Convex Difference Inclusions
for Systems Analysis and Design

Inclusiones Convexas para el Aalisis y el Disdio

Mirko Fiacchini

Thesis submitted for
the Degree of Doctor of Philosophy

Dpto. de Ingenida de Sistemas y Autoatica
Escuela Ecnica Superior de Ingenieros
Universidad de Sevilla

Seville, December 2009






Convex Difference Inclusions
for Systems Analysis and Design

Inclusiones Convexas para el Aalisis y el Disdio

Author:
Mirko Fiacchini

Supervisors:
Eduardo Feriandez Camacho
TeodoroAlamo Cantarero

Seville, December 2009






Ever tried. Ever failed. No matter.
Try again. Fail again. Fail better.

S. Beckett.

To my family.

To Eduardo and Teo.






Contents

Notation vii
1 Introduccibn 1
1.1 Teoria de conjuntos en el ambitodel control . . . . . . ...... . . . .. 2
1.1.1 Enfoque worst-case para el analisisy el disefio . . ... ... 2

1.1.2 Invariancia . . . . . . . . . . e e 3
1.1.2.1 Invarianciay satisfaccion de restricciones slura. . . . 4
1.1.2.2 Maximo conjunto invariante y operadoraunpaso ... 6
1.1.2.3 Conjuntos alcanzables y minimo conjunto invaean. . 7

1.1.2.4 Conjuntog -contractivos y funciones de Lyapunov induci-
das . . . . ... 11

1.1.2.5 Control predictivo basado en modelo y conjuntoariantes 12

1.2 Estado del arte sobre los métodos basados en la teoc@@intos . . . . . 15
1.2.1 Trasfondo histbrico . . . . . . ... ... oo 51
1.2.2 Estado del arte para sistemasnolineales . . . . ... .. ... 17

1.2.2.1 Contribuciones sobre la computacion de conjunt@si-
antes para sistemasnolineales . .. ... ..... ... 20



ii CONTENTS

1.3 Convexidad einvariancia . . . . . . . . . . . e

1.4 Motivaciony objetivosdelatesis. . . . . . .. .. ... ...

1 Introduction
1.1 Set-theoretic methodsincontrol . . ... ... ... ... ... ......
1.1.1 Worst-case approach to analysisanddesign . . . . . ... ..
1.1.2 Invariance . . . . . . . . o
1.1.2.1 Invariance and hard constraints satisfaction . . . . .
1.1.2.2 Maximal invariant set and one-step operator
1.1.2.3 Reachable sets and minimal invariantset . . . . . . ..
1.1.2.4 A-contractive sets and induced Lyapunov functions
1.1.2.5 Model predictive control and invariant sets . . . . ....
1.2 State of the art on set-theoretic methods . . . . . ... .. ... ...
1.2.1 Historical background . . . . .. ... ... ... ... ...
1.2.2 State of the art for nonlinearsystems . . . . . ... ... ...

1.2.2.1 Contributions on invariant sets computation fanlmzar
SYStEMS . . ...

1.3 Convexityandinvariance . . . . . . . .. . .. ... ..

1.4 Motivation and objectives of thethesis . . . . . . ... .. .......

1.5 Listofpublications . . . ... ... . ... . ... ...
1.5.0.2 Bookchapters: . . ... ... ... ... .. .....

1.5.0.3 Journalpapers:. . . . . . .. . .. e

29

30

30

31

32

.33

38

39

41

42

44

47



CONTENTS

2 CDI framework for nonlinear systems

21

2.2

2.3

Nonlinearsystems . . . . . . . . .. .. .. ... ... ...
2.1.1 Uncertain nonlinearsystems . . . . .. ... ......
2111 Setvaluedmaps ... .............
2.1.1.2 Parametricuncertainty . . . . ... ... ...

2.1.1.3 Additiveuncertainty . . . . ... ... .. ...

Convex difference inclusions: CDI systems

2.2.1 UncertainCDIsystems . . . .. ... ..........

Conclusions . . . . . . ...

3 Computation of CDI systems

3.1

3.2

3.3

3.4

Concave-Convex Difference Inclusions: CCDI systems. .. .. . . . . ..
3.1.1 CCDIsubsystems. . . . ... ... . ... .......
Luresystems . . . . . . . ...

Generalized saturated systems . . . . . ... ... ......

Difference-of-convex (DC) systems

3.4.1 Briefoverviewon DC functions . . . .. ... ... ...
3.4.2 DCsystemsand DCDIsystems . .. ..........

3.4.3 Difference-of-Convex Difference Inclusion: DCDIlssgms



CONTENTS

3.5

3.6

3.4.3.1 Uncertain DCDIsystems . ... ...........
Linear parametric uncertain systems . . . . .. .. ... .. ... ..
3.5.1 Linear difference inclusions: LDIsystems . . . . . . .. .. ..
3.5.2 Linear parameter varying systems: LPV systems . . . .. ..

ConclusionS . . . . . . . e e

Set-theory and invariance for CDI systems

4.1

4.2

4.3

4.4 Conclusions

Convexinvariant sets for CDIsystems . . . . ... ... ... .......

4.1.1 Necessary and sufficient condition for invariancedbi systems .

4.1.2 Robust invariance for uncertain CDI systems
One-step operator and domain of attraction

4.2.1 One-step operator for uncertain CDI systems

4.2.2 One-step operator complement . . . . . .. ... .......
Computationalissues . . . . . . . . . . . . . e

4.3.1 LDl system locally overboundinga CDIsystem . . . . . .. ..

4.3.1.1 LDI systems overbounding CDI and CCDI systems

4.3.2 Polytopic local invariantset . . . .. ... ...........
4.3.3 Algorithmic computation of A-contractive set for CDI systems . .

4.3.4 Numericalexample . . . . . . . ... ... o

5 Convex invariant sets for nonlinear systems

116

118

126

129

134

135

140

141

.2 14

159



CONTENTS

5.1 Convex invariant sets for DC systems
5.1.1 Contractiveness and invariance condition for DCesyst. . . . . .

5.1.1.1 RobustinvariantsetforDCsystems. . . . ... . ..

5.1.2 PolytopicA-contractive and invariantset . . . .. .. .. .. ..

5.1.3 Computationalissues . . . . . . .. . .. ... . ...
5.1.4 Numericalexample . . . . . . . .. ... .. ... .
5.2 Convex invariant sets for Lur'e systems

5.2.1 CDI approach to invariance computation for Lureeyss . . . . .

5.2.2 Numericalexample . . . . . . . ... ... oL

5.3 Conclusions . . . . . . . .

6 Control invariant sets for nonlinear systems
6.1 Control invariant sets for DC systems
6.1.1 Control invariance condition for DC systems
6.1.2 Condition for control invariance for polytoggz. . . . . . ... ..
6.1.3 One-step operator for non-autonomous DC systems . .. .. .. . .

6.1.4 Practicalissuesondesign. . .. ... .. ... .........

6.1.5 Numericalexample . . . . . .. ... ... ... .. . .

6.2 Conclusions

7 Conclusions

A Definitions and properties of invariance

195

197

203

217

223



Vi

CONTENTS

B Convex sets and convex functions

C Support function

229

233



vii



Viii CONTENTS

Notation

N  Set of natural number.

7 Set of integer number.

R  Set of real number.
R, Set of non-negative real numbers.
R_  Set of non-positive real numbers.

Npp Setofintegersincluded between two integiise N: Njg 1y = {x€ N
a<x<b}.

