cies, both living (extant) and dead (extinct). Similarity among individuals
or species is attributable to common descent, or inheritance from a com-
mon ancestor. The discovery of this kind of relationships is made through
the study of the genomes of the different species, and reveals the species
evolutionary history. The most convenient way of visually presenting evo-
lutionary relationships is by means of phylogenetic trees, as in Figure 2.3,
where nodes represent the different species or ancestors and branches define
the relationships.

With the rapid accumulation of genomes sequence data, more and more
phylogenies are being constructed based upon sequence comparisons. The
combination of these phylogenies with powerful new statistical approaches for
the analysis of biological evolution is challenging widely held beliefs about
the history and evolution of life on Earth. Novel works on phylogenetics
include Suchard & Rambaut (2009) one, where the authors describe novel
algorithms and methods for evaluating phylogenies under arbitrary molecular

3http://www.ebi.ac.uk/genomes/
4http://www.ncbi.nlm.nih.gov/sites/genome
5http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi
6http://genome.ucsc.edu/
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Figure 2.3: Phylogenetic tree

evolutionary models.

Population Analysis.

Population genomics analyzes DNA variations present in populations as a
whole and at a whole genome level. The primary goal is to assess a population
genetic constitution as well as its change over with time. Such studies are
aimed at the detection of genomic variations and evolutionary processes that
can influence the frequency of these variations, such as mutation, selection,
genetic drift, gene flow, and population structure. A focus on variations
and their frequency can shed light on the evolutionary history and structure
of these populations. Among the multiple works on this field are included
those of Wade et al (2009) on domestic horses or Winsor et al (2011) on
pseudomonas.
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Next Generation Sequencing (NGS).

Next Generation Sequencing techniques deliver fast, inexpensive and accu-
rate genome information. Several companies, including IBM or LaserGen,
among others, have made their investments in this kind of technologies. As a
result, the introduction of instruments capable of producing millions of DNA
sequence is rapidly changing the landscape of genetics, giving the opportu-
nity to answer questions at a unimaginable speed. In the not too distant
future, it is foreseeable that NGS technologies could be used to obtain high-
quality sequence data from a genome isolated from a single cell, which would
be a substantial breakthrough, particularly for cancer genomics (Metzker
(2009)). The applications of NGS technologies are multiple, Mardis (2008)
surveys next-generation sequencing technologies and consider how they can
provide a more complete picture of how the genome shapes the organism.
Reis-Filho (2009) discusses the potential impact of this technology on breast
cancer research and the challenges that come with this technological break-
through. Other reviews on NGS include those of Shendure & Ji (2008) and
Metzker (2009). In their work, Magi et al (2010) guide readers in the choice
of the available computational tools that can be used to face the several steps
of the data analysis workflow.

2.2.3 Gene Expression Analysis

In genetics, gene expression is the most fundamental level at which genotype
gives rise to the phenotype. Gene expression occurs when DNA is transcribed
into RNA, corresponding to the process by which information from a gene
is used in the synthesis of a functional gene product. These products are
often proteins, but in non-protein coding genes the product is a functional
RNA. The number of genes in a cell differs depending on the organisms,
varying from 2,000 to 60,000 for the eukaryotic ones. Although the DNA
sequence of all the cell in a certain organism is the same, at any given time
each cell expresses only a subset ot those genes, depending on the intricacies
of the regulation of gene expression. Gene expression is therefore regulated
in several ways: by region, development stage, disease states, gene activity
or by dynamic response to environmental signals (Pevsner (2009)).

Measuring gene expression means quantifying the level at which a par-
ticular gene is expressed within a cell, tissue or organism. The information
obtained by this procedure allow the scientists to understand different pro-
cess or stages within the cell, such as viral infections, susceptibility to cancer
(oncogene expression) or the identification of activated genes during cell cy-
cles or throughout development. In order to draw meaningful inferences from
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gene expression data, it is important that each gene is surveyed under several
different conditions. Gene expression analysis comprises a great variety of
computational technologies that help inferring knowledge from gene expres-
sion datasets.

In order to carry out a computational analysis of gene expression da-
ta, diverse technologies have been applied for gene expression measurement.
Northern blotting, also known as RT-PCR 7, has been used for studying the
gene expression of only one transcript at a time. In contrast to this kind
of approaches, high throughput techniques have emerged allowing a broad
survey of gene expression, offering the possibility of performing comparison
of gene expressions between different individuals, tissues or any kind of sam-
ples. Among these technologies we would like to pay a special attention to
SAGE, microarrays and MPSS.

Serial Analysis of Gene Expression (SAGE).

SAGE was developed in 1995 (Velculescu et al (1995)). It allows the analysis
of overall gene expression patterns with digital analysis. Two basic princi-
ples underlie the SAGE methodology: 1) a short sequence tag (10 base pairs)
within the defined position contains sufficient information to uniquely iden-
tify a transcript; 2) the concatenation of tags in a serial fashion allows for
an increased efficiency in a sequence-based analysis. SAGE seems to be a
better choice for the identification of new genes and alternatively processed
transcripts that are unique to a specific cell type and for the analysis of
previously uncharacterized organisms (Ye et al (2002)).

Microarray Technologies.

DNA microarrays were invented by Schena et al (1995) in 1995 and constitute
an empirically-based methodology to determine which gene(s) are responsible
for creating the phenotype change. By putting some microscopic DNA spots
on a solid surface, the microarray chips are able to measure at the same
time the expression level of an important number of genes for a tissue. In
their first years only 48 genes could be measured at one time, whereas now
we can measure ten thousands of genes. The use of microarrays increased
considerably from 2000, mainly due to the sequencing of the human genome
and still are extensively used within bioinformatics (Bucca et al (2009)). The
applications of microarray are plenty, mainly related to disease pathology,
progression, diagnosis and resistance to treatment. In section 3.1 we present
a more in-depth description of microarrays types and applications.

7http://www.rtpcr.co.uk/
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NGS for Gene Expression Analysis.

NGS platforms can nowadays be used for the majority of the task carried out
with microarrays, thus challenging their use. However, several studies have
concluded that microarrays and NGS are actually complementary platforms,
rather than competitive alternatives, that should be used together to gain
the maximum results (Euskirchen et al (2007)). Furthermore, these new
methodologies also have their limitations, for example, around 20 per cent of
the reads in the human genome cannot be unambiguously mapped to a single
location because they occur more than once in the genome (Pop & Salzberg
(2008)).

2.2.4 Proteomics

Proteomics refers to the study of proteins, being the main components in-
volved in the chains of molecular interactions in cells (metabolic pathways).
The sequencing of the human genome has increased interest in proteomics
because while DNA sequence information provides a static snapshot of the
various ways in which the cell might use its proteins, the life of the cell is
a dynamic process. Analysing protein data would reverberate through dif-
ferent proteomic applications in science, medicine, and also pharmaceuticals.
In fact, the identification of potential new drugs for diseases treatments con-
stitutes one of the most important applications of the study of proteins.

The word proteome comes from protein and genome, corresponding to
the set of expressed proteins in a given type of cells or an organism at a
given time under defined conditions. Therefore, proteome will vary with
time and distinct requirements or stresses that a cell or organism undergoes.
Bioinformatic research on proteins can be grouped in three different although
related aspects of proteins: protein structure, function and interactions.

Structural Bioinformatics

Structural bioinformatics is the branch of bioinformatics related to the anal-
ysis and prediction of the three-dimensional structure of biological macro-
molecules. The physical properties of the structure of proteins in particular
is crucial in understanding molecular moves and interactions, providing the
details needed to understand complex molecular interactions in fields such
as immunology and systems biology (Gu & Bourne (2009)).

Protein folding is the process by which a protein folds into its characteris-
tic and functional three-dimensional structure from its amino acids sequence.
Figure 2.4 shows an example of the different levels of structure of a protein.
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Figure 2.4: Structure levels of proteins molecules

The study of the physical properties and configurations of proteins entails
several difficulties, for instance, for some time it had been thought that a
gene was responsible for producing a single protein, while today it has been
proved that a gene may generate several proteins. Furthermore, similarity at
one level cannot be generalized to another, for example, similar 3D substruc-
tures may originate from different sequences of amino acids, or vice-versa.
In addition, it is also known that simple changes of nucleotides in DNA may
result in entirely different protein structures and function. All these adver-
sities together makes the study of protein structures a very challenging and
promising field of research. In this context, Kota et al (2011) have recently
developed Gaia 8, a tool for evaluating the packing and covalent geometry of
a given protein structure and provides quantitative comparison of the given
structure to high-resolution crystal structures. Hassanzadeh (2009) presents
a survey on classification of proteins based on their structure.

8http://chiron.dokhlab.org
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Protein Function

Protein function is defined as the role of a protein in a cell (Jacq (2001)).
Each protein is a gene product that interacts with the cellular environment
in some way to promote the cell growth and function. The different protein
functionalities can be divided in antibodies, contractile, enzimatic, hormonal,
structural, storage or transport. The structure of a protein determines its
function, for example, collagen has a super-coiled helical shape, which is long,
stringy, strong, and resembles a rope. This structure is great for providing
support. Hemoglobin, on the other hand, is a globular protein that is folded
and compact; its spherical shape is useful for manoeuvring through blood
vessels.

Protein function is predicted based on several criteria, such as sequence
similarities, homology or structure. Nevertheless, it is important to beware
of biological paradoxes, for example, a certain protein structure may corre-
spond to many different functions, while one function might correspond to
many protein structures (Orengo et al (2003)). Hawkins & Kihara (2007)
have categorized several approaches beyond traditional sequence similarity
that utilize large amounts of available data for computational function predic-
tion, including structure, association, interaction, process, and proteomics-
experiment-based methods.

Protein Interaction Networks

Protein–protein interactions form the basis for a vast majority of cellular
events. It has been discovered that most of the proteins interact with multi-
ple partners and thousands of different proteins from interaction networks or
highly regulated pathways. Thanks to high throughput experimental data,
researches have begun to uncover general rules obeyed by protein-protein in-
teraction networks, principles of their evolution, and the means of their func-
tioning (Panchenko & Przytycka (2008)). Protein-protein interaction maps
provide a valuable framework for a better understanding of the functional
organization of the proteome.

Stelzl et al (2005) built up a network in which they discovered up to
3186 novel interactions of human proteins. They also searched the network
for interactions linking uncharacterised gene products and human disease
proteins to regulatory cellular pathways. Raman (2010) discusses some of the
important computational methods for the prediction of functional linkages
between proteins, giving also an overview of some of the databases and tools
that are useful for a study of protein-protein interactions.

Data from protein interaction networks have also been integrated with
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microarray data for different purposes. For example, in their work, Devaux
et al (2010) designed an approach for identifying new prognostic biomarkers
in myocardial infarction patients based on this data integration.

In this context, a related work has been carried out during the leave of
absence required to obtain the European doctoral dissertation. Two visits
of a total period of three months have been made to Radboud University
in Nijmegen (The Netherlands), where we have been working with professor
Elena Marchiori and her research group at the Department of Information
and Knowledge Systems (IRIS). At the end of the leave we proposed a novel
methodology for quantifying the functionality of the orthology signal in a
PPI network at a functional, complex level. The methodology performs a
differential analysis between the functions of those complexes detected by
clustering a PPI network using only proteins with orthologs in another given
species, and the functions of complexes detected using the entire network
or sub-networks generated by random sampling of proteins. We applied the
proposed methodology to a Yeast PPI network using orthology information
from a number of different organisms. The results indicated that the pro-
posed method is capable to isolate functional categories that can be clearly
attributed to the presence of an evolutionary (orthology) signal and quan-
tify their distribution at a fine-grained protein level. Our work was finally
published in the International Journal of Bioinformatics Research and Ap-
plications (Jancura et al (2011)).

2.2.5 Systems Biology

Systems biology investigates the behaviour and relationships of all of the
elements in a particular biological system while it is functioning, instead of
studying individual genes or proteins individually. By studying the relation-
ships and interactions between various parts of a biological system (genes,
mRNAs, proteins, etc) it is hoped that an understandable model of the whole
system can be developed. The development of systems biology has been driv-
en by a number of recent advances in the ability to perturb biological systems
systematically, such as genetic manipulation. Ideker et al (2001) describes
the emergence of systems biology, as are several examples of specific systems
approaches.

In this context, SBGN has recently been presented as a Graphical No-
tation for Systems Biology, a visual language developed by a community
of biochemists, modelers and computer scientists, consisting of process dia-
gram, entity relationship diagram and activity flow diagram. This language
allows the representation, storage and exchange of different kinds of biologi-
cal information, including gene regulation, metabolism and cellular signalling
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(Le Novère et al (2009)).
Systems biology has also been applied to ecology (Evans (2012)), in order

to understand the nature of the world change and to make predictions about
the way in which it might affect systems of interest. In order to address
questions about the impact of environmental change, and to understand the
actions that might be taken to ameliorate it, ecologists need to develop the
ability to project models into novel, future conditions. This will require the
development of models based on understanding the processes that result in
a system behaving the way it does, rather than relying on a description of
the system.

Evolutionary Systems Biology

Evolutionary Systems Biology (Koonin & Wolf (2006)) involves integrating
systems biology modelling, microbial laboratory evolution experiments and
large-scale mutational analyses in order to quantify the evolution of biologi-
cal systems. This has become now possible by the recent availability of the
necessary computational tools and experimental techniques. Many works
are being currently carried out in this area, Papp et al (2011) reviews recent
progresses in mapping evolutionary trajectories and discusses the degree to
which these predictions are realistic. Loewe (2009) propose a multilayered
mechanistic framework for evolutionary systems biology that centres on fit-
ness, the adaptive landscape and the quantitative modelling of evolutionary
processes, and combines knowledge about well-known biological systems from
several disciplines.

Research on evolutionary systems biology will benefit both evolutionary
theory and current systems biology, understanding robustness by analysing
distributions of mutational effects and epistasis is pivotal for drug design, can-
cer research, responsible genetic engineering in synthetic biology and many
other practical applications.

2.2.6 Other Related Research Fields

In this section we point out other research fields born out of the application
of other disciplines to bioinformatics, such as text mining or image analysis.

Text Mining for Bioinformatics

Text mining is the technology which discovers patterns and trends semi-
automatically from huge collections of unstructured text. It is based on sev-
eral technologies, such as natural language processing, information retrieval,
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information extraction and data mining (Uramoto et al (2004)). Lots of work
is being currently done in this field, mainly due to the exponential increase
of the biological knowledge in the literature, where the ultimate goal is to
find the useful and needed information from a great variety of resources (full
texts, patients records, annotations in data bases, etc). Furthermore, on-line
biological information exists in a combination of different forms, including
structured, semi-structured and unstructured forms, which makes the use
of computational techniques essential for this task. A review on different
text mining approaches for biological data has been written by Qi & Zhang
(2009).

Some applications based on the integration of different approaches include
those of Malik et al (2006), who show that by combining different text mining
algorithms and their outcome, the results improve significantly. They also
propose a system named CONAN which integrates different processes and
biological data, such as tagging of gene/protein names, finding interaction
and mutation data, tagging of biological concepts and linking to MeSH and
Gene Ontology terms. More recently, Papanikolaou et al (2011) presented an
application that offers an array of visualization tools for efficient navigation
among biomedical records, and concept extraction. Their approach is named
bioTextQuest 9 and combines automated discovery of significant terms in
article clusters with structured knowledge annotation.

BioImage Informatics

The last two decades have witnessed great advances of many related tech-
niques such as image signal digitization and storage or biological tissue la-
belling. As a consequence, the number of biological images acquired in digital
forms is growing rapidly, and large bioimage databases such as Allen Brain
Atlas 10 and the Cell Centered Database (CCDB) 11 are becoming available.
These databases include diverse types of images, such as two-dimensional
(2D), 3D spatial or even 4D spatio-temporal information, among others. An-
alyzing these images is critical for biologists to seek answers to many biolog-
ical problems, such as differentiating cancer cell phenotypes, categorization
of neurons, etc (Peng (2008)).

Bioimage informatics involves the generation, visualization, analysis and
management of biological images, paying special attention to the generation
of biological knowledge from image data. This field is becoming so important
that some high-impact journals are opening up new categories for bioimage

9http://biotextquest.ucy.ac.cy/cgi-bin/textQuest/textQuest.cgi
10http://www.brain-map.org/
11http://ccdb.ucsd.edu/index.shtm
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Figure 2.5: Knowledge discovery in databases

informatics. Peng (2008) and Swedlow et al (2009) review the advances of
this field from several aspects, including descriptions of available bioimage
resources, discussing also future developments in the area. In a very recent
work, Kozhenkov & Baitaluk (2012) describe a resource of pathway diagrams
retrieved from article and web-page images through optical character recog-
nition, in conjunction with data mining and data integration methods, being
the software and the pathway repository freely available 12.

2.3 Data Mining in Bioinformatics

The need for computational theories and techniques to assist in the extrac-
tion of useful knowledge from digital data gave rise to Knowledge Discovery
in Databases field (KDD). With the substantial growth of biological data,
KDD will play a significant role in analysing the data and in solving emerg-
ing problems. Figure 2.5 shows the general process of KDD for extracting
interesting, non-trivial, implicit, previously unknown and potentially useful
information from data.

Data mining is a step in the KDD process which corresponds to the ap-
plication of specific algorithms for the analysis of a previously preprocessed
data in order to obtain new and relevant patterns and facts. Extracting a
pattern means fitting a model to data, finding structure from data, or, in
general, making any high-level description of a set of data (Witten & Frank
(2005)). In selection, processing and transformations steps in Figure 2.5 orig-

12http://www.biologicalnetworks.org
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inal data is modified in several ways in order to reduce its dimensionality or
noise, trying at the same time to minimize the loss of relevant information.
Evaluation and interpretation of the results of the data mining process is
usually carried out by an expert, though with the assistance of some com-
puters tools. In the case of biological data, the question is how to bridge
the two fields, KDD and bioinformatics for successfully discovering sequen-
tial patterns, gene functions, protein-protein interactions or any other useful
knowledge depending on the input data (Wang et al (2005)).

Although every step of the KDD process are as important as data mining,
we are going to focus our attention in the data mining component of KDD,
which has received the most attention in the literature and also represent the
central part of the proposals in this PhD Thesis. The data mining component
of KDD relies heavily on known techniques from machine learning, pattern
recognition, and statistics to find patterns from data (Bishop (2007)).

Two different goals can be achieved by using data mining techniques:
verification and discovery. The first one parts from a user hypothesis needed
to be checked out, while the second one aims at the finding of new patterns in
the data. This finding can be subdivided into prediction, where the obtained
patterns are used for behaviour prediction of new entities, and description,
where the patterns are used for categorization and presentation of the entities
under study. In the study and analysis of biological data, discovery-oriented
data mining is mostly applied, although verification-oriented techniques are
usually applied for validation procedures.

The common goal of the majority of data mining methods is developing
models or determining patterns from observed data. Differences among dis-
tinct methodologies resides in the search method as well as in the goodness
of the criterion used for the evaluation of the model or the fitting to a pattern
Fayyad et al (1996). Although most methods can be viewed as extensions
or hybrids of a few basic techniques and principles, we summarize in the
following what we consider the most relevant techniques, for both predictive
and descriptive purposes. Nevertheless, the boundaries between these two
aspects are not sharp, since some of the predictive models can be descriptive
and vice versa.

2.3.1 Supervised methods

Supervised methods attempt to discover the relationship between input at-
tributes (independent variables) and a target attribute (dependent variable).
The relationship discovered is often represented in a structure referred to as a
model. In biology, these kind of methods have been broadly applied, among
others applications, to the classification and identification of genes. Jensen
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& Bateman (2011) have recently concluded in their experimental work that
the application of this kind of methods continues to grow in the biomedi-
cal literature. For this purpose, they have created a list of supervised ma-
chine learning techniques used in bioinformatics, searching afterwards this
list against PubMed 13 titles and abstracts.

The availability of a priori knowledge is crucial for applying any super-
vised methodology, since this previous information is used to train and cali-
brate the model on an input set. Furthermore, within the training process of
the model, the most important attributes are computed, implicitly building
up the subset of decisive attributes. For example, in the case of microarray
data analysis, where attributes refer to genes, at the end of the process, the
user is provided with the model for new genes predictions and also the set of
decisive genes, thus gaining insights into the underlying molecular biology.

It is possible to distinguish between two main supervised models: classi-
fication models (classifiers) and regression models. Classifiers map the input
space into pre-defined discrete classes, while regression models map the in-
put space into a real-value continuous domain. In both cases, once the model
has been constructed, it is crucial to use an independent test set or a cross-
validation technique to estimate the classification/regression error.

Among the different applications of classification techniques in bioinfor-
matics we would like to cite protein structure prediction, protein function
prediction, genome annotation, biological sequences classification or classifi-
cation of microarray data (Duval & Hao (2010)), among others. Regression
has been mainly applied in bioinformatics to gene expression analysis, al-
though it has also been used for different studies, including proteins (Giard
et al (2009)).

Most common computer techniques for classification of biological data
include:

• Naive Bayes. It is a probabilistic classifier that makes use of Bayesian
theory and is the optimal supervised learning method if the predictors
are independent given the class. Bayesian methods are used to obtain
class predictions, while the näıvety arises from the independence as-
sumptions. Although predictors independence is unlikely to be valid
in real data, this technique appears to work well. The predictions will
be accurate as long as the probability of being in the correct class is
greater than that for any of the incorrect classes. Naive Bayes classifier
has been broadly used in different bioinformatic fields, such as sequence
(Murakami & Mizuguchi (2010)) or genome (Rosen et al (2011)) anal-
yses.

13http://www.ncbi.nlm.nih.gov/pubmed
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• Artificial Neural Networks (ANN). ANN are based on the use of
parallel distributed processing in an attempt to simulate a real neural
network, composed of a large number of interconnected, but indepen-
dent neurons. Artificial Neural Networks are usually applied when data
structures are not well understood, or when the main requirement is
for a black box classifier rather than a classifier that provides insight
into the nature of class differences. Linder et al (2004) applied ANN
to the study of microarray data. It has also been applied to sequence
and genome analyses (Viklund & Elofsson (2008) and Firpi et al (2010)
respectively).

• Support Vector Machines (SVMs). Support Vector Machines are
characterized by their accuracy and their ability to deal with a large
number of predictors. SVMs extend the concept of hyperplane sepa-
ration to data that cannot be separated linearly. The method name
derives from the support vectors, which are lists of the predictor values
obtained from cases that lie closest to the decision boundary separating
the classes, having the greatest impact on the location of the bound-
ary. SVMs are being extensively applied in may bioinformatic areas,
including phylogenetics (Blouin et al (2009)), structural bioinformatics
(Ng & Mishra (2007)).

• Decision trees. This kind of classifiers assign class labels to cases
by following a path through a series of simple rules or questions, the
answers to which determine the next direction through the pathway.
Rules are created using the information within the predictors, where
the two most important stages in the algorithm are identifying the best
splits and determining when a node is terminal. Decision trees have
no assumption of a linear model and they are particularly useful when
the predictors may be associated in some non-linear fashion. Further-
more, they are non-parametric and predictors can be reused in different
nodes with different threshold values. Decision trees applications with-
in bioinformatics include structural proteomics (Huang et al (2007)) or
system biology (Hautaniemi et al (2005)), among others.

• k-Nearest Neighbours (k-NN). k-NN is a type of lazy learning clas-
sifier, distinguished by delaying computation until classification time.
Lazy learning algorithms access training examples to make a predic-
tion when facing a new test example. In this case, the class of a new
test case would be given by the majority vote of its nearest neighbours.
Three fundamental issues need to be taken into account. Firstly, how is
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distance measured to find the nearest neighbours. This distance func-
tion will have a large effect on the classifier performance and need to
be adapted to the specific features of the application problem. Second-
ly, how many neighbours should be examined, where this number (k)
may be obtained by cross-validation. Finally, neighbours do not need
to make the same contribution to the final vote. For example, unequal
class proportions create difficulties because the majority vote rule will
tend to favour the larger class. Weighting neighbours according to their
nearness seem to be the most adopted procedure. K-Nearest Neigh-
bours classifiers have been mostly used in proteomics (Shen & Chou
(2006), Masso & Vaisman (2008)) and also for microarray gene expres-
sion analysis (Mi et al (2010)).

Regression techniques uses the same principles of classification strategies,
incorporating different variations in order to make them more suitable to the
regression problem. In particular, decision trees, support vector machines
and artificial neural networks have been extensively applied to regression
problems in many contexts. Within bioinformatics, regression studies are
recently receiving a special attention in different fields, such as system biol-
ogy (Lu et al (2011)), population analysis (Lourenço et al (2011)) or gene
expression analysis (Chen et al (2010)).

2.3.2 Unsupervised methods

Unsupervised strategies try to find hidden structure in unlabelled data, where
no previous knowledge is available. The goal is therefore how to learn to rep-
resent particular input patterns in a way that reflects the statistical structure
of the overall collection of input patterns, where there are no explicit target
outputs or evaluations associated with each input (Barlow (1989)). In this
sense, unsupervised methods corresponds to the branch of data description
within data mining discovery techniques.

Cluster analysis is the most used approach for data analysis and descrip-
tion without previous knowledge. It consists of finding structures in data by
identifying natural groupings of categories within the data (clusters). The
categories can be mutually exclusive and exhaustive or consist of a richer
representation, such as hierarchical or overlapping categories. A cluster is
therefore a collection of categories or cases that are more similar to each oth-
er than they are to cases in other clusters. If any analysis produces obvious
clusters it may be possible to name them and summarise its characteristics.

All clustering algorithms begin by measuring the similarity between the
cases to be clustered, placing similar cases into the same cluster. It means
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that there must exist some means of measuring distance among cases. In fact,
there exist a great number of metrics by which distance can be measured,
some of them restricted to particular data types and specific problems. Se-
lecting an appropriate distance metric is very important, since different met-
rics will lead to different clusters and a consequential change in the results
interpretation (Fielding (2007)).

Different clustering methods may be classified into four different cate-
gories, although they may be overlapped, since some methods might have
features from several categories. In general, the major fundamental cluster-
ing methods applied in bioinformatics can be classified using the following
taxonomy:

• Partitioning methods. A partitioning method creates k clusters of
the input data, where each group must contain at least one object and
k is provided by the user. Typically, this kind of methods performs
exclusive cluster separation, where each object must belong to exactly
one group, although this requirement might be relaxed. Achieving
global optimality of the clustering is often computationally prohibitive,
requiring thus the application of different heuristics. k-means and k-
medoids are two popular partitioning clustering methods based on the
use of greedy approaches. Harder et al (2012) have recently apply
k-means clustering for clustering protein structures, while Hazelhurst
& Lipták (2011) use a partition clustering method for the analysis of
expression data.

• Hierarchical methods. This kind of methods creates a hierarchical
decomposition of the given set of data objects. Two different strategies
are used: the bottom-up approach, in which each object initially forms
a cluster and the algorithm iteratively merges different groups; and
the top-down approach, where all the objects are initially placed in
the same cluster and are iteratively separated into smaller clusters.
This kind of methods are useful when the data has to be partitioned
into groups at different levels and the number of desired clusters is not
known beforehand. Self-Organizing Tree Algorithm (SOTA) (Dopazo &
Carazo (1997)) is an example of a top-down hierarchical method which
was originally developed for clustering of biological sequences (both
protein or nucleotide). More recently, Miele et al (2012) have applied a
bottom-up approach for the clustering of homologous sequences, where
the initial group of clusters is obtained by comparing all of them with
each other and clustering them into pre-families, based on pairwise
similarity criteria.
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• Density-based methods. They are based on the concept of density
instead of distances measures. The general idea is to continue growing
a given cluster as long as the number of objects in the neighbourhood
exceeds some threshold. This kind of methods are useful when the
data contains noise or outliers or when the shape of the clusters are
not spherical. One of the most popular algorithms in this category is
DBSCAN (Density-Based Clustering Based on Connected Regions with
High Density) (Ester et al (1996)). DBSCAN identifies core objects
in the data, which are those having dense neighbourhoods. Further-
more, an user-specified parameter is used to specify the radius of the
considered neighbourhood. DBSCAN has been applied to population
analysis studies in order to identify low-quality SNPs (Pongpanich et al
(2010)).

• Grid-based methods. These methods quantize the object space in-
to a finite number of cells that form a grid structure, where all the
clustering operations will be performed. The main advantage of these
approaches is their fast processing time, independent of the number
of data objects, yet only dependent on the number of cells in each
dimension. Two typical examples of algorithms in this category are
STING and CLIQUE. STING (STastistical INformation Grid) (Wang
et al (1997)) partitions the dataset into rectangular cells, where a cell
at a high level is partitioned to form a number of cells at the next low-
er level, and hierarchical levels of cells correspond to different levels of
resolution. CLIQUE (CLustering In QUEst) (Agrawal et al (2005)) is
useful for clustering high-dimensional data and is insensitive to object
ordering. CLIQUE partitions space into non-overlapping rectangular
units and identifies the dense units (a unit is dense if the fraction of
total objects contained in it exceeds an user-specified value) and con-
siders only hyper-rectangular clusters and projections parallel to the
axes.

Hierarchical clustering and k-means partitioning are the most popular
methods being used in bioinformatics. Numerous improvements of these
two clustering methods have been introduced, as well as completely different
approaches such as grid-based or density-based. Andreopoulos et al (2009)
present in their work a set of desirable clustering features that are used as
evaluation criteria for clustering algorithms in bioinformatics, reviewing and
comparing many different algorithms.

Clustering can also be performed on two dimensions simultaneously when-
ever the data can be represented in the form of a matrix. This technique is
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named co-clustering or biclustering and also covers other characteristics, such
as overlapping (inclusion of each element into none or more than one group).
The resulting groups of elements found by biclustering approaches are called
biclusters. Biclustering has been mainly applied to microarray data. Chap-
ter 4 review the most important biclustering approaches for gene expression
microarray data analysis.

In other applications, such as protein structure classification, only a few
labelled samples (protein sequences with known structure class) are available,
while many other samples (sequences) with unknown class are available as
well. In such cases, semi-supervised techniques can be applied to obtain
a better classifier than could be obtained if only the labelled samples were
used. This is possible, for instance, assuming that class labels can be reliably
transferred from labelled to unlabelled objects that are nearby in feature
space. We refer the reader to Zhu (2005) survey on semi-supervised learning
for more information on this topic.

2.4 Summary

This chapter consists of three main sections referring to the three most im-
portant topics within bioinformatics: biology, computer science, and the in-
tersection between them. The goal of this chapter is to provide the reader
with the necessary background towards the correct understanding of the con-
tents of this document. This way, the principles of life are first described,
including structural cell biology concepts and molecular genetics. They are
summarized at a very superficial level but deep enough for the comprehension
of the rest of contents in this PhD Thesis.

The areas of biology in which computer science techniques are being cur-
rently applied have been summarized in section 2.2, organized according to
their specific sub-categories, up to a total of fourteen research fields. All of
them have been categorized into one of the six following groups: sequence
analysis and comparison, comparative genomics, gene expression analysis,
proteomics, system biology or other related research fields.

Finally, last section of this chapter introduces the most common computa-
tional techniques applied to the different bioinformatic fields. Our attention
has been centred towards data mining approaches, corresponding to specif-
ic algorithms for the analysis of previously preprocessed data. The output
obtained from the use of these kind of tools reveals previously unknown and
potentially useful information from the examined data.
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Chapter 3

Microarray: Technology and
Analysis

This chapter is dedicated to the presentation of microarray technology and
the current tendencies in the analysis and interpretation of the experiments
results. Although microarrays have already been introduced in section 2.2.3,
we give here a more in-depth description of this widespread technology. This
way, after exposing the different kinds of microarray and its experimental
cycle process, we focus our study on gene expression microarray high-level
analysis. High-level analysis correspond to the phase in which the raw data
from the microarray experiment has already been filtered and pre-processed,
giving thus way to more complex computational analysis aiming at gaining
insights into the data. We finalise this chapter with the description of the
available biological databases for the verification and interpretation of the
high-level analysis output.

3.1 Microarray Technology

Molecular Biology research evolves through the development of the technolo-
gies used for carrying them out. Since it is not possible to research on a
large number of genes using traditional methods, DNA microarray enables
the researchers to analyse the expression of many genes in a single reaction
quickly and in an efficient manner.

DNA microarrays were invented by Schena et al (1995) in 1995. The
first microarray ever is shown in Figure 3.1. By putting some microscopic
DNA spots on a solid surface, the microarray chips are able to measure at
the same time the expression level of an important number of genes for a
tissue. The measure can be done using fluorescence as was the case with the
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Figure 3.1: The first DNA microarray

first invented microarray. This technology could only measure 48 genes at
one time whereas now we can measure tens thousands of genes. The use of
microarrays increased considerably from 2000, mainly due to the sequencing
of the human genome.

DNA microarrays exploit nucleic-acid sequences complementarity. A mi-
croarray is composed of a surface area to which single-stranded DNA mol-
ecules are attached at fixed locations, named spots. There may be tens
of thousands of spots on an array, where each of them contains thousands
of copies of a sequence that matches a segment of a gene coding sequence
(probes). Different spots typically represent different genes, but some genes
may be represented by multiple spots. When microarrays are used to de-
tect mRNA transcripts, RNA from the samples to be analysed are extracted,
reversed and transcribed into cDNA (cDNA is a strand of DNA that is com-
plementary to part of an mRNA), as shown in Figure 3.2. After this process,
they are labelled with a fluorescent dye and placed on the microarray, hy-
bridizing to their complementary sequences in the spots. The presence and
abundance of specific target sequences within the sample is reflected by the
intensity of the hybridization signal at the corresponding probe locations. If
the RNA within the sample is present in large copy numbers, the spot will
be intense; otherwise the signal from the spot will be faint or even absent.
The particular used dye label make it possible to quantify the amount of
nucleic acid bound to the probe on a spot, where a laser excites the dye and
a scanner records an image of the slide.

Depending on the specific application, there exists many different types of
microarrays. We have focused this doctoral dissertation on gene expression
microarrays, which provide a snapshot of all the transcriptional activity in a
biological sample, and constitutes the most widespread use of microarrays.
The true power of microarray analysis does not come from the analysis of
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Figure 3.2: Microarray production process

single experiments, but from the analysis of many hybridizations to identify
common patterns of gene expression. For this reason, after visually analys-
ing several related microarrays chips we are provided with bi-dimensional
matrices of data, called expression matrices (see Figure 3.3 ). Rows of an
expression matrix represent the different genes under study, while columns
represent experimental conditions, such as temporal conditions, tissues, pa-
tiences, etc. This way, every element of such expression matrix stands for the
expression level of a given gene under a specific condition (Baldi & Hatfield
(2002); Tilstone (2003)).

3.1.1 Applications

The applications of microarrays are diverse. For example, they can be used
to increase our understanding of the relationships existing between genes or
to find the genes related to a particular disease. It may also be possible to
associate a gene profile with a specific therapy in order to provide a person-
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alized treatment. Gene profiles can also be used to discover subclasses of
diseases or to automatically give a prognosis for a patient.

According to Iida & Nishimura (2002), applications of gene expression
microarrays can be classified in four different categories:

• Gene discovery: Gene discovery is one of the main applications of mR-
NA measurement in microarrays because of the rich information that
can be derived about the functions of genes in cells and tissues. The
list of tissues where a gene is expressed provides a key clue to the func-
tion of the gene. Also, if two genes have similar patterns of expression
across tissues, this is a clue to functional relatedness. Kuninger et al
(2004) demonstrate in their work the power of transcriptional profiling
for gene discovery, providing also opportunities for investigating new
proteins potentially involved in different aspects of growth factor action
in muscle.

• Disease diagnosis: The most common expression profiling experiment
design compares two biological conditions, such as disease state versus
normal state. Genes up-regulated (or down-regulated) offer a detailed
molecular phenotype of the disease. DNA Microarray technology helps
researchers learn more about different diseases and especially the study
of cancer. Until recently, different types of cancer have been classified
on the basis of the organs in which the tumours develop. Now, with the
evolution of microarray technology, it will be possible for the researchers
to further classify the types of cancer on the basis of the patterns of gene
activity in the tumour cells. Yoo et al (2009) focused their review on
the applications of DNA microarrays for diagnosing diseases, although
application of microarrays related to cancer studies is not included in
this work, since cancer diagnosis has been paid a special attention in
other works, such as the one of Perez-Diez et al (2005).

• Drug discovery: Molecular species are spatially sorted in a microarray.
Therefore, their concentrations can be independently estimated, giving
thus way to the study of any complex reaction product. Pharmacoge-
nomics takes advantage of this characteristic to study the correlations
between therapeutic responses to drugs and the genetic profiles of the
patients, identifying the biochemical constitution of the proteins syn-
thesised by diseased genes and designing specific drugs for reducing
the effect of these proteins. In his work, Hardiman (2008) compares
and contrasts microarray platforms currently in use in the context of
pharmacogenetic testing.
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• Toxicological research: Toxicogenomics field has emerged thanks to
the use of microarrays for analysing the effect of chemicals on a large
number of genes in a single experiment. The measurements of gene
expression levels upon exposure to a chemical can be used both to
provide information about the mechanism of action of the toxicant
and to form a sort of genetic signature for the identification of toxic
products. Lettieri (2006) reviews in his work recent applications of
microarray to toxicology, also evaluating the potential of its application
to ecotoxicology.

3.1.2 Experiment Cycle

The design of a microarray experiment is a procedure which comprises five
main steps. A summary of the whole process can be seen in Figure 3.3. The
process starts with a biological question that needed to be answered and ends
up with the biological interpretation of the results.

