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Abstract

In this work, a new method for magnetic satellite attitude control
system design is presented. In this method, only magnetic actuators
are needed and three axis pointing accuracy is achieved using a non
linear technique called Approximating Sequence of Riccati Equations
(ASRE). This technique is based on transforming the nonlinear control
problem into an equivalent time variant problem with the introduction
of the iterative sequence corresponding to the system dynamics and
another iterative sequence corresponding to the cost function to be
minimized. The new problem can be solved as a sequence of two point
boundary value problems using the costate transformation as a soft
Constrained Problem.

The control system has been intensively proven for a wide variety
of orbits and initial conditions. Model uncertainties and perturba-
tions have been also taken into account. The results show that the
control system works for a wide variety of orbits and that a better
performance is achieved with high inclination orbits. Furthermore,
the control strategy is able to control the satellite in case of large an-
gular rates such as the ones that will remain after a detumbling phase
using the well known Bdot algorithm for magnetic actuation.
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Resumen

Este trabajo presenta una técnica de control de la orientación de un
satélite utilizando únicamente actuadores de tipo magnético. El uso
de este tipo de actuadores para el control de la orientación es conocido
desde el lanzamiento de los primeros satélites. Sin embargo, debido a
la naturaleza de la interacción magnética, el uso de este tipo de actua-
dores implica la falta en todo momento de un grado de libertad. Esto
impide la aplicación de técnicas tradicionales de control, propiciando
que tradicionalmente este tipo de actuadores hayan jugado un papel
secundario en el sistema de control. No obstante, su bajo precio en
comparación con otros actuadores y su facilidad en la operación y el
mantenimiento han hecho que se utilicen en todo tipo de misiones.

En los últimos años, ha habido un gran avance teórico en las téc-
nico de control no lineales. Aplicando una de estas técnicas llamada
Approximating Sequence of Ricatti Equations (ASRE), se consigue el
control en 3 ejes. Esta técnica está basada en la transformación de un
problema clásico de control no lineal en un problema equivalente en el
tiempo donde se introducen una secuencia iterativa correspondiente a
las ecuaciones dinámicas del sistema y otra secuencia iterativa que se
corresponde a la función de coste que debe ser minimizada por el algo-
ritmo de control. Este nuevo problema se resuelve como un problema
del valor en los límites de dos puntos donde se utiliza el coestado para
resolverlo. Además, se deja libre el punto final, lo que en la literatura
se llama Soft Constraint Problem o problema con restricciones suaves.
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El sistema de control se ha probado intensamente en una gran
variedad de órbitas y condiciones iniciales. También se han realizado
pruebas donde las perturbaciones y las incertidumbres posibles en el
modelo se han tenido en cuenta. Los resultados demuestran que el
sistema de control funciona de forma satisfactoria para una gran can-
tidad de órbitas, aunque los mejores resultados se consiguen en el caso
de órbitas con alta inclinación. Además, el algoritmo de control es ca-
paz de estabilizar la orientación del satélite en el caso de velocidades
angulares grandes tales como las que podrían quedar después de una
fase de desaceleración con un algoritmo de control bien conocido como
es el Bdot.
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1
Introduction

This thesis opens a new research line in the electronic engineering de-
partment of the university of Seville. The objective of this research
work was to study the magnetic actuation of the satellites and the
possibility to perform a three axis attitude control using only magne-
torquers. The use of magnetorquers is well known in satellite attitude
control as a secondary actuation method. However, in the past few
year an interest in magnetic actuation has grown, because of the in-
creasing number of small satellites to be launched. Small satellites
are a very good platform for universities and research centers to test
experimental payload and train engineers in space technology. Fur-
thermore, the cost is reduced because the launch vehicle is usually
shared with other small satellites or with a bigger satellite.

The thesis is divided in chapters. Each chapter can be read in-
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2 Introduction

dependently from each other. References are made when they are
necessary, but depending on the background of the reader a review of
some concept might not be necessary.

Chapter 2 describes the state of the art of the attitude control
systems technology, with special focus on magnetic attitude control
systems. Actuators for attitude control which are usually used to-
gether with magnetic actuators are also reviewed. Furthermore, other
passive control techniques such as spin stabilization and gravity gra-
dient are also briefly presented.

In chapter 3, the system model and the control algorithm are pre-
sented. Starting from the dynamic and kinematic equations of motion,
the attitude equations are particularized for a nadir pointing space-
craft and are written in state dependent coefficient form. Finally, in
section 3.5 the Approximating Sequence of Riccati Equations (ASRE)
technique used to solve the control problem is introduced.

Simulations showing the performance and the methodology of the
control system are presented in chapter 4. The main results of this
work are described in this chapter. In chapter 5 the conclusions of
the work are presented. The same conclusions are also presented in
Spanish in chapter 6.

Every research work helps to understand or gives solution to a
known [or unknown] problem. Furthermore, it opens new questions
or topics which can be investigated in more detail. In chapter 7, the
open topics which might be considered in the future are discussed.



2
Attitude Control Systems for Small

LEO Satellites
2.1 Actuators for active attitude Control . . 4
2.2 Passive Control Techniques . . . . . . . 16
2.3 Active Magnetic Control . . . . . . . . . 19

In this section, a revision of the state of the art of the control tech-
niques applied to satellites is reviewed. The survey is focused on Low
Earth Orbit (LEO) satellites. First, the most common actuators for
attitude control are presented in section 2.1. Then, passive control
techniques are reviewed, with special focus on passive magnetic con-
trol techniques. Finally a deep review of active magnetic control tech-
niques which involve the use of magnetorquers is presented.
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4 ACS for Small LEO Satellites

2.1 Actuators for active attitude Control

Active attitude control is a subject of special interest in satellites.
The environmental conditions in space require special types of actua-
tors that are in use only in space applications. Magnetorquers are the
best example of actuators that are only used in space. Other types
of actuators like thrusters need to be designed specifically for space,
although other uses in propulsion based on the same principle of op-
eration are possible. In any case, a brief review of the most common
actuators used for satellite attitude control is presented in this section.
The advantages and disadvantages of each one are discussed. In the
table 2.1, an overview of the properties of all the actuators is shown.

2.1.1 Magnetic Torquers

Magnetic Torquers are based on the Torque produced by a magnetic
dipole with a certain magnetic moment. The torque produced by a
magentic dipole with magnetic moment ~m in the presence of an static
magnetic field ~B is:

~T = ~m ∧ ~B (2.1)

The equation above has a physical and very intuitive meaning.
Given a magnetic dipole in an external magnetic field, the dipole mag-
netic moment generates a force that tends to align itself with the ex-
ternal magnetic field. This effect has been used extensively in the past
by the compass, where a magnetic needle attempts to align itself with
the local direction of the Earth magnetic field.

The spacecraft itself might own a magnetic moment if it has fer-
romagnetic materials. This property can be used for passive magnetic
control, as will be described in section 2.2.3. However, for actuation
purposes, a controlled magnetic dipole can be generated. The easier
way to generate a magnetic dipole is a current coil. The magnetic



2.1 Actuators for active attitude Control 5

Type Advantages Disadvantages

External type
Can control
momentum build-up

Thrusters

Insensitive to altitude
Suit any orbit
Can torque about any
axis

Requires fuel
On-off operation only
Has minimum impulse
Exhaust plume contaminants

Magnetic
No fuel required
Torque Magnitude is
controlable

No torque about the local field
direction
Torque is altitude and latitude
sensitive
Can cause magnetic interference

Gravity Gradient No fuel or energy
needed

No torque about the local verti-
cal
Low accuracy
Low torque, altitude sensitive
Libration mode needs damping

Internal types

No fuel required
Can store momentum
Torque magnitude is
controllable

Cannot control momentum
build-up

Reaction
Wheels(RW)

Continuous, accurate
pointing capability

Non-linearity at zero speed

Momentum
wheels (MW)

Provide momentum
bias

Control Moment
Gyroscope
(CMG)

Suitable for three axis
control

Complicated mechanics and con-
trol

Table 2.1: Types of Torquers [1]
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moment that can generate a current coil is:

~m = NIA~n (2.2)

where N is the number of windings, I is the current intensity, A
is the area enclosed by the coil and ~n is the unit vector that gives the
direction of the moment. ~n is perpendicular to the area of the coil
and its direction is given by the right hand rule of the direction of the
current.

Torquers are usually designed to be implemented as rods. There-
fore, a high number of windings is achieved, despite a small area. There
is a wide range of sizes of magnetorquers available. The magnetic
moment strength is a design parameter that has to suit the satellite
mission.

The main advantages of magnetorquers are:

Low Power Consumption: Coils are usually made of a conductive
wire of low electric resistance. Therefore, high currents can be
achieved with small voltage drop minimizing the power dissipa-
tion. According to Ohm’s law:

V = R · I (2.3)

Power consumption is P = V · I, and substituting above equa-
tion:

P = I2 ·R (2.4)

Therefore, even for a large current, the small R keeps the power
consumption small.

Simplicity and reliability: A coil has no moving parts, and the fail-
ure points are usually limited to the electrical connection with
electronics control board. Furthermore, it needs no propellant
making the operational time almost unlimited.
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Simple operation: Magnetic coils can be operated as a full on -
full off device or can be operated proportionally. This property
makes them an excellent actuator for fine attitude control.

On the other hand, the main disadvantages are:

No torque along external magnetic field: From equation 2.1, it
is straightforward to derive that a magnetorquer cannot produce
any torque along the direction of the external magnetic field,
which in satellites is usually the Earth magnetic field. This sit-
uation leads to the main inconvenience of magnetic actuation.

Difficult beyond LEO: Due to the dependence of the Earth mag-
netic field and provided that the magnetic field decays with the
cube of the distance, maqnetorquers are almost useless beyond
Low Earth Orbits.

2.1.2 Gyroscopic Actuators

Gyroscopic actuators are based on the mechanical properties of a wheel
with a certain mass spinning at a certain speed. Their behavior can
be modeled deriving each configuration from the Inertia moment con-
servation equation, this is:

d~L

dt
= dI ~w

dt
=
∑

~N (2.5)

Depending on which part of the equation above is actuated, two
different space actuators arise, Control Moment Gyroscopes or Mo-
mentum Exchange devices.

Control Moment Gyroscope

The Control Moment Gyroscope (CMG) has an angular momentum
due to the rotor which is spinning about a spin axis with a constant
angular rate. However, the spin axis is gimbaled. Therefore, a com-
manded gimbal rotation causes the direction of the angular momentum
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vector to change. This turns into a torque which is perpendicular to
both the spinning axis and the gimbal axis. The magnitude of this
torque depends upon the speed of the rotor and the gimbal rotation
rate.

First designs used a CMG just to aid another attitude control sys-
tem, as for instance in [2], where a CMG is proposed to work together
with a gravity gradient stabilization technique. An example of a full
attitude control system design using CMGs can be found in [3].

In general, CMGs can be gimbaled about one axis or two, providing
controllability around one or two axis. To provide full attitude control,
at least 3 axis control capability is needed. However, usually more
than three Single Axis CMGs are combined into a single platform and
coordinated among them. Furthermore, a new generation of CMGs
that combine both a CMG and a momentum wheel is available[4].

The main drawback of CMGs, even in array configuration, is the
presence of kinematic singularities at certain gimbal configurations[5].
These singularities are points at which the array is incapable of instan-
taneously producing torque in a particular direction, which results in a
loss of controllability. A major research topic over the last few years is
the design of a control strategy that can handle those singularities con-
strained with algorithm calculation time and CMGs configurations[6].

Momentum and Reaction Wheels

Momentum and reaction wheels are usually called momentum ex-
change devices. These devices can be used for several purposes: to add
stability against disturbance torques, to provide a variable momentum
to allow operation at one revolution per orbit for Earth-oriented mis-
sions, to absorb cyclic torques, to transfer momentum to the satellite
body for the execution of slewing maneuvers or for fine attitude con-
trol[7][1].