Na Set of positive integers smaller or equal theaa N, witha > 1: Ny 4.

A i-th row of matrixA € R™™M, with i € N, (i-th element of vectoA if
m=1).

el Vector in R" whose entries are zero, but theh which is 1: el =
[0...010...Q]".

Im Identity matrix of dimensiomn € N.
Omn Matrix in R™" whose entries are 0.
[A, B] Matrix concatenation of matricesandB.

(D) Set of subsets db.
(D) Set of convex, compact subsetdnf
#0(D) Set of convex, compact subsetsbtontaining the origin in their inte-
rior, i.e., Ocint (D).
Bf  p-norm unitary ball inR" centered in the originBy = {x € R": ||x||p <

1}.
aD SetaD = {ax: xe D}, wherea > 0 andD C R".

co(D) Convex hull of seD C R", i.e., the set of points that can be expressed
as a convex combination of a subset of element3.of

int (D) Interior of a seD C R".
ri (D) Relative interior of a séb C R".
0D Boundary of seD.



CONTENTS

Oxf (o)

Acronyms

CDI
CCDI
DC
LDI
LPV
MPC
LMI

Gradient of functionf : X — Y with respect tox € X atxg € X.

Image of seD C R" through functionf : R" — R™ f(D) = {f(x):
x e D}.

Sign operator.
Support function oD C R" evaluated af € R", see Appendix C.

Minkowski set addition. Given two set$, V C R", we havel ¢V =
{X=u+v:ueU,veV}.

Pontryagin (or Minkowski) set difference. Given two setsV C R",
we haved 6V = {xe R": x+veU, WweV}={xeR": xaV CU}.
Minkowski sum of set®' C R", withi € Ny.

Ellipsoid determined by the positive definite matfixc R™" with P =
PT >0:&(P)={xcR": x'Px< 1}.

Convex Difference Inclusions.
Concave-Convex Difference Inclusions.
Difference of convex.

Linear Difference Inclusions.

Linear Parameter Varying.

Model Predictive Control.

Linear Matrix Inequalities.



CONTENTS




Chapter 1

Introducci on

El objetivo principal de esta tesis es contribuir al dedkride métodos basados en la teoria
de conjuntos para el analisis y el disefio de sistemas ealés e inciertos. Particular
atencion sera dedicada a los conjuntos invariantdscgntractivos, muy importantes en
el contexto del disefio del control y del analisis de sisteno lineales e inciertos.

Este capitulo describe la motivacion y los objetivos deéekis, presenta el problema
tratado e introduce la estructura de la tesis y el trabajardgtado. Primero se introduciran
algunos conceptos relacionados con la teoria de conj@mas ambito del control y del
analisis de sistemas dinamicos, haciendo particularapii® en el concepto de invariancia.
Se daran las definiciones basicas y se describiran aqnopiedades de los conjuntos in-
variantes. Se ilustraran aspectos que hacen evident@tatamcia de la invariancia y de los
métodos basados en la teoria de conjuntos para el control.

Se proporcionara un resumen de las principales contohesi presentes en la literatura,
qgue han llevado a los mas recientes resultados en el campeadtigacion tratado, seguido
por una introduccion al estado del arte sobre la invareanptbs métodos basados en la teoria
de conjuntos.

Luego se proporcionara una introduccion al concepto deecaodad, tanto para conjun-
tos como para funciones. La convexidad merece especigddt@endo un ingrediente clave
para muchos de los resultados presentados en la tesis.dmsdades de los conjuntos con-
vexos y de las funciones convexas seran extensivamerdasiado largo de la tesis, debido
al hecho de que, dado un conjunto, su convexidad permiteufarrpropiedades generales
basadas en condiciones que implican solamente un subtonpasiblemente finito, de di-
cho conjunto.

Finalmente la motivacion, los objetivos y las contribunge del trabajo de investigacion
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seran ilustrados y la estructura de la tesis presentada.

1.1 Teona de conjuntos en ebmbito del control

Generalmente, con métodos basados en la teoria de comjoos referimos a aquellas
técnicas que conciernen propiedades compartidas pos tod@lementos de unos conjun-
tos del espacio de estados. Dos importantes ejemplos, amglocdel analisis de sistemas
dinamicosy del disefio de control, que implican la utiba de métodos basados en la teoria
de conjuntos, son la invariancia y el enfoque “worst-cadet ¢aso peor) para el analisis y
el disefo.

Ademas, los metodos basados en la teoria de conjuntdtareswy Gtiles para el analisis
y el disefio de control para sistemas inciertos, con irduartbre desconocida pero acotada.

1.1.1 Enfoque worst-case para el alisis y el diséio

El enfoque clasico para tratar los problemas de analigisngrol para sistemas inciertos
estaba basado, hasta el final de los afios sesenta, enstgpggcasticas sobre la natu-
raleza de la incertidumbre. EIl objetivo del control optieroeste contesto es, en general,
la determinacion de la ley de control que minimiza el valerusha funcién de coste, bajo
la suposicion de una incertidumbre caracterizada por istakdicion de probabilidad dada.
Analogamente, asumiendo por ejemplo que el sistema ea §ngue la condicion inicial,
las medidas y los ruidos que afectan el sistema son modgiaigsocesos blancos Gaus-
sianos, el problema de estimacion es solucionado porrel fie Kalman, que proporciona
la solucion 6ptima que minimiza el valor esperado delresteestimacion.

Una manera paralela, y en cierto sentido dual, de tratartiddgmas de analisis y control
para sistemas inciertos es a través del enfoque worsttcagantista). Este enfoque esta
basado en hipbtesis diferentes sobre la incertidumbrafggéa al sistema. En este escenario
la incertidumbre es asumida desconocida, pero acotada eonjunto. Tal enfoque esta
basado en las siguientes consideraciones:

e |la asuncion del conocimiento exacto de la funcion de iBistiobn de probabilidad
de los ruidos y de las perturbaciones puede ser demasiadotias mientras la su-
posicion de presencia de cotas conocidas para la incenicupuede ser mas realista
en muchos casos. De hecho, el enfoque worst-case es jukiiicenenudo por el
hecho de que ninguna suposicion probabilistica sobrintastidumbres puede ser
hecha, mientras que las cotas sobre los errores de mod&dsrpser establecidas en
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muchos casos. Se consideren sistemas con dinamica depindiz parametros, cuyos
valores posibles estan restringidos por cotas debidasitadiones fisicas conocidas.
En este caso el enfoque worst-case resulta mas realist gstcastico.

e Cuando el sistema presenta restricciones duras, el enfaryge case presenta algunas
ventajas. Si consideramos el enfoque estocastico, ningarantia de cumplimiento
de las restricciones puede ser asegurada, mientras ldsdesproporcionados por el
enfoque worst-case pueden asegurar la satisfaccion destEciones, siempre que
las hipotesis sobre la incertidumbre se cumplan.

e La asuncion de presencia de incertidumbre en el sistendemer usada para tratar
no linealidades. Por ejemplo, supbngase que las dinamigdineales del sistema
sean conocidas. En este caso, un sistema lineal con incefireé acotada puede ser
empleado, asumiendo que la incertidumbre modela la disnogg con el sistema no
lineal. Este procedimiento de aproximacion, si bien idiie algln conservadurismo,
permite aplicar resultados basados en la linealidad arssteo lineales. Los sistemas
de inclusion de diferencias lineales (LDI) y los sistemagdles con incertidumbre
aditiva son modelos clasicos en este contexto, véaseif§ur995; Boyd, EI Ghaoui,
Feron and Balakrishnan, 1994).