1. Experimental design. This phase consist of the definition of the ob-
jectives, selecting the genes and experimental conditions under study,
as well as choosing the platform, the marking methodology and the
number of replicates. In Figure 3.3 this phase is depicted by experi-
mental box.

2. Data generation. Raw data after the microarray has been created is
obtained in this phase. This phase correspond to data generation in
Figure 3.3

3. Data Pre-Processing. Raw data from the former step need to be
pre-processed before being used. This step comprise background cor-
rection of the image, value extraction, data normalization and data
summarization. After this step, if the quality of the data is not good
enough the process continues with the first step.

4. High-level analysis. Once the expression matrix has been obtained,
it is essential to perform one or more statistical and computational
methodologies to the data in order to extract useful and relevant in-
formation. Although numerous data mining techniques are applied to
microarray data nowadays, there is still many work to do within this
field.

5. Biological verification and interpretation. This last phase corre-
sponds to the biological interpretation of the obtained results after all
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Figure 3.3: Microarray experiment cycle

the former phases. This interpretation give us the opportunity to have
new hypothesis and new insights to the input biological question.

In this PhD Thesis, we focus our work in phases four and five.

3.2 Gene Expression Microarray Analysis

The task of analysing microarray data typically consumes considerably much
more time than the laboratory protocols required to generate the data. Part
of the challenge is assessing the quality of the data and ensuring that all
samples are comparable for further analysis. Many methods for data pre-
processing such as visualization, quality assessment, and data normalization
have been developed (Quackenbush (2002)). When multiple probes represent
a single transcript, they are usually reduced to a single expression measure-
ment by means of summarization (Bolstad et al (2003)).

Once the final dataset has been generated after pre-processing, different



3.2. Gene Expression Microarray Analysis 63

high-level analyses may be applied over the obtained data matrix. The meth-
ods that are used to analyse the data can have a profound influence on the
interpretation of the results. Therefore, it is important to have a basic under-
standing of the available computational tools, in order to design an optimal
experimental procedure and a meaningful data analysis.

Identification of differential gene expression is the first task of an in depth
high-level microarray analysis. Since microarray data sets are typically very
large, it is extremely useful to reduce the dataset to those genes best distin-
guished between the different cases or classes. Such analyses produce a list
of genes whose expression is considered to change and known as differential-
ly expressed genes. After this process, a new reduced dataset is obtained,
which is analysed in order to identify patterns of gene expression which pro-
vide much greater insight into their biological function and relevance. In the
following subsections we analyse existing data mining techniques to carry out
these tasks.

3.2.1 Identification of Differentially Expressed Genes

The main issue in differential expression analysis is the experiment group
size, which is always smaller than the number of genes or transcript to be
investigated. The simplest method for identifying differentially expressed
genes is to evaluate the log ratio between two conditions, considering all
genes that differ by more than an arbitrary cut-off value to be differentially
expressed (Draghici (2002)). This non-statistical test is called fold-change,
and does not provide any associated value indicating the level of confidence
in the designation of genes as differentially expressed. Furthermore, it is
subjected to bias if the data has not been properly preprocessed. Although
there is no firm theoretical basis for selecting a cut-off level as significant,
the approach defined by Chen et al (1999) provides confidence intervals that
can be used to identify differentially expressed genes.

Apart from fold-change, there are several statistical methods to deter-
mine either the expression or relative expression of a gene from normalized
microarray data. A standard t test can be conducted for each gene (gene-
specific t test) and it will not be affected by heterogeneity in variance across
genes since it only uses information from one gene at a time. Nevertheless, it
sample size may affect it powerfulness, and also the variances estimated from
each gene are not stable. In a global t test, the variance is assumed to be
homogeneous between different genes, although it may suffer from the same
biases than a fold-change method if the error variance is not constant for all
genes. As the error variance is hard to estimate, several modified versions of
the t test have been developed in order to overcome gene-specific and global
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t tests.
SAM (Significance Analysis of Microarrays) is a modified gene-specific t

test where a constant called fudge factor has been added in order to remove
the stability problem (Tusher et al (2001)). Regularized t test (Baldi & Long
(2001)) combines gene-specific and global approaches, and has been proven
to outperform SAM by Choe et al (2005). Lönnstedt & Speed (2001) statistic
B avoids the problems of using averages or t-statistics, working at a gene-
specific level but also combining information across many genes. Smyth &
Smyth (2004) developed the hierarchical model of Lönnstedt & Speed (2001)
into a practical approach for general microarray experiments with arbitrary
numbers of treatments and RNA samples. Finally, RP (Breitling et al (2004))
is based on calculating Rank Products (RP) from different experiment. Its
performance is particularly strong when the data are contaminated by non-
normal random noise or when the samples are very non-homogeneous. How-
ever, it assumes equal measurement variance for all genes. Other rank-based
variant provides an alternative when it is not the case (Breitling & Herzyk
(2005)).

Two types of errors may be committed when conducting a single hypothe-
sis test: false positive error when a gene has been declared to be differentially
expressed but it is not, and false negative error when a differentially expressed
gene has not been detected as such. In a microarray experiment, thousand
statistical tests are usually performed (one for each gene), where an impor-
tant number of false positive may be accumulated. In order to overcome
this situation, multiple testing corrections need to be carried out. FWER
(Family Wise Error Rate) strategies such as Bonferroni correction or FDR
(False Discovery Rate) procedures are usually applied.

Differentially Expressed Genes in Multi-series Microarray Experi-
ments

Microarray experiments usually involve more than two conditions (multi-
series experiments). In occasions, these experimental conditions are also time
related (multi-series time-course experiments). In these types of experiments,
the researcher is interested in studying gene expression changes over different
experimental conditions and in evaluation trend differences among various
experimental groups. If this is the case, ratios cannot be simply computed,
and a more general concept of relative expression is needed. ANOVA analysis
of variance is often applied to obtain a derived data set, where the relative
expression of each gene in each sample is estimated (Kerr et al (2000)).

This new data set is ready to be analysed for testing differences among
conditions. Different generalizations of the methodologies described for the
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two-sample microarray experiments might be applied. For example, classical
ANOVA F test is a generalization of the t test for the comparison of more
than two samples, existing also several variations on this test.

When working with time-series expression data, specific variations may
be found. In particular, Conesa has published two different variations of
the F test: maSigPro (Conesa et al (2006)) and ANOVA-SCA (Nueda et al
(2007)).

3.2.2 Classification and Clustering Analyses

Classification and Clustering techniques have already been mentioned in sec-
tion 2.3. However, in gene expression analysis it is not possible to identify
a universal classification or clustering approach because the optimal algo-
rithm to be used depends on the nature of the dataset and what constitutes
meaningful groupings in the problem under analysis. Therefore, although
classification is by no means a new subject in the statistical literature, the
large and complex multivariate datasets generated by microarray experiments
raise new methodological and computational challenges.

Classification

Classification is a prediction or learning problem in which the variable to be
predicted assumes one of K unordered values, corresponding to K predefined
classes, e.g., tumour class or bacteria type. The task is to classify new objects
into one of the K classes on the basis of a set of labelled objects, named the
training or learning set.

For microarray data, prediction generally refers to the classification of
patients samples by characteristics such as disease subtype or response to
treatment. The goal might be diagnostic (Buness et al (2009)) or an effort
to predict clinical outcome (Pomeroy et al (2002)).

Gene expression data presents several challenges for the application of
typical machine learning algorithms. These kind of algorithms are generally
designed for large number of samples and a few variables, while data from a
microarray experiment correspond to the contrary situation, involving thou-
sands of genes (variables) and only a few samples (tens or hundreds at most).
Another important characteristic of microarray data is the high level of noise,
where many data points may be missing.

Choosing a classification method requires selecting from a vast range of
techniques (see section 2.3 ), and constitutes an important task, since the
outcome may differ from applying one or another prediction technique. Fur-
thermore, several other issues may be taken into account for the selection, like
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the number of classes to distinguish, which imposes a modest constraint on
the choice, since some algorithms only distinguish between two classes. The
number of predictive genes, or the characteristics of the classification model
itself (Slonim (2002)) are also useful in the selection process. Predictive error
rate should also be estimated using methods such as cross-validation. Wood
et al (2007) review in their work existing methods for estimating and report-
ing classification prediction accuracy. Another important issue is whether
the classification algorithm should consider the data for all available genes,
or whether prior gene selection (through differential expression detection)
should be applied to reduce the data dimensionality. For example SVM clas-
sifiers have been proven to improve their prediction when using the whole set
of genes (Ramaswamy et al (2001)).

Asyali et al (2006) review in their work different class-prediction and
discovery methods that are applied to gene expression data, also discussing
other related issues such as pre-processing and feature selection. Buness
et al (2009) present a systematic evaluation of strategies for the integration of
independent microarray studies in a classification task, assessing the potential
benefit of data integration on the classification accuracy in breast cancer
studies, and making use of several classification strategies.

Clustering Analysis

In clustering, the analytical goal is to find clusters of samples or clusters of
genes such that observations within a cluster are more similar to each other
than they are to observations in different clusters. Cluster analysis can also
be viewed as a data reduction method in that the observations in a cluster
can be represented by an ’average’ of the observations in that cluster.

Eisen et al (1998) demonstrated in an early paper the potential of cluster-
ing techniques to reveal biologically meaningful patterns in microarray data.
The many applications of clustering in expression data analysis depend on
the dimension in which the clustering is applied. Clusters of genes similar-
ly expressed allow to identify groups of co-regulated genes and spatial or
temporal expression patterns, offering thus clues to unknown gene function.
Clustering samples aids in the identification of new disease subclasses.

In general, all the issues that must be addressed for classification must
also be addressed for clustering. In addition, with clustering there is no
learning set of labelled observations, and the number of groups is usually
unknown previously. In particular, choosing the right number of clusters
is crucial for many clustering algorithms, being particularly problematic for
microarray data, which may not have any solution isolating compact clusters.
Ben-Hur et al (2001) addressed this problem by using repeated sampling to
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determine the number of clusters that provides the most stable solution.
Choosing a clustering method (see section 2.3 ) is still very much de-

pendent on the data and goals than in the classification case. In particular,
the selection of the distance measure is crucial since the output grouping of
the data is highly dependent upon the distance measure used. Furthermore,
many clustering algorithms are computationally too complex to have exact
solutions and approximate solutions are used instead, where reproducibility
is not guaranteed.

Tibshirani et al (1999) review the application of different clustering ap-
proaches to microarray data, including hierarchical, K-means, block cluster-
ing, and tree-structured vector quantization. Shannon et al (2003) also study
the application of several clustering techniques to microarray data analysis,
highlighting the need for the inclusion of biological knowledge into the pro-
cess. Finally, Genesis (Sturn et al (2002)) was presented as a platform that
integrates various tools for microarray data analysis, also including common
clustering algorithms such as hierarchical clustering, self-organizing maps,
k-means, principal component analysis, and support vector machines.

3.2.3 Other Analyses

Identification of differentially expressed genes and classification and cluster-
ing approaches are considered to be basic microarray data analysis task, in
which the analysis is performed on gene expression profiles alone. However,
gene expression profiles can be linked to other biological external resources,
providing thus new biological discoveries and knowledge. In general, models
that incorporate existing constraints from other data sources seem to pro-
duce hypotheses that agree better with existing biological knowledge than
do models learned from the expression data alone (Hartemink et al (2002)).
Some of the common applications in this sense are transcription factor bid-
ing site analysis, pathway analysis, and protein-protein interaction network
analysis.

Transcription factors play a prominent role in transcription regulation,
acting as critical molecular switches in the gene expression profiling. There-
fore, identifying and characterizing their binding sites is essential for the
annotation of genomic regulatory regions and understanding gene regulatory
networks. In their work, Pritsker et al (2004) use network-level conservation
information in order to map transcription factor binding sites on a genomic
scale.

Protein-protein interaction network information might be combined to-
gether with expression data in order to perform predictions related to gene
functions and evolutionary relationships. Bhardwaj & Lu (2005) investigate
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the global relationship of protein-protein interactions with gene expression,
also integrating ortholog information, and demonstrating that protein inter-
actions are reflected in gene expression and that the correlation between the
two is strengthened by evolution information.

Pathway analysis involves looking for consistent but subtle changes in
gene expression by incorporating either pathway or functional annotations,
thus allowing the identification of the mechanisms that underlie diseases,
adaptive physiological compensatory responses and new avenues for investi-
gation. Curtis et al (2005) review in their paper several methods of pathway
analysis and compare the performance of three of then on two microarray
datasets.

3.2.4 Biological Databases for Verification and Inter-
pretation

Thanks to journals, databases and repositories, the outcomes of multiple re-
search on biological data become available almost at real time. As a result,
the knowledge of biology grows everyday at a high rate, and every biologi-
cal experiment, such as microarray experiments, are designed based on the
available knowledge. This way, microarray data analysis makes use of this
information to validate its results, and also to tighten and simplify the anal-
ysis.

In this subsection we briefly survey the most common information sources
for microarray data analysis validation and interpretation, considering both
dimensions of a microarray experiment, genes and experimental conditions.
We finally discuss some consideration on the use of different sources of infor-
mation and their interoperability.

Gene Information Resources

Biological knowledge related to genes can be classified in three categories.
As information may come from very different sources, a great effort has to
be made by the scientific community in order to integrate all this knowledge
into public repositories and databases. In the following we enumerate the
different categories, together with the most common used repositories.

• Basic information. It correspond to the general information on genes,
including a brief description, gene name, synonyms, organism, loca-
tion, sequence and other general characteristic of genes. Although it is
the most stable information, some changes may occur if, for example,
unknown functions or locations are discovered. Entrez Gene (Maglott
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et al (2011)) from the National Center for Biotechnology Information
(NCBI) is the most important database of genes. It maintains records
from completely sequenced genomes and the content represents the
integration of curation and automated processing from the Reference
Sequence project (RefSeq), collaborating model organism databases,
consortia such as Gene Ontology and other databases within NCBI.
Entrez Gene is accessible via interactive browsing, via programming
utilities and for bulk transfer by FTP.

• Annotations. Annotations relate genes with different biological con-
cepts. Gene Ontology (GO) is the most used database of annotations,
which links genes to biological terms from a vocabulary of GO terms.
GO (Ashburner et al (2000)) is divided into three ontologies: Biological
Process (BP), which contains terms related to a biological objective to
which the gene or gene product contributes, Molecular Function (MF),
defining biochemical activities of a gene product and Cellular Compo-
nent (CC), which refers to the place in the cell where a gene product
is active. It also coordinates the annotation of several organisms, in-
cluding human, yeast and rat, among others. There exist also a great
variety of tools 1 in order to access the database and perform different
kind of analysis using its information.

• External relationships. This category correspond to those resources in
which information on gene relationships to other biological concepts,
such as gene products (proteins), biological pathways or transcription
regulatory networks is stored. UniProt 2 (Universal Protein Resource)
is the main database for proteins, and provides the scientific community
with a comprehensive, high-quality and freely accessible resource of
protein sequence and functional information. It also allows searches
by gene, so it is possible to link a gene to its gene products. The
Kyoto Encyclopedia of Genes and Genomes 3 (KEGG) is probably the
best resource for gene mapping to biological pathways, although there
exist some other biological pathway databases such as BioCarta 4 and
Reactome 5.

1http://www.geneontology.org/GO.tools.shtml
2http://www.uniprot.org/
3http://www.genome.jp/kegg/
4http://www.biocarta.com/
5http://www.reactome.org/



70 Chapter 3. Microarray: Technology and Analysis

Condition Information Format

Unfortunately, the information on microarray experimental conditions is not
as well structured in computational resources as gene related information is.
Usually, natural language is used to describe the conditions for a microarray
experiment, and they are only available through publications. The Microar-
ray Gene Expression Data Society 6 (MGED) was founded in order to provide
a collaborative atmosphere where the basic and central issues of data gath-
ering, handling and analysis of high-throughput gene expression technologies
can be discussed and solved. Primary interests of MGED included the elab-
oration of a guide including experiment description and data representation
standards, a microarray data XML exchange format, ontologies for sample
description, and other issues related to microarray experiments development
and analysis.

Within MGED, MIAME was developed by Brazma et al (2001) in or-
der to describe the Minimum Information About a Microarray Experiment
that is needed to enable the interpretation of the results of the experiment
unambiguously and potentially to reproduce the experiment. Regarding the
information on conditions, MIAME says that it must be included the exper-
imental factors and their values, where an experimental factor (EF) refers to
a variable of the experiment (for example the studied organism, age, sex or
disease state), and an experimental factor value (EFV) specifies a concrete
value of an EF for a given experiment. MIAME does not specify a particular
format, however, FGED recommends the use of MAGE-TAB format, which
is based on spreadsheets, or MAGE-ML.

Major microarray public repositories are MIAME-compliant. ArrayEx-
press (Brazma et al (2003)) is a public database of microarray gene expression
data at the European Bioinformatic Institute (EBI). It uses the annotation
standard MIAME and the associated XML data exchange format Microarray
Gene Expression Markup Language (MAGE-ML). Gene Expression Omnibus
(GEO) (Barrett & Edgar (2006)) a public functional genomics data reposi-
tory supporting MIAME-compliant data submissions. It archives and freely
distributes microarray, next-generation sequencing, and other forms of high-
throughput functional genomic data submitted by the scientific community.

Data Integration

Biological data are often most valuable when it can be integrated with other
types of related biological data from different sources of information. These
kind of analyses require individual researches to assemble and integrate enor-

6http://www.mged.org/



3.2. Gene Expression Microarray Analysis 71

mous amounts of data gathered from different remove providers. Typically,
there exist many integration problems, such as the fact that each of the
database resources contains a different subset of biological knowledge, ac-
cording to different domains. Furthermore, other differences among databas-
es might be taken into account, including data format compatibilities, to-
gether with differences in the nomenclatures and the ways of accessing the
data. Nevertheless, the design of a single biological database would be a poor
solution, since it would reflect a series of compromises that would impoverish
the currently available information resources. A better solution would consist
of a different design, consisting of a search engine able to cross-reference the
original databases, thus maintaining the diversity of expertise and interests
of every primary resource. In this context, Bellazzi et al (2012) describe in
their work some of the most important design features of an infrastructure of
this kind, arguing that the widespread availability of clinical data warehouses
and the noteworthy increase in data storage and computational power justify
research and efforts in this domain.

Three different integration approaches have been reviewed and discussed
in the literature (Stein et al (2003)): link integration, data warehousing and
database federations. In the following we give a brief description of each one
of them:

• Link integration or navigational approach: This approach correspond
to the simplest one, where the different databases are connected via
hypertext links, and navigating around the hypertext links is like flip-
ping from one entry in an encyclopaedia to another. Although this
solution is simple to maintain and easy to use, it requires a significant
amount of manual work for data integration. Furthermore, there exist
some other disadvantages related to the use of different nomenclatures
and ambiguities, and also to the used of cross-references, since the links
need to be updated so that they are always valid.

• Data warehousing: A data warehouse is a single database that is con-
structed by physically consolidating a collection of data sources into
an integrated one. In the creation process, the data from each origi-
nal source must be converted to a compatible form in the warehouse,
which constitutes a complex problem, also dependant on the number
of databases to merge. The biggest problems in this scheme are scala-
bility and keeping the data up to date. This way, maintainer labours
need to be frequently carried out, sometimes involving more complex
modifications, such as adding new data types, relationships or even in-
cluding adaptations in the data model, according to the adjustments
in the different sources.
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• Database federations: The main idea behind this scheme is that in-
teroperability does not require the global integration. This way, data
is left in their native locations and representations, and a mediator
software is used for translating user queries, optimizing them, connect-
ing the original data resources and returning the required information.
Although the development of such a software might seem very costly,
the investment is justified when all responsibility for data management
and updating is left to the provider. The most important drawback of
this approach is its slow performance, since all data conversions and
merging procedures need to be done at runtime. Furthermore, a single
query may require different database accesses, at their different loca-
tions, adding a considerable vulnerability due to possible sudden loss
of service at the provider site.

3.3 Summary

In this chapter we have centred our attention on microarray technology, and
more specifically on gene expression microarrays, where the goal is the iden-
tification of differentially expressed genes. After describing this technology
and its experimental cycle process, we focussed our study on high-level anal-
ysis. This experimental phase corresponds to the development and use of
analytical methods to retrieve useful information, once raw data from the
microarray experiment has been filtered out and preprocessed. Identification
of differentially expressed genes and classification and clustering approach-
es are considered to be the basic high-level microarray data analysis tasks,
where the analysis is performed on gene expression profiles alone. Finally,
the last section of this chapter is dedicated to reviewing the most used public
biological databases for the verification and interpretation of the high-level
analysis output.
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Biclustering Algorithms

In section 3.2, different kinds of analysis of microarray data were detailed.
Clustering analysis, which was also described as an unsupervised data mining
technique in section 2.3, has been extensively applied to microarray data.
The goal is to extract information on how gene expression levels vary among
the different samples, finding groups of co-expressed genes. If two different
genes show similar expression tendencies across the samples, this suggests a
common pattern of regulation, possibly reflecting some kind of interaction or
relationship between their functions Baldi & Hatfield (2002).

Nevertheless, there exists two main restrictions in the use of clustering
algorithms: (1) genes are grouped together according to their expression
patters across the whole set of samples, and (2) each gene must be clustered
into exactly one group. This last limitation is two-fold: firstly, it means
that a certain gene cannot be present in different groups, thus forbidding
overlapping among clusters; secondly, it confines each gene to be a member
of any cluster, even if it is not co-regulated with any of the other genes in
the cluster.

However, genes might be relevant only for a subset of samples. This is
essential for numerous biological problems, such as the analysis of genes con-
tributing to certain diseases, assigning biological functionalities to genes or
when the conditions of a microarray are diverse (Wang et al (2002)). Thus,
clustering should be performed on the two dimensions (genes and conditions)
simultaneously. Also, many genes may be grouped into diverse clusters (or
none of them) depending on their participation in different biological process-
es within the cell (Gasch & Eisen (2002)). These characteristics are covered
by biclustering techniques, which have also been largely applied to microarray
data (Madeira & Oliveira (2004); Tanay et al (2005); Busygin et al (2008);
Eren et al (2012)). The groups of genes and samples found by biclustering
approaches are called biclusters.

73
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Biclustering was introduced in the 1970s by Hartigan (1972), although
Cheng & Church (2000) were the first to apply it to gene expression da-
ta analysis. Other names such as co-clustering, bi-dimensional clustering,
two-way clustering or subspace clustering often refer to the same problem
formulation.

Finding significant biclusters in a microarray is a much more complex
problem than clustering (Divina & Aguilar-Ruiz (2006)). In fact, it has been
proven to be a NP-hard problem (Tanay et al (2002)). Consequently, the
majority of the proposed techniques are based on optimization procedures as
the search heuristic. The development of both a suitable heuristic and a good
cost function for guiding the search is essential for discovering interesting
biclusters in an expression matrix. Nevertheless, not all existing biclustering
approaches base their search on evaluation measures for biclusters. There
exists a diverse set of biclustering tools that follow different strategies and
algorithmic concepts which guide the search towards meaningful results.

We focus our work on the importance of having a suitable evaluation mea-
sure for biclusters. It can be used for guiding the search in different heuristics,
allowing thus contrasting distinct search strategies. Furthermore, it can also
be used for comparing the results of different biclustering approaches, based
or not on evaluation metrics, which is jet an unresolved task nowadays.

In this chapter, we have collected all information related to the biclus-
tering problem, including the categorization of different types of patterns
in biclusters and currently available quality measures for evaluating biclus-
ters. We have also reviewed the main biclustering approaches existing in the
literature, emphasising those based on the use of evaluation measures.

4.1 Bicluster Unified Notation

Biclusters are represented in the literature in different ways, where genes
can be found either in rows or columns, and different names refer the same
expression sub-matrix. In this section we define a common notation for
biclusters, which will be used not only in this chapter but in the whole
document. This way, we facilitate the reader understanding different authors
approaches, in spite of adapting the original definitions.

Let, from now on, B be a bicluster consisting of a set I of |I| genes and
a set J of |J | conditions, in which bij refers to the expression level of gene i
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under sample j. Then B can be represented as follows:

B =


b11 b12 . . . b1|J |
b21 b22 . . . b2|J |
...

...
. . .

...
b|I|1 b|I|2 . . . b|I||J |


where the gene gi is the ith row, e.g., gi = {bi1, bi2, . . . , bi|J |}, and condition
cj is the jth column, e.g., cj = {b1j, b2j, . . . , b|I|j}.

In the evaluation measures presented in section 4.3 genes and samples
means in biclusters are frequently used. We represent these values as biJ and
bIj referring to the i row (gene) and j column (sample) means, respectively.
Furthermore, the mean of all the expression values in B is referred to as bIJ .

Note that these definitions above may alter the original authors notations
in the contributions reviewed in this chapter.

4.2 Gene Expression Patterns

Several types of biclusters have been described and categorised in the litera-
ture, depending on the pattern exhibited by the genes across the experimental
conditions (Mukhopadhyay et al (2010)). For some of them it is possible to
represent the values in the bicluster using a formal equation.

• Constant values. A bicluster with constant values reveals subsets of
genes with similar expression values within a subset of conditions. This
situation may be expressed by: bij = π.

• Constant values on rows or columns. A bicluster with constant
values in the rows/columns identifies a subset of genes/conditions with
similar expression levels across a subset of conditions/genes. Expres-
sion levels might therefore vary from genes to genes or from condition
to condition. It can also be expressed either in an additive or multi-
plicative way:

– Additive: bij = π + βi, bij = π + βj

– Multiplicative: bij = π × αi, bij = π × αj

• Coherent values on both rows and columns. This kind of biclus-
ters identifies more complex relations between genes and conditions,
either in an additive or multiplicative way:

– Additive: bij = π + βi + βj
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– Multiplicative: bij = π × αi × αj

where π represents any constant value for B, βi(1 ≤ i ≤ |I|) and βj(1 ≤
j ≤ |J |) refer to constant values used in additive models for each gene i
or condition j; and αi, (1 ≤ i ≤ |I|) and αj, (1 ≤ j ≤ |J |) correspond to
constant values used in multiplicative models for each experimental gene i
or condition j.

Other kind of biclusters correspond to those in which their values exhibit
coherent evolutions, thus showing an evidence that the subset of genes is up-
regulated or down-regulated across the subset of conditions without taking
into account their actual expression values. In this situation, data in the
bicluster cannot be represented by any mathematical model.

4.2.1 Shifting and Scaling Expression Patterns

Aguilar-Ruiz (2005) presented an in-depth discussion on the possible patterns
in gene expression data, according to the former definitions. He formally
described two kind of patterns: shifting and scaling patterns. They have been
defined using numerical relations among the values in a bicluster. Several
works based their principle in the pattern concept in order to mine the data.

A bicluster B follows a perfect shifting pattern if its values can be obtained
by adding a constant-condition number βj to a typical value for each gene
(πi). βj is said to be the shifting coefficient for condition j. In this case, the
expression values in the bicluster fulfil the following equation:

bij = πi + βj (4.1)

Graphically, a perfect shifting pattern gives a parallel behaviour of the
genes. Figure 4.1 illustrates an example of bicluster presenting a perfect
shifting pattern. This bicluster contains four genes gi (with 1 ≤ i ≤ 4)
and five conditions cj (with 1 ≤ j ≤ 5). Below the graphic, the expression
values (matrix on the left) are provided next to the typical pattern values
(πi) and shifting coefficients (βj). As we can observe, πi is constant for each
gene (row), while the shifting coefficient βj is constant for each condition
(column).

Similarly, a bicluster follows a perfect scaling pattern changing the addi-
tive value in the former equation by a multiplicative one. This new term αj
is called the scaling coefficient, and represents a constant value for each con-
dition. The following equation defines whether a bicluster follows a perfect
scaling pattern or not:

bij = πi × αj (4.2)
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B =


45 27 79 35 108
32 14 66 22 95
50 32 84 40 113
63 45 97 53 126

 =


25 + 20 25 + 2 25 + 54 25 + 10 25 + 83
12 + 20 12 + 2 12 + 54 12 + 10 12 + 83
30 + 20 30 + 2 30 + 54 30 + 10 30 + 83
43 + 20 43 + 2 43 + 54 43 + 10 43 + 83


π1 π2 π3 π4

{πi} = {25 12 30 43}

β1 β2 β3 β4 β5
{βj} = {20 2 54 10 83}

Figure 4.1: Graphical representation of a bicluster containing a perfect shift-
ing pattern.

In Figure 4.2, an example of perfect scaling pattern is displayed. The
bicluster contains four genes and five conditions. The expression values are
also provided next to the pattern typical values and scaling coefficients, πi
and αj, respectively. In this case, the genes do not follow a parallel tendency.
Although the genes present the same behaviour with regard to the regulation,
changes are more abrupt for some genes than for others.

A bicluster may include some of the aforementioned patterns or even
both of them, shifting and scaling, at the same time. In fact, it is the most
probable case when real data are used. This kind of pattern corresponds
to the most general situation that can be described using a mathematical
formula, when a bicluster has coherent values on both rows an columns, for
the additive and multiplicative model at the same time. When it is the case,
it is said that the bicluster follows a perfect shifting and scaling pattern, and
its values can be represented by this equation:

bij = πi × αj + βj (4.3)

Observe the example given in Figure 4.3. This bicluster includes simulta-
neously the perfect patterns shown in Figures 4.1 and 4.2, keeping the same
scaling and shifting coefficients. Nevertheless, to visually identify that this
bicluster follows a combined pattern is more difficult that to find a single
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B =


75 150 50 175 125
36 72 24 84 60
90 180 60 210 150
129 258 86 301 215

 =


25× 3 25× 6 25× 2 25× 7 25× 5
12× 3 12× 6 12× 2 12× 7 12× 5
30× 3 30× 6 30× 2 30× 7 30× 5
43× 3 43× 6 43× 2 43× 7 43× 5


π1 π2 π3 π4

{πi} = {25 12 30 43}

α1 α2 α3 α4 α5

{αj} = {3 6 2 7 5}

Figure 4.2: Graphical representation of a bicluster containing a perfect scal-
ing pattern.

shifting or scaling pattern, since the effects of one has influence on the other.

At first sight, genes g1, g3 and g4 have similar behaviour, although g4

differs for the last condition. However, gene g2 seems independent of the
other genes, since it has ascending tendency across every conditions, while
the other genes presents a fluctuating behaviour. This fact happens when
the shifting coefficients βi are of the same magnitude that πj ×αi. Note this
aspect by observing the second column (gene g2) of the matrix. It is also
interesting that the shifting causes the genes g1, g2 and g3 to significantly
change for the last condition with regard to Figure 4.2. Observe that the
shifting coefficient for this condition (fifth row of the matrix), that is 83, has
the same magnitude that πj ×αi for such genes. Therefore, when a bicluster
includes shifting and scaling patterns simultaneously, identifying it as a good
bicluster is a difficult task (Xu et al (2006)).

4.3 Evaluation Measures

Several quality measures for biclusters have been proposed together with
different heuristics. Nevertheless, none of the proposed quality measures is
able to recognize a perfect shifting and scaling pattern in a bicluster, which
is the most general situation and also the most probable when working with
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B =


95 152 104 185 208
56 74 78 94 143
110 182 114 220 233
149 260 140 311 298


=


25× 3 + 20 25× 6 + 2 25× 2 + 54 25× 7 + 10 25× 5 + 83
12× 3 + 20 12× 6 + 2 12× 2 + 54 12× 7 + 10 12× 5 + 83
30× 3 + 20 30× 6 + 2 30× 2 + 54 30× 7 + 10 30× 5 + 83
43× 3 + 20 43× 6 + 2 43× 2 + 54 43× 7 + 10 43× 5 + 83


π1 π2 π3 π4

{πi} = {25 12 30 43}
α1 α2 α3 α4 α5

{αj} = {3 6 2 7 5}
β1 β2 β3 β4 β5

{βj} = {20 2 54 10 83}

Figure 4.3: Graphical representation of a bicluster containing perfect shifting
and scaling patterns.

gene expression data (Gan et al (2008)). This section presents some of most
known different existing evaluation measures for biclusters.

4.3.1 Variance

Hartigan (1972) used bicluster variance in equation 4.4 as a coherence mea-
sure, where the goal of his algorithm was to minimize the sum of the bicluster
variances.

V AR(B) =

|I|∑
i=1

|J |∑
j=1

(bij − bIJ)2 (4.4)

It can be noted that variance only detect constant biclusters. Therefore,
biclustering approaches based on variance minimization methods also include
other homogeneity criteria to detect other types of biclusters.
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4.3.2 Mean Squared Residue

Cheng & Church (2000) were the first in applying biclustering to gene expres-
sion data. They introduced one of the most popular biclustering algorithms
that combines a greedy search heuristic for finding biclusters with a measure
for assessing the quality of such biclusters.

In order to assess the quality of biclusters the algorithm uses the Mean
Squared Residue (MSR). This measure aims at evaluating the coherence of
the genes and conditions of a bicluster B consisting of I rows and J columns.
MSR is defined as:

MSR(B) =
1

|I| · |J |

|I|∑
i=1

|J |∑
j=1

(bij − biJ − bIj + bIJ)2 (4.5)

The lower the mean squared residue, the stronger the coherence exhibited
by the bicluster, and the better its quality. If a bicluster has a mean squared
residue lower than a given value δ, then it is called a δ-bicluster. If a bicluster
has a MSR equal to zero, it means that its genes fluctuate in exactly the
same way under the subset of experimental conditions, and thus it can be
considered a perfect bicluster.

Nevertheless, MSR has been proven to be inefficient for finding certain
types of biclusters in microarray data, especially when they present strong
scaling tendencies (Aguilar-Ruiz (2005)). In fact, MSR is only able to capture
shifting tendencies within the data (Bozdağ et al (2010)).

4.3.3 Scaling Mean Squared Residue

Mukhopadhyay et al (2009b) have recently developed an evaluation measure
for biclusters which is able to recognize scaling patterns. In their work,
they analyse the reasons why MSR is able to recognise shifting patterns
in biclusters but no scaling patterns. Using the mathematical formula for
scaling patterns, they define a metric which is then proved to identify scaling
patterns. This new measure is named SMSR, from Scaling MSR, and it is
shown in equation 4.6. Nevertheless, SMSR is not capable of identifying
shifting patterns.

SMSR(B) =
1

|I| · |J |

|I|∑
i=1

|J |∑
j=1

(biJ × bIj − bij × bIJ)2

b2
iJ × b2

Ij

(4.6)
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4.3.4 Relevance Index

Yip et al (2004) proposed an evaluation metric slightly different from MSR,
in which the quality of a bicluster is measured as the sum of the relevance
indices of the columns. Relevance index RIj for column j ∈ J is defined as:

RIj = 1−
σ2
Ij

σj2
(4.7)

where σ2
Ij (local variance) and σj2 (global variance) are the variance of

the values in column j for the bicluster and the whole data set, respectively.
Note that the relevance index for a column is maximized if its local variance
is zero, provided that the global variance is not. Based on this relevance
index, the quality of a cluster is measured as the sum of the index values of
all the selected conditions.

Due to the nature of the evaluation, the only biclusters patterns that
maximize the quality are constant biclusters (either on rows or on columns).

4.3.5 Correlation-based Measures

Correlation coefficients have extensively been used in different kind of mi-
croarrays analyses, such as clustering. These statistics measure the overall
similarity of the genes without placing any emphasis on the concrete magni-
tudes, also taking into account negative correlations as well as positive. In
this subsection we review the correlation-based approaches which have been
proposed for bicluster evaluation.

Pearson’s Correlation Coefficient (PCC)

PCC between two variables is defined as the covariance of the two variables
divided by the product of their standard deviations. It is a measure of the
linear dependence between two variables, and gives a value between +1 and
−1, both inclusive. A value of 1 implies that a linear equation describes
the relationship between the two variables perfectly (positive correlation). A
value of −1 implies that all data points lie on a line for which one variable
decreases as the other increases (negative correlation). A value of 0 implies
that there is no linear correlation between the variables.

PCC is a very effective metric in order to quantify co-regulation between
pairs of genes (Bozdağ et al (2009)), and it allows capturing both shifting
and scaling patterns that would be separately identified by additive and
multiplicative models, respectively. Nevertheless, PCC is not effective for
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recognizing constant biclusters or constant row patterns, since these kind of
patterns would make the denominator to be zero.

PCC between two rows (genes) i1, i2 ∈ I with respect to the columns
(conditions) j ∈ J is defined as:

PCC =

∑|J |
j=1(bi1j − bi1J)(bi2j − bi2J)√∑|J |

j=1(bi1j − bi1J)2
∑|J |

j=1(bi2j − bi2J)2

(4.8)

where bi1j and bi2j denote the elements in rows i1, i2 and column j, and bi1J ,
bi2J represent the means of rows i1 and i2, respectively.

PCC quantifies coherences between pairs of genes. Therefore, in order to
measure biclusters coherences, one has to compute all pairwise PCC values
between the rows in the same bicluster. Another challenge is that PCC is
only meaningful to measure coherence between rows but is too restrictive if it
is used to measure coherence between columns simultaneously. Although the
PCC has been used as such in some works (Bozdağ et al (2009), Mitra et al
(2009), Nepomuceno et al (2011)), in order to overcome this issue, both Yang
et al (2011) and Teng & Chan (2008) have defined a PCC-based evaluation
measure for the biclusters evaluation in terms of the better correlation, either
on rows or columns.