Reaction wheels have a nominally zero speed, and may be rotated
in either direction in response to the control torques called by the
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spacecraft control system. However it should be noted that at low
or zero angular rate, the wheel displays a non-linear response due to
sticking friction, which can impose an irregular motion on the space-
craft in this region. This problem is often circumvented by setting the
nominal operating speed of the wheels above zero rate, at a few r.p.m.
A typical example of precise pointing accuracy using reaction wheels
is the Hubble Space Telescope Precision Pointing Control System[8].

Momentum wheels on the other hand have a high mean speed
in order to provide momentum bias. The control torque will then
slow down or increase the wheel speed. The momentum bias provides
also gyroscopic stiffness to two axes, while the motor torque may be
controlled to precisely point around the third axis[9].

For three axis control, three orthogonal reaction wheels will be the
minimum requirement. One or more are normally added in an array
configuration for redundancy purpose[10], in order to avoid a single-
point failure. When more than one MW is used, the total bias is the
vector sum of contributions from the separate wheels.

Both types of wheels provide momentum storage and need to be
used in conjunction with other torquers for momentum unloading
or momentum dumping when the internal momentum of the wheel
reaches the saturation point. In [11] a momentum unloading tech-
nique for reaction wheels using magnetorquers is described.

2.1.3 Thrusters

Thrusters are based on expelling some mass out of the satellite at a
certain velocity. This generates the thrust. Depending on the direction
of the thrust generation, this propulsion method can be used for orbit
insertion, station keeping and maneuvers or attitude control[9]. The
propellant provides the mass to be ejected by the jet. The propellant
is carried on board the satellite and is accelerated by the jet at the
moment of providing the thrust.

The energy for the acceleration of the particles can be produced
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by chemical reaction or thermodynamic expansion in case of Gas Jets.
Gas Jets technology will be reviewed later in this section. When the
energy is produced on board as electric power and is used to accelerate
the particles electrodynamicly, then the thruster is called to be electric.
The state of the art related to electric propulsion will be explained into
detail later in this section.

Taking into account the Newton’s Law of momentum conservation,
the expelled propellant mass times its velocity is equal to the mass of
the satellite times its change in velocity. Following this principle, the
Rocket Equation is derived[12].

The thrust on the Spacecraft T is equal to the mass of the space-
craftMs times its change in velocity vs. On the other hand, the thrust
given by the ejection of some propellant is the exhaust velocity of the
propellant vp times the time rate of change of the propellant mass mp:

T = Ms
dvs
dt

= − d

dt
(mpvp) = −vp

dmp

dt
(2.6)

The total mass of the Spacecraft is the delivered mass md plus the
propellant mass:

Ms(t) = md +mp (2.7)

Ms changes due to the consumption of the propellant, so the time
rate of change of the total mass is:

dMs

dt
= dmp

dt
(2.8)

Substituting equation 2.8 into 2.6 results in

Ms
dvs
dt

= −vp
dMs

dt
(2.9)

which can be written as

dvs = −vp
dMs

Ms
(2.10)
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Assuming a motion in a straight line, the equation above can be
solved by integrating from the spacecraft initial velocity, vi, to the
final velocity, vf , during which the mass changes from its initial value,
md +mp to its final delivered mass, md:

∫ vf

vi

dv = −vp
∫ md

md+mp

dM

M
(2.11)

and solving this equation gives:

∆v = vp ln

(
md

md +mp

)
(2.12)

The specific impulse (Isp), can be defined to be equal to the pro-
pellant exhaust velocity divided (vp) by the gravitational acceleration
g. The change in velocity of the spacecraft is then:

∆v = (Isp · g) ln
(

md

md +mp

)
(2.13)

Equation 2.13 shows that for a mission to reach a certain delta-v
and a final delivered mass md, the propellant mass mp can be reduced
by increasing the Isp of the propulsion system. Reducing the propel-
lant mass of a spacecraft has obviously implications for the launch
vehicle size and cost.

If equation 2.13 is solved for the propellant mass:

mp = md

[
e∆v/Isp·g − 1

]
(2.14)

It is straightforward to say that the propellant mass increases ex-
ponentially with the delta-v required for a mission. Thrusters that
provide a large propellant exhaust velocity compared to the mission
∆v will have a propellant mass that is only a small fraction of the
initial spacecraft wet mass.

A comparison among different thrusters technologies in terms of
Isp can be found in table 2.2[9]. Those technologies will be described
briefly in the following subsections.
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Thruster Isp Input Propellant
Power(kW)

Cold Gas 50 - 75 – Various
Monoprop 150 - 225 – N2H4

Biprop 300 - 450 – Various
Resistojet 300 0.5 - 1 N2H4

Arcjet 500 - 600 0.9 - 2.2 N2H4

Ion Thruster 2500 - 3600 0.4 - 4.3 Xenon
Hall Thrusters 1500 - 2000 1.5 - 4.5 Xenon

PPT 850 - 1200 <0.2 Teflon

Table 2.2: Thrusters comparison table

Gas Jets

Gas jets can be classified depending on the origin of the obtained
energy. They are classified as hot gas when the energy is derived from
a chemical reaction or cold gas when it is derived from the latent
heat of a phase change, or from the work of compression if no phase
change is involved[7]. In general, chemical jets can produce higher
thrust and Isp than cold gas jets. Cold gas jet propulsion is more
consistent, specially in pulsed actuation systems where the chemical
thruster needs the chemical reaction to arrive to a steady state.

Jets have big advantages over magnetic coils[1]. First, in distant
orbits, coils are useless because the magnetic field of the Earth is too
weak to perform a strong interaction with it, whereas thruster’s torque
is independent of the altitude. Second, control laws for jets are simpler
than those for coils. Where the coils have a high dependent torque
magnitude and direction on the available external magnetic field, gas
jets thrusters can be arranged in a configuration such that the torque
direction and magnitude is independent of the external environment.

The propellant supply required for jets is the major limitation on
their use. A fuel budget is an important part of mission planning for
any system using jets. Other considerations are the overall weight of
the system[13] and the need to position thrusters where the exhaust
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will not affect the spacecraft in case of corrosive propellants.
Although Control laws are easier to design where no external con-

straint on the available torque is considered, gas jets have another
disadvantage for attitude control. Gas Jet Thrust Impulse cannot be
fine regulated. In fact, although variable impulse or very finely reg-
ulated thrust jets are available or under research nowadays[14], the
actuation should have traditionally been on or off. This has several
drawbacks[15]. The fist one is the existence of limit cycles which af-
fects the on-off operation[16]. Those limit cycles can be reduced when
the impulse of the thruster is low enough. The second one is that jets
have rise and fall time in the order of milliseconds[17]. Therefore, fine
attitude control is only possible if a precise modeling of the thrust
during rise and fall times so that thrusters performance during on and
off is introduced and considered in the attitude control systems.

As described in chapter 17 of [9], thrusters are needed in most
satellite missions for orbit insertion or station keeping. They can con-
tribute to attitude control, but due to their high specific impulse and
thrust they are not so adequate for fine attitude control. However,
they have been used in many attitude control systems together with
gyroscopic actuators (section 2.1.2) for momentum dumping[18] or
with magnetic torquers[19] (section 2.1.1).

Electric Thrusters

Electric Propulsion is a technology which can generate thrust by ac-
celerating charged particles and expelling them out of the spacecraft
at high expulsion velocities[12]. Increasing the propellant exhaust ve-
locity turns into a reduction of the mass propellant for a given amount
of Thrust, as discussed in equation 2.14.

A working description of electric thrusters can be found in reference
[20]. Here, a classification of Electric Thruster is given:

Resistojet: Resistojets are electrothermal devices in which the ex-
haust velocity of the propellant is due to thermal heating, which
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is achieved by a resistively heated element.

ArcJect: Arjects are also electrothermal thrusters where the propel-
lant is heated by means of a high current arc.

Ion Thrusters: Ion thrusters are based on plasma generation tech-
niques to ionize the propellant. Then the ions are accelerated
by creating a controlled high voltage electric field and expelled
at very high exhaust velocities.

Hall Thrusters: This type of electrostatic thruster utilizes the Hall
effect to generate the plasma. Hall thruster efficiency and spe-
cific impulse is somewhat less than that achievable in ion thrus-
ters, but the thrust at a given power is higher and the device is
much simpler and requires fewer power supplies to operate.

Pulsed Plasma Thrusters: A Pulsed Plasma Thruster (PPT) uses
a pulsed electric discharge to generate the ionized plasma out
of a solid propellant. Teflon is typically used as the propellant.
The ions are then accelerated to high exhaust velocities. The
pulse rate is used to determine the thrust level.

The possibility of electric propulsion started in the beginning of the
20th century with Robert H. Goddard and K. E. Tsiolkovsky. History
of Electric propulsion is reviewed in [21] up to mid 40s.

Tsiolkovsky studied the rocket propulsion, and suggested the use
of particles with small mass as propellant in 1911. He pointed out that
the electrons moved in a cathode ray tube at velocities 10.000 times
grater than that of the ordinary products of combustion flying from
the reactive tubes.

By the same time, in 1906, Goddard thought about the possibility
of liberating electrons at the speed of light using electric potential to
accelerate them. In 1913, Goddard filed the first patent for producing
electrically charged particles. Continuing with his research, Goddard
filed in 1917 another patent that is the first documented electrostatic
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on accelerator intended for propulsion. He also realized the potential
of the invention because he achieved the greatest exhaust velocities
produced so far, but those velocities could be increased by a higher
electrical potential. With the beginning of World War I, Goddard
devoted himself to chemical rocket launch vehicles.

Electric Propulsion started a hibernation era overwhelmed by che-
mical propulsion. The electrical potential and energy needed by elec-
tric thrusters were not easily achievable on board satellites during the
following years.

In-depth research activities were carried on during 60s and 70s.
In [22], the main advances in the technology and the first demonstra-
tors on orbit up to 1969 are reviewed. Special mention deserves the
Space Electric Rocket Test (SERT) program and the USAF electric
propulsion flight tests called Program 661A[23].

Over the past 20 years, many programs have demonstrated the fea-
sibility and the advantages of electric propulsion for every kind of satel-
lites and applications, ranging from deep Space missions[24], trajectory
optimization[25], geostationary telecommunication satellites where a
failure of the launcher forced the thruster to unexpected mission ac-
complishments[26] or, what is more aligned with the topic of this work,
the attitude control of microsatellites[27].

There is still an open field for innovation in ion thrusters. For
instance in [28], a detailed description of the requirements for the
next electric propulsion thruster under research is presented.

2.1.4 Non Conventional Actuators

There are several actuators which are under research or are not con-
ventional because the technology is not mature enough or even just
under theoretical research.

In [29], a broad review of propulsion in space under basic research
is given. One example of these propulsion methods under research
are the works presented by Brito[30] where an interaction between
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dielectric media and electromagnetic field is described. In a more
recent paper, the same author realizes that more research needs to be
done[31].

Others known actuators are those based on fluid dynamics. The
first reference on the use of fluids for satellite passive attitude damping
is from [32]. In this patent, the author presents a fluid ring made of
small diameter pipes surrounding the perimeter of satellite and claim-
ing that the circulated fluid can induce control moments to stabilize
the spacecraft. In [33], an improved system for accelerating the fluid
mass through different fluid paths is presented.

In more recent works, the study of the satellite system including
the fluid ring is overtaken[34]. In [35], a control system is presented
with the integration of four fluid rings as main actuators.

Essentially, the fluid rings have the same principle of operation
as a momentum wheel. The main advantage over the momentum
wheel is that they can produce the same torque with a reduced mass,
because the mass concentrates in the border of the ring, whereas the
momentum wheel is usually solid. However, some disadvantages need
to be addressed, such as the pumping method or the leakage and
thermal protection.

2.2 Passive Control Techniques

The most common passive control techniques are spin stabilization,
dual spin stabilization, gravity gradient and passive magnetic con-
trol[7].