Los métodos basados en la teoria de conjuntos se presememnposibles alternativas a
los estocasticos, para los problemas del analisis deikdéal, de disefio de control robusto y
de estimacion de estado para sistemas afectados poidoogires. La suposicion de mode-
lar la incertidumbre como desconocida pero acotada, eneveardo proceso estocastico, fue
presentada en los trabajos pioneros de Witsenhausent)l &$hweppe (1968), Bertsekas
y Rhodes (1971).

Vale la pena notar que el objetivo del enfoque worst-caséteser conjuntos de elemen-
tos que satisfacen las especificaciones requeridas, reas particular elemento 6ptimo con
respecto a un criterio de evaluacion. Por ejemplo, laoreg del espacio de estado cuyos
puntos aseguran la satisfaccion de restricciones paranéiot son el analogo del control
LQG estocastico, mientras la estimacion garantizadd as&ogo worst-case del filtro de
Kalman.

1.1.2 Invariancia

El concepto de invariancia ha llegado a ser fundamental glaaaalisis de sistemas y el

disefio de control. Aunque muchos esfuerzos de investigdwyan sido dirigidos a este

tema alo largo de la segunda mitad del siglo pasado, el caeipasparticularmente activo

en los ultimos afos. La importancia de los conjuntos iavdes en control es debida a las
propiedades de estabilidad implicitas en estas regiaiesgdacio de estados.
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Un conjunto invariante para un sistema dinamico es unamegpgl espacio de estados tal
que la trayectoria generada por el sistema queda contenidha®njunto, si la condicion
inicial esta dentro de él, (Blanchini and Miani, 2008). fibieiones mas formales de inva-
riancia se proporcionan en el Apéndice A, una caractdétimamonceptual de invariancia es
suficiente aqui para mostrar como la invariancia puedessafauen el ambito del control y
sus principales propiedades.

Particularmente relevante es la propiedad de invarianbiasta (de control) para un con-
junto, ya que ésta puede ser usada en los contextos dadiaui@ estabilidad y de la satis-
faccion de restricciones para sistemas dinamicos erepcesde incertidumbres desconoci-
das pero acotadas. También el problema de la convergea@atchtegias de control esta
fuertemente relacionado con el concepto de invarianciastalde control. El esquema en la
Figura 1.1 representa las relaciones entre invariane@ntractividad y algunos de los mas
importantes conceptos implicados en la teoria del cantrol

[Estabilidad}
Convergencia]
\ ; \
MPC Invariancia ! A -contractivi@

./

Funciones ]

Satisfaccién de Lyapunov
de restricciones

Figure 1.1 Invariancia en control.

1.1.2.1 Invarianciay satisfacan de restricciones duras

Se considera la definicion estandar de invariancia patarsas deterministicos autbnomos
tiempo discreto, véase (Blanchini and Miani, 2008). Méa#irdciones y propiedades rela-
cionadas con la invariancia (por ejemplo, para sistemasios, para sistemas no autbnomos,
conjuntosA -contractivos, etc.) se presentan en el Apéndice A.
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Considérese el sistema autonomo tiempo discreto
x" = f(x), (1.1)

dondex € R" es el estadog™ € R" es el estado sucesoify D — R" es una funcion definida
en el conjuntd C R".

Un subconjunto del espacio de estad®s; D, es un conjunto invariante positivo si cada
trayectoria dada pofi, conk € N, generada por (1.1) y cop € Q, es tal quey € Q para
todok € N. En la practicaQ es un conjunto invariante positivo si cada trayectoria cpetee
por el sistema dinamico con condicion iniciglenQ, permanece en el conjunf

Aunque la invariancia de un conjunto sea una propiedad quaeme a todas las trayec-
torias generadas por el sistema dinamico con condicioralren Q, puede ser enunciada a
través de una definiciébn alternativa, que no implica eijgimente las trayectorias. De he-
cho, un conjuntd C D es un invariante positivo para el sistema autbnomo tiengmeto
(1.1) sif(x) € Q, para todox € Q.

Se puede demostrar que cualquier elemento de un conjuri@anteQ) es mapeado por
la funcién dinamica dentro d@ si y solo si la trayectoria entera generada por el sistema,
con el estado inicial eQ, permanece contenida en el conjunto invariante. En latipeac
si Xp € Q entonces, por definicion de invariancia, tenemosxque f(xp) € Q, que implica
xp = f(x1) € Q etcétera. Entonceg € Q, para toddk € N.

No6tese que se ha empleado el término invarigottivg para distinguirlo del concepto
de invariancia simple. Historicamente, el término imsmate denota un conjunto de condi-
ciones iniciales cuyas trayectorias hacia atras y adekmtel tiempo son contenidas en el
mismo conjunto, mientras que para un invariante positivo l& parte futura de las trayecto-
rias tiene que pertenecer al conjunto. Como en esta tearmes interesados exclusivamente
en los conjuntos invariantes positivos, nos referiremad#oa simplemente como conjuntos
invariantes.

La invariancia también puede ser expresada en términiasis@gen de a través de la
funcion f(-). De hecho, un conjunt@ C D es un conjunto invariante si

Q) CQ.

Se pueden dar definiciones analogas para sistemas namedénes decir en presencia
de una entrada de control. Un conjunto invariante de coatraina regio2 del espacio de
estados tal que, para cualquiera de sus elemargd, existe una entrada de contrgk)
gue mantiene el estado sucesor dentr@ddEsto conlleva que, considerando un conjunto
invariante de control, existe al menos una ley de contpaldefinida e tal que el conjunto
es invariante para el sistema en bucle cerradou¢on
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Es evidente la relacion entre satisfaccion de restm@soduras e invariancia, para un
sistema genérico. Supongamos que se requiere que el elhdistema sea mantenido
dentro de una region del espacio de estados, es decir, enjghto X C R". La existencia
de un conjunto invariant@ contenido erX asegura que, si el estado actual del sistema esta
contenido ef2, entonces ninguna violacion de restricciones ocurtingca, para todk € N.

De hecho, cualquier conjunto invariarfeC X, por definicion de invariancia, satisface
f(QcQckX,

que significa quey € X para todd € N, dondex.1 = f(X), con condicion iniciaky € Q.
Esto implica que cualquier elemento de la trayectoria na ééjconjuntoQ, de ahi que
ninguna violacion de restriccion ocurrira en la futuw@lecion del sistema. Una vez mas,
vale la pena notar que, aunque la invariancia es una comdégie concierne al compor-
tamiento del sistema en cualquier instante de tiempo futlgede el presente hasta el in-
finito, puede ser caracterizada por una simple condiciom@¢rica.

1.1.2.2 Maximo conjunto invariante y operador a un paso

La fuerte relacion entre satisfaccion de restricciongasle invariancia justifica el interés por
el maximo conjunto invariante contenido en una regioredphcio de estado, ver referencias
(Gutman and Cwikel, 1986; Gutman and Cwikel, 1987; Gilbed dan, 1991; Blanchini,
1999) y (Kolmanovsky and Gilbert, 1998).