Average Correlation Value (ACV)

ACV was proposed by Teng & Chan (2008) to evaluate the homogeneity of
a bicluster or a data matrix in the following way:

ACV (B) = max


|I|∑
i1=1

|I|∑
i2=1

|r rowi1i2 | − |I|

|I|2 − |I|
,

|J |∑
j1=1

|J |∑
j2=1

|r colj1j2| − |J |

|J |2 − |J |

 (4.9)

where r rowi1i2 , r colj1j2 refer to the correlation between any pair of rows
i1, i2 or columns j1, j2, according to the Pearson coefficient.

ACV (B) has been proven to be in the interval [0, 1], where a value equal
to 1 means that the rows or columns of the bicluster are highly co-expressed,
while a low ACV means that neither the conditions nor the genes are similar.
Therefore, higher values of ACV are preferred.

The authors proved in their work that ACV always gives the desirable
value for both the additive and the multiplicative model, contrary to MSR.
They also performed a study on both ACV and MSR behaviours in seven
different types of biclusters.
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Although ACV is presented as the criterion to evaluate biclusters, it has
not been used in order to guide the search in their algorithm. Instead, the
algorithm is based on the use of a weighted correlation coefficient, a variation
of the one proposed by Bland & Altman (1995), in which weight factors
are assigned to the different features (genes or samples) according to their
importance. This way, those features with more importance will have more
impacts than the others.

Sub-Matrix Correlation Score

Yang et al (2011) used the Pearson correlation score as the base to define
their measure, assuming that a perfect correlated pattern satisfies perfect
linear correlation on row and on column vectors. Scores correlations for rows
and columns are first defined as in equations 4.10 and 4.11:

Srow = mini1εI(Si1J), Si1J = 1−
∑

i2 6=i1,i2εI |cor(xi1J , xi2J)|
|I| − 1

(4.10)

Scol = minj1εJ(SIj1), SIj1 = 1−
∑

j2 6=j1,j2εJ |cor(xIj1 , xIj2)|
|J | − 1

(4.11)

where cor(xi1J , xi2J) and cor(xIj1 , xIj2) represent the PCC of any pair of genes
or conditions in the bicluster, respectively. Srow score reflects the correlation
degree on the rows of the bicluster, while Scol reflects the correlation degree
on columns, being both definitions asymmetric. The sub-matrix correlation
score is defined as the minimum value of these two scores:

S(B) = min(Srow(I, J), Scol(I, J)) (4.12)

Since absolute values are used in Srow and Scol definitions, a perfect corre-
lated bicluster will satisfy S(I, J) = 0, meaning that the rows or columns of
the bicluster are perfectly linearly correlated. Yang et al (2011) also defined
a δ − corbicluster as a bicluster that satisfies S(I, J) < δ, for some δ > 0.

Average Spearman’s Rho (ASR)

ASR was first proposed by Ayadi et al (2009) and is based on the use of
Spearman’s rank correlation, which measures the statistical dependence be-
tween two variables, assessing how well their relationship can be described
using a monotonic function. Its value varies from -1 to +1, occurring one of
these two values when the two variables being compared are monotonically
related, even if their relationship is not linear.
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Most important difference between Spearman and Pearson correlations is
that Pearson assesses linear relationship, while Spearman assesses monotonic
relationship. This way, the Spearman correlation is less sensitive to strong
outliers that are in the tails of both samples. Nevertheless, when the data
are roughly elliptically distributed and there are no prominent outliers, the
Spearman and Pearson correlations give similar values.

ASR is computed as in equation 4.13 and outputs a value in the interval
[−1, 1], where a high/low value close to 1/-1 indicates that the genes or con-
ditions of the bicluster are strongly correlated, either positively or negatively,
respectively.

ASR(B) = 2×max

{∑
iεI

∑
j≥i+1,jεI ρij

|I|(|I| − 1)
,

∑
kεJ

∑
l≥k+1,lεJ ρkl

|J |(|J | − 1)

}
(4.13)

where ρij, ρkl refer to the Spearman correlation between two genes or condi-
tions, respectively.

4.3.6 Similarity Score

Liu & Wang (2007) proposed the use of a similarity score between two genes
and also a similarity score for a sub-matrix. The first one is used when the
reference gene is known in advance. When it is not known, a number of genes
might also be randomly selected as the reference genes.

Similarity score between genes

The similarity score between two genes (gene i and a reference gene i∗) under
condition j is computed as in equation 4.14:

sij =

{
0 if dij > α · davg
1− dij

α·davg + β otherwise
(4.14)

where davg is defined as the average distance value of all the elements in
the expression matrix:

davg =

∑
iεI,jεJ dij

|I||J |
(4.15)

and dij is the absolute value of the expression difference between the gene
i and the reference gene i∗ for condition j in the expression matrix a:

dij = |aij − ai∗j| (4.16)
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α · davg is used as a threshold to ignore elements with big dij, in order
to find constant biclusters, and β is the bonus for small dij. This way, β
enlarges the similarity score for small dij and ignores those dij greater than
the threshold.

According to equation 4.14, the value of sij will always be greater than
or equal to 0, being 0 its worst value of similarity.

Similarity score for a bicluster

For each row iεI, the similarity score of row i in B is:

s(i, J) =
∑
jεJ

sij (4.17)

Similarly, for each column jεJ , the similarity score in B corresponds to:

s(I, j) =
∑
iεI

sij (4.18)

Using these equations, the similarity score for a bicluster is computed as the
minimum value of the similarity scores of both genes and conditions in the
bicluster:

s(B) = s(I, J) = min{miniεI s(i, J),minjεJ s(I, j)} (4.19)

The goal when looking for biclusters is to find those sub-matrices with
higher values of the similarity score. In order to improve the quality of the
output, Liu & Wang (2007) also introduced the average similarity score as
a second criterion. It consists of the average of all the similarity values of
equation 4.14 for all the elements in the bicluster.

Although the type of biclusters found using the similarity score depends
on the values for the different thresholds (α, β, and γ for the average), only
constant and additive biclusters are recognized.

4.4 Biclustering Approaches Based on Eval-

uation Measures

As it has already been mentioned, the biclustering problem is NP-hard. This
implies that an exhaustive search of the space of solutions may be infeasible.
When a measure of quality of the possible solutions is available, the appli-
cation of a meta-heuristic to solve the problem seems the most appropriate.
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Meta-heuristics make few or no assumptions about the problem being opti-
mized and can search very large spaces of candidate solutions by iteratively
trying to improve a candidate solution with regard to a given quality mea-
sure. However, meta-heuristics do not guarantee that optimal solutions are
ever found.

Many different meta-heuristics have been used in the biclustering con-
text, and also new variants are continually being proposed, in which meta-
heuristics are employed together with other kinds of search techniques. In
this section we summarize the most important contributions to the biclus-
tering problem when an evaluation measure is available. We have grouped
them according to the type of meta-heuristic in which they are based on.
Since MSR was the first quality metric for biclusters, it has been included in
many approaches from different authors, although it has been proven not to
be the most effective.

4.4.1 Iterative Greedy Search

Direct Clustering

Direct clustering of a data matrix by Hartigan (1972) was one of the first
works ever published on biclustering, although it was not applied to genetic
data. The algorithm is based on the use of a divide and conquer strategy, in
which the input matrix is iteratively partitioned into a set of sub-matrices,
until k matrices are obtained, where k is an input parameter for the number
of desired biclusters. Although being very fast, the main drawback of this
heuristic is that partitions cannot be reconsidered once they have been split.
This way, some quality biclusters might be missed due to premature divisions
of the data matrix.

Within the partitioning process, variance is used as the evaluation mea-
sure (see subsection 4.3.1 ). At each iteration, those rows or columns that
improve the overall partition variance are chosen. This will lead the algo-
rithm towards constant biclusters. Due to the characteristics of the search,
overlapping among biclusters is not allowed.

Biclustering of Expression Data by Cheng and Church (CC)

Cheng & Church (2000) were the first in applying biclustering to gene expres-
sion data. Their algorithm adopts a sequential covering strategy in order to
return a list of n biclusters from an expression data matrix. In order to assess
the quality of a bicluster the algorithm makes use of MSR (see subsection
4.3.2).
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After preprocessing the missing values of the input data matrix by replac-
ing them with random numbers, the bicluster discovering process is repeated
as many times as many biclusters are desired. In each iteration, the bicluster
B is initialized to the whole matrix. Next, three different phases for multi-
ple node deletion, single node deletion and node addition are applied. These
phases iteratively perform the removal and addition of rows and columns, en-
suring that the result is a δ-bicluster. Finally, a substitution phase replaces
the elements of the input matrix that are contained in the recently found bi-
cluster with random values. This substitution is applied in order to prevent
overlapping among biclusters, since it is very unlikely that elements covered
by existing biclusters would contribute to any future bicluster. Although
this strategy succeeds in avoiding the overlapping, CC presents several draw-
backs due to this elements masking and also due to the use of a threshold
for rejecting solutions, which is dependent on each database and has to be
computed before applying the algorithm.

CC(SMSR)

A similar strategy to that of Cheng and Church has been adopted by Mukho-
padhyay et al (2009b) in order to incorporate their evaluation measure SMSR
(see subsection 4.3.3 ) into a search heuristic. This methodology, therefore,
shares the same disadvantages with CC, and it is also necessary to stablish a
limit value for SMSR for each database. Since SMSR is only able to recognize
multiplicative models, the authors propose and adapted algorithm in which
CC is applied twice, the fist time using MSR as the evaluation measure and
the second time using SMSR. This allows to find biclusters with shifting pat-
terns and also biclusters with scaling patterns, but it does not find biclusters
with both kind of patterns simultaneously.

HARP Algorithm

Yip et al (2004) presented a biclustering approach named HARP (Hierarchi-
cal approach with Automatic Relevant dimension selection for Projected clus-
tering) based on projected clustering. They also introduced an evaluation
metric slightly different from MSR named relevance index (see subsection
4.3.4).

At the beginning of the algorithm there are as many biclusters as genes.
The process consist in iteratively merging biclusters until a certain criterion is
met, choosing those experimental conditions that satisfy a specific threshold
requirements, taking into account the relevance indexes. Optionally, a re-
assignation procedure is applied, where biclusters with very few elements are
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removed and elements are assigned to the closest bicluster, according to a
distance measure.

This algorithm presents several drawbacks, being the most important
one the kind of biclusters it is capable to find. Due to the nature of their
evaluation measures, the only bicluster patterns that maximize the quality
are constant biclusters (either on rows or on columns). Furthermore, the
way in which the algorithm works does not allow overlapped elements among
biclusters, which is one of the most important differences between clustering
and biclustering methodologies.

Maximum Similarity Bicluster Algorithm (MSB)

MSB was proposed by Liu & Wang (2007) together with the similarity score
for biclusters reviewed in section 4.3.6. The authors highlighted three dif-
ferent characteristics of their approach: 1) no discretization procedure is
required, 2) MSB performs well for overlapping bi-clusters and (3) it works
well for additive bi-clusters. This third property is a direct consequence on
the use of the similarity score in equation 4.19.

The algorithm starts with the whole matrix as the bicluster. Then a
process of iteratively remove the row or column in the bicluster with the worst
similarity score is perform, until there is one element left in the bicluster.
During this process, n + m − 1 sub-matrices have been computed, where
n and m refer to the number of rows and columns in the input matrix,
respectively. MSB only outputs one bicluster, corresponding to the one in
the n+m− 1 sub-matrices with the maximum similarity score.

MSB works for the special case of approximately squares biclusters. In
order to overcome this issue and also to speed up the process, an extension
algorithm named RMSBE (Randomized MSB Extension algorithm) is also
presented. RMSBE makes use of the average of the similarity scores between
some pairs of genes in the bicluster (see equation 4.14 ), as well as of randomly
selection to chose the reference genes.

Biclustering by Iteratively Sorting with Weighted Coefficients

In their approach, Teng & Chan (2008) alternately sort and transpose the
gene expression data, using weighted correlations at the same time to mea-
sure gene and condition similarities. The weighted correlation index is a
variation of Pearson correlation coefficient, which was originally adapted by
Bland & Altman (1995) in order to add weights when working with multiple
observations. In this work, Teng & Chan (2008) have redefined this index so
that weights are assigned to the different features (genes or samples) accord-
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ing to their importance. This way, those features with more importance will
have more impacts than the others.

The algorithm is based on the dominant set approach work of Pavan &
Pelillo (2003). In order to find a bicluster, genes and conditions are iteratively
sorted using weight vectors, which are also iteratively refined using the sorting
vector of the previous iteration. In each iteration the matrix is transposed
and the process is repeated over the other dimension, thus alternating from
genes to conditions. At the end of the process, the highly correlated bicluster
is located at one corner of the rearranged gene expression data matrix, and
is defined using a threshold for the correlation coefficients between adjacent
rows and columns.

To find more than one bicluster, the authors use the weight vectors. This
way, any time a bicluster is found, the weights of those features that have
not been included in it are enhanced, at the same time as reducing the
weights of those features included in it. Using this approach, overlapping
among biclusters is permitted but controlled and penalized any time a gene
or condition is included in a solution.

4.4.2 Stochastic Iterative Greedy Search

Some authors have preferred using a stochastic strategy in order to add a
random component to the search, rending thus the algorithm to be non-
deterministic. Most important stochastic iterative greedy approaches are
reviewed in this section.

FLexible Overlapped biClustering (FLOC)

Yang et al (2005) proposed a different heuristic for coping with the random
masking of the values in the data matrix. To address this issue and to further
accelerate the biclustering process, the authors presented a new model of
bicluster to incorporate null values. They also proposed an algorithm named
FLOC (FLexible Overlapped biClustering) able to discover a set of k possibly
overlapping biclusters simultaneously based on probabilistic moves.

The algorithm begins with the creation of k initial biclusters with rows
and columns added to them according to a given probability. After that,
these biclusters are iteratively improved by the addition or removal of one
row or column at a time, determining the action that better improves the
average of the MSR values of the k biclusters. Bicluster volumes are also
taken into account within the possible actions, where bigger biclusters are
preferred, and the variance is used to reject constant biclusters. The whole
process ends when no action that improves the overall quality can be found.
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Random Walk Biclustering (RWB)

Angiulli et al (2008) presented a biclustering algorithm based on a greedy
technique enriched with a local search strategy to escape poor local minima.
Their algorithm makes use of a gain function that combines three different
objectives: MSR, gene variance and the size of the bicluster. These objectives
are compensated by user-provided weights.

RWB produces one bicluster at a time. Starting with an initial random
solution, it searches for a locally optimal solution by successive transforma-
tions that improve the gain function. A transformation is done only if there
is reduction of MSR or an increase either in the gene variance or the volume.
In order to avoid getting trapped into poor local minima, the algorithm exe-
cutes random moves according to a probability given by the user. To obtain
k biclusters RWB is executed k times by controlling the degree of overlapping
among the solutions. This degree is controlled for genes and conditions inde-
pendently by using two different frequency thresholds. This way, during any
of the k executions of the algorithm, whenever a gene or condition exceeds
the corresponding frequency threshold, it is removed from the matrix and
therefore it will not be taken into account in the subsequent executions.

Reactive GRASP Biclustering

GRASP is a multi-start meta-heuristic for combinatorial problems, consisting
of iterations made up of two phases: construction of a greedy randomized
solution and local search in which its neighbourhood is investigated until
a local minimum is found. The best overall solution is kept as the result.
Reactive GRASP is variant of GRASP in which a the threshold parameter
α associated to the candidate list of solutions is self-tuned, and its value
is periodically modified according with the quality of the solutions recently
obtained.

Dharan & Nair (2009) proposed a reactive GRASP biclustering method
in which high quality bicluster seeds are generated using one-dimensional
k-means clustering. Afterwards, these seeds are further enlarged by adding
more rows and columns to them, employing the reactive GRASP method,
and also making use of randomized heuristics for escaping from local optima.
The algorithm makes use of MSR score as the cost function to evaluate the
quality of the obtained biclusters. In order to obtain k biclusters, k seeds
need to be generated in the first step, where their overlapping amount is
controlled by the setting of the α values.
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Pattern-Driven Neighbourhood Search (PDNS)

Neighbourhood search consist of iteratively improving an initial candidate
solution by replacing it with a higher quality neighbour. It is usually obtained
by performing little modifications on the former one.

PDNS has been recently proposed by Ayadi et al (2012) as a Pattern-
Driven Neighbourhood Search approach for the biclustering problem. Prior
to the search, the method first applies a preprocessing step to transform the
input data matrix into a behaviour matrix M ′. Each row of this behaviour
matrix represents the trajectory pattern of a gene across all the combined
conditions, while each column represents the trajectory pattern of all the
genes under a pair of particular conditions in the data matrix. M ′ defines
the problem search space as well as the neighbourhoods used within the
search process.

The initial bicluster is obtained by using two fast well-known greedy al-
gorithms: CC (see 4.4.1) and OPSM (see 4.5.5) and is encoded into its be-
haviour matrix before being improved by PDNS. The algorithm alternates
between two basic components: a descent-based improvement procedure and
a perturbation operator. The descendent strategy is used to explore the
neighbourhood, moving to an improving neighbouring solution at each itera-
tion. This process is employed to discover locally optimal solutions. In order
to displace the search to a new starting points, the perturbation operator
is applied. It is carried out after the descent improvement stops according
to one of two stopping criteria: the solution reaches a fixes quality thresh-
old or a fixed number of iterations has been reached. A perturbed bicluster
is then computed by a randomly replacement of 10 per cent of genes and
conditions of the recorded best bicluster so far. This perturbed bicluster is
used as a new starting point for the next round of the descent search, and
the whole PDNS algorithm stops when the best bicluster is not updated for
a fixed number of perturbations. For assessing the quality of two biclusters
any time a replacement is taking place the ASR evaluation function is used
(see 4.3.5 ).

The algorithm outputs one bicluster at a time. Therefore, in order to
obtain several biclusters it must be run several times with different initial
solutions. In this work, the authors use the output of two fast well-known
algorithm as initial biclusters. Nevertheless, no overlapping control is carried
out among the reported solutions.
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4.4.3 Nature-inspired Meta-heuristics

Nature-inspired meta-heuristics are characterized by reproducing efficient be-
haviours observed in the nature. Examples of this kind of heuristics include
evolutionary computation, artificial immune systems, ants colony optimiza-
tion or swarm optimization, among others. All of them make use of algorith-
mic operators simulating useful aspects of various natural phenomena and
have been proven to be very effective for complex optimization problems.
In this context, many biclustering approaches have been proposed based on
the use of any of this kind of meta-heuristics, being evolutionary computa-
tion the most used. For more information on this technology, chapter 5 of
this PhD Thesis has been entirely dedicated to evolutionary computation.
In the following, the most important biclustering approaches based on any
nature-inspired meta-heuristic have been review.

Simulated Annealing Biclustering

Simulated Annealing (SA) stochastic technique originally developed to model
the natural process of crystallisation and which has been adopted to solve
optimization problems (Kirkpatrick et al (1983)). SA algorithm iteratively
replaces the current solution by a neighbour one if accepted, according to a
probability that depends on both the fitness difference and a global parameter
called the temperature. This temperature is gradually decreased during the
process, decreasing the probability of randomly choosing the new solution
when it gets lower.

The specific behaviour of any simulated annealing approach is mainly
given by the fitness function an the depth of the search at each temperature.
In Bryan et al (2006) approach, the fitness of each solution is given by its MSR
value, and ten times the number of genes successes needed to be achieved
before cooling. This number determines the depth of the search, being a
success an improvement on the fitness function. The initial temperature of
the system, as well as the rate at which it is lowered are also important,
since both of them determine the number of total iterations and also affect
the convergence. The authors set them experimentally.

The algorithm must be run k times in order to obtain k biclusters. So-
lutions are masked in the original matrix in order to avoid overlap among
them. In their work, Bryan et al (2006) used the same method of Cheng &
Church (2000), replacing the original values for random ones, in an attempt
to prevent them to be part of any further bicluster.
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Crowding distance based Multi-objective Particle Swarm Optimiza-
tion Biclustering (CMOPSOB)

Particle Swarm Optimization (PSO) technique simulates the social behaviour
of a flock of birds or school of fishes which aim to find food. The system is
initialized with a population of random solutions and searches for optima by
updating generations. Potential solutions are called particles and fly through
the problem space by following the current optimum. Particles have memory
for retaining part of their previous state, and decide the next movement in-
fluenced by to randomly weighted factors affecting the best particle previous
position and the best neighbourhood previous position. The global optimal
solution is the best location obtained so far by any particle in the population
and the process end when each particle reaches its local, neighbourhood and
global best positions.

Liu et al (2009) based their biclustering approach on the use of a PSO
together with crowding distance as the nearest neighbour search strategy,
which speed up the convergence to the Pareto front and also guarantee di-
versity of solutions. Three different objectives are used in CMOPSOB: the
bicluster size, gene variance and MSR, which have been incorporated into a
multi-objective environment based on the individuals dominance. For more
information on multi-objective optimization see section 5.4.1. Being a popu-
lational approach, several potential solutions are taken into account in each
generation. Those non-dominated solutions in the last generation will be
reported as the output.

Multi-objective Multi-population Artificial Immune Network (MOM-
aiNet)

Inspired by biological immune systems, Artificial Immune Systems (AIS)
have emerged as computational paradigms that apply immunological princi-
ples to problem solving in a wide range of areas. Coelho et al (2009) present-
ed an immune-inspired algorithm for biclustering based on the concepts of
clonal selection and immune network theories adopted in the original aiNet
algorithm by de Castro & Von Zuben (2001). It is basically constituted by
sequences of cloning, mutation, selection and suppression steps.

MOM-aiNet explores a multi-population aspect, by evolving several sub-
populations that will be stimulated to explore distinct regions of the search
space. After an initialization procedure consisting on random individuals
made up of just one row and one column, populations are evolved by cloning
and mutating their individuals. The authors apply three different kind of mu-
tations: insert one row, insert one column or remove one element, either row
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or column. They only consider two different objectives: MSR and the vol-
ume, using the dominance among individuals in order to replace individuals
with higher quality ones. A suppression step is periodically performed for the
removal of individuals with high affinity (overlap), causing thus fluctuations
in the populations sizes. Nevertheless, this step is followed by an insertion
one, in which new individuals are created, giving preference to those rows
or columns that do not belong to any bicluster. After a predefined number
of iterations, MOM-aiNet returns all the non-dominated individuals within
each sub-population.

Evolutionary Algorithms for Biclustering

Evolutionary Algorithms are based on the theory of evolution and natural
selection. Being the oldest of the nature-inspired meta-heuristics, they have
been broadly applied to solve problems in many fields of engineering and
science. Many biclustering approaches have been proposed based on evolu-
tionary algorithms. Being a populational approach, a larger subset of the
whole space of solutions is explored, at the same time that it helps them to
avoid becoming trapped at a local optimum. These reasons make evolution-
ary algorithms very suited to the biclustering problem.

Starting by an initial population, evolutionary algorithms select some in-
dividuals and recombine them to generate a new population of individuals.
This process is repeated for a number of generations until the algorithm
converges or certain criterion criteria is met. For more information on evo-
lutionary algorithms we refer the reader to chapter 5. Here, we summarise
the most relevant biclustering approaches based on evolutionary algorithms,
both single or multi-objective. Although the majority of them aim at op-
timise the popular metric residue (MSR), some of them are also based on
correlation coefficients.

Bleuler et al (2004) were the first in developing an evolutionary biclus-
tering algorithm. They proposed the use of binary strings for the individuals
representation, and an initialization of random solutions but uniformly dis-
tributed according to their sizes. Bit mutation and uniform crossover are
used as reproduction operators, and a fitness function that prioritises MSR.
For those solutions with MSR below the threshold δ, bigger biclusters sizes
are preferred. Tournament has been used as selection mechanism, where pop-
ulations are completely replaced by new offspring. A diversity maintenance
strategy is carried out which decreases the amount of overlapping among bi-
cluster, and CC algorithm is also applied as a local search mainly to increase
the size of the individuals. At the end, the whole population of individuals
is returned as the set of quality biclusters.
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SEBI was presented by Divina & Aguilar-Ruiz (2006) as a Sequential
Evolutionary BIclustering approach. The term sequential refers the way in
which bicluster are discovered, being only one bicluster obtained per each
run of the evolutionary algorithm. In order to obtain several biclusters, a se-
quential strategy is adopted, invoking several times the evolutionary process.
Furthermore, a matrix of weights is used for the control of overlapped ele-
ments among the different solutions. This weight matrix is initialized with
zero values and is updated every time a bicluster is returned. Individuals
consists of bit strings, and are initialized randomly but containing just one
element. Together with tournament selection, three different crossover and
mutation operators are used with equal probability in reproduction: one-
point, two-points and uniform crossovers, and mutations that respectively
add a row or a column to the bicluster or the standard mutation. Elitism is
also applied in order to preserve the best individual through generations. In-
dividual evaluations are carried out by a single fitness function in which four
different objectives have been put together: MSR, row variance, bicluster
size and an overlapping penalty based on the weight matrix.

BiHEA (Biclustering via a Hybrid Evolutionary Algorithm) was proposed
by Gallo et al (2009) and is very similar to the evolutionary biclustering al-
gorithm of Bleuler et al (2004). Both of them perform a local search based
on CC algorithm, and return the set of individuals in the last population as
the output. However, they differ in the crossover operator (BiHEA uses two-
point crossover) and BiHEA also incorporates gene variance in the fitness
function. Furthermore, two additional mechanisms are also added in order
to improve the quality of the solutions. The first one is elitism, in which
a predefined number of best biclusters are directly passed to next genera-
tion, with the sole condition that they do not get over a certain amount of
overlap. The second one makes use of an external archive to keep the best
generated biclusters through the entire evolutionary process, trying to avoid
the misplacement of good solutions through generations.

More recently, Huang et al (2012) have proposed a new biclustering algo-
rithm based on the use of an EA together with hierarchical clustering. The
authors argue that with such a huge search space, the EA itself should not be
able to find optimal or approximately optimal solutions within a reasonable
time. Therefore, they propose to separate the conditions into a number of
conditions subsets, also called subspaces. The evolutionary algorithm is then
applied to each subspace in parallel, and a expanding and merging phase is
finally employed to combine the subspaces results into the output biclusters.
As it is related only to the condition dimension, the EA is called CBEB, from
Condition-Based Evolutionary Biclustering, where the normalized geometric
selection method is used as the selection function and the simple crossover
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and binary mutation methods are employed for reproducing the offspring.
In both CBEB and the expanding and merging phase MSR score has been
used for the evaluation of the potential solutions, always using the predefined
threshold δ as the upper limit.

Multi-objective Evolutionary Algorithms for Biclustering

Apart from the specific homogeneity measure for biclusters, many authors
have also incorporated other objectives to the search, such as the biclus-
ter volume or gene variance. These requirements are often conflicting. For
example, a the bigger a bicluster is more probable to have a higher MSR val-
ue. Nevertheless, bigger biclusters with low MSR values are preferred. The
four EA approaches review above make use of a single aggregate objective
function which combines the different objectives. In this section we review
those EA approaches that optimize the different objectives according to oth-
er multi-objectives schemes (see section 5.4.1 for more information on this
multi-objective EAs).

In the work of Mitra & Hayashi (2006), the first approach that implements
a Multi-Objective EA (MOEA) based on Pareto dominance is presented. The
authors based their work on the NSGA-II (Deb et al (2000)), and look for
biclusters with maximum size and MSR value, as long as it is smaller than the
upper bound δ. Also, a local search strategy based on the node insertion and
node deletion phases of CC algorithm is applied to all of the individuals at
the beginning of every generational loop. Populations are ranked according
to the dominance criterion (see section 5.4.1 ), crowding tournament selection
is performed, the selected individuals are crossed and mutated, and the best
individuals among the new and old populations are selected to remain in the
next generation.

In MOGAB (Multi-Objective GA-based Biclustering algorithm) (Mukho-
padhyay et al (2009a)), the authors propose the use of a new individual
representation, encoded as strings made up of two parts: in the first one in-
dexes of genes acting as clusters centres of sets of genes are represented, while
the second one keeps the indexes of the conditions acting as cluster centres of
sets of conditions. This way, each individual does not represent a bicluster,
but a set of biclusters, obtained with the different possible combinations of
clusters of genes and conditions. The initial population contains randomly
generated individuals, where each gene or condition is equally probable to
become the centre for a gene or a condition cluster, respectively. MOGAB
is also based on the NSGA-II strategy, and performs crowded binary tourna-
ment selection, single-point crossover and standard mutation, although these
two last operators are carried out on gene and condition centres strings in-
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dependently, and invalid individuals are marked when appear in order not to
let them reproduce in the next generation. Elitism has also been incorporat-
ed in MOGAB to track the non-dominated Pareto-optimal solutions. Within
the evaluation, MSR and row variances are computed for all the δ−biclusters
denoted by each individual. A fitness vector is afterwards created with the
mean of their fitness. From the non-dominated individuals in the final pop-
ulation, all the δ−biclusters are extracted and output as the final biclusters.

4.4.4 SVD and Clustering-based Approaches

Possibilistic Spectral Biclustering (PSB)

A biclustering approach based on the use of Singular Value Decomposition
(SVD) together with one-dimensional clustering named PSB was proposed
by Cano et al (2007). The use of SVD techniques enhances the clustering
process by performing dimensionality reduction.

This algorithm consists of firstly apply SVD method on an eigenprob-
lem formulated on the input matrix and get min(n,m) solution eigenvectors,
where n and m refers to the number of genes and conditions in the input
matrix. Using these eigenvectors several partition matrices are created, to
which two independent clustering algorithms are executed: for those rows
representing genes and for those representing conditions in the original ma-
trix, respectively. Each combination of a cluster of genes and a cluster of
conditions is a possibilistic bicluster, which will be post-processed in order
to improve its quality when possible or be rejected if it is not considered a
quality solution. Finally, the whole process is repeated with a linear inver-
sion of the input expression matrix, in order to also obtain under-expressed
genes.

The clustering algorithm used in PSB is a variation of the Improved Possi-
bilistic Clustering (IPC) by Zhang & Leung (2004), which mixes possibilistic
and probabilistic approaches. MSR is used at both the clustering and the
crisping of the possibilistic biclusters, though in this last step the volume is
also taken into account. Possibilistic clustering allows a considerable amount
of overlapping, so the authors have also added to the process an overlapping
control, in which a bicluster is checked for its overlapping amount before
being added to the result set.

Biclustering with SVD and Hierarchical Clustering

Yang et al (2011) have recently proposed a strategy similar to the one of Cano
et al (2007), by using Singular Value Decomposition (SVD) together with
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clustering and a final stage to merge and filter the clusters. In this approach,
the authors make use of the sub-matrix correlation score (see 4.3.5 ) also
presented in their work. A upper bound δ is used to defined a δ−corbicluster
as a bicluster with a sub-matrix correlation score lower than δ.

In a first step, two different matrices named R(l) (a group of basis genes)
and C(l) (a group of basis conditions) are obtained by using SVD. Secondly,
after centralizing the rows of these two matrices, clustering is applied to the
both of them by the Mixed Clustering algorithm, based on agglomerative
hierarchical clustering and on the use of the sub-matrix correlation score as
dissimilarity measure. The number of clusters produced by this technique
is not known beforehand. This way, a set of m and n groups of clusters
are obtained from both matrices. Every pair of these groups constructs a
bicluster, obtaining m×n biclusters in this way. Nevertheless, not every pair
of groups may be a δ−corbicluster, and a final step is executed in order to
obtain inclusion-maximal biclusters. This last step is carried out by the Lift
algorithm, inspired in the node-deletion and node-addition phases proposed
by Cheng and Church, but according to the sub-matrix correlation score.
Since the clustering algorithm generates not mutually exclusive clusters, the
biclusters obtained by this method are possible overlapped.

4.5 Non Metric-based Biclustering Algorithms

In this section we review the most important biclustering approaches that
exclude the use of any evaluation measure for guiding the search. We have
classified them according to their most relevant characteristic: specific al-
gorithm, data structure representation or the main important basis. Note
that different categories are not exclusive. Although we have grouped the
algorithms attending to what we have considered to be their most distinctive
property, some of them may as well be assigned to more than one group.

4.5.1 Graph-based Approaches

SAMBA

Tanay et al (2002) based their approach on graph theoretic coupled with sta-
tistical modelling of the data, where SAMBA stands for Statistical-Algorithmic
Method for Bicluster Analysis. In their work, they model the input expres-
sion data as a bipartite graph whose two parts correspond to conditions and
genes, respectively, and edges refer to significant expression changes. The
vertex pairs in the graph are assigned weights according to a probabilistic
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model, so that heavy sub-graphs correspond to biclusters with high like-
lihood. Furthermore, they present two statistical models of the resulting
graph, the second one being a refined version of the first in order to include
the direction of expression change, allowing thus to detect either up or down
regulation. Weights are assigned to the vertex pairs according to each model
so that heavy sub-graphs correspond to significant biclusters. This way, dis-
covering the most significant biclusters means finding the heaviest sub-graphs
in the model bipartite graph, where the weight of a sub-graph is the sum of
the weights of the gene-condition pairs in it. In order to cope with noisy
data, Tanay et al (2002) searched for sub-graphs that are not necessarily
complete, assigning negative weights to non-edges.

In order to reduce the complexity of the problem, high-degree genes are
filtered out, depending on a pre-defined threshold. According to the authors,
the number of genes is reduced by around 20 per cent, considering it to
be a modest reduction. The proposed algorithm is an iterative polynomial
approach based on the procedure for solving the maximum bounded bi-clique
problem, where a hash-table is used for the identification the heaviest bi-
clique. A generalization of this method is applied in order to give the k
heaviest non-redundant sub-graphs, where k is an input parameter. Before
applying the algorithm, the graph structure may be created, using the signed
or unsigned model depending on the input data.

Bimax

Bimax was presented by Prelić et al (2006) as a fast divide-and-conquer
algorithm capable of finding all maximal bi-cliques in a corresponding graph-
based matrix representation, where the graph representation of the data is
similar to the one used by Tanay et al (2002). In this case, Bimax uses an
underlying binary data model which assumes two possible expression levels
per gene. Therefore, as a preprocessing phase, it is compulsory to discretize
the expression values to binary values at a specific threshold and with a
specific scheme. All values above the threshold will be set to one, all those
below to zero. The discretization scheme defines if only down or up-regulated
genes (or both) will be considered.

The binarized matrix is regarded as an adjacency matrix of a graph. By
exploiting the fact that the graph induced by the matrix is bipartite, an
incremental algorithm can be tailored to this application. Prelić et al (2006)
proposed a fast divide and conquer approach, the Binary Inclusion-MAXimal
biclustering algorithm (Bimax), which first partitions the data matrix into
three sub-matrices, one of which contains only 0-cells and will be disregarded.
After that, the algorithm is recursively applied to the remaining tow sub-
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matrices, ending when the current matrix only contains 1s, representing thus
a bicluster. At each step, the two partitioned matrices may have elements in
common or not, allowing thus the possibility of finding overlapped biclusters.

MicroCluster

MicroCluster was developed by Zhao & Zaki (2005) as a biclustering method
for mining maximal biclusters satisfying certain homogeneity criteria, with
possible overlapped regions. Biclusters with shifting patterns are detected
by using exponential transformations. Furthermore, by means of these kind
of transformations, scaling patterns may also be detected.

MicroCluster uses an enumeration method consisting of three steps. First-
ly, a weighted, directed range multi-graph is created for representing the pos-
sible valid ratio ranges among experimental conditions and the genes that
meet those ranges. A valid ratio range is an interval of ratio values satisfying
several constraints on expression values. In this graph, vertices correspond to
samples and each edge has an associated gene set corresponding to the range
on that edge. The construction of this range multi-graph filters out most
unrelated data. Once the multi-graph is created, a second step is applied for
mining the maximal clusters from it, based on a recursive depth-frist search.
Although the output of this step is the final set of biclusters, a final step is
optionally executed in order to delete or merge those biclusters according to
several overlap conditions. This last step is also applied to deal with noise
in the data, controlling the noise tolerance.

QUBIC

QUBIC has been more recently presented as a QUalitative BIClustering algo-
rithm (Li et al (2009)), in which the input data matrix is first represented as a
matrix of integer values, either in a qualitative or semi-qualitative manner. In
this representation, two genes are considered to be correlated under a subset
of conditions if the corresponding integer values along the two correspond-
ing rows of the matrix are identical. The qualitative (or semi-qualitative)
representation is such that allows the algorithm to detect different kind of
biclusters, also including scaling patterns. It also suitable for finding both
positively and negatively correlated expression patterns, where negative cor-
relations will be represented by opposite signs across the entire row. The
biclustering problem consist now in finding all the optimal correlated sub-
matrices.

The first step of the algorithm correspond to the construction of a weight-
ed graph from the (semi-)qualitative matrix, with genes represented as ver-
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tices, and edges connecting every pair of genes. Edge weights are computed
in the base of the similarity level between the two corresponding rows. After
the graph has been created, biclusters are identified one by one, starting for
each bicluster with the heaviest unused edge as a seed. This seed is used to
build an initial bicluster and the algorithm iteratively adds additional genes
into the current solution. The consistency level marks the end of the search
for a bicluster, since it determines the minimum ratio between the number
of identical non-zero integers in a column and the total number of rows in
the sub-matrix.

4.5.2 One-way Clustering-based Approaches

Coupled Two-way Clustering

Coupled Two-Way clustering (CTWC), introduced by Getz et al (2000) de-
fines a generic scheme for transforming a one-dimensional clustering algo-
rithm into a biclustering algorithm. They define a bicluster as a pair of
subsets of genes and conditions, or a pair of gene and conditions clusters.
They also define a stable cluster as a cluster that is statistically significant
according to some criterion (such as stability, critical size, or the criterion
used by Hartigan (1975)). Getz et al (2000) also applied a normalization
step based on euclidean distance as a previous step to the application of the
algorithm.