2.2.1 Spin Stabilization

According to equation 2.5, if a satellite has an angular momentum
vector ~L, a torque ~N in the direction of ~L will increase or decrease
the magnitude of |L|, but not its direction. On the other hand, if the
torque is perpendicular to ~L, only the direction of ~L will change, but
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not its magnitude.
Spin stabilization has a lot of similarities with gyroscopic actuators.

If the angular momentum L is large enough, a small torque will result
in a small change in L. The basic requirement for spin stabilization
is:

∣∣∣∣∫ ~Ndt

∣∣∣∣ << ∣∣∣~L∣∣∣ (2.15)

Equation 2.15 means that, in the case of cyclic perturbation tor-
ques, if the angular momentum of the satellite is large enough, the
satellite will keep its attitude over the mission. On the other hand, if
the perturbations are not cyclic, the time for which the passive control
technique can be effective without an active one can be estimated.

Another variant of this control technique is the dual spin stabilized
spacecraft. The technique is called dual spin because there are several
parts of the satellite rotating at different speeds. Those parts can be
the whole spacecraft and a momentum wheel or two parts of the body
of the satellite. The dynamics of a spin stabilized spacecraft and dual
spin stabilized spacecraft are in depth reviewed in [36].

2.2.2 Gravity Gradient

Every rigid object in the space which is not symmetrical is subject to
a torque produced by the effect of the gravitational force over each
point of the object. Assuming an spherical Earth, the gravitational
force d~Fi over an infinitesimal point i of mass dmi is:

~dFi = −µ
~Ridmi

R3
i

(2.16)

where µ is the earth gravity constant, ~Ri is the vector Earth-to-
satellite point and Ri is the module of ~Ri. Therefore the torque pro-
duced by the Earth gravity is:

~Mg =
∫
B
~ri ∧ ~dFi (2.17)
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where ~ri is the vector between the center of gravity of the satellite
and the point i within the satellite body.

Assuming that the center of mass of the satellite is the geometric
center of the satellite which is also the origin of the body reference
frame and ~Ri = ~Rs + ~ri, equation 2.17 can be approximated by[7]:

~Mg = 3µ
R3
s

[
~Rs ∧

~
I · ~Rs

]
(2.18)

where I is the inertia matrix. Several characteristics of the gravity
gradient can be worked out of the equation above:

• Torque is orthogonal to the local vertical.

• Torque is inversely proportional to the cube of the distance to
the center of the Earth.

• The torque vanishes for a spherical symmetric spacecraft.

A further study on the stability regions and motion of a passive
gravity gradient attitude control system can be found in [36]. In brief,
gravity gradient provides a passive self-aligning torque, but an oscilla-
tory libration movement can occur if no damping is incorporated[37].

Damping methods can be passive[38] or active[39]. The most pop-
ular method for damping is active magnetic control, and will be re-
viewed later in section 2.3.2.

2.2.3 Magnetic

Attitude Control methods are a subject of interest since the Sputnik
was launched in 1957. In fact, just after the launch of Sputnik I and II
(launched about a month later), several researchers at John Hopkins
Applied Physics Laboratory discovered that the doppler effect of the
transmissions of the satellite could be measured on the Earth[40]. The
first intention was to find out the orbit out of the doppler measure-
ments. However, they quickly turn out to realize that they could do
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the other way, this is, given a known orbit of the satellite, find out the
position on the Earth out of the doppler measurements. The Transit
program, which was the prelude for the GPS, was about to start.

The mission included a requirement of stability to stabilize the
attitude of the spacecraft[41]. Any unknown velocity of the antenna
would increase the uncertainty of the doppler shift. Furthermore, they
were planning a long term mission, thus they need to gather some
knowledge about the orientation of the solar panels with respect to the
Sun. While precise pointing was not required, stability and simplicity
were.

The solution to the attitude control was suggested by Robert E.
Fishell. In [42], the attitude control systems of the first satellites of
Transit are described. Passive attitude control is provided in these
satellites by means of a fixed magnet rigidly mounted on the space-
craft. The satellites became orientated just in the same way as a
compass points its needle.

They also realized the necessity of a method to remove the spinning
energy of the spacecraft. The method utilized in those first spacecraft,
were based on the use of highly permeable rods of specially prepared
magnetic materials. This method depends on the fact that a permeable
rod when spinning in the Earth’s magnetic field will develop eddy
current and hysteresis energy losses.

Although first proposed in 1963, this method of stabilization is still
in use nowdays. In [43] and [44], a full description and design example
of the permeable rods effect on the attitude is reviewed. In [45] or
[46], another use of a passive magnetic attitude control system can be
found. Finally, in [47], a full mathematical analysis of the magnetic
hysteresis damper is presented.

2.3 Active Magnetic Control

Active magnetic control can be defined as the use of magnetorquers
for attitude control of a satellite. As discussed in section 2.1.1, one of
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the main drawbacks of magnetorques is the torque generation only in
the plane perpendicular to the external magnetic field.

Despite this disadvantage, magnetorquers have been used in the
space since the very beginning of the space era. Since the very first re-
search works about active magnetic control[48], the absence of moving
parts and no fuel consumption prevision have been identified as the
main advantages of active magnetic control. Thus, active magnetic
control has played several different roles in attitude control related
tasks.

2.3.1 Magnetorquers and Momentum Bias

Probably the most used stabilization technique together with active
magnetic control is momentum bias. Momentum bias stabilization has
been discussed in section 2.2.1. The main advantage is the gyroscopic
stiffness that this passive method gives to the spacecraft. However, a
control strategy is needed to counteract the disturbing forces that can
modify the spin. Active magnetic control is a very suitable control
strategy to control the spin, specially together with another actuator
such a momentum wheel. One of the first and very well explained
works regarding 3 axis control on a spinning satellite is [49]. In this
work, the authors present an active magnetic control system that,
together with a flywheel that gives momentum bias, can perform the
following functions:

1. Initial acquisition

2. Nutation damping

3. Precession Control

4. Momentum Bias Regulation

For the initial acquisition the B dot algorithm is used. This al-
gorithm will be discussed later in 2.3.3. The momentum unloading



2.3 Active Magnetic Control 21

control law was proposed first in [48]. The momentum produced by
the magnetorquers is set to:

~m = −Ku
~B ∧ ( ~H − ~HB) (2.19)

where ( ~H − ~HB) is the momentum to be unloaded. The torque
produced can be derived merging equations (2.19) and (2.1):

~T = ~m ∧ ~B = −Ku
~B ∧ ( ~H − ~HB) ~B = −Ku|B|2 ~∆h⊥ (2.20)

where ~∆h⊥ is the momentum perpendicular to ~B which is to be
unloaded. Of course no momentum in direction parallel to ~B can
be unloaded. However, as the magnetic field in spacecraft body axis
changes in direction along certain orbits, all the directions can be
reached. Therefore, the total momentum can be controlled.

Nutation damping and precession control are achieved by means of
a proportional control, where the value of the coefficients are bounded
for stability purposes.The rejection capability to torques is very de-
pendent on these gains and the total momentum of the spacecraft.

Many other strategies followed this work. In [50], an observer and a
servo compensator approach is presented for roll/yaw control. Another
control law based on the properties of periodic systems is discussed in
[51]. In this work, the author compares his results with the work in
[49], stating that a smaller momentum bias and better accuracy can
be achieved by a periodic linear quadratic Gaussian control law.

Several modifications of the technique in [49] have been proposed
for different uses. In [52] and [53] active attitude control systems
for Sun pointing momentum biased satellites are designed. In [54]
the same control system is applied to a small university satellite. In
[55],the problem of optimal reaction wheel desaturation maneuver of
a satellite using internal magnetorquers is discussed.

In [56] another set of algorithms for spin stabilized spacecraft are
proposed for three mission stages:
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1. Nutation damping. One coil is used, located on the satellite’s
symmetry axis and realizing Bdot algorithm.

2. Spin-up of the satellite about its symmetry axis to the necessary
angular velocity. Two coils located in the equatorial plane of
the satellite are used. It is assumed that the initial equatorial
component of the angular velocity is small at this stage as a
result of action of the algorithm of nutation dumping.

3. Reorienting the satellite’s symmetry axis into a preset position
in the inertial space. At this stage the discrepancy between the
current angular momentum vector directed along the symmetry
axis and the required direction in the inertial space decreases

In a more recent work [57][58], a spin stabilization control law by
the use of magnetic only actuation is presented. It is shown that, with
adequate orbit inclination, the control law globally asymptotically sta-
bilizes a three inertial spacecraft, leading it to a desired spin condition
in the inertial frame.

2.3.2 Magnetorquers and Gravity Gradient Boom

Gravity gradient passive stabilization has been discussed previously
in section 2.2.2. In [59], a detailed design report of a satellite mission
using gravity gradient and magnetorquers is presented. In this work,
the authors analyze the control laws for all the operational phases of
the mission, which are:

1. Detumbling

2. Spin Rate Control

3. Boom extension maneuver

4. Libration Damping, yaw control and stabilization
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The pointing stabilization achieved by this technique is about 1
degree in all axis.

In [39], a less mathematical analysis of the benefits of active mag-
netic control use together with gravity gradient passive technique is
shown.

Several designs for other satellites and new types of controllers
followed this work. In [60] a gravity gradient design including active
magnetic control for a small satellite is reviewed.

In [61], a comparison of the attitude control system described in
[59] and other control algorithms is presented. Those algorithms are
based on fuzzy logic and Linear Quadratic Regulation. All of the
controllers were able to keep the pointing accuracy of the satellite to
within 1 degree, although the best accuracy is achieved with fuzzy
controller and the controller in [59].

Finally in [62], an state feedback PD control law for the magnetic
attitude stabilization of a nadir pointing spacecraft is proposed. In
presence of gravity gradient, the control law is proven to guarantee
stability for obit inclinations grater than 0 degrees.

2.3.3 Active Magnetic Detumbling

In its simplest form, the detumbling mode control requires only the
measurements of the magnetometer, and is based on a negative feed-
back of the derivative of the measured magnetic field vector[49]. This
is the well known B-dot algorithm. The control torque and the actu-
ator dipole moments are given by

~m = −KB
~̇Bpi ; ~T =

~Bpi ∧ ~m
|Bpi|2

(2.21)

This simple feedback control has good performances when the an-
gular velocity is large, since in this case it can be shown that the rate
of change of the measured magnetic field vector depends primarily on
the rate of change of the attitude of the satellite, therefore the rate of
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change of the rotational kinetic energy is guaranteed to be negative.

~̇Bpi = Ȧ ~Borb +A ~̇Borb ≈ Ȧ ~Borb ; Ėk ≈ ~ωT ~m = −kB
˙~ T
Bpi ~̇Bpi (2.22)

As the angular velocity becomes smaller, approximately less that
half the orbit angular velocity, the intrinsic variations of the magnetic
field along the orbit become more important, therefore the control
can not guarantee energy dissipation under this assumption. This
control law has been proved to release the angular momentum of the
satellite exponentially, although in practice, due to saturation of the
magnetorquers, the momentum decays linearly[63]. A more detailed
study of the behavior of the b-dot algorithm can be found in [64].

In a more recent paper[65], the authors present an alternative ver-
sion of the b-dot control law that guarantee global stability for ac-
tive magnetic detumbling in presence of a time-varying magnetic field.
This is achieved by defining the feedback gain such that it prevents the
angular velocity vector from becoming parallel to the Earth magnetic
field. Consequently the available control torque does not drop close to
zero and a faster detumbling is obtained.

2.3.4 3-axis Magnetic Control

All the techniques presented so far are based on an inherent stability of
the satellite’s attitude. The stability can be because of gyroscopic stiff-
ness (momentum biased satellites) or due to the design of the moment
of inertia of the satellite (gravity boom). However, a bigger problem
arises when the satellite has no mechanical nor physical stability.