Considerando una regiétdel espacio de estados, muchos conjuntos invariantesipuede
estar contenidos en ella. Por ejemplo, es evidente quewaalgunto de equilibrio con-
tenido enX es un conjunto invariante. EI maximo conjunto invariarg@e conjunto que es
invariante para el sistema y contiene cualquier otro cdojinvariante. Es facil demostrar
gue el maximo conjunto invariante, cuando existe y es nmyasta formado por todos los
elementos d& tales que sus evoluciones nunca abandondrdsto significa que un punto
X pertenece al maximo conjunto invariante si y solo si lgecaoria generada por el sistema
con condicion iniciakg = x nunca viola la restriccion, es deaif € X para toddk € N. Por
otra parte, si un punto no pertenece al maximo conjuntaigwge, entonces seguramente
habra un instante del tiempo futuro en el cual una violacié restriccion ocurrira. En la
practica, el maximo conjunto invariante contenidoepuede ser considerado como el con-
junto de puntos "seguros” e, en el sentido de que ninguna violacion de restricciomraéu
en el futuro.

Aunque se hayan propuesto muchos procedimientos algoosrpara calcular el maximo
conjunto invariante, hay una idea basica comin a todos.dlos procedimientos iterativos
estan basados en el empleo del operador a un@gasoConsiderando un conjunfe C X
en el espacio de estados y un sistema dinamico, el conjum@asdQ(Q) viene dado por
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el conjunto de puntos eX cuya evolucion a través de la funcidon dinamica estédertda
en Q. Es decir, considerand2 C X, un puntox pertenece al conjunto a un paQdQ) si
xe Xy f(x) € Q. De ahi,X; = Q(X) es el conjunto de puntos dé€ que permanecen en
X al menos en el primer instante. Esta claro que el uso wergenera una secuencia de
conjuntosXy1 = Q(Xx) N Xk tales que un puntr pertenece & si y solo si la trayectoria
generada con condicion inicigh = x queda enX al menos durante los primeré&spasos,
para todd € N. Deberia ser también evidente que el maximo conjuntariante puede ser
obtenido iterando el procedimiento para un numero infidé@asos.

El resultado no seria muy Util en la practica si el maxgoojunto invariante no pudiera
ser obtenido después de un numero finito de iteracionegstencaso el maximo conjunto
invariante se dice finitamente determinado y el nUmerafatgtpasos que lo genera se denota
indice de determinacion. Existen importantes contiings en la literatura, principalmente
para sistemas lineales, que permiten establecer condiimara que el maximo conjunto
invariante sea finitamente determinado.

Otra importante propiedad del operador a un paso es el hexhoalla aplicacion del
operador a un conjunto que es invariante genera otro canjjovdriante que contiene el an-
terior. Asi, el uso iterativo del operador a un paso, conamunto invariante dado como
elemento inicial, produce una secuencia creciente de otmgunvariantes. Notese que el
Mismo proceso iterativo coxy = X como elemento inicial, genera una secuencia de conjun-
tos no necesariamente invariantes, lo que implica que &ianvwcia del conjunto a un paso
k € N no esta garantizada, hasta que el indice de determmae#alcanzado (si finito).

En algunos casos, se puede demostrar que las iteraciooedizadas con un conjunto
invariante convergen al dominio de atraccion de un punteqigibrio, es decir al conjunto
de los estados cuyos elementos convergen al equilibrica@knte, se requieren asunciones
sobre la estabilidad del sistema en este caso.

1.1.2.3 Conjuntos alcanzables y imimo conjunto invariante

En esta seccion se introducen dos importantes conceptagel@ia de conjuntos como los
conjuntos alcanzables y el minimo conjunto invarianta géstemas dinamicos afectados por
incertidumbre aditiva. Los dos conceptos estan fuertéemetacionados, ya que el minimo
conjunto invariante puede ser visto como el conjunto Bndié la secuencia de conjuntos
alcanzables.

Considérese un sistema lineal asintoticamente estidatado por incertidumbre aditiva,
es decir
Xt = AX+w,

dondew es la incertidumbre yw € W, conW subconjunto acotado del espacio de estados
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con 0 W. Notese que, debido a la presencia de incertidumbre adeivsucesor de un
estado depende de la realizacion de la incertidumbre ystimoposibles sucesores de un
estado forman un conjunto. Es decir, dado un esta@b conjunto de sucesores esta dado
por (Axe&W) C R

En este contexto, es util introducir el concepto de comjsiaticanzables. El conjunto
alcanzable ek € N es el conjunto de los estados que pueden pertenecer enaglteist
a una trayectoria, para condiciones iniciales dadas y paasiarealizacion admisible de la
incertidumbre. Entonces, dado un conjunto ini&glC R", el conjunto alcanzable, para
cada instant& € N, puede ser obtenido recursivamente como

k
Re:1=AR@W = A" Ry & (D A'W.
i=0

El conjuntoRy se denomina conjunto alcanzable en el insta@eN, la secuencia dBy

es denominada tubo alcanzable, alcanzable desdea secuencia de conjuntos alcanzables
es interesante ya que contiene la informacion sobre tegasdyectorias posibles generadas
por un sistema incierto con condicion inicial contenidaRan Los conjuntos alcanzables
para un sistema lineal incierto pueden ser usados pardaradmotaciones de la evolucion
real de un sistema no lineal, mientras que la discrepantia ks dos modelos esté acotada
porW. Ademas, el tubo alcanzable puede ser visto como el resutta la estimacion de
estado en ausencia de medidas. La computacion de conplogmeables es usada también
en el enfoque worst-case para la estimacion de estadgranigolo con la informacion pro-
porcionada por una medida.

Dignos de particular interés, son los conjuntos (y el tiddoanzables para los sistemas
lineales inciertos con el origen como condicion iniciadds por

k
Rer1=AR@EW = (DAW,
i=0

conRy = {0}.

En presencia de restricciones duras para sistemas lindaéesonjuntos alcanzables
pueden ser usados para plantear una condicion suficiertéapaxclusion de cualquier vio-
lacion de restricciones a lo largo de todas las trayed@aaibles. De hecho, silos conjuntos
alcanzables estan contenidos en la region admisiblesgaké de estados, entonces ninguna
violacion de restricciones es posible.

Esta idea puede ser utilizada para disefiar leyes de coputeayarantizan la satisfaccion
de restricciones duras, ver (Chisci, Rossiter and Zapp#,)2@quellas leyes de control ro-
bustas basadas en la informacion proporcionada por Igsros alcanzables se denominan
estrategias de control basadas en tubos. Los enfoquebasatlibos, presentados primero
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en (Witsenhausen, 1968Bertsekas and Rhodes, 137 Glover and Schweppe, 1971), pro-
porcionan una solucion para el problema del control rabastpresencia de incertidumbre
desconocida pero acotada.

Mas recientemente, este enfoque ha sido extendido a ladegsas de control predic-
tivo basado en modelo (model predictive control, MPC) see@ayne, Rawlings, Rao and
Scokaert, 2000; Chisci et al., 2001; Camacho and Bord@®®%;2.imén, Alamo and Ca-
macho, 2005; BravoAlamo and Camacho, 2006), y (Langson, Chryssochoos, Rakov
Mayne, 2004; Magni, De Nicolao, Magnani and Scattolini, PQGstrategias de control
robusto muy apropiadas en presencia de restricciones.dbdsaavidente cuanto Util puede
resultar, de hecho, el concepto de los conjuntos alcareahlel contexto del control predic-
tivo basado en modelo para sistemas afectados por inaattigduaditiva, donde se requiere
una prediccion del estado.