The heuristic provided by CTWC consist in an iterative process restrict-
ing the possible candidates for the subsets of genes and samples, only con-
sidering and testing those gene and sample clusters previously identified as
stable clusters. The iterative process is initialized with the full matrix. Both
sets of genes and samples are used to perform two-way clustering, storing the
resulting stable clusters in one of two registers of stable clusters (for genes
or samples). Pointers that identify parent clusters are also stored, consisting
thus in a hierarchical approach. These steps are iterated further, using pairs
of all previously found clusters, and making sure that every pair is treated
only once. The process is terminated when no new clusters that satisfy some
criteria are found.

The success of this strategy depends on the performance of the one-
dimensional clustering algorithm. According to the authors, CTWC can
be performed with any clustering algorithm. Nevertheless, many popular
clustering algorithms (e.g. K-means, Hierarchical, SOM) cannot be used
in this approach, since they do not readily distinguish significant clusters
from non-significant clusters or make a-priori assumption on the number of
clusters (Tanay et al (2002)). Getz et al (2000) recommend the use of the
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SPC (superparamagnetic clustering algorithm), which is especially suitable
for gene microarray data analysis due to its robustness against noise and its
ability to identify stable clusters.

Interrelated Two-way Clustering

Interrelated Two-Way Clustering (ITWC) developed by Tang & Zhang (2005)
is an algorithm similar to CTWC, combining the results of one-way clustering
on both dimensions separately. A pre-processing step based on row normal-
ization is also applied, where rows with little variation are removed from the
input matrix. Although correlation coefficient are used as similarity measure
to measure the strength of the linear relationship between two rows or two
columns in the process, Tang & Zhang (2005) do not propose any quality
metric for the evaluation of a sub-matrix as a whole. For this reason we have
categorized this approach as a non-metric based.

The idea in ITWC is to discover the relationships between gene and sam-
ple clusters while iteratively clustering through both dimensions to extract
important genes and classify samples simultaneously. Within each iteration
there are five main steps. First step performs clustering on rows, while in the
second step clustering is performed in the column dimension, for each group
of genes from step one. In this second step, only two clusters are obtained
for each gene group. Third step combines the former steps results by com-
puting diverse sets intersections for the sample groups, resulting in 2k sample
groups, where k is the number of gene clusters obtained in step one. Fourth
step aims at finding heterogeneous groups of conditions (do not share rows
used for clustering), being the result of this step is a set of highly disjoint bi-
clusters. Last step of ITWC sorts the rows in descending order of the cosine
distance between each row and a row representative of each bicluster. After
that, only the first one third of rows is kept, reducing thus the row set for
each heterogeneous group. A likelihood based on the correlation coefficient
is calculated for each heterogeneous group, being the reduced genes of the
group with the higher likelihood value the selected for the next iteration.
These genes and the entire samples then form a new gene expression ma-
trix from which a new iteration starts. Iterations will be terminated when
a stable and significant pattern of samples has emerged. For this purpose,
the authors use a criterion based on a coefficient of variation to measure how
internally-similar and well-separated the partition is.

Biclusters identified by ITWC have no elements in common, due to the
search strategy. This way, overlapping among biclusters is not allowed in this
approach.
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4.5.3 Probabilistic Models

Plaid Models

Lazzeroni & Owen (2002) proposed plaid models, a tool for exploratory anal-
ysis of multivariate data. In this approach, the genes-condition matrix is
represented as a superposition of layers, corresponding to biclusters. Several
versions of the model are described in their work, being the most general the
one in equation 4.20, which allows a gene to be in more than one bicluster
or in none at all.

Yij
.
=

K∑
k=0

θijkρikκjk (4.20)

where Yij refers to the expression level of gene i under sample j in the input
matrix, K is the number of biclusters, θij0 describes the background layer
and θijk represents four different types of models, depending on the types
of biclusters (overlapped, exclusive ...). Each ρikε{0, 1} is 1 if gene i is in
the k’th bicluster, zero otherwise. Similarly, each κjkε{0, 1} is 1 if sample
j is in the k’th bicluster, zero otherwise. Using this equation, a bicluster is
assumed to be the sum of a bicluster background level plus row-specific and
column-specific constants.

In order to find k biclusters in the data, Lazzeroni & Owen (2002) pro-
posed a greedy algorithm that adds one layer at a time. The process seeks for
a plaid model minimizing the sum of squared errors when approximating the
data matrix to the model. For this purpose, an iterative approach is adopted
with each cycle updating θ values, ρ values and κ values in turns. Assuming
that residual data becomes more and more unstructured noise as each layer
is removed from the data, authors propose a simple rule for stopping the
process, in which only a small number of extra layers can be extracted once
the data have been reduced to noise.

Rich Probabilistic Models

Rich probabilistic models was proposed by Segal et al (2001) for studying
relations between expression, regulatory motifs and gene annotations. The
main advantage of this approach is the use of additional types of information
in the analysis, such us functional roles or cellular location for genes. In the
case of samples, the information would depend on the type of arrays used. It
might be the treatment applied to the sample or growth conditions among
others.
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Starting with the input array and the available additional information,
a predictive model is learnt from the data. The approach is based on the
language of Probabilistic Relational Models (PRMs) that extend Bayesian
networks to a relational setting, also allowing the inclusion of multiple types
of information. Furthermore, the Expectation Maximization (EM) algorithm
is used for parameter estimation with incomplete data.

The outcome of the algorithm can be interpreted as a collection of disjoint
biclusters generated in a supervised manner, where overlapped is not allowed.

Gibbs Sampling

A biclustering algorithm based on the use of Gibbs sampling was proposed
by Sheng et al (2003), where a simple frequency model is adopted for repre-
senting the expression pattern of a bicluster. According to the authors, using
Gibbs sampling as the method for parameter estimation avoids the problem
of local minima that often characterizes expectation maximization. In order
to achieve a better performance of Gibbs sampling, microrray data is first
discretized, resembling thus the problem of finding sub-sequences sharing
similar alphabetic expressions.

Background model has been introduced as a single multinomial distribu-
tion. This is suitable for data sets where the genes share the same distri-
bution under every condition. If this is not the case, several multinomial
distributions might be used, each of which describing the background under
an individual condition.

The probabilistic model adopted considers only the presence of a single
bicluster in the data set. In order to discover more than one bicluster an iter-
ative process is carried out, masking the genes selected for the recently found
bicluster and running the algorithm on the rest of the data. This masking
strategy prevent genes from appearing in several biclustering, avoiding thus
the possibility of overlap.

Bayesian Biclustering Model (BBC)

Gu & Liu (2008) developed a Bayesian Biclustering Model (BBC), also based
on the use of a Gibbs sampling procedure to make the Bayesian inference of
biclusters. For a single bicluster, the same model as in the plaid model
(Lazzeroni & Owen (2002)) is assumed. Nevertheless, for multiple biclusters,
the amount of overlap among the biclusters in the original plaid model was
too high. In order to overcome this situation, in the BBC model overlap is
only allowed in one direction, either gene or condition. This means that if
overlapped among genes is permitted, then any experimental condition would
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only appear in at most one bicluster, and vice-versa. Also, biclustering is not
exhaustive in this approach, since any element (gene or condition) can belong
to either one or none of the found biclusters.

BBC works on normalized microarray data, although this step is not
included in the algorithm. The authors conducted a study on how differ-
ent normalization methods affect the performance of their algorithm, show-
ing that the model is stable for two normalization methods developed by
themselves, the Interquartile Range Normalization (IQRN) and the Small-
est Quartile Range Normalization (SQRN), being both of them inspired in
column standardization.

According to the authors, missing data can be easily handled by just
treating them as additional unknown variables. Furthermore, other types of
information might be incorporated into the model in order to improve the
search.

Conserved Gene Expression Motifs (xMOTIFs)

Murali & Kasif (2003) proposed the use of xMOTIFs (conserved gene expres-
sion Motifs) for the representation of gene expression data, where a xMOTIF
is a subset of genes that is simultaneously conserved across a subset of sam-
ples, and a gene expression level is conserved across a set of samples if it is
in the same state in each of the samples in the subset. Therefore, for each
gene, a list of intervals representing the states in which the gene is expressed
in the samples is required. In order to prevent the algorithm from finding
too small or too large xMOTIFs, some constraints on their size, conservation
and maximality have been added to its formal definition.

A probabilistic algorithm that exploits the mathematical structure of
xMOTIFs to compute the largest xMOTIF was also developed by Murali
& Kasif (2003). In order to identify several xMOTIFs in the data, an itera-
tive strategy has been adopted, where samples satisfying each xMOTIF are
removed from the data, and the new largest xMOTIF is searched. This pro-
cess continues until all samples satisfy some xMOTIF. This search strategy
allows gene overlap and also sample overlap, whenever any sample does not
take part in more than one xMOFIT with the same gene.

cMonkey

cMonkey (David J. Reiss & Bonneau (2006)) is a biclustering algorithm
specifically designed for genetic data, which integrates sequence data, gene
expression data and gene network association data. cMonkey is model-based,
where distribution variables are parametrized using simple statistical distri-
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butions, being more robust to varying data size and quality. Each of the in-
dividual data types are modelled, using logistic regression to integrate them
into a joint model.

Biclusters are modelled using a Markov chain process, in which an initial
bicluster seed is iteratively optimized by updating its state based upon con-
ditional probability distributions, also applying a simulated annealing pro-
cedure. Biclusters are optimized sequentially, starting with a new bicluster
seed a predefined number of times. Seeds are initialized only with genes that
have not been previously placed into any former bicluster, although in the
subsequent iterations those genes can still be added to new biclusters. This
way overlapping among biclusters is allowed but controlled, since a filtered
set of biclusters is finally computed in order to reduce redundancy.

4.5.4 Linear Algebra

Spectral Biclustering

Spectral biclustering was especially designed by Kluger et al (2003) for an-
alysing microarray cancer datasets. In this context, it is assumed that the
expression matrix has a hidden checkerboard-like structure with blocks of
high-expression levels and low-expression levels. Kluger et al (2003) ap-
proach consist in finding these distinctive checkerboard patterns, by using
eigenvectors and commonly used linear algebra approaches, such as the Sin-
gular Value Decomposition (SVD). Furthermore, normalization steps have
also been integrated into the search, in order to put the genes on the same
scale so that they have the same average level of expression across conditions,
and likewise for the conditions.

Biclusters found by spectral biclustering have no elements in common,
forbidding thus any kind of overlap among them. Moreover, this is an ex-
haustive approach, meaning that every gene and every condition will be
included in one bicluster.

Iterative Signature Algorithm

Iterative Signature Algorithm (ISA) was proposed by Bergmann et al (2003)
and provides a definition of biclusters as transcription modules to be retrieved
from the expression data. A transcription module consist of a set of co-
regulated genes and the set of experimental conditions under which this co-
regulation is the most stringent. Its size depends on the associated set of two
thresholds that determine the similarity between the genes and conditions of
the module, respectively.
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In order to find transcription modules in the data, the signature algo-
rithm consisting in a generalization of Singular Value Decomposition (SVD)
is applied. The algorithm starts with a set of randomly selected genes or
conditions, iteratively refining the genes and conditions until they match the
definition of a transcription module. The method includes data normalization
and the use of thresholds that determine the resolutions of the different tran-
scription modules. In this search one bicluster is produced at each iteration.
Initial seeds are randomly chosen without any overlap restriction, therefore,
different biclusters may contain overlapped genes and/or conditions.

Non-smooth Non-negative Matrix Factorization

A method based on the application of the non-smooth non-Negative Ma-
trix Factorization (nsNMF) technique for discovering local structures from
gene expression datasets was developed by Carmona-Saez et al (2006). This
approach consists in a variant of the classical NMF model, which adds non-
smoothness constraints in order to produce more compact and localized fea-
ture representation of the data.

As well as NMF, nsNMF approximates the original matrix as a product
of two sub-matrices, where the columns of the first one are basis experiments
(also called factors) and the rows of the second constitute basis genes (or
encoding vectors). Each factor determines a local gene expression feature or
gene module, while each encoding vectors determine the set of experimental
conditions highly associated to these modules. This way, biclusters are de-
termined by the corresponding pairs of columns and rows of both matrices.
Therefore, overlap among biclusters is not allowed in this approach.

4.5.5 Optimal Reordering of Rows and Columns

OPSM

Ben-Dor et al (2003) define biclusters to be order-preserving sub-matrices
(OPSMs), in which the expression levels of all genes induce the same linear
ordering of the experiments. This way, a sub-matrix is said to be order-
preserving if there is a permutation of its columns under which the sequence
of values in every row is strictly increasing. This strict condition might be
relaxed for real expression data, where rows having a significant tendency to
be similarly ordered are searched for instead. This relaxation introduces a
new probability which will influence the generation of the probabilistic model
used.

Guided by the probabilistic model, an efficient algorithm is also proposed



108 Chapter 4. Biclustering Algorithms

for finding the hidden OPSM in the data. It consists of an iterative greedy
heuristic algorithm based on the concepts of partial and complete models.
Since finding the best model would be infeasible, their approach consists of
growing partial models iteratively, and trying to converge to the best complete
model. At the beginning, all partial models of first order are generated,
picking afterwards the best ones and computing for each of them the possible
extensions to partial models of the next order. This process is successively
repeated until the models of the top order are reached, returning the best
of them as the complete model. The algorithm can also be used to discover
more than one OPSM in the same dataset, even when they are overlapped.

OREO

OREO was proposed by DiMaggio et al (2008) as an approach based on the
Optimal RE-Ordering of the rows and columns of a data matrix so as to glob-
ally minimize a dissimilarity metric. Contrary to OPSM, this approach allow
for monotonicity violations in the reordering, but penalize their contributions
according to a selected objective function.

Two rows or columns are defined to be adjacent if the second one is di-
rectly below the first in the final arrangement. Using this definition, the final
ordering may be represented by a matrix of binary 0-1 variables for each di-
mension. The optimal rearrangement is obtained using a metric of similarity
together with one of the two proposed problem formulations. Although the
objective function might be defined by the user, the authors propose three
different choices: the relative difference, the squared difference or a metric
similar to the root-mean squared deviation. All of them only applied for the
values of adjacent elements.

The selected objective function would guide either a network flow model
or a Travelling Salesman Problem (TSP) approach in order to obtain the
optimal rearrangement of rows and columns. In both models, two different
elements (rows or columns) are connected if they are adjacent, although in
the case of TSP they are weighted edges, where the weight is computed
using the objective function. Furthermore, both approaches require the use
of additional constraints to avoid cyclic arrangements.

The algorithm begins by optimally re-ordering a single dimension of the
data matrix. After that, the median is computed for each pair of adjacent
elements (either rows or columns), where the top 10 percent of largest median
values define the cluster boundaries between the re-ordered elements. These
cluster boundaries are then used to partition the original matrix into several
sub-matrices. Finally, the other dimension of each sub-matrix is re-ordered
and clusters in this dimension are again defined using the median value of
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the objective function between neighbouring elements in the final ordering.

4.6 Biological Validation for Biclusters

Section 3.2.4 introduced the most common information sources for microarray
data analysis validation and interpretation, such as KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) or GO (Gene Ontology). Although KEGG
database has been used when external relationships such as biological path-
ways are involved in the study, the biological knowledge used in bicluster
validations are mostly gene annotations from GO.

The GO project (Ashburner et al (2000)) is a initiative to unify the rep-
resentation of gene and gene product attributes across all species. It is a
directed acyclic graph whose nodes represent terms dealing with molecu-
lar functions, cell components or biological processes, and edges connecting
nodes depict dependency relationships. Gene Ontology has been widely used
in genome research applications, and also for the validation of results ob-
tained after a microarray analysis process, such as clustering or biclustering.

Typical validation of a bicluster B consists in getting all GO terms anno-
tated to any of the genes in B and then apply a statistical significance test to
determine if each term appearance is relevant. Term-for-Term (TFT) anal-
ysis represents the standard method of performing statistical analysis for
over-representation in GO, although other approaches for term enrichment
include the parent-child method of Grossmann et al (2007), topology based
methods as described in Alexa et al (2006) and Falcon & Gentleman (2007).
Also, a new model-based approach is described in Bauer et al (2010).

In TFT analysis, starting from a subset of genes (study group) from a
larger population (whole set of genes in the microarray), the interest resides
in knowing if the frequency of an annotation to a Gene Ontology term is rel-
evant for the study group compared to the overall population. Fisher’s exact
test is the most commonly used test for this purpose, together with the Bon-
ferroni multiple test correction. This correction is advisable to be performed
since Fisher’s test is applied to many terms per study group, although it
can also be performed using other methodologies, such as Westfall-Young
or Benjamini-Hochberg, among others. After that, a Bonferroni adjusted
p-value is obtained for each GO term for which genes in the study group
are involved, where study groups correspond to the sets of genes in each
bicluster. Depending on the desired confidence level, which determines the
adjusted p-value, a bicluster is said to be significantly enriched if there ex-
ists at least one GO term for which genes in the bicluster are significantly
annotated.
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Results of bicluster biological validation using GO vary depending on
the biclusters sizes. In fact, GO terms are organized in levels of the graph
according, among other issues, to their specificity (Alterovitz et al (2007)).
Terms in higher levels (nearer to the root of the graph) are considered to be
more generic and have a greater number of genes annotated, while terms in
lower levels of the graph are more specific and might have only a few genes
annotated. For this reasons, when working with big sets of genes, it would be
more probable that they will be enriched for more generic GO terms (higher
in the graph structure).

One common issue in hierarchical ontologies is deciding the level of speci-
ficity to use in the analysis (Soldatova & King (2005)). On the one hand, GO
terms that are too general may overlook significantly represented biological
markers because many genes in the background genome are also annotated
by the general GO terms. On the other hand, GO terms that are too specific
can result in the same problem, since too few genes in the microarray are
annotated by these GO terms.

Although this kind of validation is very useful for the objective of knowl-
edge discovery, the mayor disadvantage of biological significance as a valida-
tion method is that biological knowledge is not complete. This way, when a
bicluster does not group known GO annotations, it may be because it is a
bad bicluster, or because GO annotations are not complete.

4.7 Summary

This chapter has been dedicated to the study of the different existing ap-
proaches for biclustering gene expression data. Biclustering consist of a vari-
ant of the popular clustering technique, which allows the user to obtain more
and better information from a two-dimensional data structure, such as the
obtained from a microarray experiment. The goal is to discover functionally
related gene sets under different subsets of experimental conditions. Biclus-
tering has been proven to be a much more complex problem than clustering,
the reason for which the majority of existing solutions are based on the use
of stochastic techniques. Furthermore, some approaches are also based on
the use of evaluation measures for quantifying the quality of the obtained
solutions.

First two sections of this chapter present an unified notation for bicluster
representation, and a description of the different kind of expression patterns
which biclustering algorithms aim at finding in their solutions. Among all
of them, the combined shifting and scaling pattern has been proven to cor-
respond to the more general situation, where any of the other pattern may
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be represented by the combined one. Third section reviews the different
existing evaluation measures for biclusters in the literature, together with
their capabilities of detecting the distinct types of expression patterns. The
availability of a suitable quality metric for bicluster is essential not only for
guiding the search, but also for establishing comparison criteria among the
results obtained by different biclustering techniques. Section four and five
survey most important existing biclustering algorithms, based or not on the
use of evaluation measures within the search, respectively. In both sections
they have been classified according to the type of meta-heuristic in which
they have been based on. Finally, last section describes the most common
biological validation process used in the community, consisting in an statis-
tical analysis based on the biological information within the Gene Ontology
(GO) database.





Chapter 5

Evolutionary Computation

Evolutionary Computation (EC) is a programming technique that mimics
biological evolution as a problem-solving strategy. It is mostly applied for
optimization problems in which the search space is very large. Within the
biclustering context, EC strategies have been widely applied, as it can be seen
in section 4.4.3, where various bicluster metrics have been taking into account
for the potential solutions evaluation in different approaches. EC has been
applied in the context of this PhD Thesis in order to test the efficiency of our
bicluster metrics and also to develop a customizable biclustering algorithm.

In this chapter we first present the common characteristics of the different
EC strategies, emphasising individuals encoding and initialisation, evalua-
tion, selection and reproduction. Afterwards, we study the most important
EC paradigms, which share a set of common features but differ in the evalu-
ation and representation strategies. Three different evolution models which
can be adopted in any EC paradigm are also presented in section 5.3. Finally,
last section of this chapter is dedicated to multi-objective and memetic evo-
lutionary techniques, being both of them the most important modern trend
arisen from the canonical EC.

5.1 Common Features of EC

EC is a search technique which uses computational models of processes of
evolution and selection. Concepts and mechanisms of Darwinian evolution
and natural selection (Darwin (1888)) are encoded in Evolutionary Algo-
rithms (EAs) and used to solve problems in many fields of engineering and
science. They are mostly applied for optimization problems, where a fitness
measure defined by the environment is used in order to evaluate the different
individual solutions. EAs are specially useful for problems where the search
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space is very large or for multi-modal problems in which traditional heuristics
get trapped in local optima.

Terminology used in EC borrows a lot from genetics, evolutionary theory
and cellular biology. Thus, a candidate solution to a problem is called an
individual, and a set of solutions is called a population. Genome, genotype or
chromosome terms are used to refer to the encoding of an individual, while
the phenotype describes the observable characteristics of the individual, ac-
cording to the problem under study. Each genotype consist of a sequence of
genes, corresponding to the attributes that describe an individual, and the
specific value of a gene is called an allele. Individuals produce new candidate
solutions by breeding offspring or children. The evaluation of candidate so-
lutions consists of the assignation of a grade named fitness, which indicates
the quality of the solution in the context of a given problem. New genera-
tions replace one population after another, until some stopping criterion is
met. At the end of the process, the best individual of the last population
is considered to be the optimal found solution to the problem. This entire
process of search is called evolution.

Algorithm 1: A general scheme of an EA

1 Initialize the population;
2 Evaluate all members of the population;
3 while stopping criterion is not satisfied do
4 Select individual(s) in the population to be parent(s);
5 Create new individual(s) by applying the genetic operators to the

copies of the parent(s);
6 Evaluate new individuals;
7 Replace some/all individuals in the current population with the new

ones;

8 Extract solution form population;

A general scheme of an EA is presented in Algorithm 1. It starts by
generating an initial set of candidate solutions for a given problem. These
individuals are evaluated using problem-dependent metrics which provide a
fitness for each candidate solution. Subsequently, offspring is produced by
altering the existing solutions, where fittest solutions often have a higher
probability of being selected for reproduction. Depending on the evolution
strategy, offspring might be added to the existing population or replace it
entirely. In both tactics, some of the worst solutions are deleted before
iterating this whole process (Steps 4-7 in Algorithm 1), starting from selection
for reproduction. When a given stop criteria is met, the iterations end and
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the best individual(s) are returned. Stopping criteria is usually related to a
significant improvement on the solutions through generations combined with
a maximum number of iterations.

In order to simulate this Darwinian evolution process based on natu-
ral selection, four fundamental factors are needed to be taken into account:
1) individual encoding and initialization, 2) evaluation, 3) selection and 4)
reproduction processes. All these processes work together in a framework
like the one in Algorithm 1. Following subsections detail different strategies
for the encoding and initialization, evaluation, selection and reproduction of
individuals.

5.1.1 Individual Encoding and Initialization

Encoding refers to the individuals inner representation in the algorithm. It
is usually referred to as genome, genotype or chromosome. Holland (1975)
emphasized the importance of a universal genetic representation in order to
focus on a single problem independent set of reproduction operators. Holland
also suggested a binary string representation, or binary encoding, where al-
leles are either zero or one and the mapping to the corresponding phenotype
is left unspecified and problem specific.

Although initially binary encoding was the most extended codification
strategy, it is often inappropriate for many problems and has been therefore
extended to non-binary representations for the application of EAs to a wider
range of problems. This way, other kind of codifications allow genotypes to
be more problem dependent. Successful EAs have used integer or real string
individuals (Goldberg (1989)), or even more general representations such as
tree and matrix structures (Michalewicz (1998)). Although the encoding does
not alter evolution strategy, specialized genetic operators have been devised
to handle the different kind of encodings.

Initial population strategy is essential in every EA, since depending on the
adopted strategy, the algorithm may converge to different solutions. Also, a
suitable initial population strategy can even speed up the convergence (Toğan
& Daloğlu (2008)). Traditionally, the initial population is created following a
totally random strategy, but several other initialization techniques have also
been used. For example, random initialization has also been combined with
the use of specific information on the problem in order to create a better
distributed initial population in the search space. Other approaches start
from a set of previously known or arbitrarily assumed solutions.



116 Chapter 5. Evolutionary Computation

5.1.2 Evaluation

The evaluation of the individuals in each population is carried out in order to
provide a fitness value for each candidate solution. This fitness quantifies how
close an individual is to achieve the set of aims defined by a specific problem.
This way, potential solutions are evaluated using problem dependent metrics.
Individuals fitness is also taken into account in the selection of the parents
for the next population, as it can be seen in next section. This way, the
fitness function is in charge of guiding the algorithm towards optimal or
near-optimal solutions.

Designing an adequate fitness function is also an essential and not trivial
task since it must not only make the algorithm converge to an appropriate
solution, but also must be computed quickly. Nevertheless, the fact that
individuals in the population represent entire problem solutions frequently
simplifies the design of the fitness evaluation process (De Jong & Sarma
(1993)). A typical EA must be iterated many times until reach a reasonable
result for any complex problem. Therefore, the speed of execution of all the
processes within each iteration is crucial, including individual evaluations.

5.1.3 Selection

Using the fitness score, the selection mechanism chooses a subset of the cur-
rent population as parents to create new individuals. As it can be seen in
Algorithm 1, there exist two different stages in which selection is applied:

• In line 4 of the algorithm, in order to choose the set of parents to
produce offspring.

• In line 7 of the algorithm, in order to determine which of the new
individuals are going to be incorporated in the new population, as well
as to decide the individuals that remains in it.

Both steps involve selecting a subset of individuals from a given set. There
are several commonly used selection strategies in EC applications, being the
majority of them based on the use of the fitness. Stochastic selection mecha-
nisms are also preferred, as a way to add noise to the search, decreasing the
likelihood of converging to sub-optimal solutions and improving the robust-
ness of the algorithm.

Most popular selection mechanisms include fitness-proportional prefer-
ences. In this sense, roulette selection (S lowik & Bia lko (2004)) normalizes
the fitness values of all individuals in the population and assigns these nor-
malized values as probabilities that their respective individuals will be se-
lected. Rank selection (Kuosmanen et al (1994)) works by first ranking all
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individuals in the population by their fitness, and use these ranks, rather
than actual fitness values, to determine selection probabilities of the individ-
uals. Another popular selection strategy is tournament selection (Miller &
Goldberg (1995)). In this strategy, a pool of individuals is picked at random
from the population, where each of the individuals in the pool is selected
independently. Tournament selection returns the fittest individual from the
pool, where the pool size is a parameter that controls the magnitude of the
selection pressure. Finally, truncation selection (Crow & Kimura (1979)) is a
deterministic mechanism which chooses only a certain proportion of the best
individuals in the population. For more information on these alternatives,
Blickle & Thiele (1996) perform in their work a comparative analysis of the
different selection mechanisms used in evolutionary algorithms.

Selection is just one the components that interact in the EA, therefore,
there exists no best combination of selection mechanisms to achieve optimal
EA performance. For problems that exhibit highly multi-modal fitness land-
scapes or landscapes that change over time, too much exploitation generally
results in premature convergence to suboptimal peaks in the space. Con-
versely, performance on relatively smooth, time-invariant landscapes with a
small number of peaks can be enhanced by increasing exploitation. Since
selection mechanisms mostly affect exploitation, it is possible to adjust it by
switching from one kind of selector to others.

5.1.4 Reproduction: Genetic Operators

Once the set of parents has been selected, the new individuals are created by
copying them and applying genetic operators. The newly created individuals
are evaluated and assigned fitness values.

The two most popular genetic operators are mutation and recombination
or crossover. Mutation acts on a single individual and works by applying
some variation to one or more genes in the individual chromosome. The
amount of variation is controlled by specifying how many genes are to be mod-
ified and the manner in which genes are to be modified, although these two
aspects depend on the individuals representation. For example, bit strings
representations use the bit-flip mutation, while real-valued vectors use the
Gaussian mutation.

Crossover, on the other hand, operates on multiple individuals (usually
two) and combines parts of these individuals to create new ones. Again,
recombination operator is representation dependent. Fixed-length linear
genome representations traditionally take the form of crossover operators,
in which the crossover points (usually one or two) mark the linear sub-
segments on the parents genomes. For these kinds of reproductive operators,
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the amount of variation introduced when producing children is dependent
on two factors: how many crossover points there are and how similar the
parents are to each other. With real-valued vector it is also possible to use a
recombination operator that averages parents alleles.

Reproductive operators introduce most of the exploration in a EA. There-
fore, significant changes in performance can be obtained as well by switching
to different reproductive operators. Also, EAs using strong selection pressure
generally counterbalance that with more explorative reproductive operators,
while EAs that use weaker forms of selection pressure use much less explo-
rative reproductive operators.

5.2 EC Paradigms

There is a great variety of EAs that have been proposed and studied. They
all share a common set of underlying assumptions but differ in the evolution
strategy to be used and representation on which EAs operate. Thus, differ-
ent choices on selection, reproduction, evaluation and representation issues
can significantly alter EAs behaviour and its performance. Much of the EA
research in the 1970s allowed to gain insight into these issues, giving rise
to three distinct EAs paradigms: Evolution Strategies (ES), Evolutionary
Programming (EP) and Genetic Algorithms (GAs). These algorithms have
been mostly used to evolve solutions to parametrized problem domains. On
the other hand, Genetic Programming (GP) has been used to evolve actual
computer programs to solve a number of computational tasks. There are also
many hybrid models incorporating various features of the above paradigms,
including the CHC algorithm of Eshelman (1991), the structured GA of Das-
gupta & McGregor (1992), the breeder GA of Mühlenbein & Schlierkamp-
Voosen (1993) or the messy GA of Goldberg et al (1989).

Although there exist several documented differences among these para-
digms, the distinction between them is not always so straightforward, and
many more methods developed for a particular paradigm are also being
adopted by the other ones. Next subsections explain the main variations
among the four first mentioned archetypes.

5.2.1 Evolution Strategies

The focus of the Evolution Strategy (ES) paradigm was on real-valued func-
tion optimization, being individual representation based on vectors of re-
al numbers. Furthermore, reproduction was initially purely asexual (single
parent with a mutation operator), where 1 parent produced λ offspring and
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the fittest of the 1 + λ individuals was selected to be the single parent for
the next generation of offspring. In this context asexual reproduction took
the form of mutating one or more of the parent gene values (real numbers)
via a normally distributed perturbation. Nevertheless, after several empiri-
cal studies mutation operators co-evolved in response to the characteristics
of the function being optimized. Also, nowadays ES also use crossover for
individual reproduction.

In their work, Beyer & Schwefel (2002) survey the history of evolution
strategies which dates back to the 1960s, discussing also the possible future
branches of ES research.

5.2.2 Evolutionary Programming

Evolutionary Programming (EP) was first introduced in 1966 by Fogel et al
(1966) for developing finite state automata for solving specific problems. The
framework originally presented continues to be refined and expanded today
and has been applied to a wide variety of problems beyond the evolution of
finite state machines. Also, nowadays EP is often used to evolve individuals
consisting of real-valued vectors.

Initial work had proposed both asexual reproduction and sexual reproduc-
tion (two parents combining to form offspring via a recombination operator).
Since the individuals being evolved were finite state machines, mutation took
the form of adding/deleting states/arcs, and recombination required combin-
ing pieces of two finite state machines into a new one. Nevertheless, exper-
imental studied proved the difficulty of defining an effective recombination
operator in this context, but reported impressive results in evolving useful
finite state machines with only asexual reproduction and mutation.

5.2.3 Genetic Algorithms

Genetic Algorithms (GAs) were introduced by Holland (1975) and focus was
on developing more application-independent algorithms. Initial approach
was based on the use of fixed-length binary string representation for individ-
uals. Nowadays, other kind of representations are used, such as real-valued
strings. Mutation took the form of a bit flip with a fixed probability, and
recombination took the form of a 1-point crossover operator, in which a ran-
domly selected initial sequence of genes from one parent is combined with the
remaining sequence of genes from a second parent to produce offspring with
features of both parents. Nowadays, other kind of mutation and crossover
operations are also adopted. In this scenario, GAs typically rely on crossover,
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while mutation is considered a minor operator, applied with very low prob-
ability.

Most of the early studies involved generational GAs, in which a fixed-
size population of N parents produce a new population of N offspring, which
unconditionally replaces the parent population regardless of fitness. However,
nowadays other types of evolution strategies are also used. Furthermore,
parents are stochastically selected to produce offspring in proportion to their
fitness. Thus, fittest individuals will have more probably of passing genetic
information on to the next generation.

5.2.4 Genetic Programming

Genetic Programming (GP) (Koza (1992)) has been used to evolve actual
computer programs to solve a number of computational tasks. An early
example of this can be seen in Friedberg (1958), which describes the design
and implementation of a Learning Machine that evolved sets of machine
language instructions over time.

GP can be seen as a specialization of genetic algorithms where each indi-
vidual represent a computer program, consisting of both data structures and
functions applied to those data structures.

5.3 Evolution Models

EAs may adopt different evolution models. Within the generational change
process, if the entire population is replaced by the new individuals then the
algorithm is called generational EA. On the other hand, if only one individual
is replaced then the algorithm is called a steady-state EA. Generational gap
EA represents a halfway model in which a subset of the population is replaced
from one generation to the next, where the gap represents the number of
replaced individuals and is usually a percentage of the population size.

5.3.1 Generational EAs

Generational EAs represent an extreme case of replacement methods, al-
though it continues to be the most extended within the community. Gen-
erational EAs were introduced by Holland (1975), including two variants of
reproductive plans. In both circumstances, the entire population is replaced
every generation.

The first plan, named R1, maintains a fixed size population and at each
time step a single individual is selected probabilistically to produce a single
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offspring. To make room for this new offspring, one individual from the cur-
rent population is selected for deletion via a uniform random distribution.
In the second plan, Rd, at each time step all individuals are deterministi-
cally selected to produce their expected number of offspring in a temporary
storage location and, when that process is completed, the offspring produced
replaces the entire current population. Although both plans are equivalent
from a theoretical point of view, Rd approach is being favoured due to prac-
tical problems of genetic drift in small populations and also at recalculating
selection probabilities.

Generational processes are clearly non-overlapping population systems,
where the lifetime of each individual in the population is only one generation.
Furthermore, there is no guarantee of preservation of the best solution. In
order to overcome this last situation, elitism is usually incorporated in the
generational change, allowing thus the preservation of the best individual of
each population. Elitism has been proven to be essential for the search of
the global optimum of any optimization problem (De Jong & Sarma (1993)).
Regarding the first issue, overlapping may be implicit in the generational
change depending on the crossover and mutation probabilities. Thus, as an
experimental study carried out by De Jong shows, using a crossover and
mutation probability of 0.6 and 0.4 respectively, around 40% of the offspring
are clones of their ancestors.

5.3.2 Steady State EAs

Steady state EAs were born in the context of neural network training domain.
It consists of a one-at-time reproduction scheme, where only one or two new
individuals are incorporated into the population in each stage. The offspring
of the individuals selected from each generation go back into the pre-existing
gene pool, replacing some of the less fit members of the previous generation.
This way, some individuals are retained between generations, and parents
and offspring co-exist. Also, elitism is usually implicit in this strategy. In
general, larger populations are required in steady state systems in order to
guarantee genetic diversity.

Selection and replacement criteria are essential in these kind of algo-
rithms, since they can significantly vary the system behaviour, in terms of
convergence and diversity. For example, replacement of the less fit individ-
uals induces early convergence, while a random replacement leads to slow
convergence.

GENITOR (Whitley et al (1989)) is a successful implementation of a
steady state scenario, where selection is performed using rankings and the
less fit individual(s) re-emplacement is carried out.
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5.3.3 Generational Gap EAs

Generation EAs and steady state EAs represent two extreme cases of re-
placement methods. As a halfway strategy, generational gap EA introduces
a parameter that controls the fraction of the population that is replaced at
each generation.

De Jong & Sarma (1993) studied the pros/cons of overlapping generations
with generational gap EAs, concluding that increasing the gap reduces the
individuals variance, suggesting also avoiding small gap values together with
small populations. Also, De Jong remarks that the important behavioural
changes in any EA are due to changes in the exploration/exploitation balance,
depending on the different selection and deletion strategies.

Cantú-Paz (2000) presented in his work a study on the selection intensity
for common selection and replacement methods in GAs with generation gaps.
The selection intensity is the normalized increase of the average fitness of
the population after selection, and it can be used to predict the number of
steps until the convergence to a unique solution. Main conclusion states that
algorithms with small generation gaps experience a faster convergence.

5.4 Advanced Evolutionary Algorithms

Various modern trends in EC have arisen in order to relax some of the as-
sumptions of the canonical EA. Some of these trends are multi-objective EAs,
where several independent fitness criteria are taken into account, or memetic
EAs, where a separate local search process is applied to refine individuals. In
this section, both multi-objective and memetic EAs are detailed. Other EAs
variations include parallel or distributed EAs, in which evolution occurs in
parallel sub-populations independently. Also, hybrid methods combine EAs
with other methodologies to solve constrained problems.