This case is the main study of this work and has also been the
subject of several works over the last few years. In [66], a good review
of these techniques is available up to 2003. In this work, the authors
classify the control techniques under three categories:

• Linear design methods
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• Non-Linear design methods

• Predictive control

The main difference between these methods is the linearization of
the attitude kinematics and dynamics of the attitude equations of a
rigid solid in orbit in space. Despite the presentation of the equa-
tions of motion, all the techniques presented so far can be also classi-
fied depending on the design assumption made for problem statement.
Therefore, the following classification is suggested:

• Periodic controllers

• Projection based controllers

• Full non-linear model controllers

Periodic Controllers

Periodic controllers are based on the periodic approximation of the
magnetic field of the Earth as seen from the orbit of the spacecraft.
The characteristics of the magnetic field will be reviewed later in sec-
tion 3.3. This is a first order approximation and is quite good for high
altitude orbit >5000Km.

Assuming the periodic nature of the magnetic field, the problem
can be transformed into a periodic linear problem which can be stabi-
lized by state periodic feedback or the more classical output feedback.
A very good discussion and design of periodic controller and periodic
control theory is presented in [67]. In this work, the author presents
a wide range of controllers, form constant gain linear periodic con-
troller to energy approaches for attitude control. Other works by the
same author describes a finite horizon controller [68] and the design
of H2-optimal periodic controller[69]. Others designs of optimal linear
periodic controllers are presented in [70][71][72][62][73].

The main advantage of periodic linear controllers is the use of
Floquet’s theory to prove stability[67][74]. Floquet stability analysis
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computes the closed-loop state transition matrix for one period of the
system and verifies that all of its eigenvalues have a complex magnitude
less than unity.

Projection Based Controllers

Projection based controllers are based on the idea previously discussed
in equations 2.19 and 2.20, and presented in [48].

The idea behind these techniques is fairly simple. The main draw-
back of active magnetic control is the lack of one degree of freedom
for 3 axis torque generation. In fact, torque can only be produced in
the plane orthogonal to the local direction of the magnetic field ( ~B).
Therefore a possible design rule is, given the ideal torque (Tideal) for
a fully actuated spacecraft, project that torque over the orthogonal
plane of ~B obtaining the effective magnetic torque (Tmag). The mo-
ment generated by this technique and the torque applied are given by
equations 2.23 and 2.24, where S( ~B) is the skew-symmetric matrix of
vector ~B.

~m = 1
| ~B|2

S( ~B)′ ~Tideal (2.23)

~Tmag = S( ~B)~m = 1
| ~B|2

S( ~B)S( ~B)′ ~Tideal (2.24)

Examples of projection based controller can be found in the afore-
mentioned [48] or [49]. In [66] a predictive controller which uses this
technique is also suggested for attitude control. In a more recent
work[75], the MATLAB toolbox for periodic system is used to design
discrete controllers based on both optimal periodic controller and av-
eraging techniques controller.

Non-linear controllers

Perhaps the most popular non linear controller proposed for attitude
control is the B-dot detumbling algorithm which has been discussed
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previously in section 2.3.3. In [76], a related line of work has been
devoted to the nonlinear analysis of a magnetic scheme based on the
sole measurement of the magnetic field vector ~B

Other nonlinear control system is presented in [77]. In this work,
the authors implement and compare six different algorithms for atti-
tude control for nutation damping, coarse reorientation, spinning and
fine reorientation of the satellite.
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Satellite attitude control systems have been reviewed in the previous
chapter. In this chapter the equations that will be used in the model
of the system are derived. First, reference frames are defined in sec-
tion 3.1. Then the dynamics and kinematics equation of motion are
described in section 3.2. After that, a description of the magnetic field

29
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of the Earth model is presented in section 3.3 and is included in the
system model as it is described in section 3.4. Finally, the control
technique used to stabilize the attitude is presented in section 3.5.

3.1 Reference Systems

There are several coordinate systems that will be used through the
thesis. They are represented in figure 3.1. These coordinate systems
are:

• Body Coordinate System (pi): This coordinate reference sys-
tem is associated to the satellite body. It is centered in the center
of mass of the satellite and its axis are oriented along the prin-
cipal axis of the satellite. It is assumed that the principal axis
of the satellite are the same as the geometrical axis.

• Local Vertical Local Horizontal (LVLH): This coordinate
system is centered in the center of mass of the satellite. The y
axis points toward the center of the earth (nadir), the p axis is
perpendicular to the orbital plane in the direction of the angular
velocity and the r axis is perpendicular to both p and y resulting
in the tangential direction to the the orbit and in the sense of
the instantaneous velocity.

• Orbit Perifocal (orb): The orbit perifocal coordinate system
is a system for which the plane of the spacecraft orbit is the
equatorial plane of the coordinate system. It is centered in the
center of the Earth. The e axis is parallel to the line from the
center of the Earth to the Ascending Node (AN) of the spacecraft
orbit, the h axis is parallel to the orbit normal and the p axis
can be found using the right hand rule.

• Earth Centered Earth Fixed (ECEF): This coordinate sys-
tem is fixed to the Earth. Its 3 axis is aligned with the rotation
axis of the Earth, the 1 axis point towards the intersection of
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where Ω is the Right Ascension of the Ascending Node (RAAN), i is
the orbit inclination and θ is the satellite anomaly.

Figure 3.1: Reference Systems
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the Greenwich meridian with the Equator and the 2 axis is per-
pendicular to both 3 and 1 and completes the right hand rule.

Further clarification about the calculation and transformation be-
tween different axis can be found in appendix B.

3.2 Attitude Equations of Motion

In this section, the derivation of the dynamics and kinematics equa-
tions is described. Additional information on satellite mechanics can
be found in [7].

3.2.1 Torque-Free Motion of a Rigid Body

First of all, we define the angular momentum ~L of a point mass m at
a position ~r relative to some arbitrary origin as

~L = ~r ∧ ~p = ~r ∧m~v (3.1)

where ~p is the momentum and ~v is the velocity of the point. For
n points:

~L =
n∑
i=1

~Li =
n∑
i=1

~r ∧ ~pi (3.2)

The principle of angular momentum conservation settle that the
angular momentum ~L remain fixed in an inertial coordinate reference
system if there are no external torques. Therefore, the angle between
the angular momentum ~L and the angular velocity of the rigid body
~ω depends on the initial velocity and mass distribution. This let us to
define a set of axis which are called th principal axes such that, for
a rotation about a principal axis ~P , ~L is parallel to ~ω, or:

~L = Ip~ω = Ipω ~P (3.3)
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where Ip is a constant of proportionality called principal moment
of inertia which, for a collection of point masses,

Ip =
n∑
i=1

mir
2
i (3.4)

Regarding the parallelism among the angular momentum ~L, the
angular velocity vector ~ω, the principal axis ~P and the geometrical
axis ~z, there are three different movements:

• Rotation: ~z‖~L‖~ω‖~P

• Coning: ~z 6‖ ~L‖~ω‖~P

• Nutation: ~L 6‖ ~ω 6‖ ~P

– ~P and ~ω rotate about ~L

– ~P is fixed in the pi reference frame.

– ~ω rotates in the pi reference frame and in the inertial ref-
erence frame.

– ~L is fixed in the inertial frame but rotates in the pi reference
frame.

3.2.2 Response to Torques

The section above deals with the torque-free motion of a S/C. Now
we want to analyze what happens when we apply some forces to the
S/C. Differentiation with respect to time of the eq. 3.2 above gives:

d

dt
~L =

n∑
i=1

d

dt
~Li =

n∑
i=1

δ

δt
~ri ∧mi~vi =

=
n∑
i=1

~vi ∧mi~vi + ~ri ∧mi~ai =
n∑
i=1

~ri ∧ ~Fi = (3.5)

=
n∑
i=1

~Ni ≡ ~N
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So the angular momentum can be changed only if some torque is
applied to the S/C. Notice that this equation can only be used in an
inertial reference frame. Depending on the direction of the torque ap-
plied with respect to the angular momentum, the effects are different:

• If ~N ‖ ~L⇒
∣∣∣~L∣∣∣ ↑ or ∣∣∣~L∣∣∣ ↓

• If ~N 6‖ ~L⇒ ∠~L ↑ or ∠~L ↓

The change of direction of ~L due to ~N is called precession. If∣∣∣ ~N ∣∣∣� ∣∣∣~L∣∣∣, then it is called drift.

3.2.3 Kinematic Equations of Motion

Quaternions

There are several representations for the attitude. One of the most
used in space is the quaternion representation. The quaternion repre-
sentation is usually used to indicate the rotation about one axis of a
reference frame with respect to another. In the S/C case, it is used
to represent the rotation of the Body Coordinate Reference System
with respect to the Control Coordinate Reference System. Thus the
quaternion itself gives an orientation in the space.

Let ~q(t) represent the orientation of the S/C at time t; ~q(t + ∆t)
represents the orientation at time t+ ∆t and ~q′(t+ ∆t) represents the
orientation at time t+ ∆t relative to the position at time t; then:

~q′ =


q′1
q′2
q′3
q′4

 =


eusin

(
∆φ
2

)
evsin

(
∆φ
2

)
ewsin

(
∆φ
2

)
cos

(
∆φ
2

)

 (3.6)

where eu, ev and ew are the components of the rotation axis unit
vector along the ~u, ~v and ~w triad at time t. The following small angle
approximations apply:
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cos
(∆φ

2

)
≈ 1 (3.7)

sin
(∆φ

2

)
≈ 1

2ω∆t (3.8)

~q (t+ ∆t) ≈
[
I + 1

2Ω∆t
]
· ~q (t) (3.9)

where Ω is the skew-symmetric matrix of the angular velocity:

Ω =


0 ωw −ωv ωu

−ωw 0 ωu −ωv
ωv ωu 0 ωw

−ωu −ωv −ωw 0

 (3.10)

If we make the ∆t differential, we have the kinematic equation of
motion:

δ~q
δt = 1

2Ω~q (3.11)

Euler Angles

Another representation of the kinematics equations are the Euler an-
gles. The Euler angles represent kinematics by means of a sequence of
simple rotations. Although there is no unique sequence for forming the
Euler angles, there are widely accepted sets for specific applications.
In this case, the 2-1-3 sequence will be used. Let φ represent the angle
about the y-axis, θ about the x-axis and ψ around the z-axis.

Therefore, the angular rotation of one reference system about an-
other can be described through the transformation matrix of equation
3.12.

Cbn = Cz′′(ψ)Cx′(φ)Cy(θ) (3.12)
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y-axis: the direction cosine matrix that rotates an angle φ about
~u = [0 1 0] is:

Cy(φ) =


cos(φ) 0 − sin(φ)

0 1 0
sin(φ) 0 cos(φ)

 (3.13)

x-axis: the direction cosine matrix that rotates an angle θ about
~u = [1 0 0] is:

Cx(θ) =


1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 (3.14)

z-axis: the direction cosine matrix that rotates an angle ψ about
~u = [0 0 1] is:

Cz(ψ) =


cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 (3.15)

The Euler angles derivatives are obtained as functions of the body
angular rate with respect to some reference frame as follows. We first
observe that the Euler angles, and consequently their derivatives, are
defined in different frames. If we reference all of them to the body
frame, we get:

~ωpi = Cz′′(ψ)


0
0
ψ̇

+Cz′′(ψ)Cx′(θ)


θ̇

0
0

+Cz′′(ψ)Cx′(θ)Cy(φ)


0
φ̇

0


(3.16)

Therefore:

~ωpi =


ωx

ωy

ωz

 =


θ̇ cos(ψ) + φ̇ sin(ψ) cos(θ)
φ̇ cos(ψ) cos(θ)− θ̇ sin(ψ)

ψ̇ − φ̇ sin(θ)

 (3.17)
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Then, resolving for φ̇, θ̇, and ψ̇, the kinematic equation expressed
in Euler angles is derived:


φ̇

θ̇

ψ̇

 =


ωy cos(ψ)+ωx sin(ψ)

cos(θ)
ωx cos(ψ)− ωy sin(ψ)

ωz + (ωy cos(ψ) + ωx sin(psi)) sin(θ)
cos(θ)

 (3.18)

3.2.4 Rate of Change of Vectors in Rotating Frames

Let ~a be a vector in the reference frame B and ~aI the same vector in
the inertial reference frame I. Let CBI be the transformation matrix
between the two reference frames. Thus,