Como ya se ha mencionado, un conjunto invariante partitidate interesante es el
minimo. El minimo conjunto invariante para un sistemale®gjunto invariante contenido
en cada otro conjunto invariante. Se puede demostrar quén@hmconjunto invariante
es el conjunto de puntos en el espacio de estados que pueglesserado desde el origen.
Conceptualmente, es el conjunto de todos los estados quempyertenecer a todas las
trayectorias posibles generadas por el sistema, con eloecigmo condicion inicial. También
puede ser demostrado que el minimo conjunto invariang ausistema incierto lineal es
dado por

Ro = (AW,
i=0

gue es el conjunto alcanzaldiR, desde el origen, cuandotiende a infinito. Es evidente
por definicibn que el minimo conjunto invariante exactgoonede ser obtenido, en general.
Los métodos para calcular aproximaciones del minimouwtaojinvariante son el objetivo de
recientes trabajos de investigacion, véase (Rakowtritfan, Kouramas and Mayne, 2005;
Ong and Gilbert, 2006).

A diferencia del maximo conjunto invariante, interesaiatieto para sistemas determi-
nistico como inciertos (lineal o no lineal), el minimo @amo invariante es significativo
sblo en presencia de incertidumbre aditiva. Ademas, bayngtar que el minimo conjunto
invariante ha sido estudiado principalmente para sistéimzales.

Elinterés en la computacion del minimo conjunto invaigey sus propiedades ha surgido
mas recientemente. Los motivos que hacen al minimo ctmjovariante interesante en el
ambito del control son menos intuitivos que aquellos dakimo conjunto invariante. El
minimo conjunto invariante es Util en los siguientes egtus:

e Importantes condiciones para la existencia y la deterrnndmita del maximo con-
junto invariante para un sistema lineal incierto estaratias en el minimo conjunto
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invariante. NoOtese que, si el minimo conjunto invariacgculado en ausencia de
restricciones, no esta contenido en la region admisihlentonces ningln conjunto
invariante robusto puede ser obtenido. Esto quiere deeirsgel minimo conjunto
invariante no esta contenido en el conjutpentonces existe una secuencia de re-
alizaciones de la incertidumbre que conduce al estado arvas restricciones, para
cualquier condicion inicial eiX.

El concepto clasico de estabilidad asintbtica de un pdetequilibrio para un sis-
tema no es aplicable en caso de presencia de incertidumbvaaRecordamos aqui,
sb6lo conceptualmente, que un sistema es asintbticarestatiele si las trayectorias son
acotadas (por lo menos aquellas que empiezan en una veaetaduilibrio) y la
distancia entre el estado y el equilibrio converge a certa 8aro que, a no ser que
se asuma que la incertidumbre desaparece cuando el sisteacarsa al equilibrio
(considérese por ejemplo el caso de incertidumbre modedacho una funcion del
estado), el sistema no puede ser mantenido en el origen. dde h&ngun equilibrio
es admitido. Un concepto analogo a la estabilidad astatpuede ser formulado para
el caso de presencia de incertidumbre aditiva, substitityehpunto de equilibrio con
un conjunto del espacio de estados y la distancia desde idibequcon la distancia
desde dicho conjunto. Este concepto se denomina acotacramal (ultimate bound-
edness). Se puede demostrar que el conjunto al que el sistewearge es el minimo
conjunto invariante. Entonces, el minimo conjunto irwaté puede ser visto como el
analogo para los sistemas inciertos del concepto de penéguilibrio para sistemas
deterministicos.

Recientemente, un nuevo enfoque basado en tubos estadgareda vez mas pop-
ularidad en el campo del control robusto de sistemas lisealepresencia de incer-
tidumbre aditiva, ver (Rakovi¢ and Mayne, 2005; Limbnyadado,Alamo and Ca-
macho, 2008). En la practica, tales técnicas de contreddias en tubos proponen
dividir la accibn de control en una parte local y una partenimal. El control local es
diseflado para mantener el verdadero estado en una vedeldzgstado nominal, mien-
tras que la evolucidbn nominal se hace converger al equlilira evolucion nominal
es obtenida por la dinamica del sistema en ausencia deithoabre.

A condicion de que la vecindad del estado nominal sea urunamjnvariante para el
sistema incierto en bucle cerrado con la ley de control Jaegbuede demostrar que el
tubo compuesto por el conjunto invariante "centrado” erelstsados de la trayectoria
nominal contiene la trayectoria real, para cualquier zaealbn de la incertidumbre.
Entonces el objetivo se reduce a controlar la trayectorraimal de manera que el
tubo se mantenga dentro de la region admisil&sta claro que, en general, cuanto
mas pequefio es el conjunto invariante que determinanasfdel tubo, mas grande es
el tubo admisible en el cual la trayectoria nominal tiene sgremantenida. Una vez
que la ley de control local es determinada, el uso del mimomjunto invariante como
vecindad del estado nominal proporciona un control mennserwador.
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1.1.2.4 ConjuntosA-contractivos y funciones de Lyapunov inducidas

Ha sido mostrado que la invariancia de una region del esphkciestados es una propiedad
gue implicitamente caracteriza todas las posibles ttagias generadas por sus elementos,
concerniendo tanto el comportamiento transitorio deksist como el estado en régimen
permanente, es decir su comportamiento limite. Esto haeéog conjuntos invariantes sean
un instrumento muy Util para ambos objetivos: garantiaasdtisfaccion de restricciones
duras y la estabilidad. También la convergencia a un puateadilibrio (o a un conjunto)
puede ser relacionada con regiones del espacio de estaaiigiendo el concepto de
contractividad.

Conceptualmente, un conjunto convexo, comp&rique contiene el origen en su in-
terior es un conjuntad -contractivo para un sistema dinamico si cada estadaireciQ se
mapea en el conjunto escaladd?, con un factor de escala positivo y menor que uno.
Esto conlleva que la imagen @ka través de la funcion dinamica que caracteriza el sestem
esta contenida en el interior @& Claramente, sA = 1, entonces la definicion de invariancia
es recuperada. Ademas, es evidenteAroentractividad implica invariancia.

Consideraciones analogas son validas también parafgsrtos invariantes de control.
Es decir, también en presencia de una entrada de contedgeper interesante determinar
una regior del espacio de estado tal que existe una ley de control, defemQ, que per-
mita mapeaf2 enA Q. Nbtese que, si se elimina la condicion de convexida@ dentonces
A-contractividad no implica invariancia, ya qa€ no necesariamente esta contenidden
en este caso.

El concepto de\-contractividad de un conjunto para un sistema dinamico qaiede
inducir una funcion de Lyapunov, y entonces estabilidaotasca o acotacion terminal. La
relacion entre conjuntok-contractivos y funciones de Lyapunov puede ser ilustraedim
ante el concepto de funcion de Minkowski. Considerado umjucio compacto y convexa
(con el origen contenido en su interior), su funcion de Minkki es una funcion del estado
x € R" definida como el minimar tal quex esta contenido eaQ y se denota colq(X).