5.4.1 Multi-Objective EAs (MOEAs)

Multi-objective problems are characterized by having two or more, usually
conflicting, objectives. The main difference from single-objective optimiza-
tion is that multi-objective problems do not have one single optimal solution,
but they instead have a set of optimal solutions, where each one represents a
trade-off between the different objectives. A reasonable solution to a multi-
objective problem is to investigate a set of solutions, each of which satisfies
the objectives at an acceptable level without being dominated by any other
solution. This set of solutions is called the Pareto front, and is made up
of non-dominated individuals. An individual x is said to dominate another
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individual y if x is not worst than y on all objectives, and x is better than y
on at least one objective.

The use of EAs to solve problems of this nature has been motivated mainly
because of the population-based nature of EAs, which allows the generation of
several elements of the Pareto optimal set in a single run. Additionally, they
are significantly more robust, compared to the classical methods, particularly
when issues like the shape or continuity of the Pareto front are a matter of
concern.

There are two major goals of multi-objective optimization. Firstly, the
output consists of a large number of Pareto-optimal solutions to a given
problem. Secondly, the solutions to the problem should be widely differen-
tiated. Most significant progress in multi-objective EAs came with the non-
dominated sorting procedure by Goldberg (1989). Since that time, many
researchers have developed various versions of multi-objective optimization
algorithms. Most important methods are summarized below:

• Single Aggregate Objective Function (AOF) consist in the combina-
tion of the individual objective functions into a single composite func-
tion. For this purpose, methods such as utility theory or weighted sum
method are used. The major drawbacks of this method include difficul-
ties in determining the appropriate weights and the fact that improper
Pareto solutions may be generated (Coello et al (2006)). Nevertheless,
using an AOF it is possible to specify the relative relevance of each
objective in the individuals evaluation.

• VEGA was the first multi-objective GA, called Vector Evaluated GA,
proposed by Schaffer (1985). VEGA was mainly aimed for solving prob-
lems in machine learning, and its simple unconstrained two-objective
functions became the usual test suite to validate most of the evolution-
ary multi-objective optimization techniques developed during several
of the following years.

VEGA approach is an example of a criterion or objective selection tech-
nique where a fraction of each succeeding populations is selected based
on separate objective performance, where a vector composed by the k
objective functions is used. The specific objectives for each fraction are
randomly selected at each generation. The main advantage of the alter-
nating objectives approach is easy to implement and computationally
as efficient as a single-objective GA. The major drawback of objective
switching is that the population tends to converge to solutions which
are superior for one objective, but poor at others.
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• Target Vector Approaches try to minimize the difference between the
current solution generated and a defined vector of desirable goals. Most
popular target vector proposals are hybrids with: Goal Programming
(Charnes & Cooper (1957)), Goal Attainment (Chen & Liu (1994)), and
the Min-max Algorithm. This last method, the weighted min–max, has
been used by Hajela & Lin (1992) to optimize a 10-bar plane truss in
which weight and displacement were to be minimized, and by Carlos
et al (1998) to optimize I-beams and truss designs (Coello & Chris-
tiansen (2000)).

Target vector approaches require the definition of goals to be achieved,
where the computation of these goals normally requires some extra
computational effort and can lead to additional problems, such as mis-
leading selection pressure. Also, the goals must be defined in the fea-
sible domain in order to yield a non-dominated solution. This fact
limits their applicability. In spite of these drawbacks, there are cer-
tain problems in which target vector approaches can provide very good
approximations of the Pareto optimal set.

• Multi-Objective Genetic Algorithm (MOGA) was proposed by Fonseca
et al (1993), in which the rank of a certain individual corresponds to
the number of chromosomes in the current population by which it is
dominated. All non-dominated MOGA individuals are assigned rank 1,
while dominated ones are penalized according to the population density
of the corresponding region of the trade-off surface. MOGA has been
used in many engineering design applications, including for example a
gas turbine controller (Chipperfield & Fleming (1995)) and supersonic
wings (Obayashi (2002)).

The type of blocked fitness assignment used in MOGA is likely to pro-
duce a large selection pressure that might produce premature conver-
gence (Ghosh & Tsutsui (2003)). To avoid that, Fonseca and Fleming
used a niche-formation method to distribute the population over the
Pareto-optimal region. Main disadvantages of the use of MOGA are
its slow convergence and problems related to the niche size parameter.
This parameter is used for a niche-formation method that distributes
the population over the Pareto-optimal region.

• Non-dominated Sorting Genetic Algorithm (NSGA) was defined by
Srinivas & Deb (1994) and was based on Goldberg notion of non-
dominated sorting with a niche and speciation method. NSGA also
classifies the population into non-dominated fronts. Then, a dummy
fitness value is assigned to each front using a fitness sharing function
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such that the worst fitness value assigned to every front is better than
the best fitness value assigned to the next one. Since individuals in the
first front have the maximum fitness value, they always get more copies
than the rest of the population. This results in a fast convergence of
the population.

The first, very popular elitist genetic algorithm for multi-objective op-
timization was NSGA-II, an improved version of NSGA created by Deb
et al (2000). It uses the crowding distance in its selection operator to
keep a diverse front by making sure each member stays a crowding dis-
tance apart. This keeps the population diverse and helps the algorithm
to explore the fitness landscape.

• Horn et al (1994) proposed a tournament selection scheme based on
Pareto dominance defined as the Niched-Pareto Genetic Algorithm(NPGA).
Selection works in the following way: two individuals randomly chosen
are compared against a subset (randomly chosen) from the popula-
tion. If one of them is dominated by the individuals in the subset and
the other is not, then the non-dominated individual wins. When both
competitors are either dominated or non-dominated, the result of the
tournament is decided through fitness sharing.

• Strength Pareto Evolutionary Algorithm (SPEA) was proposed by Zit-
zler et al (1998) and integrates ideas from various existing evolutionary
multi-objective optimization, adding also some new elements. SPEA
uses an external archive containing non-dominated solutions previous-
ly found. At each generation, non-dominated individuals are copied
to the external set, computing an strength value for each individual in
the set. SPEA also uses clustering to truncate external population as
a mechanism to maintain diversity.

5.4.2 Memetic EAs

Memetic Algorithms (MAs) (Moscato (1989)) are EAs that apply a separate
local search process to refine individuals. These methods are inspired by
models of adaptation in natural systems that combine evolutionary adapta-
tion of populations with individuals learning within a lifetime. MAs are also
known as an hybridization of an EA with local search. This local search is
generally applied as in the Algorithm 2:

EAs are typically very efficient at the exploration of the search space but
not as efficient in exploitation. The main idea of MAs is to incorporate a lo-
cal search process to perform exploitation, as well as to reduce the likelihood
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Algorithm 2: Local search scheme

1 Start with an initial solution x ;
2 Generate a set of neighbour solutions of x ;
3 while best solution in the neighbourhood set is better than x do
4 replace x with the best solution;

5 Return x ;

of the premature convergence. Furthermore, MAs are intrinsically concerned
with exploiting all available knowledge about the problem under study. The
exploitation of this problem-knowledge can be accomplished by incorporat-
ing heuristics, approximation algorithms, local search techniques, specialized
recombination operators, truncated exact methods, etc.

The local improver process in Algorithm 2 can be used in different parts
of the generation process. For example, it can be performed over the initial
population individuals, at the end of each generation or after the utilization
of any other recombination or mutation operator. It can even be applied to
only certain generations or to a representative subset of individuals.

Multi-objective MAs

Local search operations in multi-objective EAs can also provide good perfor-
mance by exploring limit regions in objective space, moving towards specific
regions on the Pareto front. The combination of these two kind of algorithms
is generally defined as Multi-Objective MAs or memetic MOEAs.

In hybridization of MOEAs with local search algorithms, important is-
sues are selecting the solution(s) to apply the local search and identifying a
solution in the neighbourhood as the new best solution when multiple non-
dominated local solutions exist. Several approaches have been proposed to
address these two issues as follows, including optimizing only one objective,
applying local search to only final solutions or using the weighted sum of the
objective functions in the local search.

Various memetic MOEAs can be developed by incorporating a specific
local search technique within a known MOEA. Examples include MOGLS
(Multi-Objective Genetic Local Search) of Ishibuchi & Murata (1996) or
Bosman & de Jong (2006) approaches, among others variations of general
MOEA global/local search algorithms. For a historical review, Knowles &
Corne (2005) summarize much of the relevant literature, highlighting the
most important considerations for the design of Multi-Objective MAs.
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5.5 Summary

The aim of this chapter is to provide the reader with the basic notions of
evolutionary computation. These notions are essential for the understanding
of some the proposals in this PhD Thesis, in which evolutionary strategies
have been used for conducting the search of biclusters in microarray data.

Evolutionary Computation is a programming technique that is mostly
applied for optimization problems in which the search space is very large.
It works by repeatedly applying different operators to a set of candidate
solutions. The use of a population instead of a single potential solution
allows the exploration of a larger portion of the search space, giving also the
possibility of escaping from local optima.

Common features of evolutionary computation are first presented in this
chapter, including the individuals encoding and initialisation, evaluation,
selection and reproduction processes. In the second section we described
the four paradigms in which evolutionary computation is usually divided:
evolution strategies, evolutionary programming, genetic algorithms and ge-
netic programming. Depending on the size of the population and the way in
which its individuals are evolve, there exists three different types of evolu-
tion models: generational, steady state or generational gap. All of them are
described in section four. Finally, some advances evolutionary algorithms,
such as multi-objective or memetic are explained in the last section. A multi-
objective algorithm is used whenever two or more, usually conflicting, objec-
tives are used in the search, tough there exists multiple variants to cope with
this situation. Memetic algorithms are characterized by applying a separate
local search process to refine individuals within the search, with independence
of being a multi-objective approach or not.
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Chapter 6

Standardization-based
Evaluation Measures

The importance of having an adequate bicluster coherence measure has al-
ready been discussed in chapter 4, where the different types of expression
patterns in biclusters were also introduced. A suitable evaluation measure
for biclusters can not only be used for guiding the search in different heuristics
but also for comparing the results of different biclustering approaches.

We have centred our research upon the development of evaluation mea-
sures for biclusters based on the concept of expression patterns. More for-
mally, we have been working towards the definition of a quality metric able
to recognize the most general type of pattern: the shifting and scaling com-
bined pattern (see section 4.2 for more information on expression patterns).
In order to capture this kind of tendencies we have make use in our different
approaches of a standardization procedure of the bicluster, either by rows or
columns.

Following sections give formal definitions of our proposed evaluation mea-
sures for biclusters. After defining the standardization procedure applied, we
describe three different metrics: Maximal Standard Area (MSA), Virtual Er-
ror (VE) and Transposed Virtual Error (VEt). The latest one, VEt, has been
proven to be effective for capturing the combined patterns. Further research
involving VEt is presented in next chapter, where it has been incorporated
into a customizable evolutionary biclustering algorithm.

6.1 Standardization Procedure

An important observation that can be extracted from an analysis of pre-
viously found biclusters is that the range of expression values assumed by
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genes can vary substantially depending on the specific microarray taken as
input. Therefore, in order to make an appropriate comparison between each
gene and the pattern, it would be desirable to define a mechanism for scaling
the expression levels to a common range. This mechanism would also be
responsible for soften every gene behaviour, since the most important aspect
is to characterize its tendency rather than its numerical values.

As usual in this PhD Thesis, we denote a bicluster B as a sub-matrix
made up of a set I of |I| genes and a set J of |J | experimental conditions,
where bij denotes the expression level of gene i under experimental condition
j, for 1 ≤ i ≤ |I| and 1 ≤ j ≤ |J |.

Definition 1 (Gene Standardization) We define the standardization of
B as the bicluster B̂, whose element b̂ij are obtained as follows:

b̂ij =
bij − µgi
σgi

, 1 ≤ i ≤ |I|, 1 ≤ j ≤ |J |

where σgi is the standard deviation of all the expression values of gene i and
µgi is the mean of row i in B.

By means of the standardization, two distinct tasks are carried out. The
first one is to shift all the genes to a similar range of values (near 0 in this
case). The second one is to homogenize the expression values for each gene,
modifying in this way their values under all the conditions, and smoothing
their graphical representation, due to the correction of the global scaling
factor in the denominator.

6.2 Maximal Standard Area (MSA)

As already stated, MSR by Cheng & Church (2000) cannot recognize some
kind of biclusters as quality biclusters. In order to overcome this drawback,
we proposed a novel measure for assessing the quality of biclusters on mi-
croarray, called Maximal Standard Area (MSA). The idea behind is the area
of the region between the maximum and minimum values of expression lev-
els that genes assume under the conditions contained in the bicluster. Thus,
what it is measured is the area depicted by the maximal fluctuation of expres-
sion levels for each experimental condition. For each condition, the minimum
and maximum values of expression level for all the genes contained in the
bicluster are taken. These pairs of values define a band across all the con-
ditions in the bicluster, and the area of this band is therefore the measure
MSA. In the following of this section we will provide a detailed description
of this measure.
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Definition 2 (Bounds of bicluster B) We define the upper bound of a bi-
cluster B for condition j as

Mj(B) = maxi bij, ∀i

and similarly the lower bound of bicluster B for condition j as

mj(B) = mini bij, ∀i

We can now define the proposed measure:

Definition 3 (MSA) We define MSA(B) as the area delimited by the bounds
for each condition in the standardized bicluster as follows:

MSA(B) =

|J |−1∑
j=1

∣∣∣∣∣Mj(B̂)−mj(B̂) +Mj+1(B̂)−mj+1(B̂)

2

∣∣∣∣∣
where B̂ is the standardized bicluster.

As an example, Figure 6.1(a) shows a bicluster B containing three genes
and four conditions. In Figure 6.1(b) the resulting standardized bicluster B̂ is
displayed. It can be noticed that the standardized genes assume closer values
than the original ones. In particular, in Figure 6.1(a), the value assumed by
the second gene under the second condition is about 2.5 times greater than
the value assumed by the other two genes under the same condition. As
a result of the standardization, this difference is much less stressed, while
the general tendency of the three genes is maintained. Finally, Figure 6.1(c)
shows M(B̂) and m(B̂) for each condition. MSA(B) is illustrated by the grey
region.
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Figure 6.1: Example to illustrate the Maximal Standard Area (MSA). In (a)
a bicluster example; in (b) its standardization; in (c) the MSA.

If the genes of a bicluster B have a perfectly coherent trend, then MSA(B)
is equal to zero. On the contrary, MSA will assume higher values when the
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genes are less correlated with each other, due to the fact M(B̂) and m(B̂)
are more distant from each other. It follows that we assume that biclusters
characterized by a low MSA are interesting for further biological studies.

Various experiments were carried out in which MSA was introduced into
a evolutionary biclustering algorithm producing interesting results (Giraldez
et al (2007)). Nevertheless, after several preliminary experiments regard-
ing the use of VE (presented in next section) and MSA within evolutionary
biclustering approaches (Pontes et al (2007a)), we concluded that VE out-
performs MSA. We therefore continued our research focusing our efforts on
VE.

6.3 Virtual Error (VE)

Virtual Error (VE) follows similar assumptions regarding the standardization
process within the evaluation. The basic idea behind VE is to measure how
genes follow the general tendency within the bicluster. This is because if
all the genes of a bicluster follow the same tendency under a given set of
conditions, then it means that they are activated/deactivated under the same
experimental conditions. It follows that such a bicluster may be potentially
biologically interesting.

In order to catch the general tendency of the genes across the conditions
contained in the bicluster, we first calculate a new row from the genes of the
bicluster, called virtual pattern or virtual gene, defined as follows:

Definition 4 (Virtual Pattern) Given a bicluster B, we define its virtual
pattern/gene ρ as the set of elements ρ = {ρ1, ρ2, . . . , ρ|J |}, where ρj, 1 ≤
j ≤ |J |, is defined as the mean of the jth column or experimental condition:

ρj =
1

|I|

|I|∑
i=1

bij (6.1)

Each of the elements of the virtual pattern represents the average value
for all genes under a specific condition. Thus, if we graphically represent
this values next to the real genes, the virtual one symbolizes the common
tendency of the set of genes for the given bicluster.

Once the virtual gene ρ has been computed, we can assess how well a
specific gene gi of the bicluster follows the general tendency. In order to do
this, we compute the differences between the expression level values of gi and
the values of ρ for each experimental condition of the bicluster.

However, computing such differences using the original expression values
can yield to a misclassification of the bicluster. In fact,the range of values of
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the expression values of the genes may be very far from each other. In order
to remove or minimize these range differences, we will use the standardized
gene expression values as explained above in section 6.1. By using this nu-
merical transformation, we standardize the expression values of every gene,
including the virtual one, scaling the values to a common range. This way,
the standardized values of the virtual gene will be given by the following
expression:

ρ̂j =
ρj − µρ
σρ

(6.2)

where µρ and σρ represent the mean and the deviation of the values in the
virtual pattern, respectively.

We now define VE as the average value of all the differences between the
standardized expression values and the standardized virtual pattern:

Definition 5 (Virtual Error) The Virtual Error of a bicluster B, denoted
by V E(B), is defined as:

V E(B) =
1

|I| · |J |

|I|∑
i=1

|J |∑
j=1

|b̂ij − ρ̂j| (6.3)

where b̂ij is the standardized expression value of the element bij ∈ B, and ρ̂j
is the standardized value of the element ρj in the virtual pattern ρ.

VE computes the differences between the real genes and the virtual one,
once they have been standardized. Therefore, the more similar the genes are,
the lower the value for VE. In fact, if a bicluster follows a perfect shifting
or scaling pattern, VE is zero (see section 6.3.1 below). It follows that the
lower the VE the better the bicluster.

A diagram on how VE is computed for any input bicluster is shown in
Figure 6.2. The whole process is comprised by four different steps: calcu-
lation of the virtual pattern, standardization of both the virtual gene and
the whole bicluster, and finally VE is given by the average of the differences
between every standardized gene component and its corresponding standard-
ized pattern element.

The smoothing effect of the standardization is clear in Figure 6.3 (b),
where the range of values in the y-axis is significantly narrower than the
original one shown in Figure 6.3 (a). The bicluster in the example has a
VE value of 0.21, i.e near to zero. This result shows that the genes follows
a very similar behaviour across the conditions, as Figure 6.3 (a) confirms.
Therefore, this low value of VE indicates the good quality of the bicluster.



136 Chapter 6. Standardization-based Evaluation Measures

0 

100 

200 

300 

400 Bicluster and Virtual 
Pattern 

Virtual Pattern 

-2 

-1 

0 

1 

2 Standardized Bicluster and 
Pattern 

Standardized Pattern 
-2 

-1 

0 

1 

2 Standardized Bicluster 

Computation of  
the Virtual Pattern  

Bicluster 
Standardization 

Virtual Pattern 
Standardization 

Computation of 
the differences 

 
 

 





I

i

J

j

jijb
JI

BVE
1 1

ˆˆ1
)( 

0 

100 

200 

300 

400 Input Bicluster 

Figure 6.2: Virtual Error computation diagram.
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B =


95 152 104 185 208
56 74 78 94 143
110 182 114 220 233
149 260 140 311 298

 B̂ =


−1.22 0.07 −1.02 0.82 1.34
−1.12 −0.51 −0.37 0.17 1.83
−1.20 0.20 −1.12 0.93 1.19
−1.13 0.39 −1.25 1.09 0.91


ρ =

(
102.5 167 109 202.5 220.5

)
ρ̂ =

(
−1.21 0.14 −1.07 0.88 1.26

)
(a) Bicluster and the virtual pattern. (b) Standardized bicluster and the standardized

virtual pattern.

Figure 6.3: Example to illustrate the Virtual Error.
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In general, we can conclude that VE is robust when a bicluster follows a
shifting or scaling pattern since, in these cases, the value of VE is equals to
zero.

6.3.1 Virtual Error Analysis

Although several experiments carried out on real data microarrays have been
carried out (Pontes et al (2007a)) that confirm VE validity for finding biclus-
ters with shifting or scaling tendencies, here we state two theorems and their
corresponding proofs demonstrating that VE is zero when a bicluster follows
either a shifting or scaling pattern.

Theorem 1 A bicluster presenting a perfect shifting pattern has Virtual Er-
ror equal to zero.

Proof 1 If B follows a perfect shifting pattern, then we can represent each
element as bij = πi + βj.

Applying two simple algebraic properties1, it is easy to obtain the mean
and deviation of each gene gj as:

µgi = πi + µβ

σgi = σβ

We use this results to standardize bij:

b̂ij =
bij − µgi
σgi

=
πi + βj − πi − µβ

σβ
=
βj − µβ
σβ

(6.4)

Combining the same former properties, it is easy to obtain the mean and
standard deviation for the virtual pattern as:

µρ = µπ + µβ

σρ = σβ

Finally, the standardized values of the virtual pattern are represented by:

ρ̂j =
ρj − µρ
σρ

=
µπ + βj − µπ − µβ

σβ
=
βj − µβ
σβ

= b̂ij (6.5)

1Being f(x) = g(x) × c1 + c2, we can enumerate these two properties related to the
arithmetic mean (µf(x)) and the standard deviation (σf(x)) of f(x) as: µf(x) = µg(x) ×
c1 + c2 and σf(x) = σg(x) × c1.
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This result points out that when a bicluster follows a perfect shifting pat-
tern, the standardized virtual pattern is equal to all the real genes after stan-
dardizing them. This means that VE is equal to zero for every bicluster with
a perfect shifting pattern. �

Theorem 2 A bicluster presenting a perfect scaling pattern has Virtual Er-
ror equal to zero.

Proof 2 If B follows a perfect scaling pattern, then we can represent each
element as bij = πi × αj.

Following the same reasoning than for Theorem 1, the mean and deviation
of each gene gi are the following:

µgi = πi × µα
σgi = πi × σα

We use these results to standardize the values of the bicluster:

b̂ij =
bij − µgi
σgi

=
πi × αj − πi × µα

πi × σα
=
αj − µα
σα

(6.6)

We next obtain the mean and standard deviation for the virtual pattern:

µρ = µπ × µα
σρ = µπ × σβ

And the standardized values of the virtual pattern:

ρ̂j =
ρj − µρ
σρ

=
µπ × αj − µπ × µα

µπ × σα
=
αj − µα
σα

= b̂ij (6.7)

As we can observe, the result of the last equation shows that when a
bicluster follows a perfect scaling pattern, the standardized virtual pattern is
equal to all the real genes after standardizing them. Therefore, we can state
that VE is equal to zero for every bicluster with a perfect scaling pattern. �

6.4 Evolutionary Biclustering with Virtual Er-

ror

In order to further test the effectiveness of VE, we also incorporated it into
a multi-objective environment using Multi-Objective Evolutionary Bicluster-
ing (MOEB). Experiments on real data sets and their biological validation
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show that VE yields the algorithm at finding interesting biclusters, as shown
below. We also compared the results with those obtained using the same
evolutionary approach but guiding the search with MSR. Following sections
present the biclustering algorithm used in these experiments as well as the
obtained results.

6.4.1 Sequential Multi-objective Biclustering

VE has been introduced as a quality measure that can be used to guide an
optimization heuristic in order to discover biclusters in an expression ma-
trix. However, the problem cannot be addressed by only optimizing the VE
of biclusters. In fact, this approach may lead to the discovery of uninter-
esting sub-matrices. For instance, flat biclusters will have a low value of
VE, or, again, biclusters containing few genes and conditions will typically
have lower values of VE, if compared to biclusters characterized by higher
volume. The same hold for the MSR. This is because the more genes or
conditions are contained in a bicluster, the less likely the genes are to follow
the same behaviour. Such biclusters are not very interesting, and, in order
to solve this issue, other properties of the biclusters are usually optimized.
In particular, we are interested in finding biclusters with high volume, good
quality (being quality measured by an appropriate metric such as VE, MSA
or MSR) and relatively high gene variance. Thus, we can individuate at least
three objectives to be optimized and these objectives are usually in conflict
with each other. For this reason, the problem of finding biclusters in an ex-
pression matrix can be straightforwardly seen as a multi-objective problem.
Moreover, by addressing this problem as a multi-objective problem, it is not
necessary to combine all the objectives into single cost function, which might
become complicated, especially when both maximization and minimization
are involved.

The algorithm used in this work is called SMOB (Sequential MultiObjec-
tive Biclustering), and is outlined in Algorithm 3. The algorithm is similar to
SEBI (Sequential Evolutionary BIclustering), which was introduced in Div-
ina & Aguilar-Ruiz (2006) and adopts a sequential covering strategy. Unlike
SEBI, where a single-objective EA was used, SMOB invokes several times
a multi-objective evolutionary algorithm. Each time the MOEA is called,
a bicluster is returned. Biclusters returned are stored in a list, where the
number of elements in the output list represents the number of found solu-
tions. Since SMOB iterates until certain criteria is met, this number will be
dependant on the stopping criteria. In our experiments we have defined an
input parameter for specifying the number of desired solutions. In Divina
& Aguilar-Ruiz (2006) a threshold δ on MSR was used in order to reject
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biclusters. In SMOB we do not use any threshold because several objectives
are optimized at the same time, and thus biclusters cannot be rejected based
on a bad result of a single objective.

Algorithm 3: SMOB for sequential covering
input : M: expression matrix
output: L: list of biclusters

1 load Expression Matrix M
2 L ← {}
3 matrix of weights W ← {}
4 bicluster b
5 repeat
6 b = MOEB (M) if b is not null then
7 L ← L ⊕ b
8 adjust weights of M
9 else

10 end cond met

11 if max iter is reached then
12 end cond met

13 until end cond is met ;

14 return L

Algorithm 4: Procedure MOEB
input : M: expression matrix, W: matrix of weights
output: Best individual in population

1 initializePopulation

2 evaluatePopulation

3 repeat
4 selectParents

5 recombinePairOfParents

6 mutateResultingOffspring

7 evaluateNewPopulation

8 selectIndividualsForNextGen

9 until max iter is reached ;
10 best ind ← bestIndividualInPopulation

11 return best ind

SMOB adopts a sequential covering strategy, where the MOEB procedure
is called n times, and each time a bicluster is returned (see Algorithm 3).
The returned bicluster is stored in a list L that contains all the biclusters
found so far. When MSR is used as an objective, the returned bicluster
is stored in the list only if its MSR is lower than the threshold δ. Notice
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that the sequential coverage strategy adopted is such that the order in which
biclusters are discovered does not reflect their quality nor their biological
relevance. Next subsections details how the common characteristics of EC
have been implemented in this study.

Biclusters Codification and Initialization

The encoding of biclusters used in this approach is the one proposed in Divina
& Aguilar-Ruiz (2006), where bit strings are used. A bit is associated to each
gene and each condition of the expression matrix. If a bit is set to one, it
means that the relative gene/condition belongs to the bicluster, otherwise it
does not.

Individual initialization is the first task performed by MOEB procedure
(line 1 in Algorithm 4). In this work, individuals are initialized in the fol-
lowing way: first, the number of genes |I| and of conditions |J | contained
in the biclusters are randomly determined. Then, |I| bits corresponding to
genes and |J | bits corresponding to conditions are randomly selected. The
selected bits are set to one, which means that the relative gene/condition is
contained in the bicluster encoded by the individual. We perform this ini-
tialization instead of a pure random initialization of bit-strings, because in
that way the initial biclusters would contain all about the same number of
genes and conditions.

Individual Evaluation

Evaluation is performed after the initialization (line 2 in Algorithm 4) and
also after the new population has been created using the genetic operators
(line 7 in Algorithm 4). In a multi-objective approach, evaluation needs to
be carried out for all the individuals since the fitness is dominance-dependent
and thus the fitness of the same individual in two different generations may
vary.

We have individuate four objectives to be optimized: MSR, VE, gene
variance and the volume of the biclusters. However, as it will be described
in Section 6.4.2, we will use three different settings of the algorithm, where
only three objectives will be optimized at a time. The objectives that will
always be considered are the volume and the gene variance.

The evaluation in this work adopts a strategy similar to NSGA (see sec-
tion 5.4.1), where individuals are divided into different non-dominated fronts,
and individuals belonging to the same front have the same starting fitness
rank(B). For instance, a non-dominated individual will have a rank value
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equals to zero. The fitness of an individual B is then defined as:

φ(B) = rank(B) + sh(B) + P (B) (6.8)

where sh(B) is the phenotypic sharing (Zitzler & Thiele (1999)) and P (B) is
used in order to avoiding overlapping among biclusters. In our implementa-
tion sh(B) is the minimal euclidean distance, computed on the objectives to
the other individuals as follows:

sh(B) = min

√√√√ n∑
i=1

(Bi − B2i)2

 (6.9)

where B2 represents every individual in the population different from B and
Bi,B2i are the objectives used.

In order to avoid overlapping among biclusters, a weights-based approach
similar to the one defined in section A.1.2 is used, where a weight W(bij) is
associated with each element bij of the bicluster in the original expression
matrix. These weights are initialized to zero in line 3 of the Algorithm 3 and
are adjusted every time a bicluster is returned after each call of MOEB (line
8 of SMOB). Therefore, W(bij) is equals to the number of biclusters stored
in L that contain the same element of the input expression matrix. When
evaluating a bicluster the weights of its elements are used in order to penalize
biclusters overlapping with elements of L.

When a bicluster B is evaluated inside MOEB, a penalty in the form of
equation 6.10 is added to the fitness of B, where V (B) is the volume of B. In
this way, if a bicluster has low volume and it covers elements of the expression
matrix that are already contained in many biclusters already found, P (B)
will be high. On the other hand, if the bicluster has a high volume and it
overlaps with few biclusters, the penalty will be lower. If the bicluster B does
not overlap with any bicluster then P (B) is zero.

P (B) = 1−
V (B)−

∑
i,j∈BW(bij)

V (B)
(6.10)

Selection

Individuals are selected with a tournament mechanism (see section 5.1.3),
where a group of four individuals is picked at random and in an independent
way from the population. The fittest individual of the pool is afterwards
selected as a parent for applying genetic operators and creating offspring.
Tournament selection mechanism will be carried out as many times as parents
are needed (line 4 in Algorithm 4).
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Elitism is also applied by letting the non-dominated individuals survive
to the next generation. However, only a maximum of half population is
allowed to the next generation. This is to prevent the case where all the
population is non-dominated and thus copied to the next generation. In this
case the evolutionary process would stop, since only individuals belonging to
the previous generation will be inserted in the population.

Genetic Operators

Genetic operators are applied in lines 5 and 6 in Algorithm 4. Several
crossover and mutation operators are defined in order to recombine and ren-
ovate the next generation individuals.

For recombining parents, three crossover operators are used with different
probabilities: one-point crossover, two-point crossover and uniform crossover.
However, the application of the uniform crossover is the one having the high-
est probability. Uniform crossover is preferred to the other two crossovers
because one-point and two-point crossover would prohibit certain combina-
tions of bits to be crossed over together.

Resulting offspring are mutated in three different ways: using a classical
mutation operator, one that can add a row and one that can add a column.
We consider columns and rows separately, because typically there are many
more columns than rows, thus considering them together, would give more
probability of mutation to columns than to rows.

6.4.2 Experimental Results on Real Data Microarrays

In order to assess the validity our VE in a multi-objective environment,
we have conducted experiments on nine datasets shown in Table 6.1. The
embryonal dataset was preprocessed as by Tavazoie et al (1999), where each
entry of the original dataset was substituted by its normalized value between
0 and 600. All the other datasets were preprocessed as by Cheng & Church
(2000). The most important preprocessing operation regards missing values.
They are replaced with random values, although it is known the existing
risk that these random numbers can affect the discovery of biclusters (Yang
et al (2002)). The expectation was that these random values would not form
recognizable patterns.

The aim of the experimentation is to assess the validity of VE as a quality
measure. In particular, we aim to test whether VE can yield the discovery of
biclusters characterized by higher gene variance and volume. Moreover, we
are interested in comparing the results achieved by using VE as a measure
of the quality of a bicluster against the results obtained when MSR is used.
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Dataset Name #genes #cond. Ref.
Yeast Yeast Saccharomyces cerevisiae cell cycle 2884 17 Cho et al (1998)
Human Human B–cells 4026 96 Alizadeh et al (2000)
Colon Colon Cancer 2000 62 Alon et al (1999)
Malaria Malaria Plasmodium parasites life cycle 3719 16 Le Roch et al (2003)
Embryonal Embryonal tumors of the central nervous syst. 7129 60 Pomeroy et al (2002)
Leukemia Leukemia 7129 72 Golub et al (1999)
RatCNS Rat Central Nervous System 112 9 Wen et al (1998)
Steminal Steminal Cells 26127 30 Boyer et al (2006)
PBM Peripheral Blood Monocytes 2329 139 Hartuv et al (2000)

Table 6.1: Datasets used in the experimentation.

Dataset δ for SMOB-δ δ for SMOB-∆

Yeast 300 3400
Human 1200 23000
Colon 500 3300

Malaria 600 19000
Embryonal 1800 10000
Leukemia 1800 23130700
RatCNS 5 11
Steminal 10 130

PBM 0.3 1.3

Table 6.2: Values of δ used in the settings SMOB-δ and SMOB-∆.

In order to do this, we compare the algorithm using VE against a version
that uses as an objective MSR instead of VE. Another point we want to test,
is whether the use of a too low threshold δ may prevent the algorithm from
finding interesting biclusters, since the search is limited to biclusters with
MSR lower than δ .

In the experimentation, we use three settings of the algorithm, that differ
for the objectives subject of optimization:

• SMOB-VE. In this setting the objectives are: volume, gene variance and
VE.

• SMOB-δ. In this setting the objectives are: volume, gene variance and
MSR, with δ shown in the second column of Table 6.2.

• SMOB-∆. In this setting the objectives are: volume, gene variance and
MSR, with δ shown in the third column of Table 6.2.

In both SMOB-δ and SMOB-∆, if the algorithm returns a bicluster whose
MSR is higher than δ, such bicluster is rejected. As it can be noticed, the
only difference between settings SMOB-∆ and SMOB-δ lies in the value used
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Parameter Value

Generations 100
Population size 200
Crossover probability 0.85
Mutation probability 0.2
Tournament size 4

Table 6.3: Parameter settings for the algorithm.

for the threshold δ. SMOB-∆ was included for testing the limitations, in terms
of biclusters found, that the use of a low δ can impose on an algorithm.

The values of δ used in SMOB-δ on the human and the yeast dataset were
taken from Cheng & Church (2000), while for the other datasets they were
established using a procedure suggested in the same work. The values of δ
used in SMOB-∆ were determined as follows. For each dataset, we first run the
experiments with SMOB-VE. We calculated the MSR of all the bicluster found,
and then we selected the highest as δ to be used in SMOB-∆(third column in
Table 6.2). In this way we can test whether the use of δ prevented SMOB-δ
from discovering some interesting biclusters, only because their MSR was
higher than the used δ. Therefore, SMOB-∆ could obtain similar biclusters to
those produced by SMOB-VE guaranteeing in this way a fair comparison.

In order to perform a fair comparison, we use the same parameter setting
in all the versions of the algorithm. This setting is given in Table 6.3. The
values of these parameters were obtained after a number of preliminary runs
aimed at testing different parameter settings.

On each dataset, we obtained 100 biclusters for each setting of the al-
gorithm. The average MSR and VE are reported in Tables 6.4 and 6.5,
respectively. Table 6.6 reports both the average gene variance and the aver-
age volume. Standard deviation is reported next to each result. In order to
test the statistical significance of the results, we applied the Student’s T-test
of difference of means with confidence level of 1%. In the tables, a minus
(plus) symbol next to a result indicates that the average is statistically sig-
nificantly lower (higher) than the average obtained by SMOB-VE on a given
dataset. So, for instance, the average MSR obtained by SMOB-δ on the yeast
dataset is significantly lower than the average MSR obtained by SMOB-VE.

In order to present the results in a clearer way, we have not included in
the tables information about the statistically significance of the differences of
results obtained by SMOB-δ and SMOB-∆. However, we can say that in Table
6.4, all the results obtained by SMOB-∆, but the results obtained on the
RatCNS datasets, are significantly higher than those obtained by SMOB-δ.
The average VE of biclusters obtained by SMOB-∆ is significantly higher
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Dataset MSR
SMOB-VE SMOB-δ SMOB-∆

Yeast 1419.6±513.8 272.0±24.9 - 1062.0±274.8 -
Human 16441.1±3323.2 1103.5±86.7 - 10742.5±2321.3 -
Colon 2491.0±408.9 455.2±45.5 - 2107.2±306.3 -
Malaria 14456.1±2227.3 449.7±174.6 - 12095.5±2298.1 -
Embryonal 1506.0±1932.6 398.2±344.2 - 802.97±1243.1 -
Leukemia 81.0e5±45.0e5 1533.1±169.2 - 49.2e5±29.3e5 -
RatCNS 3.43±2.6 1.63±1.3 - 2.17±2.0 -
Steminal 43.87±37.2 4.07±2.1 - 13.13±12.9 -
PBM 0.47±0.1 0.19±0.1 - 0.30±0.1 -

Table 6.4: Average MSR obtained on each dataset.

Dataset VE
SMOB-VE SMOB-δ SMOB-∆

Yeast 0.83±0.05 0.73±0.08 - 0.86±0.05 +
Human 0.90±0.04 0.82±0.07 - 0.92±0.04 +
Colon 0.53±0.04 0.33±0.07 - 0.53±0.03

Malaria 0.73±0.06 0.48±0.18 - 0.75±0.05 +
Embryonal 0.70±0.08 0.88±0.07 + 0.89±0.08 +
Leukemia 0.82±0.08 0.72±0.09 - 0.95±0.06 +
RatCNS 0.58±0.18 0.71±0.17 + 0.73±0.18 +
Steminal 0.70±0.10 0.98±0.10 + 1.0±0.10 +
PBM 0.28±0.10 0.34±0.10 + 0.35±0.10 +

Table 6.5: Average VE obtained on each dataset.

than those obtained by SMOB-δ on five dataset, and in particular on the
yeast, human, colon, malaria and the leukemia dataset. As far as the gene
variance is concerned, SMOB-∆ obtained significantly higher results on all
the datasets but the RatCNS dataset. The average volume characterizing
biclusters found by SMOB-∆ is significantly higher on five dataset: yeast,
human, colon, malaria and leukemia.