~a = CBI~aI

Therefore, the product rule for differentiation gives

δ~a

δt
= δCBI

δt
~aI + CBI

δ~aI

δt

The first term can be written as follows:

δCBI

δt
~aI = ΩBICBI~aI = ΩBI~a = −ωBI ∧ ~a

where ΩBI is the skew-symmetric matrix of ωBI

The second term consists of the components in frame B of the
vector δ~aI

δt , where the time derivatives are evaluated in the frame I. If
we denote this vector by

(
δ~aI

δt

)
B
, the following equation is obtained

δ~a

δt
= −ωBI ∧ ~a+

(
δ~aI

δt

)
B

(3.19)
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3.2.5 Angular Momemtum and Moment of Inertia Ten-
sor

In equation 3.2 we introduced the angular momentum for N points.
Let’s suppose now that we define ~ri as the sum of two vectors, one
fixed for all the points and the other which is different for each point:

~ri = ~R+ ~ρi (3.20)

Therefore, we can define ~vi as the sum of two vectors:

~vi = ~V + δ~ρi
δt

(3.21)

Substituting eqs. 3.20 and 3.21 in 3.2 yields

~L = M ~R ∧ ~V + ~R ∧ d

dt

[
n∑
i=1

miρi

]

+
[
n∑
i=1

miρi

]
∧ ~V +

n∑
i=1

miρi ∧
δ~ρi
δt

(3.22)

If we choose ~R coincident with the center of mass of the rigid body,
this is,

∑n
i=1mi~ρi = 0, we simplify the equation to

~L =
n∑
i=1

miρi ∧
δ~ρi
δt

(3.23)

The components of ~ρi in the spacecraft frame are constant, but the
components of δ~ρi

δt are not zero if the spacecraft is rotating with an
instantaneous angular velocity ω, because the vector δ~ρi

δt is the rate of
change of ~ρi relative to inertial coordinates, resolved along S/C axes.
Therefore, using eq.3.19, we have

δ~ρi
δt

= −ω ∧ ~ρi +
(
δ~ρi
δt

)
Body

⇒
(
δ~ρi
δt

)
Body

= ω ∧ ~ρi (3.24)
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Substituting eq 3.24 into eq 3.23 we have:

~L =
n∑
i=1

mi~ρi ∧ (~ω ∧ ~ρi) =
n∑
i=1

mi

[
~ρi

2~ω − (~ρi · ~ω) ~ρi
]

(3.25)

This equation can be rewritten in matrix form as

~L = I~ω (3.26)

where I is the moment of inertia tensor and its components depend
on ~ρi and mi

3.2.6 Dynamic Equations of Motion

In an inertial coordinate system, the dynamic equation of movement
is 3.6. Therefore, applying equation 3.19 to get the equation in the
body frame (·)B, yields

(
δ~L

δt

)
B

= −ω ∧ ~L+
(
δ~L

δt

)
I

= −ω ∧ ~L+
(
~N
)
B

(3.27)

From now on, we will omit the subscript B because of simplicity.
Now, taking into account the equation 3.26, we have

I δ~ωδt = ~N − ω ∧ (I~ω) (3.28)

3.3 Magnetic Field

The Earth Magnetic Field can be represented as the gradient of the
scalar potential function V [78]
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V (R, θR, λR) =

= Re

k∑
n=1

(
Re
R

)n+1 n∑
m=0

(gmn cosmλR + hmn sinmλR)Pmn (cos θR)

(3.29)

Thus,

~B = −∇V (3.30)

where Re is the equatorial radius of the Earth (6371.2 adopted for
the international Geomagnetic Field, IGRF); gmn and hmn are Gaus-
sian coefficients1; and R, θR and λR are the geocentric distance, co-
elevation, and East longitude from Greenwich which define any point
in space. Pmn is the associated Legendre function of the first kind of
degree n and order m:

Pmn (x) =
(
1− x2)m/2

2n · n!
δn+m

δxn+m

(
x2 − 1

)n
(3.31)

These equations give a complete framework for simulation pur-
poses. However, for analytic purposes, it is convenient to obtain a
dipole model by expanding the field model to first degree (n=1) and
all orders (m=0,1). Then, eq. 3.29 becomes:

V (R, θR, λR) = R3
e

R2

[
g0

1P
0
1 (cos θR) +

(
g1

1 cosλR + h1
1 sinλR

)
P 1

1 (cos θR)
]

= R3
e

R2

(
g0

1 cos θR + g1
1 cosλR sin θR + h1

1 sinλR sin θR

)
(3.32)

The cos θ term is just the potential due to a dipole of strength
g0

1R
3
e aligned with the polar axis. Similarly, the sin θ terms are dipoles

1The IGRF coefficients can be consulted in http://www.ngdc.noaa.gov/IAGA/
vmod/igrf.html

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
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aligned with the x and y axes. Relying on the principle of linear
superposition, these terms are just the Cartesian components of the
dipole component of the Earth’s magnetic field. For 2010:

g0
1 = −29496.5
g1

1 = −1585.9
h1

1 = 4945.1

Therefore, the total dipole strength is:

R3
eH0 = R3

e

√[(
g0

1
)2 +

(
g1

1
)2 +

(
h1

1
)2] = 7.746× 1015Wb ·m (3.33)

The coelevation of the dipole is

θ′m = arccos
(
g0

1
H0

)
= 170.0◦ (3.34)

The East longitude of the dipole is

φ′m = arctan
(
h1

1
g1

1

)
= 107.8◦ (3.35)

Now we can approximate the magnetic field of the Earth as due to
a vector dipole, ~m, whose magnitude and direction are given by eqs.
3.33 to 3.35. Thus,

~B
(
~R
)

= R3
eH0

3
(
~m · ~R

)
~R∥∥∥~R∥∥∥5 − ~m∥∥∥~R∥∥∥3

 (3.36)

Where ~R is the position vector of the point at which the field is
desired.

3.3.1 Dipole and full Model

As described before, The dipole model is the full model implemented
up to order 1. However, the model provides coefficients up to order
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Earth Magnetic Field − Model Order 13
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Figure 3.2: Magnetic Models at 100 Km
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Figure 3.3: Magnetic Models at 500 Km
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Earth Magnetic Field − Model Order 13
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Figure 3.4: Magnetic Models at 1500 Km
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Earth Magnetic Field − Model Order 13
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Figure 3.5: Magnetic Models at 3000 Km
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13. In figures 3.2 to 3.5, several plots comparing the dipole model with
the full model are presented.

The coefficients in the order one are the most significant, therefore
the dipole described by these coefficients becomes dominant at larger
distances. It is important to notice that at lower altitude the dif-
ference between the dipole model and the order 13th model (which is
closer to the real Earth magnetic field) are much higher than at higher
altitude. However, the order of the model that is precise enough for
each application depends on the altitude at which the satellite is or-
biting. In figure 3.6 the field lines of the magnetic field of the Earth
are represented.

Nm

Sm

Figure 3.6: Earth dipole Magnetic Field

3.4 State-Dependent Coefficients (SDC) fac-
torization

Merging in one single model the attitude dynamics equations of mo-
tion, the kinematics and the dipole model of the magnetic field, the
system dynamics can be factorized in State Dependent Coefficients
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(SDC) form:

ẋ = A (x)x+B (x)u (3.37)

where A models the spacecraft system dynamics and B models the
actuators effect.

Let x =
[
ωTpi, q

T
v

]T
be the state vector. A reduced quaternion qv is

considered to describe the kinematics[79] :


q̇1

q̇2

q̇3

 = 1
2


q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 ·

ω1

ω2

ω3

 (3.38)

where q0 is substituted by
√

1− q2
1 − q2

2 − q2
3.

Equation (3.28) can be rewritten using the property a∧b = S(a) ·b
where S(·) is defined as the operator which obtains the skew-symmetric
matrix using the coefficients of a given vector (See appendix A). Let
a = [a1, a2, a3]T . Then:

S(a) =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (3.39)

There are several options to factorize the non-linear problem into
the SDC form. Among the possible, the following form has been se-
lected:

A =
[
A11 A12

A21 0

]
(3.40)

A11 =− S(Apilvlhωlvlh)− I−1 · S(wpi) · I+

+ I−1 · S(I ·Apilvlhωlvlh)− I−1 · S(Apilvlhωlvlh) · I

A12 =


2ξω2

orbq0
Iyy−Izz
Ixx 0 2ξω2

orbq2
Iyy−Izz
Ixx

0 2ξω2
orbq0

Ixx−Izz
Iyy 2ξω2

orbq1
Izz−Ixx
Iyy

−4ω2
orb

Ixx−Iyy
Izz ζq0 0 −4ω2

orb
Ixx−Iyy
Izz ζq2
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A21 = 1
2 [S(qv) + q0I3]

where ξ = q2
0 − q2

1 − q2
2 + q2

3, ζ = q0q2 − q1q3 and I3 is the identity
matrix of order 3. Matrix B becomes:

B = −I−1S(βpi) (3.41)

where βpi is the Magnetic field in the principal axis reference frame.
To calculate βpi equation 3.36 is used. This is a vectorial equation that
is valid in whatever reference frame that is used, provided that both
R and m are centered in the reference system. As a circular orbit
has been considered, R is very easy to calculate in the Orbit reference
system:

Rlnb = Rorbit


cos(θp)
sin(θp)

0

 (3.42)

where θp is the satellite anomaly. The orientation of the magnetic
dipole can be derived using standard rotations. Therefore:

mlnb =


sin(θ′m) · cos(Ω− αm)

− sin(θ′m) · cos(i) · sin(Ω− αm) + cos(θ′m) · sin(i)
sin(θ′m) · sin(i) · sin(Ω− αm) + cos(θ′m) · cos(i)

 (3.43)

where Ω is the Right Ascension of the Ascending Node (RAAN), i
is the orbit inclination and αm = φ′m+αG. αG is the angle of rotation
of the Earth and θ′m and φ′m are given by equations (3.34) and (3.35).
Substituting equations 3.42 and 3.43 into equation 3.36, the magnetic
field in the Orbit Perifocal frame (Blnb) is given. Thus, βpi is:

βpi = Apilnb ·Blnb (3.44)

where Apilnb is the transformation matrix between the Orbit Perifo-
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cal reference frame and the Principal Inertia frame and is given by:

Apilnb =
[
(q2

0 − qTv qv)I3 + 2qvqTv − 2q0S(qv)
] 

cos(θP ) sin(θP ) 0
− sin(θP ) cos(θP ) 0

0 0 1


(3.45)

Different factorizations of the model are possible. The factorization
has an effect on the efficiency of the control algorithm[80]. However
the study of the effects of different factorizations is not discussed in
this work. It is pointed out as an open research topic in chapter 7.

3.5 Description of the Applied Control Tech-
nique (ASRE)

In the previous section, the model is written in State-Dependent Co-
efficient form. This equation is a common non linear equation. One
solution to the control problem given by this equation is the State-
Dependent Riccati Equation (SDRE) strategy[81]. Its solution is well-
known and has became very popular within the control community
over the last decade[80].

Consider the general infinite-horizon, input-affine, autonomous,
nonlinear regulator problem of the form:

Minimize

J = 1
2

∫ ∞
t0

zT z + uTR(x)uδt (3.46)

with respect to the state ~x and control ~u subject to the nonlinear
systems constraints

~̇x = A (~x) +B (~x) ~u (3.47)

~̇z = C (~x) (3.48)

where x ∈ Rn, u ∈ Rm and z ∈ Rs, and where R(x) � 0 for all
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x. We assume that F (0) = 0 and that B(x) 6= 0 in a neighborhood
around the origin

The SDRE approach for obtaining a suboptimal solution of prob-
lem 3.46–3.48 is

1. Use direct parametrization to bring the nonlinear dynamics to
the state-dependent coefficient (SDC) form

ẋ = A (~x) ~x+B (~x) ~u (3.49)

where
f (~x) = A (~x) ~x (3.50)

2. Solve the state-dependent Riccati equation

AT (~x)P +PA (~x)−PB (~x)R−1 (~x)BT (~x)P +CT (~x)C (~x) = 0
(3.51)

to obtain P ≥ 0 where P is a function of x.