En caso de sistemas lineales afectados tanto por la inoebict paramétrica como por
la aditiva, considerando un conjuniecontractivoQ, cualquier conjuntquQ, conu > 1,
esA-contractivo, véase la propiedad P1 en (Blanchini, 1994mbién se puede demostrar
gue si no hay ningn término aditivo de la incertidumbrgpacesuQ esA -contractivo para
todo u positivo. En ausencia de incertidumbres aditivas y asutioiequeQ es convexo,
compacto) -contractivo y contiene el origen en su interior, su funaii@ Minkowski es una
funcion de Lyapunov. De hecho, si la funcion de Minkowskium puntax esWq (X) = a, su
valor en su sucesor es menor o igual @A, es decit¥q(x*) < aA. Esto conlleva que la
funcion de Minkowski decrece a lo largo de las trayectadiglssistema, sk < 1y el estado
no es el origenEsto, y el hecho que la funciobn de Minkowski es una funciéhas$tado
definida positiva, aseguran que es una funcién de Lyapunov.
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Es importante notar que el hecho de guesA-contractivo implique que tambiémnQ
es A-contractivo (cona positivo), no se cumple para sistemas no lineales. Entduces
ciones de Lyapunov inducidas no pueden ser determinadasremay Una contribucion
importante de esta tesis concierne a este aspecto. De lseghmponen modelos dinamicos
que permiten asegurar la estabilidad asintotica (exppaBmpara una amplia clase de sis-
temas no lineales, determinando funciones de Lyapunowidds para aproximaciones de
los sistemas no lineales. Una vez mas, esa importanteguiapise basa en la convexidad.

Estas consideraciones permiten tener en cuenta funcienegagunov cuyos conjuntos
de nivel no son elipsoidales, como los que caracterizaoldasscas funciones de Lyapunov
cuadraticas. Esto quiere decir que la caracterizaciécodgintos genéricos-contractivos
implica un analisis implicito de propiedades de estdadi para una mas amplia clase de
potenciales funciones de Lyapunov. El empleo de funcioeesydpunov poliédricas, in-
ducidas por conjuntos politopicdscontractivos, adquirid particular interés en las diesa
pasadas, ver (Blanchini, 1994; Blanchini, 1995; Blanchimd Miani, 2008). Los politopos
son, de hecho, muy versatiles y permiten aproximar cad@metnconvexo.

1.1.2.5 Control predictivo basado en modelo y conjuntos irariantes

Los conjuntos invariantes son extensamente empleadosglpdisziio de reguladores estabi-
lizantes y, en particular, para la aplicacion de estragede control con horizonte deslizante.
De hecho, muchas formulaciones del control predictivo tk@sm modelo (MPC) necesi-
tan una region terminal dentro de la cual la convergendmi@tica) puede ser asegurada
implicitamente por una simple, a menudo lineal, ley dermnier (Mayne et al., 2000; Be-
mporad, Morari, Dua and Pistikopoulos, 2002; Camacho and@ts, 2004).

Se resumen brevemente las importantes caracteristicBdPd® para mostrar la impor-
tancia de la invariancia para esta técnica de control mpylpo. Aunque han sido formu-
ladas muchas variaciones de reguladores predictivospmmiomamos aqui los ingredientes
gue caracterizan al MPC estandar:

e Prediccion basada en modelo. El control esta basado eedapion de la evolucion
del sistema. Un modelo dinamico, lineal o no lineal, delesiga real es supuesto
conocido. Debido a que las computaciones se ejecutan empgi@ cada paso, en
general el modelo considerado se asume en tiempo-disciatarente en el tiempo.
En cada instante, el estado real es medido y una prediceiaaVolucion del sistema
es obtenida como funcion de las entradas, dentro de urvahtede tiempaN, lla-
mado horizonte de prediccion. El nUmero de los elemergda decuencia de futuras
entradad\., denominado horizonte de control, puede ser diferente a@&tdnte de
prediccion. El modelo permite prevenir la violacion dstrieciones que puede ocurrir
en el futuro, dentro del horizonte de prediccion.
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e Restricciones. Larazon principal de la creciente pojadardel MPC es su capacidad
de manejar restricciones duras. Debido a la presencia derediccion basada en
modelo, el control desecha implicitamente aquellas sexag que llevan el sistema
a la violacion de las restricciones. Restricciones enteldesy en la entrada pueden
ser consideradas en el problema de optimizacion resuelioea. El resultado es que
s6lo un subconjunto de todas las posibles secuencias @elarse asume factible. Tal
conjunto, la region de factibilidad del problema de optiation, es el subconjunto del
espacio de secuencias de entrada (obtenido como produtteiaao del espacio de
entrada) formado por so6lo aquellas secuencias que ewitaolacion de restricciones.
Asi, a cualquier elemento de la region de factibilidadesadocia una trayectoria ad-
misible potencial.

e Funcion de coste. El problema de optimizacion es respelta obtener la trayectoria,
entre todas las admisibles, que minimiza una funcion deecdsa funcion de coste
por lo general esta formada por una parte que penaliza udadande la distancia
entre la trayectoria predicha y la deseada y otra parte goalipa el esfuerzo de
control. Intuitivamente, el objetivo es calcular la seaiame control y la trayectoria
asociada que consigue un alto rendimiento con un bajo esfdercontrol. Diferentes
funciones de coste pueden ser consideradas. Un rasgo anggode la funcion de
coste es que deberia ser una funcion definida positivasdestados predichos y de la
secuencia de entradas de control. Esto puede ser usadcepawatdar que tal funcion
de coste decrece a lo largo de la trayectoria real del sistemixolado por MPC,
siendo entonces una funcion de Lyapunov y garantizanabiédad asintotica.

e Horizonte deslizante. El problema de optimizacion es@ohado en linea en cada
paso. Una vez que la secuencia optima de entradas de chatsitio calculada,
soblo la primera accion de control se aplica. De este maadiscrepancias entre
el comportamiento del sistema real y la trayectoria predptr el modelo pueden ser
compensadas.

Las propiedades de convergencia del MPC son aseguradas waonartravés de la
definicibn de una region terminal y una ley de control logaé garantiza la estabilidad
y, posiblemente, la convergencia asintotica, ver (Mayra. e2000; Camacho and Bordons,
2004; Limon et al., 2005Alamo, Ramirez, Mufioz de la Pefia and Camacho, 2007). s aq
donde la invariancia es fundamental para el control MPC.

De hecho, un modo muy comun para garantizar la estabilisiatbéica del sistema con-
trolado por MPC es imponiendo que el estado final de la se@pnedicha esté contenido
en un conjunto invariante en el que una ley de control localgfuncion de Lyapunov son
definidas.

Intuitivamente, se asuma que existe una ley de control dimesgtacion y una region
invariante para el sistema en el bucle cerrado. Una vez gsistema alcanza tal conjunto
invariante, que contiene al origen, se puede asumir endiqoién que el MPC es "apagado”
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y laley de control local es aplicada. Esto garantiza queuriagiolacion de restriccion ocur-
riria en el futuro. Si también una funcién de Lyapunov enida, entonces la convergencia
asintotica puede ser asegurada. De ahi que, la conceterteelas primeradl, acciones
de control, solucion del problema de optimizacién, conesto de la secuencia de control
obtenida mediante la ley en realimentacion, determinasenaencia infinita de acciones de
control y una trayectoria admisible en cualquier instaaterb y convergente al origen.

Resumiendo, la introduccion de una restriccion ternguo@ impone que el Gltimo estado
de la secuencia predicha pertenece a un conjunto invar@oigorciona un instrumento Util
para asegurar propiedades fundamentales, como la eddalalsintotica y la satisfaccion de
restriccion duras para la trayectoria completa.