As it can be noticed from Table 6.4, SMOB-δ obtains the lowest values of
MSR. This result was expected, since MSR is one of the objective subject to
optimization in SMOB-δ. Moreover, in this setting a small threshold is used
in order to reject biclusters. However, when this threshold is relaxed, as in
SMOB-∆ the average MSR of the biclusters obtained by SMOB-VE is compa-
rable, even if slightly higher in general. The fact that the MSR obtained
by SMOB-∆ is lower than that obtained by SMOB-VE is due to the fact that
SMOB-∆ considers the MSR as an objective to be optimized, whilst SMOB-VE
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Dataset Gene Variance Volume
SMOB-VE SMOB-δ SMOB-∆ SMOB-VE SMOB-δ SMOB-∆

Yeast 1661.7±502.2 408.5±77.2 - 1245.3±294.5 - 606.4±216.7 226.1±77.3 - 461.4±95.8 -
Human 17395.7±3376.41412.2±168.6 -11412.4±2476.8 - 1430.6±473.2 362.6±106.7 -1128.3±260.5 -
Colon 5597.6±617.4 2836.7±1026.7 - 4876.2±548.6 - 1402.7±514.4 197.5±85.1 -1172.4±334.5 -
Malaria 20245.6±2433.42667.3±3765.7 -16707.6±2914.7 - 628.5±179.2 54.6±31.5 - 461.9±108.2 -
Embryonal 1683.3±2126.2 428.8±365.9 - 849.4±1304.1 - 1121.6±401.71456.1±577.3+1423.6±519.26+
Leukemia 8.94e6±4.82e62391.3±660.1 - 5.27e6±3.10e6 - 1110.0±348.0 441.7±141.2 -1132.2±220.4

RatCNS 4.6±3.4 2.1±1.6 - 2.7±2.3 - 128.5±63.4 128.5±81.1 128.6±69.5

Steminal 50.8±40.9 4.4±2.3 - 13.8±13.6 - 999.6±336.01312.5±371.8+1286.7±399.4 +
PBM 1.3±0.2 0.5±0.2 - 0.8±0.2 - 1427.9±616.11659.7±701.2 1744.8±687.9 +

Table 6.6: Average gene variance and volume obtained on each dataset.

does not. Moreover, the results obtained by SMOB-∆ are in general signifi-
cantly higher than those obtained by SMOB-δ. Only on the RatCNS dataset
the two algorithms obtain an average MSR that is not statistically significant.
This result shows that a too low threshold restrict the search performed by
the algorithm too tightly. This fact can be clearly seen by inspecting Table
6.6. This table presents on the left part the average row variance and on
the right part the average volume obtained on the 100 biclusters found for
each dataset. We can notice that SMOB-∆ obtains biclusters characterized
by higher gene variance and volume than those discovered by SMOB-δ.

As Table 6.5 shows, SMOB-δ obtained the lowest values of VE on five
datasets. This may seem odd, since SMOB-δ does not consider VE as an
objective to be optimized. Nevertheless, this is explained by the fact that
low values of MSR correspond to low values of VE. Moreover, in SMOB-δ a low
threshold was used to limit the values of MSR. This kind of threshold is not
used in SMOB-VE. Notice that VE is not the only objective being optimized
by SMOB-VE, being the other ones the volume and the gene variance. This
fact, in combination with the above considerations, explains why the values
of VE obtained by SMOB-VE are, on average, higher than those obtained by
SMOB-δ. It is worth to note that when the threshold δ is relaxed, the results
obtained by SMOB-VE are significantly better than those provided by SMOB-∆.

Due to the presence of shifting patterns in biclusters with low MSR, low
values of MSR correspond to very low values of VE. However, the opposite
is not true, i.e., low values of VE do not correspond to low values of MSR.
This is explained by the presence of scaling patterns, which do not affect VE,
but have the effect of remarkably increasing the values of MSR, as proven in
Aguilar-Ruiz (2005).

From Table 6.6, we can notice that, on the two common objectives (i.e.,
gene variance and volume) subject of optimization by all the three settings
of the algorithm, SMOB-VE obtains the best results. In particular the gene
variance obtained by SMOB-VE is much higher than the gene variance of the
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biclusters found by SMOB-δ. This is because gene variance is in conflict with
MSR. In fact, the presence of scaling patterns have the effect of incrementing
the gene variance. On the other hand, MSR is also incremented by the
presence of scaling patterns. Thus, since both the gene variance and the MSR
are being optimized at the same time in SMOB-δ most scaling patterns are
rejected. This is because such patterns would lead to biclusters with a MSR
higher than the used threshold δ. It is also interesting to notice that SMOB-VE
obtains biclusters with higher gene variance and volume than those obtained
by SMOB-∆. This confirms the fact that VE is more successful than MSR
in guiding the search performed by the algorithm towards the discovery of
more interesting biclusters. In fact, a low threshold imposed on MSR prevents
the algorithm from finding biclusters containing certain patterns, and even
if this threshold is increased, the algorithm obtains biclusters that are less
interesting that those obtained when VE is used as one of the objectives.

Biological Validation

This section presents a biological validation of the results obtained by the
three settings of the algorithm on three datasets: Embryonal, Leukemia and
Steminal. We have selected these datasets because they were the ones having
the highest percentage of gene names that could be found in GO (Ashburner
et al (2000)) and because of their significance. In order to validate the results,
we first use the Gene Functional Dissimilarity (GFD) measure (Dı́az-Dı́az &
Aguilar-Ruiz (2011)) and then, for each method, the number of significant
biclusters, according to GO (see section 4.6), is extracted.

GFD assigns a numerical value, between zero and one, to the gene set
contained in a bicluster for each of the three GO sub-ontologies (Molecular
Function (MF), Cellular Component (CC) and Biological Process (BP)). The
value assigned to a biclusters represents the functional cohesion of the genes,
where lower values represent higher functional similarity. We decided to use
GFD since this measure presents the advantage that it can identify the most
common function for all of the genes involved in a biological process.

Table 6.7 shows the average GFD for all the biclusters obtained on the
three datasets by the three settings of the algorithm, according to each GO
sub-ontology. Standard deviation is also reported next to the averages. In
order to test whether the results are significantly different, we performed a
two-tailed t-test. Results of this test, with confidence levels of 5% and 1%, are
reported in the right part of the table. Thus, for instance, the average GFD
obtained on the Embryonal dataset by SMOB-VE and SMOB-δ is significantly
different for the MF and CC sub-ontologies with a confidence level of 1%,
while for the BP ontology the difference is significant with a 5% confidence
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GO’s Average GFD Statistical Significance (T-Test)
Dataset Sub- SMOB-VE SMOB-δ SMOB-∆ SMOB-VE vs SMOB-δ SMOB-VE vs SMOB-∆

Ontology < 0.05 < 0.01 < 0.05 < 0.01
MF 0.425± 0.100 0.464± 0.099 0.474± 0.106 × × × ×

Embryonal BP 0.603± 0.077 0.626± 0.068 0.633± 0.067 × × ×
CC 0.389± 0.098 0.446± 0.068 0.442± 0.083 × × × ×
MF 0.442± 0.098 0.505± 0.114 0.471± 0.074 × × ×

Luekemia BP 0.642± 0.050 0.648± 0.077 0.652± 0.050

CC 0.439± 0.081 0.473± 0.102 0.444± 0.067 × ×
MF 0.617± 0.044 0.632± 0.038 0.641± 0.036 × × × ×

Steminal BP 0.710± 0.036 0.710± 0.023 0.715± 0.022

CC 0.492± 0.071 0.527± 0.052 0.528± 0.051 × × × ×

Table 6.7: Average GFD values for each of the three sub-ontologies of GO.

Dataset p-value Number of Biclusters
SMOB-VE SMOB-δ SMOB-∆

Embryonal
< 0.01 1 2 5
< 0.05 16 6 10

Leukemia
< 0.01 4 2 2
< 0.05 12 6 9

Steminal
< 0.01 11 1 2
< 0.05 27 10 4

Table 6.8: Number of significant biclusters for the three GO ontologies, at
two different levels.

level. From the table, we can notice that SMOB-VE obtains the lowest GFD
in all the cases but one: on the Steminal dataset for the BP ontology, where
the three settings of the algorithm obtains basically the same results. This
implies that, on average, the genes contained in the biclusters obtained on
these datasets by using VE present a stronger functional similarity than those
obtained by using MSR. It is also interesting to notice that in some cases,
e.g., on the Leukemia dataset for the MF sub-ontology, SMOB-∆ obtains a
lower value of GFD than SMOB-δ. This means that in such cases the average
functional cohesion is stronger for the biclusters discovered by relaxing the
threshold δ used with MSR. Thus, in some cases, a too strict threshold may
prevent the algorithm from finding interesting biclusters.

To further analyse the results, we have used the ontologizer tool (Bauer
et al (2008)) to directly compute the most significantly enriched GO terms
associated to the set of genes of every bicluster. Results of this analysis have
been obtained using the methodology described in section 4.6 and are re-
ported in table 6.8. This table shows the number of biclusters with at least
one significant GO term in any ontology, at two different levels: 1% and 5%.
For Leukemia and Steminal datasets, SMOB-VE discovers more significant bi-
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clusters than SMOB-δ and SMOB-∆ with both levels. As far as the Embryonal
dataset is concerned, SMOB-VE outperforms the other two versions of the algo-
rithm when the p-value considered is lower than 0.05. In this case, of all the
biclusters discovered by SMOB-VE, 16 are significant, while only 6 biclusters
found by SMOB-δ are significant and SMOB-∆ finds 10 significant biclusters.
If the threshold on the p-value is lowered to 0.01, only 1 bicluster is signif-
icant for SMOB-VE, whereas the other two settings finds 2 and 5 significant
biclusters.

6.5 VEt: Transposed Virtual Error

Although VE has been proven to be efficient for finding significantly enriched
biclusters when using it into an evolutionary strategy, it is not able to cap-
ture shifting and scaling simultaneous tendencies. In this section we present
an enhanced version of VE, named VEt, from Transposed Virtual Error, an-
alytically proving that VEt is zero for those biclusters with perfect shifting
and scaling patterns. This variation of VE has been motivated by the work
of Cho (2010), where several numeric transformations have been applied to
the data in order to detect both kind of patterns.

VEt is computed similarly to VE but considering the transposed biclus-
ter. The idea here is to create the virtual pattern in the condition dimension.
We will name this virtual pattern Virtual Condition, in order to differentiate
it from the pattern in VE. Afterwards, the differences between the standard-
ized values for every condition and the standardized virtual condition are
measured in the same way as in VE. In the following, we explain how to
create the virtual condition for a certain bicluster B, in order to compute
VEt.

Definition 6 (Virtual Condition) Given a bicluster B with a set I of |I|
genes and a set J of |J | conditions, we define its virtual condition as a
collection of |I| elements ρi, each of them defined as the mean of the ith row
representing a gene:

ρi =
1

|J |

|J |∑
j=1

bij (6.11)

This way, each element of the virtual condition represents a meaningful
value for all the conditions, regarding each gene. Once the virtual condi-
tion has been created, the next task would consist of quantifying the way in
which all the experimental conditions in the bicluster are similar to it. In
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order to perform an appropriate comparison, we first carry out a standard-
ization of the virtual condition and of every experimental condition in the
bicluster. This standardization allows us to capture the differences among
the tendencies, with independence of the numerical values.

Nevertheless, the standardization procedure we carry out for the compu-
tation of VEt differs from the one used in the case of VE. Here, the stan-
dardization is performed on the condition dimension, being the elements b̂ij

of the standardized bicluster B̂ obtained as follows: b̂ij =
bij−µcj
σcj

, where σcj
and µcj represent the standard deviation and the arithmetic average of all
the expression values for condition j, respectively.

As it has already been said, the virtual condition needs also to be stan-
dardized. Equation 6.12 shows how the values of the standardized virtual
condition are obtained, where ρi refers to the virtual condition value for gene
i, while µρ and σρ refer to the average and the deviation of the values of the
virtual condition, respectively.

ρ̂i =
ρi − µρ
σρ

(6.12)

Definition 7 (Transposed Virtual Error) Given a bicluster B, and its
corresponding virtual condition ρ, Transposed Virtual Error (VEt) can be
defined as the mean of the numerical differences between each standardized
condition and the values of the standardized virtual condition for each gene:

V Et(B) =
1

|I| · |J |

i=|I|∑
i=1

j=|J |∑
j=1

(b̂ij − ρ̂i) (6.13)

Next, we present three theorems and their proofs that demonstrate the
strength of VEt with regard to the shifting and scaling patterns.

6.5.1 Analytical Analysis

This section includes formal proofs that bear out the hypothesis that VEt

is zero for those biclusters with perfect shifting and scaling patterns, either
separately or simultaneously.

Theorem 3 A bicluster presenting a perfect shifting pattern has VEt equal
to zero.

Proof 3 Let B be a bicluster with a perfect shifting pattern, then it is possible
to refer to its elements as bij = πi + βj. Applying the two same simple



152 Chapter 6. Standardization-based Evaluation Measures

arithmetic properties described above1, the mean and the deviation for each
condition cj can be expressed by:

µcj = µπ + βj

σcj = σπ

where µπ and σπ represent the mean and the deviation of the π values,
respectively. Using these results we obtain the standardize values for bij:

b̂ij =
bij − µcj
σcj

=
πi + βj − µπ − βj

σπ
=
πi − µπ
σπ

Combining the former properties1 it is easy to express the mean and stan-
dard deviation for the virtual condition as:

µρ = µπ + µβ

σρ = σπ

Finally, the standardized values for the virtual condition are the following:

ρ̂i =
ρi − µρ
σρ

=
πi + µβ − µπ − µβ

σπ
=
πi − µπ
σπ

= b̂ij

As it can be seen above, the standardized virtual condition is equal to all
the real conditions after being standardized. Therefore, VEt has been proven
to be zero for those biclusters with perfect shifting patterns. �

Theorem 4 A bicluster presenting a perfect scaling pattern has VEt equal
to zero.

Proof 4 Let B be a bicluster following a perfect scaling pattern, then its
elements can be expressed by bij = πi × αj. Following the same reasoning
that in the former proof, the mean and deviation of each condition cj are:

µcj = αj × µπ
σci = αj × σπ

From these results we obtain the standardized values for bij:

b̂ij =
bij − µcj
σcj

=
πi × αj − αj × µπ

αj × σπ
=
πi − µπ
σπ

Next we obtain the mean and deviation for the values of the virtual con-
dition:
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µρ = µπ × µα
σρ = µα × σπ

And finally the standardized values for the virtual condition are:

ρ̂i =
ρi − µρ
σρ

=
πi × µα − µπ × µα

µα × σπ
=
πi − µπ
σπ

= b̂ij

As in the previous proof, we obtain that the standardized values for the
virtual condition are equal to de standardized values for all the real exper-
imental conditions. As a consequence, VEt will be zero for every bicluster
with a perfect scaling pattern. �

Theorem 5 A bicluster presenting a perfect combined pattern (shifting and
scaling) has VEt equal to zero.

Proof 5 If B contains a perfect combined pattern, its values can be repre-
sented by bij = πi × αj + βj. Using the same arithmetic properties as in the
former proofs, the mean and deviation for each condition ci are:

µcj = αj × µπ + βj

σcj = αj × σπ
And the standardized values for bij can be expressed as:

b̂ij =
bij − µcj
σcj

=
πi × αj + βj − αj × µπ + βj

αj × σπ
=
πi − µπ
σπ

The mean and deviation for the virtual condition are the following:

µρ = µπ × µα + µβ

σρ = µα × σπ
And the standardized values for the virtual condition:

ρ̂i =
ρi − µρ
σρ

=
πi × µα + µβ − µπ × µα − µβ

µα × σπ
=
πi − µπ
σπ

= b̂ij

Again, the standardized values for the virtual condition match up with the
standardized values for the original conditions. Therefore, VEt will also be
zero for those biclusters following a perfect shifting and scaling pattern. �

These results confirm that VEt is capable of recognizing combined pat-
terns in gene expression data. While MSR is only capable of detecting shift-
ing patterns, and VE cannot recognize both kind of patterns simultaneously,
VEt has been proven to go beyond this other two measures.
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6.5.2 Noise Robustness Analysis

This section discusses the use of VEt for bicluster evaluation, in comparison
with other evaluation measures, such as VE and MSR. In particular, we study
the value of VEt for those biclusters in which the presence of patterns is not
perfect. That is, when the tendency of the data in a bicluster is similar to a
perfect pattern but does not completely match with the equation 6.13.

In order to check the behaviour of VEt whenever a bicluster does not
follow a perfect pattern, we add an additive term εij to the combined pattern
equation. The meaning of this new term corresponds to the error made by
the assumption that the bicluster can be represented by a perfect pattern.

bij = πi × αj + βj + εij (6.14)

It is possible therefore to study the variations produced to VEt depending
on the values of εij. Nevertheless, it is not so simple due to the huge amount
of situations depending on the distribution and the magnitude of the εij
values in the data matrix.

In two specific situations the value of VEt will not be affected when
the errors could be included in the former equation 6.14. These two cases
correspond to those in which εij values are either a constant or constants per
conditions (rows). In both cases it is possible to eliminate the term εij from
the equation, since it can be considered to be a part of βj.

Nevertheless, the cases in which εij cannot not be included in the perfect
pattern equation are very difficult to study analytically. For this reason, we
have performed a test to check the tendency of the VEt values with regard
to the error values. This test consist of the addition of random errors to a
synthetic bicluster with perfect shifting and scaling patterns. The original
bicluster is the one shown in Figure 4.3. Specifically, we have generated 100
synthetic biclusters adding random errors to the bicluster in the figure, and
we have repeated this process 200 different times, varying the amplitude of
the errors from one time to another. We start adding negative errors in
the range of [−10, 0], and obtain 100 different biclusters. Then we decrease
the amplitude by 0.1 and repeat the process (range [−9.90, 0]). Once the
amplitude of the errors has reached the zero value, we start again generating
biclusters with positive errors, increasing the amplitude from 0.1 up to 10.
The whole process produced 100 sets of 100 biclusters with negative errors
and 100 sets of 100 biclusters with positive errors (built using the same
strategy as for negative). Therefore, the random errors have been drawn
from an uniform distribution corresponding to the ranges. Note that the
type of the error values is a double type. This introduces more diversity in
the distribution of the error data.
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Figure 6.4: VEt behaviour in biclusters with errors.

Within the process, we evaluate each produced bicluster using the three
measures: MSR, VE and VEt. Then we obtain the mean of each measure
for each group of 100 biclusters of the same range of errors. This data has
been represented in Figures 6.4, 6.5 and 6.6, where the x-axis represents the
mean of the error for each amplitude (this value matches up with the value
in the middle of the range of errors) and the y-axis corresponds to the mean
of the specific measure for each figure.

From Figure 6.4 it is possible to observe that VEt presents a linear de-
creasing tendency in relation to the amount of error in a bicluster. In other
words, the similar a bicluster is to a perfect pattern, the lower its VEt val-
ue will be, and we can establish a linear relationship between VEt and the
amount of error. Nevertheless, it is not possible to come to the same conclu-
sion for either VE or MSR. Figures 6.5 and 6.6 depict the connection of the
errors with VE and MSR, respectively. Although the general tendency seems
to be that both measures are higher for biclusters with higher error values,
we cannot establish any correspondence between them. In both figures it is
possible to see some cases in which the mean of the biclusters with errors is
lower than the original bicluster.

VEt thus outperforms both MSR and VE efficiency for identifying be-
havioural patterns in synthetic data. Next chapter proves that VEt is also
efficient when working with real data from gene expression microarrays.



156 Chapter 6. Standardization-based Evaluation Measures

0,198

0,199

0,2

0,201

0,202

0,203

0,204

0,205

0,206

0,207

-6 -4 -2 0 2 4 6

V
E 

av
er

ag
e 

va
lu

es
 

Means of εij 

Figure 6.5: VE behaviour in biclusters with errors.
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Figure 6.6: MSR behaviour in biclusters with errors.

6.6 Conclusions

In this chapter we have presented three different evaluation measures for bi-
clusters, being all of them based on standardization procedures. The goal
of an appropriate quality metric is to capture the tendencies of the expres-



6.6. Conclusions 157

sion levels according to the patterns described in chapter 4, where the more
general situation has been proven to be depicted by the combined shifting
and scaling pattern. The standardization mechanism we used allows the ten-
dencies comparison, rather that their particular numerical values. Another
advantage of using this mechanism is that there is no need of performing a
previous standardization of the input data matrix.

According to the results of both analytical and experimental studies, the
evaluation measure presented in last section (VEt) is the more efficient one,
since it is the only one able to capture shifting and scaling tendencies simul-
taneously in a bicluster. For a more elaborated discussion on the proposals
in this chapter we refer the reader to the general conclusions in chapter 8.





Chapter 7

Evolutionary Biclustering
based on Expression Patterns

In section 6.4, VE and MSR were incorporated into a multi-objective evo-
lutionary biclustering algorithm. Nevertheless, a multi-objective approach
based on the individuals dominances is not necessarily the best option for
the biclustering problem. Using dominances, individual fitness is not con-
served through generations. That is, individuals with the same genotype in
different populations may not have the same fitness, due to the dominance
concept effect on the evaluation. Furthermore, a multi-objective approach
such as the one presented in the above chapter does not allow establishing
any kind of prevalence among the different objectives. However, it may be
interesting to prioritize some bicluster features over others. Depending on
the microarray under study and also its biological or biomedical application,
some users may prefer smaller biclusters but with a high gene variance, while
other ones may prioritize the biclusters size over gene variance.

We present here a fully customizable evolutionary biclustering algorithm,
named Evo-Bexpa (Evolutionary Biclustering based on Expression Patterns).
VEt has been used as the bicluster coherence evaluation measure, together
with other objectives such as the bicluster volume, gene variance or over-
lapping level. The algorithm can be easily configurable towards obtaining
results with the desired characteristics, according to the user preferences.
Furthermore, new user-defined objectives can also be incorporated into the
search without any difficulties, which makes our algorithm fully customizable.
Moreover, Evo-Bexpa has been parallelized in two different spots which were
the most expensive computationally.

Experiments on both synthetic and real datasets have been conducted,
demonstrating Evo-Bexpa abilities to obtain meaningful biclusters. Synthetic
experiments have been designed in order to compare Evo-Bexpa performance
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with five other approaches when looking for perfect patterns. Experiments
with four different real datasets also confirm the proper performing of our
algorithm, whose results have been biologically validated through Gene On-
tology.

7.1 Biclusters Evaluation in Evo-Bexpa

The problem of finding a single bicluster according to several objectives cor-
responds to a multi-objective optimization problem, in which two or more
conflicting objectives need to be optimized. The strategy of constructing
a single Aggregate Objective Function (AOF) has been adopted in order to
solve this multi-objective problem. This way, it is possible to specify the
relative relevance of each objective in the bicluster evaluation, allowing thus
our algorithm to be configurable.

This section details the biclusters characteristics taken into account in
their evaluation. In our approach we have individualised four different objec-
tives, attending to the extent to which a bicluster follow a perfect correlation
pattern, its size, overlapping amount among different solutions and mean
gene variance.

Transposed Virtual Error (VEt) explained in section 6.5 has been used as
the quality measure for biclusters, being one of the most important objectives
in the fitness. It is based on the concepts of expression patterns and quantifies
the degree of correlation among genes in a bicluster. VEt is always positive,
being its optimal value equals to 0.

VEt has been proven to be efficient to recognize both shifting and scaling
patterns in biclusters either simultaneously or independently and it has also
been proven to present a linear increasing behaviour when the amount of
error in a bicluster gets bigger, measured according to the distance from its
nearest perfect pattern.

7.1.1 Bicluster Volume

Bicluster volume is defined as the product of the number of genes and the
number of samples. At this point we have two contrary objectives to be
optimized. On the one hand, VEt has to be minimized and normally the
smaller a bicluster is, the lower VEt will be. On the other hand, the volume
has to be maximized and the general tendency is that bigger biclusters will
have bigger values for VEt. In order to design the volume term for the fitness
we took into account the following issues:
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• Use of a logarithmic scale. Little changes in the number of rows or
columns would not have a significant effect, depending on the bicluster
size.

• Two separated terms for number of genes and conditions. This is neces-
sary for avoiding too unbalanced biclusters, but also desirable in order
to allow to configure each dimension size independently. Note that bi-
clusters in which one dimension is very small are more probable to be
nearer to a perfect pattern, and therefore, they have low VEt values.
For this reason, it is preferable to optimize the size of both dimensions
independently, thus avoiding obtaining biclusters made up of a great
numbers of genes and only a few samples.

• Fixed range. The range of the values of the functions controlling both
dimensions should not be dependant on any parameter value.

The final design of the term for the volume is the one shown in equation
7.1, where |I| and |J | refer to the number of genes and conditions, respec-
tively, while wg and wc are the configuring parameters for both dimensions.

V ol(B) = (
− ln(|I|)

ln(|I|) + wg
) + (

− ln(|J |)
ln(|J |) + wc

) (7.1)

Those terms whose constant value (wg or wc) is greater decrease slower.
Depending on the value of the constant used, the term will have more or less
influence over the fitness function at the beginning of the algorithm, since
initial biclusters are small and they grow along the evolutionary process. At a
certain point, increasing the number of rows or columns for a certain solution
would not compensate the lose of quality, according to the rest of objectives.
The moment in which the algorithm stops increasing the size of the solutions
and focuses on improving the quality depends on the value of the constants
used. The smaller these constants are, the sooner the algorithm will stop
increasing the size. Figure 7.1 represents the term for the number of genes
in equation 7.1, for different values of the constant wg. It can be clearly
seen that for the smaller value of wg represented (wg = 0.25), the function
decreases slower from a smaller value of the number of genes than for greater
values of wg.

Although we have found default values for the constants for both di-
mensions (rows and columns) that allow to obtain good solutions in every
expression matrix we have tested, it is very easy to modify the fitness func-
tion in order to obtain solutions of different sizes if it is desirable. Increasing
the constant associated to rows (wg) will produce biclusters with greater
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Figure 7.1: Genes size term in volume evaluation.

number of genes, while increasing the constant associated to columns (wc)
will produce biclusters with more experimental conditions.

7.1.2 Overlapping among Biclusters

Overlapping differs from VEt and volume in the sense that it cannot be
evaluated on a bicluster by itself.

As it has already been mentioned in previous chapters, overlapping among
biclusters is usually permitted but controlled in the literature. The most pop-
ular way in which overlapping is controlled within the biclustering communi-
ty is to replace the elements contained in each found bicluster with random
numbers. This strategy was initially proposed by Cheng & Church (2000)
and has been usually adopted in sequential approaches, where one bicluster
is obtained at a time.

In order to avoid the problems derived from the random replacement
strategy (see sections A.1.1 and A.3 in appendix A), in this work we have
adopted a weight-based strategy , where a matrix of weightsW the size of the
microarray is initialized with zero values at the beginning of the algorithm.
Every time a bicluster is found, the weight matrix is updated increasing by
one those elements contained in the bicluster. In order to limit the overlap
among biclusters, this matrix is used in the corresponding term of the fitness
function as in equation 7.2, where I and J refers to the sets of rows and
columns in the bicluster B, respectively. W(eij) corresponds to the weight
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of eij in W and nb is the order of the found bicluster. This way, we are
being more permissive with the overlapping of latest biclusters. Appendix
A includes a modification of the original CC algorithm (Cheng & Church
(2000)) named CC-R, where this overlapping approach has been used to
compare the results of CC algorithms with those of CC-R. CC-R follows a
similar strategy to the one in CC, but replacing the random replacement by
this weight-based approach.

Overlap(B) =

∑
i∈I,j∈JW(bij)

|I| × |J | × (nb − 1)
(7.2)

7.1.3 Gene variance

Biclustering was first defined by Hartigan (1972), although it wasn’t applied
to microarray data. The aim was to find a set of sub-matrices having zero
variance, that is with constant values. Therefore, Hartigan used the variance
of a bicluster to evaluate its quality. However, when working with gene
expression data, it is preferable to obtain biclusters in which gene variances
are high. This way, gene variance is used in biclustering of microarray data
to avoid obtaining trivial biclusters, favouring those solutions in which genes
exhibit high fluctuating trends. Gene variance of a bicluster is given by the
mean of the variances of all the genes in it, as in equation 7.3.

GeneV ar(B) =
1

|I| · |J |

|I|∑
i=1

|J |∑
j=1

(bij − µgi)2 (7.3)

Existing biclustering approaches deal with gene variance in different ways.
For instance, Cheng and Church used a threshold value δ as an upper limit
for their evaluation measure. This way, they search for biclusters with the
maximum possible values for MSR below δ, rejecting thus trivial solutions in
which there are no expression changes across the samples. Nevertheless, using
such a limit presents a clear drawback, since δ has to be computed for each
database before applying the algorithm (see section Biclustering approaches
based on Evaluation Measures).

In our proposal, using VEt as a single objective would produce biclusters
in which gene variance is considerable low. However, if VEt is combined with
volume constraints favouring bigger solutions and overlapping control, the
obtained results may not have so low variance. Despite this fact, we have
also designed a term for controlling gene mean variance within the fitness
function. This new term consists in the inverse of the gene mean variance
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in equation 7.3, since biclusters with higher gene variances are preferred and
the fitness is going to be minimized in the algorithm.

7.2 Evolutionary Algorithm

Evolutionary Algorithms (EAs) are classified as population-based meta-heu-
ristics for combinatorial optimization, iteratively trying to improve a candi-
date solution with regard to a given measure of quality. In Evo-Bexpa, the
measure of quality for biclusters will be given a combination of the objectives
presented in the former section. EAs start with a set of possible solutions
instead of a single one. This characteristic allow genetic algorithms to ex-
plore a larger subset of the whole space of solutions, at the same time as it
helps them to avoid becoming trapped at a local optimum. These reasons
made genetic algorithms very suited to the biclustering problem. Evo-Bexpa
follows a sequential covering strategy, obtaining a single bicluster each time
the evolutionary procedure (Bexpa) is executed. Therefore, it has to be run
n times if n biclusters are desired, where n is an user-defined parameter.

Starting by an initial population representing different solutions, genetic
algorithms select some individuals and recombine them to generate a new
population of individuals. This process is repeated for a number of genera-
tions until the algorithm converges or certain criterion criteria is met.

Algorithms 5 and 6 show the pseudo-codes of both the sequential (Evo-
Bexpa) and genetic (Bexpa) strategies, respectively. Evo-Bexpa (Algorithm
5) consist in iteratively invoking Bexpa as many times as biclusters are de-
sired from an input matrix M. An initially empty list L is used to store
the biclusters returned after each Bexpa invocation (line 1 in Algorithm 5).
The matrix of weights W explained in section for the overlapping control is
also initialized with zero values in line 2. This way, after a new bicluster is
obtained in the nb iteration (line 5), it is stored in the list L (line 6) and W
is also updated by incrementing in one unit those elements contained in the
bicluster in W . Finally, when the n biclusters have been found, the whole
list is returned by Evo-Bexpa. Note that the order of the biclusters in the
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output list does not reflect their quality nor their biological relevance.

Algorithm 5: Function Evo-Bexpa
input : M: expression matrix,

n: number of biclusters
output: L: list of n biclusters

1 L ← {};
2 nb ← 1;
3 matrix of weights W ← {};
4 while nb <= n do
5 bicluster b ← Bexpa(M,W,nb);
6 L ← L ⊕ b;
7 updateWeightMatrix(W,b);
8 nb ← nb + 1;

9 return L;

Algorithm 6: Function Bexpa
input : M: expression matrix,

W: matrix of weights,
nb: order of bicluster

output: b: new bicluster

1 Pop ← initializePopulation();
2 while stopping criteria are not met do
3 NextPop ← {};
4 NextPop ← NextPop ⊕ best(Pop);
5 NextPop ← NextPop ⊕ mutate(best(Pop));
6 repeat
7 parents ← selectForCrossOver(Pop);
8 offspring ← crossover(parents);
9 mutateWithProbability(offspring);

10 NextPop ← NextPop ⊕ offspring;

11 until numCrosses is reached ;
12 repeat
13 offspring ← selectParentForReplicate(Pop);
14 mutateWithProbability(offspring);
15 NextPop ← NextPop ⊕ offspring;

16 until numReplicates is reached ;
17 Pop ← NextPop;

18 b ← best(Pop);
19 return b;
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1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 

genes conditions 
 

Figure 7.2: Binary string for individuals representation.

Bexpa (Algorithm 6) starts with the initialization of the population in line
1, followed by an iterative process for the search of a single bicluster. The
whole process consist in repeatedly replace the current population with an
evolved one, until certain criteria is met (lines 3 to 17). Each of this replace-
ments is called a generational change, and it is explained in section 7.2.2,
after the individuals encoding and initialization strategies are introduced.

In our Bexpa implementation, initial population and generational change
strategies have been parallelized to improve time performance, aiming at
maximizing the parallelization factor, represented by the time consumed of
the equivalent non-parallel algorithm divided by the time consumed by the
parallel one. In both cases, there exists no communication among the dif-
ferent activities, thus reducing synchronization and coordination times. Fur-
thermore, we have no shared resources for writing, thus avoiding concurrent
accesses.

7.2.1 Individual Encoding and Initialization

The first task when choosing a genetic algorithm for solving any problem
is to decide an appropriate individual or chromosome representation for the
possible solutions. We have adopted the same individual representation in
other evolutionary biclustering works, where each bicluster is represented by
a fixed sized binary string in which a bit is set to one if the correspond-
ing gene or sample is present in the bicluster, and set to zero otherwise.
Figure 7.2 shows an example of a bicluster individual made up of 5 genes
and 3 experimental conditions, while the microarray it has been extracted of
contains 11 genes and 5 conditions. This way, indexes from 1 to 11 in the
string representation refer to the same indexes of the genes in the microar-
ray. Nevertheless, condition indexes in the microarray might be computed
by the difference of the total number of genes. For example, position 13 of
the bicluster individual in Figure 7.2 corresponds to the second experimental
condition in the microarray.

Initial population procedure is also essential in every evolutionary algo-
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rithm. Depending on the adopted strategy, the algorithm may converge to
different solutions. Also, a suitable initial population strategy can even speed
up the convergence (Toğan & Daloğlu (2008)).

Other evolutionary biclustering approaches have adopted a totally ran-
dom initial population generation (Mukhopadhyay et al (2009a)), where ini-
tial solutions are made up of a random number of elements (genes and sam-
ples) randomly chosen from the microarray, or also random strategies in
which the chromosomes are made up of only one element (one gene and one
condition)(Divina et al (2012)) from the microarray. In our experimental
tests on synthetic data, we found that these kind of initializations did not
give the algorithm an initial space solution good enough to come up to the
best solution. Nevertheless, our algorithm always converged to the best so-
lution when the initial population contained at least one 3×3 sized bicluster
representing a partial solution. That is, this 3 × 3 sized bicluster is a sub-
matrix of the solution. Therefore, the initial strategy we have adopted con-
sists in randomly generating individuals which represent 3× 3 sub-matrices,
henceforth seeds. The key is to generate much more seeds than the size of
the population and then select the best ones. In fact, it is quite easy to
compute the number of seeds needed to increase the probability that some of
them are part of the solution, if it is known beforehand. The probability of a
randomly generated seed to be part of the solution can be computed as the
number of possible seeds in the solution divided by the number of possible
seeds in the whole data matrix, as in equation 7.4, where N , M , |I| and |J |
are the number of rows and columns of the microarray data matrix and the
solution, respectively.

Favorable seeds

Total seeds
=

(|I|
3

)
×
(|J |

3

)(
N
3

)
×
(
M
3

) (7.4)

Thus, our algorithm computes the number or seeds needed in order to
at least one of them is a part of the solution. This procedure can only be
performed with synthetic data, but it also gives us an idea of the number of
seeds to generate in the case of real data.

The initialization procedure is carried out once per bicluster. Neverthe-
less, when looking for very small biclusters, or when the size of the microarray
is very big, this initialization could take a very long time. We have therefore
parallelized this phase using a pool of threads the size of the available cores
in the computer, creating afterwards as many activities as cores. The task of
each activity will be to generate a number of seeds such that the total num-
ber of seeds are generated by all the activities. This activities are therefore
submitted to the pool of threads and the results are gathered up once they
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have finished.

7.2.2 Generational Change

Generational change is the mechanism that allows the population to improve
its individuals, according to the fitness function and trying to converge to
the optimal solution (lines 3 to 17 in algorithm 6). For each generation, the
new population is formed by incorporating individuals from the previous one
in several ways: replicating themselves, being mutated, being crossed with
other(s) individual(s) or combining some of these operators.

The next population in Bexpa is created by firstly adding the best indi-
vidual of the current population to the next one, as it can be seen in line 4
of Algorithm 6. This process is called elitism and is usually applied in order
to ensure the convergence of the algorithm (Coello (2006)). Also, a mutated
copy of the best individual is incorporated into the next population (line
5). The rest of individuals are generated by selecting one or two individuals
and applying crossover or/and mutation. Selection is based on the use of
the fitness function together with a random component. In our approach, we
have used tournament of size 3 as selection mechanism (Floreano & Mattiussi
(2008)). A given percentage of the remaining individuals are generated by
the crossover of two previously selected chromosomes (lines 6 to 10), while
the rest of individuals that will complete the population correspond to repli-
cations (lines 11 to 14). The resulting offspring is mutated with a certain
probability in both cases.