3. Construct the nonlinear feedback controller

u = −R−1 (~x)BT (~x)P (~x) ~x (3.52)

Therefore, the nonlinear system is approximated by a linear one
and solved as a LQR problem at each sample time.

However, the matrix B depends on the state x =
[
ωTpi, q

T
v

]T
, on

the satellite anomaly (θp) and on the angle of rotation of the Earth
(αG). The latter two parameters are not constant and depend on time
by the equations 3.53 and 3.54.

θp = ωorb · t+ θp0 (3.53)

αG = ωEarth · t+ αG0 (3.54)

It is difficult to introduce these equations in a state space model
differential equation. One possible model of this dynamic system is
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given by equations 3.55 and 3.56, and the state-space representation
is given by 3.57 and 3.58.

θ̇p = ωorb (3.55)

α̇G = ωEarth (3.56)


θ̈p

θ̇p

α̈G

α̇G

 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0




θ̇p

θp

α̇G

αG

 (3.57)

~x0 =


ωorb

θp0

ωEarth

αG0

 (3.58)

This system is not controllable. In fact, it is a reduced model of a
free dynamic that has effect on the system to control but no variable to
be controlled. Furthermore, the state ~x = [0 0 0 0]T does not represent
a physical state.

The more important property of SDRE that made its use not use-
ful for attitude control using only magnetorquers is derived from its
linear point-wise division. As described in [80] or in [82], the pair
{A(~x), B(~x)} used in the SDRE formulation should be tested for con-
trollability over the entire state trajectory. However, due to the lack
of one degree of freedom in magnetorquers actuated spacecraft, the
state space parametrization must be changed to fulfill this condition.
Therefore, this problem cannot be solved by an SDRE controller.

The state space nonlinear system dynamics is better described by

ẋ = A (x, t)x+B (x, t)u (3.59)



52 ACS Design

This model can be used to solve a nonlinear control problem, for-
mulated as to minimize the nonlinear objective function of the form

J = 1
2x

T (tf )S (x(tf ), tf )x(tf ) + 1
2

∫ tf

t0
xTQ (x, t)x+ uTR (x, t)u dt

(3.60)
where S, Q are two positive-semidefinite matrices and R is a 3x3

positive definite matrix.
This type of problems are non-linear time varying problems, be-

cause the state space representation still depends on time. The Ap-
proximating Sequence of Riccati Equations (ASRE) technique can deal
with this type of problems[83]. This method has been used in the lit-
erature to solve nonlinear control problems [84][85].

ASRE is based on transforming the problem given by equations
3.59-3.60 into an equivalent time variant problem with the introduc-
tion of the iterative sequence corresponding to the system dynamics:

ẋ0(t) = A(x0, t)x0(t) +B(x0, t)u0(t)

ẋi(t) = A(xi−1(t), t)xi(t) +B(xi−1(t), t)ui(t) (3.61)

xi(t0) = x0 i = 1, . . . , N

and the iterative sequence corresponding to the cost function to
be minimized:

J i = 1
2x

iT (tf )Sxi(tf ) + 1
2

∫ tf

t0
xi
T
Q
(
xi−1, t

)
xi + ui

T
R
(
xi−1, t

)
ui dt

(3.62)
The problem described by Equations 3.61 and 3.62 can be solved as

a sequence of Two Points Boundary Value Problem using the costate
transformation. Furthermore, the final state of the problem is not
fixed. Instead the algorithm tries to minimize xiT (tf )Sxi(tf ). This
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iterative method is described in detail in Reference [86] as a Soft Con-
strained Problem (SCP). The Hamiltonian of this problem is

H = 1
2
[
xTQ(t)x + uTR(t)u

]
+ λT [A(t)x +B(t)u] , (3.63)

and the optimality conditions read

ẋ = A(t)x +B(t)u, (3.64)

λ̇ = −Q(t)x−AT (t)λ, (3.65)

0 = R(t)u +BT (t)λ. (3.66)

From equation (3.66) it is possible to get

u = −R−1(t)BT (t)λ, (3.67)

which can be substituted into (3.64)–(3.65) to yield

ẋ = A(t)x−B(t)R−1(t)BT (t)λ, (3.68)

λ̇ = −Q(t)x−AT (t)λ. (3.69)

In a compact form, equations (3.68)–(3.69) can be arranged as(
ẋ
λ̇

)
=
[

A(t) −B(t)R−1(t)BT (t)
−Q(t) −AT (t)

] (
x
λ

)
. (3.70)

Since (3.70) is a system of linear differential equations, the exact so-
lution can be written as

x(t) = φxx(ti, t)xi + φxλ(ti, t)λi, (3.71)

λ(t) = φλx(ti, t)xi + φλλ(ti, t)λi, (3.72)

where the functions φxx, φxλ, φλx, and φλλ are the components of the
state transition matrix

Φ(ti, t) =
[
φxx(ti, t) φxλ(ti, t)
φλx(ti, t) φλλ(ti, t)

]
, (3.73)

which can be found by integrating the following dynamics[
φ̇xx φ̇xλ

φ̇λx φ̇λλ

]
=
[

A(t) −B(t)R−1(t)BT (t)
−Q(t) −AT (t)

] [
φxx φxλ

φλx φλλ

]
,

(3.74)
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with initial conditions

φxx(ti, ti) = In×n, φxλ(ti, ti) = 0n×n,

φλx(ti, ti) = 0n×n, φλλ(ti, ti) = In×n.
(3.75)

From Equations (3.71)–(3.75) we can infer that if both xi and λi

were given, then it would be possible to achieve x(t) and λ(t), and
therefore the optimal control function u(t) through (3.67). We recall
that the initial condition is given; i.e., x(ti) = xi. To compute λi

consider that the final state is not specified, and thus S in equation
(3.60) is a n×n positive definite matrix. The transversality condition
sets a relation between the state and costate at final time

λ(tf ) = S(tf )x(tf ), (3.76)

which can be used to find λi. This is done by writing (3.71)–(3.72) at
final time and substituting relation (3.76)

x(tf ) = φxx(ti, tf )xi + φxλ(ti, tf )λi, (3.77)

S(tf )x(tf ) = φλx(ti, tf )xi + φλλ(ti, tf )λi. (3.78)

Equations (3.77)–(3.78) represent a linear algebraic system of 2n equa-
tions in the 2n unknowns {x(tf ),λi}. The system can be solved by
substitution to yield

λi(xi, ti, tf ) = [φλλ(ti, tf )− S(tf )φxλ(ti, tf )]−1 ·

· [S(tf )φxx(ti, tf )− φλx(ti, tf )] xi.
(3.79)

The procedure requires inverting the n× n matrix

φλλ(ti, tf )− S(tf )φxλ(ti, tf )

3.6 Conclusions of this chapter

In this chapter all the equations used in the modeling and the solu-
tion of the problem are presented. A possible factorization of a nadir
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pointing attitude control system is presented in section 3.4. Further-
more, the Approximating Sequence of Riccati Equation technique is
presented to solve the nonlinear problem of a nadir pointing spacecraft
under exclusive magnetic control torque. The proposed attitude con-
trol system is capable of controlling a nadir pointing spacecraft with
the performance described in the next chapter.
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This chapter presents the simulation results of the attitude control
system presented in chapter 3. First, the simulation environment is
described in section 4.1. All assumptions and perturbation models
are discussed. In section 4.2, a comparison of the performance of the
control system is presented for small and large initial conditions and
under the effects of perturbations and model uncertainties. Finally,
in section 4.3 an analysis of the performance of the control system for
different orbits is presented.

57
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4.1 Simulation Environment

In order to validate the control algorithm for a test satellite, a simula-
tion environment has been set up in Matlab/Simulink. The ASRE is
implemented in Matlab scripts and the orbit and attitude propagation
have been developed by using Simulink.

The control algorithm described in section 3.5 can solve the prob-
lem in a given horizon time. The calculated control outputs are stored
and then time-triggered output. It is not efficient at all to solve the
problem for a whole orbit, because the simulated state will not match
the real state due to perturbation or model uncertainties. Therefore
a Time-Span (TS) parameter is defined. The time span is the length
in seconds of the period where the control is calculated. Thus, the
control will be calculated in every time-span period. An schematic
state diagram of simulation algorithm is presented in figure 4.1.

The satellite under test is an imaginary satellite whose numerical
parameters for the orbit and inertia properties of the satellite are rep-
resentative of a small satellite in a LEO orbit. These parameters have
been chosen for a preliminary test of the control algorithm. Specifi-
cally, the inertia moments of the satellite are:

Ixx=1.0 [kg ·m2]
Iyy=1.2 [kg ·m2]
Izz=1.5 [kg ·m2]

(4.1)

The orbit parameters are:

i=90 · pi/180 [rad]
Ω=180 [rad]

Rorbit=REarth + 500 [km]
(4.2)

Given the inertia and orbit parameters of the spacecraft, the per-
formance of the control system will be highly dependent on the way
the performance index is defined (Equation 3.62) and on the control
time span tf − t0. For the case under consideration, a control time
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Set initial
conditions
~xi = ~x0

t1 = t0 ; t2 = TS

Solve ASRE for:
(~xi, [t1 − t2])

Store ~u(t)

t < t2?

~xi = ~x(t)
t1 = t2

t2 = t1 + TS

Apply ~u(t)

no

yes

Figure 4.1: Simulation flow chart
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span of 5 seconds has been adopted, which means that one orbit is
covered in 1160 time spans.

The matrices Q, S and R have been chosen as:

S = Q = diag
([

1
ω̄2

1
q̄2

])
R = I3 (4.3)

where w̄ = ωorb is the value of the nominal angular velocity in pitch
and q̄ = sin(3π/180) is the quaternion value for an angle of 3 degrees.
This choice, common in the definition of optimal control problems,
assumes that:

• equal importance is given to each axis;

• three degrees angular error and angular velocity error equal to
the nominal pitch angular velocity are the maximum admissible;

• the maximum dipole moment generated by the actuators should
be 1 [A · m2], that is within the performances of commercial
magnetic actuators for this class of satellites.

A sample simulation with the initial conditions in 4.4 is performed,
where the results are shown in figures 4.2 to 4.5.


φ

θ

ψ

 =


10
5
−3

 ;


ω1

ω2

ω3

 =


0
0
0

 (4.4)

In figure 4.2, the attitude error angles with respect to the nadir
pointing attitude are represented. In figure 4.3, the same error is
represented in quaternion form. As explained in section 3.2, the at-
titude error can be described using angles or using quaternions, both
are equivalent. Therefore, figures 4.2 and 4.3 are redundant. Angles
are better for representation because they have a physical meaning,
however the system attitude and control is written using quaternions.
Both representations will be used.

The results in figures 4.2 to 4.5 show that the control algorithm is
able to stabilize the satellite in a few orbits. Another particularity of
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this type of control is the kind of control signal that is applied to the
satellite. A control signal is calculated in every time span. A zoom on
the first 20 seconds of the control signal is represented in figure 4.6.
This figure shows in detail how the control signal is generated and
applied within each time span. Every 5 seconds the control problem
defined by Equations 3.61 and 3.62 is solved with initial conditions
equal to the final conditions at the end of the previous time span, as
is described in figure 4.1.

4.2 Perturbation Analysis

Simulations have been performed first with small error on the initial
conditions and then with large initial conditions which might be the
result of a detumbling using control techniques such as Bdot.