Aunque la definicion de una funcién de Lyapunov dentro dedadon terminal de MPC
Nno sea necesaria para asegurar la estabilidad (véasgepmi@ (Bravo et al., 2006)), mu-
chos resultados sobre MPC para sistemas no lineales etascestan basados en esto. Por
otro lado, no hay muchos resultados sobre como obtener ggetante ingrediente para
el MPC que son los conjuntos invariantes para sistemas aaléis. Particular atencion es
dedicada en esta tesis a este problema central, de hechoniribucion clave de nuestra in-
vestigacion consiste en la propuesta de métodos paraastitenjuntos convexos invariantes
para sistemas no lineales.

También los conjuntos invariantes de control pueden ssttasspara el disefio de leyes
de control en presencia de restricciones duras, como el MB@nase que un conjunto in-
variante de control para el sistema es conocido. Una retni@dicional, con la cual se
impone que el estado pertenezca al conjunto invariante eot@n el instante sucesivo,
garantiza, por definicibn de invariancia, la existenciauda accion de control apropiada
que asegura que ninguna violacion de restriccion oéurNbtese que esta Unica restriccion
puede sustituir a todas las restricciones sobre el estadad&nas, el conjunto invariante
esA-contractivo, entonces la convergencia puede ser asegensalgunos casos. De hecho,
supbngase que se conoce un conjunto invariante de céhtyoé garantiza -contractividad
deaQ para el sistema, para todo< [0, 1] y para una ley de control apropiada. A menudo
hay que imponer la ausencia de incertidumbre aditiva pagan§u seal -contractivo para
cualquiera positivo. Entonces, intuitivamente, considerando eldestectualx y su funcion
de MinkowskiWq(x), cualquier accion de control tal que la funcion de Minkkinen x*
es menor qua Wq(x) hace que el conjunto séacontractivo en bucle cerrado. Como, por
construccion, existe al menos una accion de control qusfaee tal condicion, el problema
de calcular unu(x) tal queWq(x) < AWq(x) y sea dptima con respecto a alguna medida
de las prestaciones, es siempre factible y asegura la gamaa exponencial al origen. La
computacibn de conjuntds-contractivos para sistemas no lineales sujetos a una legrde
trol apropiada, que conlleva la sintesis de un control gegare la convergencia asintotica
en bucle cerrado, no es una tarea simple. Una solucion ppaoblema de disefo, para
particulares sistemas no lineales, representa otra iamgercontribucion de esta tesis.
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También para el caso del MPC robusto, la definicion de ujuotm invariante robusto
(de control) como region terminal es generalmente redaguara que el sistema incierto
controlado cumpla la acotacion terminal. El dominio da@tion de las estrategias MPC es
por lo general fuertemente dependiente del tamafo degiéiréerminal.

1.2 Estado del arte sobre los mtodos basados en la teqa
de conjuntos

En los afos pasados han sido obtenidos muchos resultadcbiaar el enfoque worst-case
y para caracterizar los conjuntos invariantes. En estd@ese proporcionan algunas im-
portantes contribuciones y resultados presentados eatlita que tratan estos temas, tanto
para los sistemas lineales como para los no lineales.

1.2.1 Trasfondo hisbrico

Trabajos pioneros aparecieron al final de los afos sesatdSchweppe, 1968; Witsen-
hausen, 198, y al principio de los aios setenta, (Bertsekas and Rhdd®&db). La es-
timacion de estado garantista para sistemas afectadasqestidumbres aditivas trata el
problema de determinar una secuencia de conjuntos taled gedo del sistema dinamico
en el instant& € N esta seguramente contenido ek-esimo elemento de la secuencia. Esto
se consigue integrando la informacion de la medida contieaizacion dinamica, obtenida
esta ultima a través del conjunto alcanzable a un pasesd@ue, en ausencia de medida,
el concepto de tubo alcanzable es recuperado.

Motivado por el problema del seguimiento de un objetivo eeaen (Schweppe, 1968)
el autor trata el problema de estimar en cada instante aliectinglel espacio de estados que
contiene el estado real de un sistema lineal afectado pturpaciones sobre el estado y so-
bre la salida. Las condiciones iniciales y las perturbasaon desconocidas pero acotadas
por elipsoides.

También Witsenhausen trata en (Witsenhausen,d)38&roblema del computo de con-
juntos en el espacio de estados que sean compatibles cdrskvaciones y con las condi-
ciones iniciales. El sistema se supone afectado por pediaes sobre el estado y sobre
la salida, asumidas acotadas por conjuntos compactos gxuswvSe proponen aproxima-
ciones poliédricas, que llevan a problemas de programadiciéal.

El trabajo (Bertsekas and Rhodes, 18)/ttata el mismo problema de estimacion consi-
derado por Schweppe pero es ampliado al analisis de los dassmoothing®y prediccion.
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Ademas, la adaptacion a sistemas en tiempo-discretgéisieamente expuesta.

La primera contribucion sobre invariancia en el campo de&esias dinamicos ha sido
probablemente (Bertsekas, 1972). Este trabajo trata éleama del computo y la carac-
terizacion del maximo conjunto invariante robusto. Etedsbajo fundamental, el autor
considera sistemas tiempo discreto no autbnomos y ndéseafectados por incertidum-
bre, es decir sistemas de la forma

Xir1 = T (X, Uk, W),

con restricciones sobre el estagiae X y sobre la entradey € U (x), que pueden depender
del estado. Las restricciones sobre la incertidumbre tampueden ser dependientes del
estado y de la entrada, es degirc W (x, Ux). Primero, una condicion necesaria y suficiente
para la invariancia de control de un conjunto es presentaegg se da una caracterizacion
del maximo invariante de control. Considerando el comjittel operador a un paso ha sido
empleado para definir la secuencia de conjuntos, deno&g@§, cuyos elementos pueden
ser mantenidok veces er¥X, parak € N, mediante una apropiada secuencia de acciones de
control. Ha sido demostrado un resultado muy interesantantuitivo, es decir, el hecho de
que la interseccion de tal secuencia de conjuntos no ek equgeneral, al maximo conjunto
invariante de control. Una condiciobn para que esta igubkiadé esta basada en que los
conjuntos implicados deben ser compactos. Un caso pamimeahte interesante para el que
tal condicion se satisface, es que el sistema sea afip,as decir

Xk+l = f(Xk, Uk) +W|(7

conU y W no dependientes dey (x,u), respectivamente, que los conjundy W sean
compactos y qué(-) sea continua. En este caso la interseccion de los conj8gté$, para
todok € N, es igual al maximo conjunto invariante de control.

Los aspectos computacionales para el maximo conjuntaamta han sido considerados
en dos trabajos publicados en 1991, que son (Gilbert andIB#1) y (Blanchini, 1994)
(aunque la segunda referencia sea relativa a un articidicado en 1994, una primera
version del trabajo fue presentada en 1991, en (Blanct®i])).

En (Gilbert and Tan, 1991), el problema de la caracterizagi de la computacion del
maximo conjunto invariante con salida admisible para stesia lineal deterministico es
considerado, es decir paxa = Axcony = Cx. En particular, las restricciones son definidas
en el espacio de la salida, es decir, en la foyaY. Esto no conlleva grandes diferencias
con el caso de restricciones sobre el espacio de estadogsado principal se refiere
a la condicion de determinacion finita del maximo conjuimvariante. Se demuestra que,
si el sistema es asintoticamente estable, la p&gjaes observable, el conjunto de salidas
admisibleY es acotado y el origen esta contenido en su interior, eagagienaximo conjunto
invariante con salida admisible es finitamente determinado

En (Blanchini, 1994), se consideran sistemas no autondimesles con incertidumbre
paramétrica y aditiva. Se presenta el concepto de conjrttontractivo y se proporciona
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un procedimiento iterativo para calcular el maximo cotguih-contractivo, para un dado
A € [0,1]. Un resultado importante demostrado en el articulo es dldde que el maximo
conjuntoA -contractivo es dado por la interseccion de la secuenc@udgintos calculados
mediante una especie de operador a un paso, siempre qugultoanicial sea convexo,
compacto y contenga el origen en su interior. El resultadanétogo al presentado por
Bertsekas, pero para conjuntosontractivos. Funciones de Lyapunov inducidas y el disen
del control también son analizados.