Three distinct crossover operators are used in our algorithm with equal
probability: one-point crossover (Figure 7.3), two-points crossover (Figure
7.4), and uniform crossover. The first two operators select one or two po-
sitions at random, respectively, and interchanges the genetic code of the
individual chromosome of both parents for creating the offspring, using the
random positions as delimiters. In Figure 7.3, the first three elements of the
offspring are taken from the first parent, while the rest of the elements are
inherited from the second one, being the crossover position the third one.
Figure 7.4, on the other hand, represents the two-points crossover, in which
two different positions are used to create the new offspring. Elements before
the first position and after the second one are taken from the first parent,
while the elements in the middle are inherited from the second. In the uni-
form crossover, each position of the offspring is copied from one of the two
parents, being both possibilities equally probable.

We have also applied two different mutation operators: the simple and the
uniform ones, being the probability of the uniform mutator is much lower due
to the fact that every position of the bit string is a candidate to be mutated in
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1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 

1 0 0 1 1 0 0 1 

parent 1: parent 2: 

offspring: 

Figure 7.3: One-point crossover.

1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 

1 0 0 1 1 0 0 1 

parent 1: parent 2: 

offspring: 

Figure 7.4: Two-points crossover.

the uniform mutation. Simple mutation, on the other hand, selects a random
position of the individual chromosome and is mutated or not depending on
the given probability. In both kind of mutations, if the selected candidate
is finally mutated, its value is modified from 0 to 1 or the other way round,
depending on its original value.

Bexpa iterates for a predefined number of generations, although if there is
no significant improvement after a certain number of consecutive generations,
the execution is stopped. Crossover and replications percentages, as well as
mutation probabilities and the number of generations have been set exper-
imentally, although all of them are input parameters for the evolutionary
algorithm and can be modified by the user.

Computing the properties of the individuals detailed in section 7.1 is the
most time-consuming task in the algorithm, since performing the evalua-
tion of each chromosome implies mathematical operations over big-sized bit
strings. In order to avoid unnecessary repeated computations, the evaluation
is performed every time a new individual is produced, and all their values are
stored as internal properties until the individual is discarded. For example,
if a certain individual is replicated to the next generation without mutation,
its fitness is the same and there is no need to compute it again. Fortunate-
ly, the whole generational change process can be implemented using parallel
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computing, allowing us to parallelize the whole generational change process.
We have used again a pool of threads the size the number of cores in the com-
puter. In this case, each activity submitted to the pool would be responsible
for the creation of a new chromosome, together with its evaluation.

7.2.3 Fitness Function

After the different objectives taken into account in the bicluster evaluation
have been introduced, here we present the way in which they have been
combined to form the fitness function used in our algorithm for the evaluation
of the potential solutions. Although we have used the four different objectives
described above in our experiments, the fitness function is easily configurable
by adding new objectives in the form of a mathematical formula.

In the context of evolutionary algorithms, the fitness function is a partic-
ular type of objective function used to summarise, as a single figure of merit,
how close a given design solution is in order to achieve the set aims.

Equation 7.5 depicts the final fitness function used in our algorithm. Note
that the goal is to minimize the value of every term, in order to find big-sized
biclusters with a low value of VEt, high gene variance and hardly overlapped.

Φ(B) =
V Et(B)

V Et(M)
+ ws · V ol(B) + wov ·Overlap(B)

+ wvar ·
1

1 +GeneV ar(B)

(7.5)

Every term is weighted, except VEt which acts as the reference objective.
Nevertheless, the value of VEt for the bicluster has been divided by the
VEt value of the whole microarray. This is due to the fact that the range
of values of VEt depends of the values in each microarray. Although the
algorithm pursuit to minimize it, the weight of the other terms of the fitness
function would have to be recomputed when using a different microarray.
In order to avoid this situation, we divide it by the VEt value of the whole
microarray (M refers to the microarray data matrix).

Modifying the weights associated to the different objectives leads the al-
gorithm towards different kind of biclusters, according to their sizes, overlap-
ping amount or gene variance. All weights have been designed in the same
way; a lower value of a certain weight will result on biclusters with lower
values for the corresponding characteristic, and vice versa. For example, a
lower value of ws will lead to small-sized biclusters, while bigger values of ws
will result on big-sized biclusters. In the results section we provide default
values for every weight, which have been obtained experimentally and have
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Parameter Value

Generations 1500
Max. Generations without sign. improvement 150
Population size 200
Crossover probability 0.80
Mutation probability 0.20
Tournament size 3

Table 7.1: Evolutionary parameter setting for Bexpa.

produced meaningful results for all the databases under study. Also, we pro-
vide the user with a guidance on how the modification of the weights affect
the different characteristic of the obtained biclusters.

Note that it is quite simple to add new objectives to the fitness. A new
mathematical formula should be designed for each new bicluster feature to
be taken into account. This formula will be minimized when inserted into the
fitness function, and will also have a corresponding weight. In order to better
control the effect on the results, it is preferable that the range of values were
fixed, not dependant on the specific values of the microarray or bicluster.

7.3 Experimental Results and Discussion

This section presents a wide set of experiments performed to test the validity
of Evo-Bexpa, both on synthetic and real data sets. The results have been
compared with those obtained using five different approaches: OPSM(Ben-
Dor et al (2003)), ISA(Bergmann et al (2003); Ihmels et al (2004)), xMo-
tifs(Murali & Kasif (2003)), CC(Cheng & Church (2000)) and Bimax(Prelić
et al (2006)) (see section 4 for a description of each approach). All these
five algorithms have been executed using BicAT (Biclustering Analysis Tool-
box )(Barkow et al (2006)).

Next subsection presents an in-depth analysis on the performance of Evo-
Bexpa when modifying the different configuration parameters introduced in
section 7.1, as well as a study on the different parameters for the algorithms in
BicAT. In subsequent subsections, experiments carried out on both artificial
and real data sets are described. In order to perform a fair comparison, we
use the same evolutionary parameter setting in Bexpa, corresponding to the
most common configurable parameters in any evolutionary algorithm. This
setting is given in Table 7.1. The values of these parameters were obtained
after a number of preliminary runs on synthetic data sets aimed at testing
different parameter settings.
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7.3.1 Analysis of Parameters

Each biclustering approach needs different parameters to run. Although
default parameters are provided which should guide the algorithms towards
reasonable results, there is no detailed description on how their variations
affect the obtained bicluster, for any of them. In this subsection we first
describe the input parameters for each of the algorithms in BicAT (OPSM,
ISA, xMotifs, CC and Bimax), trying to clarify the characteristic of the
resulting biclusters affected by the modification of the different parameters.
After that, we present a study on the parameter sensitivity for Evo-Bexpa.

Analysis of Parameters for Algorithms in BicAT

Bimax uses an underlying binary data model which assumes two possible
expression levels per gene. Therefore, as a preprocessing phase, it is compul-
sory to discretize the expression values to binary values at a specific threshold
and with a specific scheme. All values above the threshold will be set to one,
all those below to zero. The discretization scheme defines if only down or
up-regulated genes (or both) will be considered.

The algorithm also takes as input parameters the minimum number of
genes and samples for the output biclusters. By specifying larger lower
bounds, fewer biclusters will be returned, reducing thus the computing time.
Default values for both the minimum number of genes and conditions have
been set to two.

CC algorithm takes as input parameter two different thresholds, δ as the
upper limit for MSR, which has already been mentioned, and α > 1 as a
threshold for the multiple node deletion phase. δ presents two main draw-
backs: its value depends on the input microarray and has to be computed be-
forehand (there is no common default value), and also the use of δ blocks the
algorithm from obtaining meaningful solutions Aguilar-Ruiz (2005); Pontes
et al (2009). Default value for α parameter has been set to 1.2, and the
authors claim that when it is properly selected, the multiple node deletion
phase is usually extremely fast. Nevertheless, there is no explanation on how
does this value affect the results. There are no criteria for finding an efficient
value for α either.

CC also receives as an input parameter the number of biclusters to obtain,
since it is based on a sequential covering strategy, as well as Evo-Bexpa.

OPSM approach is based on the formulation of a probabilistic model of
the expression data. As finding the best model is infeasible for real data, Ben-
Dor et al. use partial models and grow them iteratively. The algorithm takes
as input paramater the number of partial models passed for each iteration `.



7.3. Experimental Results and Discussion 173

According to the authors, increasing ` would improve results, although it will
come at a cost of a higher running time. Nevertheless, it is no clear in which
aspect does the modification of ` affect the obtained biclusters (size, quality
or other) in real data. Furthermore, they do not provide any instruction on
how to select an appropriate value for `.

The Iterative Signature Algorithm (ISA) receives three different input
parameters. Tg and Tc are thresholds for the resolution of the modular de-
composition of both genes and conditions, respectively. Tc is said to have a
minor effect on the results, and was set to 2 in all the analyses. Tg was varied
from 1.8 to 4.0 in steps of 0.1, in order to analyse the resulting stringency of
co-regulation between the genes. The default value for Tg can be assumed as
2.0. Although the authors perform an analysis on the influence of Tg on the
results on a specific datasetIhmels et al (2004), it is not straightforward to
see what will the influence be for any other datasets.

The third input parameter for ISA is the number of starting points that
the algorithm uses for randomly selecting a set of genes and iteratively refin-
ing this set until the genes and conditions in it are mutually consistent and
match the definition of a transcription module. Authors claim that using
a sufficiently large number of initial sets it is possible to determine all the
modules corresponding to a particular pair of thresholds. The default value
for this parameter is set to 100.

xMOTIFs looks for biclusters in which genes are expressed in the same
state across all samples. In order to differentiate biologically interesting
states, a maximum p-value parameter is used, considering only those states
whose p-value is less than the parameter (1× 10E − 9). Another parameter
α determines the minimum number of samples for biclusters, given as a
fraction of the total number of conditions, being its default value 0.05. Murali
and Kasif also make use of inner parameters to the algorithm such as the
number of seeds (ns), the number of determinants (nd) and the size of the
discriminating set (sd), as in Procopiuc et al (2002). The authors claim
that the quality of the results does not change much when those are slightly
varied.

Analysis of Evo-Bexpa Parameter Sensibility on Real DataSets

Input parameters for Evo-Bexpa were detailed in former sections. The num-
ber of parameters will depend on the number of objectives or bicluster char-
acteristics to optimize. In this approach, we have used 5 different configura-
tion parameters, which control the volume (wg, wc and ws), the amount of
overlapping (wov) and the gene variance (wvar).

Default values for Evo-Bexpa have been set experimentally by using
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a benchmark database and trying to reproduce previous results for this
database in the literature. Also, solutions with low proportions of the num-
ber of genes and high percentage of the total number of samples have been
favoured for the setting.

In order to deduce the parameter influence on each characteristic, we
have tested Evo-Bexpa modifying each configuration parameter from −100%
to +100% its value, in intervals of ±25%. Table 7.2 shows all the used
values, where the central row gives the default ones. So it means running
Evo-Bexpa 8 additional times per parameter, using each value of table 1 for
each weight, while maintaining the other weights at their default values, this
represents 41 experiments for each dataset. Furthermore, we have chosen four
different microarrays to study the parameters influence in diverse scenarios
(see table 7.4). All in all, for the purpose of the parameter influence analysis,
a total of 164 experiments over real datasets have been carried out, being
100 the number of biclusters to be obtained in each execution. All weights
must have a positive value, being 0.0 the value for which the corresponding
objective exerts no influence on the results. However, they can be set to any
positive value, even above +100% their default values, if more influence of
any bicluster characteristic is desired.

wg wc ws wov wvar
−100% 0.0 0.0 0.0 0.0 0.0
−75% 0.0625 0.125 1.25 1.25 0.025
−50% 0.125 0.25 2.5 2.5 0.05
−25% 0.1875 0.375 3.75 3.75 0.075

Default 0.25 0.5 5.0 5.0 0.1
+25% 0.3125 0.625 6.25 6.25 0.125
+50% 0.375 0.75 7.5 7.5 0.15
+75% 0.4375 0.875 8.75 8.75 0.175
+100% 0.5 1.0 10.0 10.0 0.2

Table 7.2: Experimental values for configuration parameters

In the following, parameter analysis is only presented for Embryonal tu-
mours of the central nervous system dataset (Pomeroy et al (2002)), in view
of results for the other datasets are similar and do not contribute any novelty
to the study.

Figures 7.5 to 7.9 represent the variations of the means and deviations
for all the different objectives (VEt, number of genes, number of conditions,
overlap and gene variance) when modifying each configuration parameter.
Each figure is made up of four different graphics which depict the influence
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of a certain weight over the aforementioned bicluster aspects. The main
graphic of each figure shows the variations of the means and deviations for
the main aspect affected by the weight modifications. Abscissa axis refers
to the specific weight values, according to table 7.2, while the ordinates axis
depends on the configuration parameter under study. For example, in the
first three figures (7.5 to 7.7 ), vertical axis corresponds to the means of the
number of elements in the biclusters (genes or samples). At the right side of
the main graphic, the way in which the variations of the parameter affects
the other characteristics has also been represented.
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Figure 7.5: wg influence over the different bicluster features.
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Figure 7.6: wc influence over the different bicluster features.
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Figure 7.7: ws influence over the different bicluster features.

Means of the 100 biclusters represent the general tendency of the results.
Nevertheless, deviations cannot be disregarded. This is due to the fact that
although it is possible to favour some properties in the solutions, results
provided by Evo-Bexpa are diverse, obtaining thus biclusters in which their
properties vary in a range around the reported mean.

Although the modification of any configuration parameter not only affects
its corresponding aspect, it can be clearly seen that the greatest variations
in any characteristic are obtained by increasing or decreasing its associated
weight. Furthermore, some objectives are related in a negative way. Mean
gene variance, for instance, would be decreased if bicluster size is increased or
the overlap decreases. Therefore, it would be a good practice to slightly cor-
rect gene variance parameter when size or overlap parameters are adjusted,
or vice-versa. Other characteristics have different behaviours when adjusting
any other weights. The mean of the number of genes and conditions is quite
stable when modifying Wov in Figure 7.8, as well as overlap mean when wc
is adjusted, in Figure 7.6. In general, VEt increases whenever greater sizes
or less overlapping is preferred. It was the expected behaviour, since bigger
solutions would produce higher values of VEt, unless they were closer to a
perfect combined pattern. On the contrary, biclusters with higher mean gene
variance would have lower values of VEt, due to the reduction of their sizes
when higher variances are required.

Table 7.3 presents a summary of the configuration parameters influences
over the different bicluster characteristics. Each row represents the influence
of each configuration parameter in the first column over the characteristics
in the first row, where the behaviour of each row has been observed when
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Figure 7.8: wov influence over the different bicluster features.

increasing the corresponding weight from 0.0 to its maximum experimented
value (see Table 7.2 ). Symbol � represents large increments, ↑ medium
increments and � large decrements. Symbol = stands for no significant
variations, ↘↗ depicts a decreasing behaviour for low values of the weight,
turning to increasing for higher values of the parameter, while ↗↘ depicts
the contrary situation.

This table has been elaborated using the four real datasets in Table 7.4
and the aforementioned variations of the weights. This way, Table 7.3 rep-
resents the common behaviour observed in all the datasets under study.

weight VEt #genes #conditions overlap mean gene variance
wg � � = ↘↗ �
wc ↑ ↘= � = �
ws � � � ↘↗ �
wov ↑ = = � �
wvar � � ↗↘ ↘↗ �

Table 7.3: Qualitative influence of the configuration parameters over the
different objectives.

In short, Evo-Bexpa parametrization allows the user to specify prefer-
ences on biclusters features, by adjusting the corresponding weight(s). The
recommended procedure consist in first run the algorithm using the default
configuration, correcting afterwards those weights needed to reach the de-
sired results in terms of the objectives. In order to select an appropriate
correction, Figures 7.5 to 7.9, together with the information in Table 7.3
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Figure 7.9: wvar influence over the different bicluster features.

should be used, being aware of the implications that each weight variation
has on the other bicluster aspects.

7.3.2 Synthetic Data Experiments

In order to test the effectiveness of Evo-Bexpa to find biclusters following
shifting and scaling patterns, we have carried out a set of experiments in-
spired on the works of Mukhopadhyay et al (2009b) and Bozdağ et al (2010),
where perfect synthetic biclusters with shifting or scaling tendencies were
inserted into artificial data sets. In a more general purpose, we have used
combined patterns (shifting and scaling simultaneously) for biclusters gener-
ation. These biclusters have been hidden in several artificial data matrices,
with uniform random distributions.

We have chosen the size of one of the most tested benchmark microarrays
in biclustering: yeast Saccharomyces cerevisiae cell cycle expression dataset
Cho et al (1998), made up of 2884 genes and 17 samples, for the generation
of artificial matrices. We have also defined several sizes (genes × conditions)
for the inclusion of perfect biclusters: 20 × 10, 60 × 12, 100 × 13, 150 × 15
and 200 × 16. For each of these sizes we have generated a perfect bicluster
according to a combined shifting and scaling pattern. Each of these 5 different
sized perfect biclusters has been inserted into 5 different random in silico
microarrays in random positions. Thus, a total of 25 different case studies
constitute the first set of experiments, in which no noise has been introduced.

Furthermore, we have also generated the same number of experiments
adding noise to the data with random values generated from normal dis-
tribution, with mean equals to 0 and deviation equals to 0.25. All in all,
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there are 50 different experiments, 25 in which the biclusters follow a perfect
pattern and 25 in which random noise has been included into the data.

For each of the experiments, we have run the following 6 different biclus-
tering algorithms: OPSM, ISA, xMotifs, CC, Bimax and Evo-Bexpa present-
ed in this work. We have used default parameters to run all of them.

In order to check the extent to which the bicluster obtained by each
algorithm adjusts to the solution we have used match scores indexes for
both genes and conditions (Prelić et al (2006)) as performance measure. Let
B1(I1, J1) and B2(I2, J2) be two biclusters, then gene match score is defined as

SI(I1, I2) = |I1∩I2|
|I1∪I2| and condition match score is defined as SJ(J1, J2) = |J1∩J2|

|J1∪J2| .

Both indexes vary from 0, when both set of genes (or conditions) are disjoint,
to 1, when the sets totally match. This way, match score indexes can be use
to compute the degree of similarity of the sets of genes and conditions of
two biclusters. We have, therefore, compare each bicluster obtained with the
corresponding solution for all the executions using the six former algorithms.

Figure 7.10 displays the gene and condition match scores of the execu-
tions of the six algorithms. X-axis represents gene match scores and Y-axis
represents condition match scores. Each dot in the graphic refers the com-
parison of a bicluster found by each algorithm and the equivalent solution.
According to the gene and condition match scores definitions, the dots in the
right top corner of the graphic correspond to those obtained biclusters which
have a better match with its equivalent solution. OPSM, CC and Evo-Bexpa
are the algorithms with better results. In the case of Evo-Bexpa, there exists
exactly five biclusters which are not correctly found, and whose scores index-
es are below 0.6 and 0.3 for the conditions and genes sets respectively. We
have studied these results and have found that they correspond to the five
experiments in which the hidden biclusters are smaller (20×10) and noise has
been introduced. Only OPSM finds better solutions than Evo-Bexpa in these
experiments, while for the other cases Evo-Bexpa outperforms both OPSM
and CC. In fact, we have conducted a statistical test which confirms that
Evo-Bexpa outperforms the other five algorithms in finding perfect shifting
and scaling behaviours in synthetic data.

Match Score can also be used for measuring the degree of similarity
of two biclusters using former genes and conditions match scores index-
es. This way, we have used the bicluster match score index in order to
rank the effectiveness of the algorithms. Bicluster match score is defined as√
SI(I1, I2)× SJ(J1, J2), and varies from 0, when the biclusters B1 and B2

are disjoints, to 1, when B1 and B2 completely match.

Since our results do not follow a normal distribution, we have applied
Friedman as a non-parametrical test to carry out a comparison which involves
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six different methods. Friedman test ensures us that the results obtained by
the six algorithms are statistically different, with a p-value of 1.16−10. Also,
the raking provided by Friedman suggests the following order: Evo-Bexpa,
OPSM, CC, ISA, Bimax, xMotifs, which seems to be in concordance with the
representation in Figure 7.10. Furthermore, we have also performed a post-
hoc procedure in order stablish a comparison two by two using our algorithm
as the control method. In this comparison, we obtained for each of the other
five algorithms a p-value less than the alpha values returned by five different
post-hoc procedures (Holm, Holland, Rom, Finner and Li), which certifies
that our proposal Evo-Bexpa outperforms the other five algorithms in this
empirical study with a significance less than 0.05. STATService (Parejo et al
(2012)) has been used in order to perform these statistical tests.

7.3.3 Experiments on Real DataSets

Experiments on four different real microarrays have been conducted using
Evo-Bexpa and the five algorithms contained in Bicat toolbox: OPSM, CC,
ISA, Bimax and xMotifs. Table 7.4 specifies the details of the datasets, in-
cluding theirs sizes as well as references to their corresponding publications.
Yeast dataset is the smallest, made up of 2884 genes and 17 samples, and
represents one the most used dataset for comparison of biclustering tech-
niques. In fact, it is considered as a benchmark dataset for many researches.
Leukemia dataset is the one containing the higher number of samples, while
Steminal acts as the most unbalanced microarray, with the mayor number of
genes (26127) and only 30 samples.

Dataset Name #genes #cond. Ref.
Yeast Yeast Saccharomyces cerevisiae cell cycle 2884 17 Cho et al (1998)
Embryonal Embryonal tumors of the central nervous syst. 7129 60 Pomeroy et al (2002)
Leukemia Leukemia 7129 72 Golub et al (1999)
Steminal Steminal Cells 26127 30 Boyer et al (2006)

Table 7.4: Datasets used in the experimentation.

Table 7.5 presents the results for each dataset and algorithm using default
parameters in all cases. Results are represented by the number of biclusters
obtained, means and deviations of their volume (number of genes and ex-
perimental conditions), and means and deviations of their VEt values and
gene variance. Results have also been grouped by dataset, being the first
five rows those corresponding to the executions of OPSM, ISA, CC, Bimax
and Evo-Bexpa for Yeast microarray, respectively. Unfortunately, Bicat im-
plementations of xMotifs and Bimax approaches did not work properly for
every dataset in Table 7.4. Specifically, xMotifs could not be performed for
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Yeast and Steminal datasets, due to unexpected runtime errors. xMotifs
could neither be executed for Leukemia dataset, since it does not support
more than 64 samples, according to Bicat toolbox. In the case of Bimax, we
did not obtain results for either Embryonal, Leukemia or Steminal datasets
in reasonable time. This fact might be related to the datasets sizes, since the
mean of the biclusters sizes for the Yeast dataset using Bimax is greater than
75% of the size of the whole microarray, and the computational cost of gen-
erating quality biclusters of similar proportions for the other datasets may
be unfeasible. Nevertheless, Bimax has run properly for the Yeast dataset
and synthetic data matrices of the same size.

Dataset Algorithm NumBic Genes Conditions VEt Mean Gene Variance
OPSM 14 496.1± 791.1 8.6± 4.4 0.189± 0.051 1.39× 105± 2.23× 105

ISA 0 - - - -
Yeast 2884x17 CC 100 34.0± 64.2 7.6± 3.2 0.151± 0.048 3.20× 103±3.16× 103

Bimax 56 2297.6± 26.1 15.3± 0.5 0.207± 0.004 1.42× 105± 5.41× 103

Evo-Bexpa 100 44.0± 33.7 11.8± 3.9 0.051± 0.027 9.81× 102± 5.00× 102

OPSM 12 1151.5± 1809.1 7.8± 4.1 0.155± 0.072 2.51× 108± 4.22× 108

ISA 20 377.0± 191.0 2.7± 0.8 0.145± 0.053 5.98× 108± 3.85× 108

ET 7129x60 xMotifs 1000 2134.6± 830.4 5.0± 0.0 0.135± 0.021 9.61× 107± 3.74× 107

CC 100 53.1± 100.4 11.9± 7.9 0.310± 0.082 6.14× 104± 2.06× 105

Evo-Bexpa 100 22.5± 6.8 50.8± 5.7 0.011± 0.003 1.78× 107± 1.59× 107

OPSM 12 924.3± 1633.3 7.8± 4.3 0.103± 0.047 1.75× 108± 2.89× 108

Leukemia 7129x72 ISA 34 253.1± 172.1 3.1± 1.1 0.147± 0.049 3.31× 108± 2.17× 108

CC 100 53.5± 232.4 13.9± 8.6 0.265± 0.067 4.32× 104± 8.53× 104

Evo-Bexpa 100 18.4± 2.9 63.3± 5.9 0.008± 0.002 4.46× 106± 2.97× 106

OPSM 27 1170.6± 3274.1 16.2± 8.8 0.399± 0.163 1.73× 107± 5.55× 107

Steminal 26127x30 ISA 0 - - - -
CC 100 179.1± 813.6 13.0± 3.1 0.219± 0.071 4.84× 104± 1.19× 105

Evo-Bexpa 100 33.8± 17.9 26.3± 2.4 0.009± 0.004 4.80× 105± 2.69× 105

Table 7.5: Summary of experimental results for the microarrays in table 7.4.

Bimax generated 56 biclusters for Yeast dataset, all of them of a very
big size, containing almost the totality of the elements, both genes and con-
ditions. In fact, although we did not measure overlap for the algorithms in
Bicat, it must be certainly high, since biclusters are made up of a mean of
almost 2300 genes (out of 2884) and 15,16 or 17 experimental conditions (out
of 17). Studying correlations in this kind of biclusters is almost as difficult
as studying the whole dataset. It would even be easier to analyse the genes
and/or samples not contained in the biclusters.

Murali and Kasif’s xMotifs generates 1000 biclusters for the Embryonal
Tumours dataset, all of them have 5 samples and a decreasing number of
genes with the biclusters indexes. The first bicluster is made up of 4593
genes, more than the half of the whole dataset, while bicluster number 999
consist of 576 genes. We consider the number of biclusters to be cumbersome
for any post analysis, even more if it needs to be carried out manually. Also,
the number of genes per bicluster may again result too high for any specific



7.3. Experimental Results and Discussion 183

study.
ISA only found biclusters for Embryonal Tumours (20) and Leukemia

(12) microarrays. In both cases they are obtained with a decreasing number
of genes and conditions, being the second one a very low value, which we
consider almost useless in biclustering analyses (2 or 3 samples per bicluster).
The number of genes varies from 661 to 81 for the Embryonal database and
from 707 to 83 for Leukemia. For both datasets the biclusters obtained by
ISA have the greatest gene variance.

OPSM, together with CC and Evo-Bexpa produced results for the four
datasets. OPSM biclusters are characterized for having the greatest deviation
on the number of genes. In fact, OPSM bicluster’s sizes vary from a bicluster
containing a few genes and a great number of samples to the contrary: almost
the whole set of genes and very few samples (2×17 to 2422×2 for Yeast, 2×16
to 5491×2 for ET, 2×17 to 5208×2 for Leukmia and 6×30 to 15332×2 in the
Steminal case). From the biological point of view, only a small portion of
the obtained biclusters are interesting: those in the intermediate situations.

CC algorithm allows the user to choose the number of biclusters to obtain,
being 100 its default value. It is a sequential process in which random data
is inserted into the matrix. For these reasons, first biclusters are in general
greater than the following ones, being the smallest ones the last 10 biclusters.
VEt values are quite high, specially for Embryonal Tumours (the mean of VEt

is 0.3098) and Leukemia (VEt mean is 0.2652) datasets, where biclusters sizes
are not as big as to favour this range of values. Also, results produced by
CC are rather flat, since their gene variance is in the majority of the cases
the lowest of all the algorithms.

Default parameters for Evo-Bexpa in Table 7.2 have been adjusted to
produce biclusters with a very low proportion of genes but a high proportion
of samples, although there exists considerable diversity in the results, as
shown by the deviation. Only for the Yeast dataset Evo-Bexpa obtains the
biclusters with the lowest values of gene variance, while VEt is always much
lower, as preferred. In fact, VEt values for the biclusters found by Evo-
Bexpa is smaller than 0.1, for all datasets, whereas no other algorithm finds
biclusters with such a low VEt level. This is a very good achievement of our
approach given the importance of VEt as a quality measure for quantifying all
kind of patterns in gene expression data. Furthermore, although VEt values
increase for bigger biclusters or those with lower levels of overlapping, it can
be seen in figures 2 to 6 that they are never greater than the biclusters VEt

for the other approaches. The order in which biclusters are found with Evo-
Bexpa is not relevant, although if the weights associated to the overlapping
and size are too high Evo-Bexpa will produce big submatrices with no overlap,
increasing thus VEt considerably for the latest solutions.
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The great advantage of Evo-Bexpa with regard to the other algorithms
is its ability to adjust the result characteristics to user defined parameters.
Next subsection presents biological validation for biclusters obtained by Evo-
Bexpa, using the same parameter configuration introduced in section 7.3.1,
which confirms the validity of our approach.

7.3.4 Biological Assessment

In this section we present the biological validation results of Evo-Bexpa bi-
clusters using the biological information from Gene Ontology (GO). This
validation has been carried out as explained in section 4.6, consisting in get-
ting all the GO terms annotated to any of the genes in the bicluster B and
then apply a statistical significance test to determine if each term appear-
ance is relevant or not. A bicluster is said to be significantly enriched at any
confident level if there exists at least one GO term for which genes in the
bicluster are significantly annotated.

Among all the existing tools for the analysis of gene expression data using
GO (Khatri & Drăghici (2005)) we have chosen Ontologizer by Bauer et al
(2008) for assessing Evo-Bexpa biclusters due to its novelty (it has been
recently updated) and its suitability for performing the validation of a great
number of biclusters as a batch process. We have set Ontologizer up in order
to carry out a Term-for-Term analysis using Fisher’s exact test together with
the Bonferroni multiple test correction, corresponding to the most common
configuration for bicluster validation in the literature.

In order to check the influence of Evo-Bexpa configuration parameters on
the biological validation of the obtained biclusters, we have represented in
Figures 7.11 to 7.15 the number of significant biclusters (ordinates axis) for
each of the experiments detailed in section 7.3.1 and for each dataset, where
abscissa axis refer to the specific weight value, and the adjusted p-value has
been set to 0.05.

The main conclusion we can come up to is that there is no a common
behaviour embraced by the four different data sets and for each configura-
tion parameter. For example, the number of significant biclusters for the
Yeast dataset increases significantly whenever the number of genes (wg) or
conditions (wc) are increased, as well as the overall size (ws). Nevertheless,
when the overlap gets more penalized (Figure 7.14 ), the number of signifi-
cant biclusters for the Yeast dataset decreases. This is due to the fact that
biclusters sizes are affected by the overlapping weight, in the reverse way
(the more restrictive the overlapping amount is, the less elements the bi-
clusters contains). Figure 7.15 shows that variance weight variations do not
significantly affect the number of significant biclusters in the Yeast dataset.
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Figure 7.11: Number of significant biclusters for different wg values.
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Figure 7.12: Number of significant biclusters for different wc values.

Steminal dataset is the second one presenting more variations on the
number of significant biclusters when modifying the parameters values. It is
worth to note that Steminal is the only dataset for which the number of sig-
nificant biclusters varies significantly from more to less when increasing the
mean gene variance. This is related to the fact that when higher gene vari-
ances in biclusters are required, the size of the obtained biclusters decrease,
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Figure 7.13: Number of significant biclusters for different ws values.

as explained in section 7.3.1.

For Embryonal and Leukemia data sets the number of significant biclus-
ters is quite lower than for the other two data sets, in all the cases. In fact,
it rarely exceeds 20%. For both of them there no exist great variations when
modifying the different parameter values. It is interesting to mark that no
significant biclusters were found for the Embryonal datasets when wg, wc or
ws are set to zero (Figures 7.11 to 7.13 ).

In order to study the level of specificity (see section 4.6) of the terms to
which Evo-Bexpa biclusters have been annotated we have carried out three
different validations: taking the whole hierarchical graph into account, and
limiting the validation with the levels 3 to 6 and 4 to 7, both inclusive.

Table 7.6 presents the validation results for Evo-Bexpa biclusters using
the default configuration. For each type of validation the number of signif-
icant biclusters and the mean of their significant terms are given, for two
different adjusted p-value values: 0.01 and 0.05. As it can be seen in Table
7.6, the number of significant biclusters slightly varies from the validation
with the whole graph to the limited validations, meaning that the majority
of biclusters obtained by Evo-Bexpa contain genes that are not frequently
annotated to too general or too specific terms. For the Embryonal Tumours
dataset the number of significant biclusters does not even decrease with the
limited validations. The mean of significant terms to which genes in the bi-
clusters of the previous column have been annotated is also smaller for the
hierarchically limited validations. This was an expected result since those
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Figure 7.14: Number of significant biclusters for different wov values.
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Figure 7.15: Number of significant biclusters for different wvar values.

terms which are not in the specified levels have not been taken into account
in the study. Nevertheless, we consider the reduction on the number of sig-
nificant biclusters and terms to be minimal, locating Evo-Bexpa biclusters
in the central part of the GO graph.

In general, the validation carried out supports Evo-Bexpa effectiveness
for biclustering microarray data. In fact, significant biclusters have been ob-
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All levels Levels 3 to 6 Levels 4 to 7

#Bics #Terms #Bics #Terms #Bics #Terms
p-value

Yeast
0.01 32 5.969 32 5.125 31 4.387
0.05 41 6.878 40 5.625 40 5.225

ET
0.01 3 3.000 3 3.000 3 2.666
0.05 9 3.778 9 3.444 9 3.333

Leukemia
0.01 4 1.000 3 1.000 3 1.000
0.05 12 2.333 11 1.454 11 1.818

Steminal
0.01 18 4.056 16 2.750 13 2.231
0.05 27 7.111 26 5.269 25 4.200

Table 7.6: Validation results with GO hierarchy level limitations.

tained for each dataset at 0.01 and 0.05 levels provided that configuration
parameters are not set to zero. This fact also suggest the appropriateness
of the different chosen objectives in this work. Although the number of sig-
nificant biclusters may vary in a different way for different datasets when
modifying the different configuration parameters, Evo-Bexpa significant bi-
clusters correspond to significant terms in the central part of the GO graph.
This means Evo-Bexpa succeeds at finding biclusters whose significant terms
have an intermediate level of specificity.

7.4 Conclusions

In this chapter we have presented a new evolutionary algorithm for biclus-
tering of gene expression data named Evo-Bexpa. Evo-Bexpa makes use of
VE(t) presented in chapter 6 as the bicluster quality metric for guiding the
search. Furthermore, other objectives have been added to the individual
evaluation, being all of them configurable with parameters. This means that
the user has the possibility of choosing the importance of each objective,
depending on the desired results. We have also presented the results of an
extensive experimental set on both synthetic and real datasets, comparing
our approach with others existing in the literature. For a more elaborated
discussion on the proposals in this chapter we refer the reader to the general
conclusions in chapter 8.



Chapter 8

Conclusions and Future Works

This chapter summarizes the main conclusions of the work carried out during
the development of this PhD Thesis. Furthermore, we also describe future
works that we think will be a very interesting continuation of the ones carried
out.

8.1 Conclusions

Biclustering algorithms for microarray data aim at discovering functionally
related gene sets under different subsets of experimental conditions. Due
to the problem complexity and the characteristics of microarray datasets,
heuristic searches are usually used instead of exhaustive algorithms. Al-
so, the comparison among different techniques is still a challenge since the
obtained results vary in relevant features such as the number of genes or
conditions, which makes it difficult to carry out a fair comparison. Several
quality measures for biclusters have been proposed together with different
search heuristics. Nevertheless, none of the proposed quality measures is
able to recognize a perfect shifting and scaling pattern in a bicluster, which
describes the most general situation of gene correlation, according to the
literature. The availability of such a measure would also be useful for com-
paring the results of different biclustering approaches. This way, we centred
first our research upon the development of evaluation measures for biclusters
based on the expression patterns concepts.

Moreover, evolutionary environments have been extensively used in bi-
clustering, due to its appropriateness to the problem, where populations of
potential solutions allow the exploration of a greater portion of the search
space. Nevertheless, none of the existing approaches allow the user to choose
the objectives involved in the search and their relevances in the search. In
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this sense, we have also worked towards the development of a customiz-
able evolutionary biclustering approach, where different objectives might be
weighted by the user depending on the desired results preferences. This ob-
jectives include volume, gene variance or overlapping level among biclusters.
Furthermore, it would also be very easy for the user to incorporate new
objectives into the search.

Our contributions of these two areas of research are summarized below.

8.1.1 Bicluster Evaluation Measures

Our evaluation measures are all based on a previous standardization of the
bicluster, where the main idea is to shift the expression levels of all the genes
in the bicluster to a common range. The standardization mechanism will
also be responsible for soften every gene or condition behaviour, since the
most important aspect is to characterize its tendency rather than its partic-
ular numerical values. Furthermore, using an evaluation measure with this
characteristic would not be necessary to carry out a normalization process of
the data matrix before the search. Our two main contributions in this field
are Virtual Error (VE) and Transposed Virtual Error (VEt):

Virtual Error (VE)

The basic idea behind VE is to measure how genes follow the general tendency
within the bicluster. In order to capture this general tendency, a virtual gene
is first computed as a gene consisting of the arithmetic mean of all the genes
in the bicluster. Afterwards, both the bicluster and the virtual gene are
standardized, and VE measures the differences between every standardized
gene and the standardized virtual one.