Two main disturbance sources have been considered for the simu-
lation environment. First, a model uncertainty has been introduced.
As described before in section 3.3, the Earth magnetic field can be
reproduced very accurately with the model introduced by the equa-
tions (3.29) to (3.31). However, only the first grade of the polynomial,
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which is equal to a dipole, is taken into account in the control design.
Therefore as an example of model uncertainty a 13th order polynomial
has been introduced in the simulation as the real magnetic field seen
by the spacecraft. The module of the Earth magnetic field modeled
by the dipole and by 13th order model are shown in figure 4.7 for an
orbit of 89 degrees of inclination and at an altitude of 500km.
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Figure 4.7: Module of the magnetic field during one orbit

As described in section 3.3, the error between the magnetic field
dipole model and higher order model decrease with altitude. The
error also depends on RAAN. These properties are shown in figure 4.8,
where the error of the dipole model and the full model for different
altitudes and RAAN is presented. Then, the error introduced as a
model uncertainty depends on altitude and RAAN.

Thus, the results obtained for a given setup of the control algorithm
will also depend in the orbit properties.

Second, gravity gradient is introduced in the simulation. Gravity
gradient effects and equations are described in section 2.2.2. It is
considered to produce a disturbance torque because the gravity effects
are not considered in the control model.
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4.2.1 Small Initial conditions

The initial conditions for these simulations are zero error for angular
velocity and an error in the target nadir pointing attitude of 2 degrees
in roll, 1 degree in yaw and 0 degrees in pitch, the axis of the nominal
angular velocity.


φ

θ

ψ

 =


2
1
0

 ;


ω1

ω2

ω3

 =


0
0
0

 (4.5)

The orbit have been chosen to be one with low inclination for this
type of control. It means that the convergence of the algorithm will
be slow compared with other orbits as will be presented in the next
section. The orbit properties are:

i=15 · pi/180 [rad]
Rorbit=REarth + 600 [km]

(4.6)

A simulation of the behavior of the system has been performed
for 10 orbits. For the whole control period the control algorithm has
reached convergence in at most two iterations. The results of the
simulations are shown in Figures from 4.9 to 4.11.

Both figures 4.9 and 4.10 show a good performance for the al-
gorithm in these conditions. In this case perturbations and model
uncertainties contribute with some benefit to the stabilization of the
satellite, specially in the yaw axis. It is specially difficult for the algo-
rithm to generate a torque for a fine pointing of the yaw axis due to
the small value of the magnetic field in a 15 degrees inclination orbit
plane. In fact, the magnetic field is almost perpendicular to this orbit.

The maximum value of the control signal in figure 4.11 demon-
strates that the control actions are well within the target limits as-
sumed in a small satellite. For instance, the torquerods manufactured
by Microcosm/Zarm can produce up to 15Am2 for a 33cm rod1.

1http://www.smad.com/analysis/torquers.pdf

http://www.smad.com/analysis/torquers.pdf


4.2 Perturbation Analysis 67

0 2 4 6 8 10
−5

0

5

10

15

20
x 10−3 Controlled Attitude with Perturbation

Orbit

qu
at

er
ni

on
er

ro
r(

q
v) q1

q2
q3

0 2 4 6 8 10
−0.02

−0.01

0

0.01

0.02
Controlled Attitude without Perturbation

Orbit

qu
at

er
ni

on
er

ro
r(

q
v) q1

q2
q3

Figure 4.9: Attitude quaternion error



68 Simulations and Results

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2
x 10−5 Controlled Attitude with Perturbation

Orbit

ω
er

ro
r[

ra
d/

s]

ω1
ω2
ω3

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2
x 10−5 Controlled Attitude without Perturbation

Orbit

ω
er

ro
r[

ra
d/

s]

ω1
ω2
ω3

Figure 4.10: Angular velocity error



4.2 Perturbation Analysis 69

0 2 4 6 8 10
−4

−3

−2

−1

0

1
x 10−3 Control Signal

Orbit

Co
nt

ro
lS

ig
na

l[
Am

2 ]

u1
u2
u3

0 2 4 6 8 10
−4

−3

−2

−1

0

1
x 10−3 Control Signal

Orbit

Co
nt

ro
lS

ig
na

l[
Am

2 ]

u1
u2
u3

Figure 4.11: Envelope of the Control Signal



70 Simulations and Results

4.2.2 Large Initial conditions

Another set of simulations has been carried out in order to test the
behavior of the attitude control system in more realistic conditions.
Such condition are chosen as a set of large pointing errors and large
angular velocities that may result at the end of detumbling phase with
a B-dot like algorithm (see section 2.3.3). The B-dot algorithm can
usually carry the spacecraft to a total angular rate in the order of
two times the nominal angular rate of the nadir pointing spacecraft,
this is, two times the orbital angular rate. To be conservative, initial
angular rates which are an order of magnitude higher than required
have been chosen.

Orbit parameters are the same as with small initial conditions, and
are presented in equation 4.6. Initial conditions are shown in equation
4.7.


φ

θ

ψ

 =


180
20
60

 [deg] ; ωini =


0.06
0.08
0.05

 [rad/s] (4.7)

In these conditions, the results of the simulations are presented
in figures 4.12 to 4.14 with and without perturbations. Although the
initial conditions in angular velocity are large, the control system is
able to reduce the angular velocity in two of the three axes very quickly.
However it takes some orbits to reduce the angular velocity in the pitch
axis. Nevertheless the results show that it is feasible to implement this
3 axis control system together with a B-dot control law.

As will be discussed in the next chapter, a different choice of the
control matrices S, Q and R will result in a different result. In this
case, a possible choice would be to put more effort on reducing the
angular velocity and no effort on the angles until the angular velocity
reaches the target angular velocity. Then switch the control matrices
for a fine pointing attitude controller.
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Comparing these results with those obtained with small initial con-
ditions, several conclusions can be extracted. First, the control system
takes more time to control one axis than the others in both situations.
The cause has been explained previously, it is due to the small projec-
tion of the available Earth magnetic field along the orbital plane of a
15 degrees orbit. Second, the control action almost reached the limits
of the magnetorquers described before, with a peak value of about
10Am2. Finally, these results also suggest that the control system will
also be able to recover the control of the satellite under a very large
unexpected perturbation in attitude.

4.3 Feasibility analysis

The results presented so far show a good performance for a certain
orbit and several initial conditions. A set of simulations have been
carried out in order to test the control system for several orbital con-
ditions. The initial conditions on angular velocity and error angles
are those used in the small initial conditions subset, represented in
equation 4.5. Those conditions are zero error for angular velocity and
an error in the target nadir pointing attitude of 2 degrees in roll, 1
degree in yaw and 0 degrees in pitch, the axis of the nominal angular
velocity. The orbit altitude is 500 km above mean sea level.

Two performance index have been defined to evaluate the behavior
of the satellite for the available orbits and present the results.

The first index takes into account the control time, which is defined
as the time that any component of the quaternion vector takes in order
to be less than 0.005; it means |qi| ≤ 0.005 (see Figure 4.15).

The second index is intended to measure the effectiveness of the
control. Therefore, the mean value of the quaternion error vector
during the 10th orbit is chosen.

The numerical results are summarized in tables 4.1 and 4.2, where
the best values are in boldface. These results show that the control
system works for a wide variety of orbits and that a better performance



4.3 Feasibility analysis 75

0 1 2 3 4 5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
quaternions

Orbit

qu
at

er
ni

on
er

ro
r

Control Time

q1
q2
q3

Figure 4.15: Control Time Definition

RAAN 0 45 90 135 180 225 270 315 360
incl. Quaternion vector mean value [·10−7]
30 [·10−3] 0,08 0,08 0,30 0,46 0,24 0,31 0,12 0,07 0,08
45 [·10−5] 0,04 0,22 0,91 1,48 0,66 0,10 0,02 0,01 0,04
60 0,03 0,07 0,07 0,15 0,21 0,09 0,03 0,01 0,03
75 0,09 0,04 0,02 0,02 0,03 0,06 0,10 0,12 0,09
90 0,15 0,15 0,15 0,13 0,11 0,11 0,12 0,14 0,15

Table 4.1: Quaternion vector mean value, orbit height = 500 km
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RAAN 0 45 90 135 180 225 270 315 360
incl. Time [orbits]
30 4,43 5,55 6,11 5,62 4,15 2,03 2,01 2,17 4,43
45 2,02 2,16 3,46 1,91 1,77 1,7 1,71 1,83 2,02
60 1,7 1,77 1,72 1,62 1,53 1,49 1,51 1,58 1,7
75 1,49 1,53 1,5 1,41 1,3 1,27 1,34 1,42 1,49
90 1,32 1,35 1,27 1,05 1,03 1,02 1,05 1,2 1,32

Table 4.2: Control Time, orbit height = 500 km

is achieved with high inclination orbits. Orbits with higher inclinations
allow the satellite to move in a higher varying magnetic field than
orbits with inclinations closer to Earth Magnetic equator. The effect
of orbit inclination can be shown in figures 4.16 and 4.17, where an
orbit of 15 degrees and 75 degrees respectively are plotted.
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Figure 4.16: 15 degrees inclination orbit path and magnetic field

4.4 Conclusions of this chapter

Several Simulations have been carried out in order to test the control
system. In section 4.1, a simulation of the system is analyzed. Along
this simulation, the whole simulation environment and how the ASRE
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Figure 4.17: 75 degrees inclination orbit path and magnetic field

technique can be applied to attitude control is explained.
Then in section 4.2, the control system is checked under perturba-

tions and model uncertainties for a certain orbit and initial conditions.
It is shown that the control actions are well within the limits of the
actuators for a satellite with similar inertia moments as the one under
test. Furthermore the control strategy is able to control the satellite
in case of large angular rates such as the ones that will remain after a
detumbling phase using the well known Bdot algorithm.

Finally, in section 4.3, a bench of simulations are carried out in
order to establish a feasibility analysis. The results show that the
control system works for a wide variety of orbits and that a better
performance is achieved with high inclination orbits.
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5
Conclusions

In this work, a new algorithm for magnetic satellite attitude control
system design is presented. In this method, only magnetic actuators
are needed and three axis pointing accuracy is achieved using a non
linear technique called Approximating Sequence of Riccati Equations
(ASRE). This technique is based on transforming the nonlinear control
problem into an equivalent time variant problem with the introduction
of the iterative sequence corresponding to the system dynamics and
another iterative sequence corresponding to the cost function to be
minimized. The new problem can be solved as a sequence of two point
boundary value problems using the costate transformation as a soft
Constrained Problem.

ASRE technique can solve the control problem for a given horizon
time. However, it is not efficient at all to solve the problem for a
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whole orbit, because the simulated state will not match the real state
due to perturbation or model uncertainties. Therefore, a time span is
introduced. Then, the control will be calculated in every time-span
period.

The control system has been intensively proven for a wide variety
of orbits and initial conditions. Model uncertainties and perturba-
tions have been also taken into account. The results show that the
control system works for a wide variety of orbits and that a better
performance is achieved with high inclination orbits. Furthermore the
control strategy is able to control the satellite in case of large angular
rates such as the ones that will remain after a detumbling phase using
the well known Bdot algorithm.

It is also shown that the control actions are well within the limits
of the actuators for a satellite with similar inertia moments as the one
under test. However the performances can be tailored to the available
control power.

The contents in chapter 3 and 4 represent an improvement to the
state of the art for three axis magnetic satellite attitude control. Only
a few nonlinear techniques have been used in attitude control problems
and none of them have been reported to fully control a magnetically
actuated spacecraft in three axis without any other stabilization tech-
nique or using any other type of actuator.



6
Conclusiones

En este trabajo se presenta un nuevo algoritmo para un sistema de con-
trol magnético de orientación de satélites. La ventaja de este método
de control sobre otros es que sólo se necesitan actuadores magnéti-
cos. Además se consigue el apuntamiento de los tres ejes de liber-
tad utilizando una técnica de control no lineal llamada Approximating
Sequence of Riccati Equations (ASRE). Esta técnica está basada en
transformar el problema de control no lineal en un problema equi-
valente de tiempo variante mediante dos secuencias iterativas, una
correspondiente a la dinámica del sistema y otra correspondiente a la
función de coste que debe ser minimizada. El nuevo problema puede
ser resuelto como una secuencia de problemas Two points boundary
value problems (TPBVP) usando la transformación de coestado y re-
solviendo el problema como un Soft Constrained Problem (SCP).
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La técnica ASRE puede resolver el problema de control para un
horizonte de tiempo dado. Sin embargo, no es eficiente resolver el
problema de control para una órbita completa, ya que la propagación
del estado simulado puede no reflejar la evolución del estado real de-
bido a perturbaciones y discrepancias entre el modelo y la realidad.
Por todo ello, se introduce un parámetro llamado Time Span. En-
tonces, el control será calculado in cada periodo de tiempo marcado
por time span.