Using this simple strategy, VE has been proven to be capable of dealing
with both shifting and scaling patterns, though not simultaneously. More-
over, unlike other metrics in the literature, VE does not need the use of a
threshold for rejecting biclusters, so that an algorithm using VE has less
constraints through the search.

In order to assess the validity of VE, we conducted experiments on nine
microarray datasets. For this, we have incorporated VE into a multi-objective
evolutionary strategy, where the other objectives were the gene variance and
the volume of the bicluster. We have compared the results of the previous
algorithm with two other settings of the algorithm. These last two settings
use the most popular measure for biclusters (MSR) instead of VE. Specifical-
ly, the first setting uses the recommended threshold for rejecting biclusters,
while in the latter version this thresholds was removed. This last version



8.1. Conclusions 191

of the algorithm was used in order to test whether the use of a too small
threshold would prevent the algorithm from finding interesting biclusters.

From these experiments we concluded that VE yields the algorithm ob-
taining good results on all the datasets. In general, biclusters found by VE
are characterized by a greater volume and gene variance. An interesting
result is that when using MSR for guiding the search together with the rec-
ommended threshold for each data set, the average VE obtained is lower
than when using VE. This is easily explained by the fact that low values of
MSR correspond to low values of VE. We have also confirmed that the use
of a threshold may prevent an algorithm from finding good results, when its
value is too small.

We have also conducted a biological validation of the results obtained
on three datasets. From this validation, it emerges that VE yields the dis-
covery of biclusters whose genes have a stronger functional coherence than
when using MSR. Moreover, when the algorithm used VE, it discovers more
significant biclusters, according to the adjusted p-value.

In general, we can conclude that VE is an effective measure for assessing
the quality of biclusters. In particular, VE is effective at recognizing biclus-
ters containing both shifting and scaling patterns as quality biclusters. The
same conclusions does not hold for MSR, which is negatively influenced by
the presence of scaling patterns. It follows that VE can be used effectively
within any heuristics for finding biclusters in gene expression data.

Transposed Virtual Error (VEt)

VEt represents an enhanced version of VE, allowing finding biclusters with
both shifting and scaling patterns simultaneously in gene expression data.
Since no previous evaluation measure for biclusters is able of identifying this
kind of pattern, VEt constitutes an important contribution to the topic.

VEt is computed similarly to VE but considering the transposed biclus-
ter. The idea here is to create a virtual condition instead of a virtual gene.
Afterwards, the differences between the standardized values for every condi-
tion and the standardized virtual condition are measured in the same way as
in VE.

Analytical proofs demonstrate the capability of VEt for detecting any
kind of perfect pattern in gene expression data. Furthermore, we have also
proved that VEt presents a linear relationship with the amount of error in a
bicluster, improving thus the behaviour of VE when a bicluster approximates
but does not follow a perfect pattern.

VEt has also been incorporated into a evolutionary search strategy and
tested against five microarray datasets. Since the algorithm used in this
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experimentation constitutes a different contribution in this PhD Thesis, ex-
perimental results will be concluded later in this section.

8.1.2 Evolutionary Biclustering of Gene Expression
Data

Although searching for biclusters in microarrays usually involves using several
objectives, a multi-objective approach based on the individuals dominances
is not necessarily the best option. Using dominances, individual fitness is not
conserved through generations, and individuals with the same genotype in
different populations may not have the same fitness. Furthermore, a multi-
objective approach does not allow establishing any kind of prevalence among
the different objectives. However, depending on the microarray under study
and its applications, it may be interesting to prioritize some bicluster features
over others.

In order to overcome these issues, we have developed a new evolutionary
algorithm for biclustering of gene expression data named Evo-Bexpa. There
exist two main advantages over other existing approaches: the use of an
evaluation measure able to detect shifting and scaling patterns (VEt), and the
possibility of specifying user preferences on some characteristics of the results,
specifically the number of genes, number of conditions, overlapping amount
and gene mean variances. This way, if any previous information related to
the microarray under study is available, the search can be guided towards
the preferred types of biclusters. Furthermore, other objectives can also be
easily incorporated into the search, as well as any objective may be ignored
by setting its weight to zero. Default values for the configuration parameters
are given in order to provide the user with quality results. Moreover, an
experimental study has been performed on four real datasets in order to study
the parameters sensibility and their influence over the different features. This
study concludes with an useful guide on how to customize the algorithm
depending on the user preferences.

Experimental results on both synthetic and real datasets confirm the
validity of our approach, where the results have been compared to those
obtained by five well-known biclustering algorithms. Evo-Bexpa has been
proven to outperform ISA, xMotifs, OPSM, BIMAX and CC in synthet-
ic experiments, where match scores indexes have been used for comparing
the obtained results with the solution. Regarding the experiments on real
datasets, Evo-Bexpa results have been biologically validated using different
levels in Gene Ontology hierarchy. This validation shows that significant bi-
clusters obtained by Evo-Bexpa correspond to neither too general or specific
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GO terms.

8.2 Future Works

As for future work, we are planning to design an improved version of Evo-
Bexpa which incorporates a local search for enhancing several solutions with
biological information. Furthermore, we are also planning to develop a more
robust system for the biclusters validation and interpretation, based on the
integration of different information sources. Both ideas are described in the
following.

8.2.1 Memetic Evo-Bexpa

Biological information from diverse databases, such as Gene Ontology (GO)
or KEGG (Kyoto Encyclopaedia of Genes and Genomes), is currently being
used for the validation of the biclusters obtained after applying any search
heuristic. Nevertheless, we consider it would be very interesting to use this
kind of information to guide the search towards meaningful solutions. The
idea would be to add a new objective to the bicluster evaluation based on
its biological significance. Using Evo-Bexpa it seems relatively simple to
carry out this task, since it has been specially designed to configure new
objectives. Nevertheless, several issues needs to be resolved beforehand, such
as connections to databases and time performance.

In order to perform biological validation of biclusters, not all available
resources and databases on the Internet have the same connection proce-
dure to access to the information. Some of them are only accessible via
web browsers, while some others allow connection via web services or even
the databases files are public for download. Furthermore, it is not frequent
that this databases themselves carry out the statistical tasks needed for the
validation of a group of genes. Nevertheless, there exists plenty of tools de-
veloped by external cooperators that perform different kinds of validations.
This way, the first task for improving Evo-Bexpa objectives using biological
information would be to study the different databases available as well as
their accessing possibilities and their corresponding existing tools.

Another important issue is related to the time performance for individ-
uals evaluation. Typically, individual evaluation is critical in evolutionary
algorithms, since it is performed many times for each generation. This way,
accessing to external data bases and carrying out the statistical operations
involved in the bicluster validation for each individual would be very expen-
sive computationally. For this reason, we think it would be a good idea to
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perform this validation-based evaluation only to a small number of individ-
uals, either in each generation or only in one of several populations. These
approximations would be very appropriate for an implementation based on
memetic algorithms (see section 5.4.2), also known as an hybridization of an
EA with local search.

8.2.2 Integrated Biological Validation and Interpreta-
tion of Biclusters

Different public biological databases for the verification and interpretation
of microarray analyses have been presented in section 3.2.4. We also dis-
cussed the inconvenience of having various sources of information, varying
from data formats to the specific contents. Integrating all these pieces of
information would significantly enrich both the validation and interpretation
of experimental results obtained from data mining techniques in the biolog-
ical context. In this sense, we plan to improve our validation mechanism,
where biclusters are validated using information retrieved from Gene Ontol-
ogy (GO) solely.

First step in this work would consist in making an in-depth study on the
many biological databases existing on the Internet, pointing out their more
interesting characteristics for our purpose. This study would also include
those existing integrated databases which join data from several sources ei-
ther in a navigational, warehousing or federations way. Furthermore, special
attention must be paid to accessing protocols and related software for each
alternative. With all this information gathered up, it would be easier to
come up to a decision on the best strategy for a complete validation and
interpretation of gene expression biclusters.
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Pontes B, Divina F, Giráldez R, Aguilar-Ruiz J (2008) A novel approach
for avoiding overlapping among biclusters in expression data. In: Eighth
International Conference on Hybrid Intelligent Systems, 2008, IEEE, pp
813–818
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Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioin-
spirados (MAEB 2010), pp 429–436
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Appendix A

Improved Biclustering on
Expression Data through
Overlapping Control

One of the most relevant differences between clustering and biclustering ap-
proaches is the inclusion of possible overlapped elements in biclusters, while
clusters do not typically allow one element to be part of two different groups.
This characteristic has been studied in chapter 4, where the majority of the
biclustering approaches reviewed use a diversity maintenance strategy in or-
der to permit but control the overlapping amount among different solutions.

The most popular way in which overlapping is controlled within the bi-
clustering community is to replace the elements contained in each found bi-
cluster with random numbers. This strategy was initially proposed by Cheng
& Church (2000) and has been usually adopted in sequential approaches,
where one bicluster is obtained at a time. The original idea behind is the
assumption that random values are unlikely to contribute to any future bi-
cluster. Nevertheless, this strategy presents several drawbacks due to this
elements masking, in which there is no real impediment for masked values to
be included in further solutions.

The study presented in this appendix shows that the original algorithm by
Cheng & Church (2000) wrongly estimates the quality of the biclusters after
some iterations, due to random values that it introduces. We also present
a modified version of the CC algorithm that improves the original one, as
proven in the experimentation. The improvement is based on the use of a
matrix of weights as the overlapping control mechanisms, instead of using
random replacement. Empirical results show that our method is effective in
order to improve the heuristic. It is also important to highlight that many
interesting biclusters found by using this improved approach would have not
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been obtained using the original algorithm. This study has been published in
the International Journal of Intelligent Computing and Cybernetics (Pontes
et al (2009)).

A.1 Overlapping Control Mechanisms

In this section we present the main drawbacks on using random replacement
for overlapping control. Furthermore, we also present a different overlapping
control mechanism based on the use of a matrix of weights and which does
not make any use of random values.

A.1.1 Random Replacement

Random replacement was originally used by Cheng & Church (2000) in their
algorithm, henceforth CC, where a substitution phase is performed any time
a bicluster is found. This phase masks in the input matrix those elements con-
tained in the bicluster with random values, aiming to prevent the algorithm
from including those elements in future solutions. This strategy succeeds in
avoiding the overlapping, however it presents two main drawbacks:

1. Being used in sequential approaches, as biclusters are discovered, more
and more elements of the original expression matrix are lost, since they
are substituted with random values. It follows that the expression
matrix the algorithm is working on contains more and more random
values as biclusters are being discovered. As a consequence, the algo-
rithm may return biclusters that are obtained using random values. If
a bicluster contains random values its computed MSR (or equivalent
evaluation measure) is not real, since it is influenced by the presence
of random values. This has a negative influence of the overall search
process, since the algorithm cannot compute the real values of MSR for
some biclusters. In the case of CC algorithm, these random values will
be later replaced by the original ones, which makes the output bicluster
of a different quality from the one the algorithm found.

2. Using random replacement some quality biclusters might not be found.
For instance, if gene i and condition j are contained in a bicluster B,
the element bij is substituted by a random value in the expression ma-
trix. This may prevent gene i to be included in other biclusters under
the same condition j, even if it could have improved the quality of the
bicluster, since some of its original expression values have been substi-
tuted by random values. In general, it is desirable to avoid overlapping
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among biclusters, but not at the cost of loosing possible important
interactions among genes.

These considerations show that the replacement strategy adopted by
Cheng and Church may, on the one hand, prevent the discovering of inter-
esting biclusters, and, on the other hand, yields the algorithm towards the
discovering of biclusters considered to be interesting only because of random
values they contain. This clearly illustrates the limitations of the replace-
ment policy adopted by Cheng and Church. These aspects represent our
main motivations for working out a new overlapping control mechanism.

A.1.2 Overlapping Control with a Matrix of Weights

In this section we present an overlapping control method based on the use of
a weight matrix for sequential biclustering approaches.

Given an expression matrixM, we say that two biclusters B1 and B2 are
overlapped if there is at least one element eij ∈ M such that eij ∈ B1 and
eij ∈ B2.

By controlling the level of overlapping among biclusters, we can decide
whether a bicluster may be considered as a significative one, with respect
to its overlapping percentage with the previously found biclusters. In our
approach, we control the overlapping by means of a matrix of weights W , in
a similar way to the approach adopted in Divina & Aguilar-Ruiz (2006). W
has the same dimension of the original expression data matrix, so that each
element W(eij) ∈ W represents a weight associated with eij ∈ M. Initially
all the elements of W are equal to zero, i.e., W(eij) = 0,∀i, j. Each time a
bicluster B is found by the algorithm, W(eij) is increased by one if eij ∈ B.
So, basically, W(eij) indicates how many biclusters contain the element eij.

It follows that this matrix can be used to measure the overlapping of a
new bicluster. We define the degree of overlapping of a bicluster B as:

P (B) =

∑
eij∈BW(eij)

V (B)
(A.1)

where V (B) is the volume of the bicluster B. P (B) will be high for a bicluster
whose elements are already contained in the previously found biclusters.

Since we aim at avoiding overlapping as much as possible, P (B) can be
used, in combination with MSR or any other evaluation measure, in order to
reject too much overlapped biclusters. In order to do this, we need to define
a criterion for establishing if P (B) is to be considered high. According to
equation A.1, 0 ≤ P (B) ≤ nb, where nb is the number of biclusters found so
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far at any iteration of the algorithm. Thus, the upper limit of P (B) will be
different in each iteration of the algorithm.

In order to use P (B) for rejecting biclusters in different iterations, it is
convenient that the range of values P (B) can assume is always the same in
all iterations. For this purpose in equation A.2 we define the overlapping
factor of a bicluster for the iteration nb.

Pnb(B) =

∑
i,j∈BW(eij)

V (B)× nb
(A.2)

Notice that Pnb(B) ∈ [0, 1], ∀nb. In this way, we can use Pnb(B) to reject a
bicluster B if Pnb(B) is higher than a certain threshold. Moreover, biclusters
found in later iterations are allowed to have more elements in common with
the former ones. This is because Pnb(B) tends to be smaller as nb increases.
In other words, the biclusters with high overlapping are penalized more in
the first iterations. By setting the overlapping threshold, the user can decide
the level of overlapping among the biclusters.

A.2 CC Algorithm

As already mentioned, the original algorithm of Cheng and Church (CC)
adopts a sequential covering algorithm in order to return a list of n biclus-
ters from an expression data matrix. In order to assess the quality of a
biclusters the algorithm makes use of MSR. This measure aims at evaluating
the coherence of the genes and conditions of a bicluster B. If a bicluster has
a mean squared residue lower than a given value δ, then we call the biclus-
ter a δ-bicluster. It follows that the smaller the value of MSR, the better
the bicluster is considered to be. If a bicluster has a MSR equal to zero, it
means that its genes fluctuate in exactly the same way under the subset of
experimental conditions, and thus it can be considered a perfect bicluster.

Algorithm 7 shows a scheme of CC algorithm. It takes as input the
expression matrix M and the threshold δ imposed on MSR. δ is used to
reject non δ-biclusters. A list L of δ-biclusters is returned as output.

After preprocessing the missing values ofM by replacing them with ran-
dom numbers (line 1) and initializing the list of bicluster (line 2), the bicluster
discovering process is repeated n times (lines 5-11). First, the bicluster B is
initialized to the whole matrix M. Next, the multiple node deletion phase
(line 6) produces a δ-bicluster Bδ. This phase is based on the elimination
of those rows or columns whose residue is higher than a certain value, de-
pending on the MSR of the current matrix. Later, the single node deletion
phase (line 7) removes the row or column from Bδ with the higher residue
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Algorithm 7: Cheng and Church’s original algorithm (CC).

input : M: expression matrix,
n: number of biclusters,
δ: threshold for MSR

output: L: list of n biclusters

1 preprocessMissingValues(M);
2 L ← {};
3 Bicluster B;
4 repeat
5 B ← M;
6 Bδ ← multipleNodeDeletion(B,δ);
7 B′δ ← simpleNodeDeletion(Bδ,δ);
8 B′′δ ← addition(B′δ,δ);
9 L ← L ⊕ B′′δ ;

10 substitution(B′′δ ,M);

11 until n iterations are reached ;
12 return L;

and returns B′δ. Next, the node addition phase (line 8) tries to enlarge the
current bicluster B′δ. This is done by adding those columns and rows that do
not increase the residue of the matrix above the threshold δ. The obtained
bicluster B′′δ is stored in the list L (line 9). Finally, the substitution phase
(line 10) replaces the elements of M that are contained in B′′δ with random
numbers. This substitution is applied in order to prevent overlapping among
biclusters, since it is very unlikely that elements covered by existing biclusters
would contribute to any future bicluster discovery.

Althougth this strategy seems to succeed in avoiding the overlapping,
it presents two main drawbacks described in section A.1.1. After having
performed a number of experiments, we have found that the percentage of
random numbers present in theM can be very high during the execution of
the algorithm. For example, for one of the datasets used in the experiments
(Yeast dataset by Cho et al (1998)), we found that after 80 biclusters had
been discovered, up to 50% of the elements of M had been replaced by
random values.

Another point that has to be considered is that CC makes use of a thresh-
old δ in order to reject biclusters: biclusters with MSR higher than δ are
rejected. However if some elements of the biclusters are random, the MSR of
this biclusters might be higher that δ, and thus be rejected. But again the
MSR is influenced by the presence of random values. The MSR of the same
bicluster with the original elements is different, and could therefore be lower
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than δ. Also the opposite case may arise, i.e., a bicluster with estimated
MSR lower than δ is accepted, but when the original values are used instead
of the random ones, the MSR might increase to a level higher than δ. In this
last case the bicluster should have been rejected.

Figure A.1 shows an example of such a situation. The bicluster repre-
sented in the figure has a MSR equal to 259.47. If the element shown in bold
were a random value and the original value were 153 the MSR of the bicluster
would drop to 0 when the MSR is computed with the original value. If a δ
equal to, e.g., 100 were used, the bicluster depicted in Figure A.1 would be
rejected, even if with the original values it represents a perfect bicluster.

B =


53 8 65 84
122 77 134 60
55 10 67 86
73 28 85 104
140 95 152 171


Figure A.1: Example of a bicluster containing a random element (showed in
bold). The original value of the element was 153.

The above considerations clearly show that the replacement strategy
adopted by Cheng and Church may, on one hand, prevent the discover-
ing of interesting biclusters, and, on the other hand, yields the algorithm
towards the discovering of biclusters considered to be interesting only be-
cause of random values they contain. This clearly illustrates the limitations
of the replacement policy adopted by Cheng and Church. These consid-
erations represented our main motivations for developing the overlapping
control methodology in section A.1.2 and also a modification on the original
algorithm of Cheng and Church introducing this new strategy.

A.3 Re-adaptation of Cheng & Church Algo-

rithm

In this section we describe the variations we incorporated to CC. We call the
resulting algorithm CC-R. The main variation is represented by the removal
of the substitution phase used in the original algorithm (line 10 in Figure 7),
and the incorporation of an overlapping control mechanism. Since in CC-R
elements contained in already found biclusters are not replaced by random
values, a deterministic version of CC would always find the same bicluster.
Therefore, our approach includes a different heuristic, consisting of some
variations in order to render CC-R non-deterministic.
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To this aim, we apply the following variations:

• The substitution phase has been replaced by the overlapping control
mechanism. This mechanisms allows to reject biclusters with overlap-
ping factors higher than ω and updates the matrix of weights W .

• Multiple node deletion phase has been redefined in terms of the selec-
tion of the rows or columns to be deleted from the bicluster. Removing
first those rows or columns that produce more overlapping with previ-
ous biclusters speeds up the convergence of the algorithm. The selection
of the rows and columns is done using the matrix of weights W .

• The selection mechanism for the columns or rows to be added in the
node addition phase has been also redefined. Those columns or rows
that are less overlapped with previously found biclusters are selected
first, provided that their addition do not increase the matrix residue
above δ. As in the previous variation, this selection is also based onW .
The redefinition of the node addition phase aims at finding biclusters
with a low overlapping degree.

• Finally, the initial bicluster is randomly determined from the original
microarray, with the exception of the first iteration where the initial
bicluster is the whole matrix, as in CC.

The pseudo-code of CC-R is shown in Algorithm 8.
After preprocessing the missing values of M, the variables L (list of bi-

clusters), nb (counter for the loop or number of biclusters found),W (matrix
of weight) and B (initial bicluster) are initialized. Notice that in the first
iteration, the bicluster B is initialized to the whole matrix M (line 5), in
order to take into account the whole set of genes and experimental condi-
tions. Next, the while-loop is executed, where the three first phases (lines
7-9) are the re-adapted multiple node deletion phase, simple node deletion
phase and re-adapted addition phase, respectively. These steps always pro-
duce δ-biclusters, that is MSR(Bδ), MSR(B′δ) and MSR(B′′δ ) are smaller
that δ. Notice that single node deletion (line 8) phase is always determinis-
tic, since the selection of the row or column to be removed depends on their
residues. Therefore, there is no adaptation of this phase in our approach.

Once B′′δ is returned by the re-adapted addition phase, the overlapping
control method is performed. If the overlapping factor of the bicluster P(B′′δ )
does not exceed the threshold ω, then nb is increased, the bicluster is included
in the list L and W is updated (lines 13-15). If eij ∈ M belongs to B′′δ
then the element wij ∈ W is increased by one. If, on the other hand, the
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Algorithm 8: Cheng and Church’s re-adapted algorithm (CC-R).

input : M: expression matrix,
n: number of biclusters,
δ, ω: thresholds

output: L: list of n biclusters

1 preprocessMissingValues(M);
2 L ← {};
3 nb ← 1;
4 matrix of weights W ← {};
5 bicluster B ← M;
6 repeat
7 Bδ ← multipleNodeDeletion(B,δ,W)[re-adapted];
8 B′δ ← simpleNodeDeletion(Bδ,δ);
9 B′′δ ← addition(B′δ,δ,W)[re-adapted];

10 if P(B′′δ)<=ω then
11 nb ← nb + 1;
12 L ← L ⊕ B′′δ ;
13 forall the i,j do
14 if eij in M ε B′′δ then
15 wij ← wij + 1;

16 B ← randomSelection(M);

17 until until nb =n;
18 return L;

overlapping factor is above ω, the bicluster B′′δ is rejected, because it has too
many common elements with the biclusters previously found.

Finally, a new bicluster B is randomly generated from the original dataset
M to be used in the next iteration. The dimension of B is randomly cho-
sen, as well as the specific genes and conditions belonging the bicluster. In
the original algorithm, each iteration starts from the whole matrixM, mod-
ified from the last iteration by the substitution phase. However, different
experiments showed that starting from a random bicluster produced better
results.

Figures A.2 and A.3 show the flow charts of the re-adapted multiple
node deletion phase and addition phase, respectively. As can be seen in
Figure A.2, multiple row/column deletion is only performed if the number of
rows/columns is greater than 100. The way in which rows are chosen to be
deleted is shown in the right flow chart in Figure A.2 (deleteMultipleRows).
Columns are deleted in a similar way. Multiple node deletion phase ends up
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once the bicluster has a lower value of MSR than the limit or the bicluster
does not change after multiple rows and columns deletion.

yes 

Rows(B)>100 

computeMSR(B)

MSR(B)>δ 

deleteMultipleRows

Columns(B)>100 

computeMSR(B)

deleteMultipleColumns

Deletion? 

return B

no 

yes 

yes 

yes 

no 

no 

Multiple node deletion phase (re-adapted) 

cont  0

cont < rows 

nextRow  mostOverlappedRow (B,W)

rowMSR(nextRow) > α*MSR 

deleteRow(nextRow,B)

cont  cont +1

yes 

no yes 

return B

no 

deleteMultipleRows 

no 

Figure A.2: Flow chart representing the re-adapted multiple node deletion
phase.

Figure A.3 depicts the re-adapted addition phase. This phase iteratively
add multiple rows, columns and inverse rows until no addition is performed.
The way in which multiple rows are added to the bicluster can be seen in the
right flow chart of the figure. Multiple columns are added in a similar way.
Inverse rows are added in the same way as in the original CC algorithm.

A.4 Experimental Results

In order to test our approach we conducted experiments on three datasets:

1. Yeast Saccharomyces cerevisiae cell cycle expression dataset originated
from Cho et al (1998). This datasets consists of 2884 genes and 17
conditions.

2. Human B–cells expression data originated from Alizadeh et al (2000).
The human dataset consists of an expression matrix of 4026 genes and
96 conditions.
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Addition phase (re-adapted) 

computeMSR(B)

computeMSR(B)

addInverseRows

Addition? 

return B

no 

yes 

addMultipleColumns

addMultipleRows

cont  0

cont < rows (not in B) 

nextRow  lessOverlappedRow (B,W)

rowMSR(nextRow) ≤ MSR 

addRow(nextRow,B)

cont  cont +1

yes 

no yes 

return B

no 

addMultipleRows 

Figure A.3: Flow chart representing the re-adapted addition phase.

3. Colon Cancer dataset. This dataset originated from Alon et al (1999),
and contains an expression matrix consisting of 2000 genes and 62
conditions.

All these datasets were preprocessed as in Cheng & Church (2000). The
most important preprocessing operation regards missing values: missing val-
ues are replaced with random values, although it is known the existing risk
that these random numbers can affect the discovery of biclusters (Yang et al
(2002)). The expectation was that these random values would not form rec-
ognizable patterns.

Table A.1 shows the most relevant characteristic for each dataset. The
first two columns show the number of genes and conditions, respectively.
The third column shows the values of the δ limit that has been used. In the
case of the yeast and human datasets they were taken from the original work
Cheng & Church (2000), while for the other dataset we have established the
value of δ following a procedure suggested in such a reference.

For each dataset, we have obtained 100 biclusters, using both the CC and
CC-R. It is important to notice that most of the biclusters found with the
last algorithm would have not been obtained using the original CC, since we
have eliminated the substitution phase.In fact, this phase masked the values
contained in each bicluster by introducing random numbers.
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Dataset #genes #conds δ

Yeast 2884 17 300
Human 4026 96 1200
Colon 2000 62 500

Table A.1: Main information for each dataset.

Yeast Human Colon

MSR 124.80(72.86) 857.01(107.99) 389.02(76.99)
MSR(real) 498.46(306.08) 9940.90(8381.73) 2159.61(13343.43)
GeneVarMean 836.36(456.27) 10985.36(8780.13) 5929.48(16066.57)
Overlap 42.94%(36.30) 49.53%(23.62) 9.26%(18.40)
GenesMean 219.47(309.99) 271.52(234.25) 21.89(22.12)
CondsMean 7.25(3.42) 14.70(12.26) 8.81(7.24)

Table A.2: CC average results for each dataset. Standard deviation is given
between brackets.

Tables A.2 and A.3 show the average results (and their standard devi-
ations in brackets) obtained on each dataset (in columns) by the two algo-
rithms, CC and CC-R, respectively. The first row gives the average MSR, the
second row in Table A.2 shows the mean of the real MSR, i.e., when the MSR
is calculated using the original values, and not the random values introduced
in the substitution phase. These real MSR values have been calculated for
each bicluster once the random values are substituted with the original ones.
Table A.3 lacks of this row since there no random values are introduced in
the expression matrix by CC-R. The row labelled GeneVarMean shows the
gene variance. Next row (Overlap) represents the average overlapping for
each bicluster with all the previous ones. Note that in Table A.2 this value
also represents the mean number of random values that have been used in
the algorithm. This is because values that are contained in more than a bi-
cluster have been substituted with random values. Finally, rows GenesMean
and CondsMean show the mean of the number of genes and conditions.

Furthermore, in order to statistically validate the results, we applied the
Student’s t-test. Using a confidence level of 0.5%, we can conclude that
all the differences of results shown in Tables A.2 and A.3 are statistically
significant.

From these tables, it is evident that the random values introduced in
the expression matrix during the substitution phase negatively affect CC. In
fact, the MSR computed considering the original values is, on average, higher
than the specified δ. This means that many of the biclusters returned by the
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Yeast Human Colon

MSR 225.138(24.85) 1109.94(21.09) 435.31(13.84)
GeneVarMean 334.02(84.33) 1432.11(101.06) 742.64(13.99)
Overlap 94.55%(12.21) 91.21%(13.45) 94.81%(12.15)
GenesMean 758.18(212.89) 134.53(17.34) 134.48(18.15)
CondsMean 8.59(2.47) 45.66(7.41) 24.80(4.44)
Overlap2Bics 30.1%(17.58) 25.23%(0.39) 33.94%(0.65)

Table A.3: CC-R average results for each dataset. Standard deviation is
given between brackets.

algorithm are not δ-biclusters, which is in contradiction with the specification
of the algorithm. This fact is particularly evident for the human and the colon
datasets, where the average real MSR is about eight and four time higher,
respectively, than the δ used for these datasets.

On the other hand, all the biclusters obtained by CC-R are δ-biclusters,
and the average MSR is much lower than the real MSR of the biclusters found
by CC. These results alone show the limitations of the substitution phase
adopted in CC. This substitution phase is effective for avoiding overlapping
among biclusters, as it can be noticed by the overlapping percentages shown
in Table A.2. However, this effectiveness is obtained at the cost of possibly
producing biclusters that are not δ-biclusters.

As far as the gene variance is concerned, it can be noticed that, in general,
CC obtained better results. However this result is influenced by the fact that
MSR is much higher for the biclusters discovered by CC. In general biclusters
with lower MSR have also a lower gene variance, and this explain the lower
average gene variance for the biclusters obtained by CC-R.

Biclusters found by CC-R are characterized by a higher volume, even if
the average MSR of the biclusters is lower than the MSR of biclusters found
by CC. This is due to the overlapping policy adopted by CC. In fact, the
random values introduced causes biclusters found in later iterations of the
algorithm to have a very low volume. This is because random values are
in general not included in biclusters, since they introduce noise that would
cause the genes not be coherent under some conditions.

Table A.3 contains an additional row, named Overlap2Bics, which rep-
resents the average percentages of overlapped values between every pair of
biclusters, for each dataset. Note that these amounts are considerably lower
than the overlapping percentage of the whole set of biclusters (row Overlap).

In the following, we analyse the obtained results for each dataset individ-
ually. These results have been generated using the CC-R approach.
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A.4.1 Yeast Saccharomyces Cerevisiae Cell Cycle Ex-
pression Dataset

The application of the algorithm to this dataset produces big biclusters, com-
pared to the other two datasets. This is due to the intrinsic characteristics
of the microarray, since genes contained in it are mostly flat, that is with
low row variance. For this reason, the mean number of genes contained in
the obtained biclusters is about 750. The number of conditions in the bi-
clusters is about 9 on average, which means that the algorithm works well at
discriminating some experimental conditions for each bicluster.

As the algorithm produces big biclusters, the existence of a certain over-
lapping percentage among them is inevitable. Nevertheless, by analysing
the results, we have discovered that the overlapping percentage between two
average-size biclusters does not exceed 50%. Naturally, the bigger a bicluster
is, the higher the percentage of overlapping.

A special case of this situation is the first obtained bicluster which is
specially big, since its overlapping percentage is always 0.

Figure A.4 shows two biclusters found on the yeast dataset. The graph
presented, is the most commonly used representation of a bicluster. In such
a graph, each line is relative to the expression level that a given gene assume
under a particular experimental condition. For each bicluster, there are three
pictures in the same column. The first one corresponds to the full obtained
bicluster. The second and third ones correspond to the 20% and 10% of the
genes in the original bicluster, respectively. These two not-complete biclus-
ters are presented in order to visualize and test the quality of the original
ones, since it is difficult to deduce genes shapes in such a big bicluster. These
genes have been selected sequentially among the genes in the whole bicluster.
The first gene out of each ten sequentially selected genes have been obtained
for the 10% case, and the first gene out of five sequentially selected genes
have been selected for the 5% case.

As aforementioned, gene expressions in yeast dataset show flatter ten-
dencies than in the other datasets. For this reason, the obtained biclusters
contain a big amount of genes, and they can be hardly analysed by their
graphical representation. Nevertheless, the representation of a certain per-
centage of the original biclusters proves that genes show a certain correlation
among them.

In this sense, we have obtained some quality biclusters that would have
not been found by the original CC, since masking the values of a found
bicluster with random ones prevents finding lots of real biclusters.
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Figure A.4: Examples of biclusters found on the Yeast dataset. Each column
shows three pictures of the same bicluster: full bicluster, 20% and 10% of the
genes, respectively. X-axis represents each of the experimental conditions in
the bicluster, while Y -axis represents the expression level of the genes in each
bicluster.
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A.4.2 Human B–cells Expression Data

Biclusters found on the Human dataset are significantly smaller than the
ones discovered from the Yeast dataset. The mean of the number of genes
in the biclusters is about 135. This result is accentuated even more by the
fact that the expression matrix relative to Human dataset is bigger than
that of the Yeast dataset. The main reason for this situation is the intrinsic
characteristics within the datasets. Genes in Human dataset do not present
such a flat behavior as in the Yeast dataset. On the contrary, gene expression
varies significantly among the different experimental conditions.

The average of the number of conditions for biclusters on Human dataset
is about 45, almost the 50% of the total number of conditions. Again, the
first bicluster presents the highest volume, since its overlapping percentage is
always 0. This bicluster contains 83 genes and 96 conditions, which represents
the whole set of experimental conditions. Therefore, it is one of the most
overlapped biclusters. Nevertheless, the amount of overlapping between two
medium-sized biclusters does not exceed 30%.

Figure A.5 represents four biclusters of the 100 found for this dataset. We
can appreciate in these pictures that genes in the same bicluster are strongly
correlated. Their expression levels vary in unison under the same subset
of conditions. Furthermore, the expression levels of the genes are within the
same range of values, for this reason all of them are grouped and it is difficult
to differentiate each gene.

A.4.3 Colon Cancer dataset

Colon Cancer dataset consists of 2000 genes and 62 conditions. The mean
number of genes in the biclusters for this dataset is 135, while the mean
number of conditions is 25. In this case, biclusters contain almost the same
number of genes as those obtained from the human dataset. Considering the
volume of both datasets, biclusters from Colon dataset are expected to be
more overlapped among them.

In fact, this dataset produces biclusters with a mean of 40% of common
values between two given biclusters.

Figure A.6 shows four biclusters obtained for Colon dataset. They resem-
ble the ones found on the Human dataset, since we can clearly see that each
bicluster contains correlated genes. All genes in a certain bicluster follow the
same trend, and they are also within a close range of expression values.

In this case, the first obtained bicluster (shown in Figure A.6 with label
bi0) does not correspond with the highest number of genes, but with the
highest number of experimental conditions. It is made up of 55 conditions,
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Figure A.5: Examples of biclusters found on the Human dataset. X-axis
represents each of the experimental conditions in the bicluster, while Y -axis
represents the expression level of the genes in each bicluster.
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Figure A.6: Examples of biclusters found on the Colon dataset. X-axis
represents each of the experimental conditions in the bicluster, while Y -axis
represents the expression level of the genes in each bicluster.
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which represents the double of the mean numbers of conditions of the whole
set of biclusters.

A.4.4 Comparison

Even if the aim of this work was to assess the validity of the mechanism
for controlling the overlapping among bicluster, we nevertheless include a
comparison with another state of the art biclustering algorithm by Divina
& Aguilar-Ruiz (2006), called SEBI. SEBI is an algorithm based on Evolu-
tionary Computation that shown excellent performance at finding patterns
in gene expression data. Furthermore, SEBI adopts a strategy for avoiding
overlapping similar to the one presented in section A.1.2 and used in this
work.

Table A.4 shows the average results (and their standard deviations in
brackets) obtained on each dataset by the algorithm SEBI for what concerns
the average MSR and the average dimension (genes and conditions) of the
biclusters found. Thus, we can compare this table against Table A.3 in order
to test performance of our approach.

Yeast Human Colon

MSR 205.18(4.49) 1028.84(29.19) 492.46(6.23)
GenesMean 13.61(10.38) 14.07(5.39) 9.86(4.51)
CondsMean 15.25(1.37) 43.57(6.20) 40.91(8.00)

Table A.4: SEBI average results for each dataset. Standard deviation is given
between brackets.

Regarding MSR, CC-R shows very similar results against SEBI and all of
them are lower than the δ used for these datasets. However, if we compare
these values with those shown in Table A.2 for CC, we can notice that the
average real MSR is much higher.

On the other hand, we can see that CC-R is capable of finding biclusters
characterized by a higher number of genes than the ones found by SEBI.
This is a very important aspect, since the aim of these biclustering method
is to find δ–biclusters with maximum size.

A.5 Conclusions

In this appendix we have shown some variations that can be applied to the
CC algorithm in order to overcome its shortcomings. The original algorithm
is very effective at discovering biclusters, however, after some iterations it
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starts to work with more and more random values in the expression matrix,
due to the substitution phase used. This causes the algorithm to estimate
wrongly the MSR of the biclusters. We have presented an alternative method
for avoiding as much as possible overlapping among biclusters.

Our work is based on a matrix of weights, that is used to estimate the
overlapping of a bicluster with already found ones. We have defined an over-
lapping factor which is used in order to reject biclusters if their overlapping
is above a certain threshold. In this way the algorithm is always working
with the original expression data, and so the biclusters it discovers contain
only original data. Since no random values are introduced in the expression
matrix, we have included other modifications to the algorithm in order to
render it non deterministic.

Results show that many biclusters found by CC have a MSR that is higher
than δ, due to the random values they contain. This is an important short-
coming of CC, since this may yield the algorithm to discovering biclusters
that are not δ biclusters. It is also important to notice that many biclusters
found by CC-R would have not been obtained using the original CC. This is
due to the fact that CC does not work with the original expression matrix.
This causes that many biclusters are masked by random values.
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