El sistema de control se ha probado intensamente para una gran
variedad de órbitas y condiciones iniciales. También se han tenido en
cuenta las perturbaciones y los errores de modelado. Los resultados
demuestran que el sistema de control funciona para una gran variedad
de órbitas, pero se consiguen los mejores resultados para órbitas de alta
inclinación. Además, también se ha probado la estrategia de control
para condiciones de velocidad angular similares a las que existirían
después de una fase de detumbling utilizando el algoritmo Bdot.

También se demuestra que las acciones de control están dentro
de los límites de funcionamiento de los actuadores electromagnéticos
típicos para un satélite de las propiedades de inercia del que se ha
elegido para las pruebas. No obstante, el funcionamiento puede ser
personalizado según la potencia de control disponible.

El contenido de los capítulos 3 y 4 presenta una mejora en el estado
del arte del control magnético en tres ejes de la orientación de un
satélite. Sólo se han explorado unas pocas técnicas de control no
lineal para resolver el problema de control magnético de la orientación,
y ninguna de ellas han conseguido controlar totalmente un satélite
con actuadores electromagnéticos en tres ejes sin utilizar alguna otra
técnica de estabilización o usando otro tipo de actuadores.



7
Open Research Topics

Every research work helps to understand or provides solution to a
known [or unknown] problem. Furthermore it opens new questions or
topics which can be investigated in more detail. In this chapter, the
open topics which might be considered in the future are discussed.

The first one is the modeling of the magnetic field. Although the
control system presented in this work is able to control the satellite in
every situation that has been tested, better results might be obtained
if the full model of the magnetic field is introduced in the system
model instead of the dipole model. This improvement will change the
matrix B in equation 3.41, where βpi should be calculated using the
full model introduced in section 3.3. The contributions of a better
modeling of the magnetic field would be higher in lower orbits and
near the anomalies of the magnetic field, where the higher order terms
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of the model become more dominant.
The factorization proposed in section 3.4 is not unique for the same

system. Therefore another factorization which might contribute to the
performance of the whole system could also be proposed.

ASRE related design issues for the problem considered in this work
are still open. The optimization of the time span and the optimization
of the control matrices Q, S an R should be studied for every case and
orbit. For instance, taking the case in section 4.1 and changing matrix
R = I3/2, another performance of the system is achieved. The results
for this case are shown in figures 7.1 to 7.3. The error on the scalar
quaternion part and the angular velocity with different values of the
time span is also plotted on figures 7.4 and 7.5.
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Figure 7.1: Angle error for R=0.5I

A more mechanical method for fine tuning of these parameters
could be outlined. Another important property of the control algo-
rithms is the study of stability regions or regions of attraction. In this
work, a method based on a bench of simulation is presented in sec-
tion 4.3. A more formal method needs to be formulated for stability
analysis of this controller. A good starting point is the work by Banks
[83].
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Another very important issue is convergence time of the ASRE.
Reducing the time span also reduces the convergence time for a given
hardware setup. However, reducing the time span also reduces the
time period of the calculated control, thus the algorithm should be
rerun at a higher frequency. If the algorithm is to be implemented
on board a given hardware, testing of the time the hardware takes to
solve the ASRE problem should be undertaken.

All the algorithms should be tested on ground before launching.
Special facilities are needed to test a magnetic attitude control system.
A good review of satellite attitude testing facilities is presented in [87].
The facilities designed so far use 6 Helmholtz coils, two per axis, for
the generation of a constant magnetic field in the region of interest
located in the geometrical center of the coils. An air bearing table is
situated in the center of the facility in order to provide torque free
motion in 3 axis with restrictions in pitch and roll. Therefore, the
satellite can be placed in the middle of the facility on the air bearing
platform and the control attitude control system can be tested [88] .
In order to simulate the magnetic field, a measure of the field present
in the room is taken. Then the Helmholtz coils generate the desired
magnetic field plus the appropriate component to cancel the magnetic
field previously measured [89]. However, there are still open issues as
how to compensate efficiently in closed loop the magnetic field and
reach field levels in the order of magnitude as the magnetic field in a
high orbit.

Finally, other applications of active magnetic attitude control can
be explored in several fields other than aerospace. For instance, in
[90] a study of magnetic navigation system design for microbots in
biomedical applications is discussed.
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A
Cross Product and Skew Symmetric

Matrix

Modeling real life dynamics and kinematics using algebra usually im-
plies the use of the well known vector cross product. Given two vectors
~u = [u1, u2, u3]T and ~v = [v1, v2, v3]T , the cross product is denoted by
~w = ~u ∧ ~v and is defined by equation A.1.

~w = ~u ∧ ~v =


u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 (A.1)

The result of the vector cross product of ~u and ~v is another vector
~w which direction is perpendicular to both ~u and ~v. Thus, provided
that the vector ~k is the unit vector perpendicular to both ~u and ~v
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given by the right hand rule, the cross product can be expressed by
equation A.2.

~w = ~u ∧ ~v = |~u| |~v| sin(~u,~v)~k (A.2)

Following the expression in equation A.2, it is straightforward to
derive that ~u ∧ ~v = −~v ∧ ~u.

A skew symmetric matrix B is a matrix with the property of B′ =
−B. The operator S(·) can be defined so that for a given vector ~u,
the skew symmetric vector in equation A.3 is derived.

S(~u) =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 (A.3)

The most useful property of the skew symmetric matrices com-
posed from a vector is that a matrix form of the cross product vector
is made available. Therefore, the matrix product of S(~u) and ~v corre-
spond to the vector cross product of ~u ∧ ~v:

S(~u)~v =


0 −u3 u2

u3 0 −u1

−u2 u1 0



v1

v2

v3

 =


u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 = ~u ∧ ~v

(A.4)
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Frames
B.1 Transformation between ECEF and orb
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B.2 Transformation between orb and LVLH
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frame . . . . . . . . . . . . . . . . . . . 109

The reference frames that have been used through the thesis are de-
scribed in section 3.1. In this appendix, the transformation between
reference frames will be derived.

A transformation matrix, also called Direction Cosine Matrix (DCM),
is a matrix that represents the relative rotation of two different orthog-
onal frames. Furthermore, given two orthogonal reference frames A
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1
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Ω

Greenwich
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θ
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x y
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Earth

Earth Centered Earth Fixed (ECEF) Frame

Orbit Perifocal (orb) Frame

Local Vertical Local Horizontal (LVLH) Frame

Principal Inertia (PI) Body Frame

where Ω is the Right Ascension of the Ascending Node (RAAN), i is
the orbit inclination and θ is the satellite anomaly.

Figure B.1: Reference Systems
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and B, the transformation matrix SBA can also be used to calculate the
representation of a vector v in frame B (vB) from the representation
in frame A (vA) (see equation B.1).

vB = SBA · vA (B.1)

The transformation matrix can also be transposed to calculate the
opposite transformation as in equation B.2.

vA =
(
SBA

)T
· vB (B.2)

For a more broader discussion of the transformation matrix prop-
erties, refer to [91].

In this work, DCMs are used to transform vectors between the dif-
ferent reference frames described in figure 3.1. Figure 3.1 is reproduced
in figure B.1 for clarification.

B.1 Transformation between ECEF and orb
Frame

ECEF and orb Frames are used to represent the satellite position in
the calculation of the Earth Magnetic Field in the satellite point. The
DCM that transform from ECEF to orb can be derived splitting the
full rotation in two successive rotations, as explained in figure B.2.

First a rotation of Ω around axis 3 is performed. The new axis are
1′, 2′ and 3 = 3′. Next, a rotation of angle i around axis 1′ = e results
in the desired orb axis. The transformation is expressed by equation
B.3.

SorbECEF =


1 0 0
0 cos(i) sin(i)
0 − sin(i) cos(i)




cos(Ω) sin(Ω) 0
− sin(Ω) cos(Ω) 0

0 0 1

 (B.3)
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1
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3 = 3′

Ω
1′

2′
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Figure B.2: ECEF to orb transformation

B.2 Transformation between orb and LVLH
Frame

e

ph

θ

r

y

p

Figure B.3: orb to LVLH transformation

The DCM in the transformation between orb and LVLH frame is
represented in figure B.3. Only a rotation of 90 + θ around the h axis
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is needed. It is also expressed in equation B.4

SLV LHorb =


cos(90 + θ) sin(90 + θ) 0
− sin(90 + θ) cos(90 + θ) 0

0 0 1

 (B.4)

In general, a vector transformation between these coordinate frames
also requires a translation, because the centers are not the same. How-
ever, this transformation is used in this thesis as the first partial ro-
tation to transform the Earth magnetic field vector into the pi frame.
And the Earth magnetic field vector can be centered in the center
of the LVLH frame. Therefore, the transformation needed does not
require the translation.

B.3 Transformation between LVLH and pi frame

The LVLH frame represents the target attitude for the control. There-
fore, the rotation of the pi frame with respect to the LVLH frame is
the transformation that needs to be taken to 0. The quaternion in the
state vector described in section 3.4 are used to represent the error
between the pi and the LVLH frame. Thus this quaternion is used to
represent the rotation between the LVLH and the pi frame given by
equation B.5.

SpiLV LH =
[
(q2

0 − qTv qv)I3 + 2qvqTv − 2q0S(qv)
]

(B.5)
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Introduction To Quaternions
C.1 Quaternion representation of a rotation 111
C.2 Consecutive rotations . . . . . . . . . . 112
C.3 Quaternion Rotation matrix . . . . . . . 112

Quaternions were born as an extension in three dimensions of a com-
plex number. They were first developed by Hamilton[92], but the
Hamiltonian algebra is written in a general form. When the quater-
nions are used for attitude representation, a simpler algebra can be
derived. This algebra is presented in this appendix.

C.1 Quaternion representation of a rotation

Let ~u be a unit vector and φ be an angle. Provided that ~u is the
rotation vector and φ is the angle of rotation around that vector, the
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quaternion is defined by equation C.1.

q0 = cos
(
φ
2

)
q1 = u1 sin

(
φ
2

)
q2 = u2 sin

(
φ
2

)
q3 = u3 sin

(
φ
2

) (C.1)

The quaternion can be represented as Q = [q0, q1, q2, q3] or equiv-
alently by a scalar and a three dimensional vector Q = {q0, ~q} with
~q = [q1, q2, q3]. Both forms are commonly used, as the former expres-
sion fits well for matrix implementations while the later is useful for
formula derivation and shorthand notation.

C.2 Consecutive rotations

Quaternions can be operated among then in a similar way as vectors
or imaginary numbers. However, the most important operation for
attitude representation is the multiplication operation. The result of
the multiplication of two quaternions has the property to concatenate
the rotations represented by the quaternion in another quaternion.
The multiplication operation is mathematically described in equation
C.2.

P ∗Q = [p0, p1, p2, p3] ∗ [q0, q1, q2, q3]

=


p0q0 − p1q1 − p2q2 − p3q3

p1q0 + p0q1 + p2q3 − p3q2

p2q0 + p0q2 + p3q1 − p1q3

p3q0 + p0q3 + p1q2 − p2q1


= (p0q0 − ~p · ~q, p0~q + q0~p+ ~p ∧ ~q

(C.2)

C.3 Quaternion Rotation matrix

As described before, quaternions can represent a rotation. Sometimes,
rotation matrices are more useful than quaternion multiplication, spe-
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cially because they can operate over three dimensions regular vectors.
The transformation to a Direction Cosine Matrix is represented in
equation C.3. The demonstration can be found in reference [91].

C =
(
q2

0 − ~q′~q
)
I3 + 2~q~q′ − 2q0S(~q) (C.3)
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