Un primer importante articulo survey sobre invarianciaiarichini, 1999), que resume
los principales resultados sobre el tema. Se considersamss en tiempo-continuo y en
tiempo-discreto, se presentan las condiciones de in@aigara sistemas lineales y no line-
ales. Ademas, funciones de Lyapunov inducidas, asi caoldgmas de disefio de control
basados en invariancia, son analizados. También los taspsmmputacionales son consid-
erados, en particular para conjuntos invariantes patitspy elipsoidales.

Otro trabajo muy importante y basico sobre el tema es (Kobusky and Gilbert, 1998).

El articulo trata el problema de la caracterizacion dakimo conjunto invariante con sal-
ida admisible para sistemas en tiempo-discreto lineatesados por incertidumbre aditiva.
Los resultados estan fuertemente basados en instrunmaatematicos, como las funciones
suporte y la diferencia de Pontryagin (o de Minkowski), gae extensamente empleados
en esta tesis. Se presentan condiciones necesarias yrgeSgoara la invariancia, se carac-
terizan conjuntos invariantes minimos y maximos y se gnepun procedimiento iterativo
para calcular el maximo conjunto invariante. Resultaday importantes presentados en
(Kolmanovsky and Gilbert, 1998) son las condiciones ne@s§ suficientes para la exis-
tencia del maximo conjunto invariante y para su determamafinita. EI maximo conjunto
invariante es no vacio si y solo si el minimo conjunto imaate esta contenido en la region
admisible, ademas es finitamente determinado si estamdoten el interior de dicha region.

Contribuciones mas recientes que tratan el problema darécterizacion del minimo
conjunto invariante para sistemas lineales afectadospertidumbre aditiva son (Rakovic
et al., 2005; Ong and Gilbert, 2006). Ya que el minimo cotgunvariante es la suma de
Minkowski de infinitos términos, no puede ser calculado enggal, y la atencion de los
autores se dirige al computo de aproximaciones del migongunto invariante.

1.2.2 Estado del arte para sistemas no lineales

Aqui se proporciona una breve vision general de los redaft presentados en los afos pasa-
dos sobre cuestiones relacionadas con los métodos basatioteoria de conjuntos y sobre
invariancia para sistemas no lineales.

Uno de los principales problemas inherentes al uso de rogétodsados en la teoria de
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conjuntos y al computo de conjuntos invariantes es el hdelique, en general, la no lineali-
dad del sistema o del controlador conlleva conjuntos noexawy no poliédricos. Esto com-
porta una gran, a menudo no manejable, complejidad compotdcEntonces, en general,
se emplean aproximaciones y se debe alcanzar una comgensatie el conservadurismo
inducido y la complejidad computacional.

En primer lugar, se presenta una descripcion de metodgsrdeimacion de los conjun-
tos alcanzables y de estimacibn garantista para sistemlaseales. El problema planteado
es el computo de la secuencia de conjuntos en el espaciaatiggjue proporciona la
garantia de contener el estado del sistema. Notese daeasno lineales y sistemas li-
neales inciertos estan relacionados, ya que a menudodtsdos para calcular conjuntos
alcanzables y de estimacion para sistemas no lineal®s leasados en aproximaciones line-
ales.

El problema del computo de conjuntos alcanzables pamensast no lineales es conside-
rado en (Kuhn, 1999) usando una técnica basada en el teatelwalor medio para acotar
la evolucion real del sistema no lineal. Es decir, considerun sistema no lineal y un con-
junto, una aproximacion del conjunto alcanzable a un pasd@ ser obtenida acotando la
funcion dinamica no lineal con una funcion lineal condrtdumbre aditiva. La secuencia
de conjuntos alcanzables, entonces, se obtiene a travsrdapeo lineal y de una suma de
Minkowski, en cada pascEsto conlleva, en general, un excesivo aumento de la complej
dad de los conjuntos. El problema de la complejidad es smiacio empleando zonotopes,
gue permiten controlar la complejidad computacional y geesentacion de los conjuntos,
al precio de algtn conservadurismo. En (Girard, LeGueanit Maler, 2006) se han pro-
puesto mas desarrollos en esta direccion, usando zasyogajas para acotar la evolucion
admisible del sistema.

Ha de recordarse que un modo para tratar el problema delutongie los conjuntos
alcanzables para un sistema no lineal es aproximandolortaistema lineal incierto. Un
nuevo enfoque que garantiza la convergencia de la secudcanjuntos alcanzables aprox-
imados es presentado en (Rakovic and Fiacchini, 2008)|, gmedlas propiedades de inva-
riancia son empleadas para determinar una forma basiaaapatar los conjuntos alcanza-
bles exactos. Un método basado en la homotecia conduceetelaninacion de un proce-
dimiento computacional que combina el bajo esfuerzo coagpanal con la convergencia a
cero del error de aproximacion.

Analogamente, el problema de la estimacion de estadotsteapara sistemas no linea-
les ha sido tratada mediante enfoques basados en la tearejiintos. El trabajolamo,
Bravo and Camacho, 2005) presenta un nuevo enfoque patahaei$n garantista para sis-
temas en tiempo-discreto no lineales con perturbaciorsad@as afectando al estado y a la
salida. Se proporciona un algoritmo para calcular un cdajgue contiene los estados com-
patibles con la salida medida y con el modelo del sistema. &stjunto es representado por
un zonotope. El tamafo del zonotope es minimizado en cagtagpaavées de una expresion
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analitica o solucionando un problema de optimizaciorvero. La aritmética intervalar se
usa para calcular una secuencia garantista de conjuntéespeeio de estados.

En (Alamo, Bravo, Redondo and Camacho, 2007) se presenta wdmptra la esti-
macion de estado garantista para sistemas en tiempotdiscréneales con perturbaciones
acotadas. Los conjuntos de estados que son compatiblea ewollcion del sistema, las
salidas medidas y las perturbaciones acotadas son refa@sgpor zonotopes. La principal
novedad es el uso de funciones DC para calcular la secuenc@guntos de aproximacion.
Las funciones DC resultan muy Utiles para calcular acoteas de las soluciones 6ptimas de
problemas de programacion no convexa, y también son s&gdesta tesis.

No es trivial adaptar al caso no lineal aquellos instrum&ntatematicos estandar, como
el operador a un paso y los conjuntos alcanzables, extensamm@pleados para el analisis
de invariancia para sistemas lineales. Considérese pompép el hecho que el conjunto a
un pasoQ(Q) no es necesariamente convexo para sistemas no linealggdarsiQ es
convexo. Asi, su uso puede conducir a la generacion desei@s de conjuntos sumamente
complejos.

Uno de los problemas principales, pasando de los sistenmesdds a los no lineales, es
gue algunas propiedades Utiles relacionadas con laililaelpierden validez. Un ejemplo
muy interesante es ilustrado en las consideraciones sigsiesobre la condicion de in-
variancia, veéase (Blanchini and Miani, 2008). En estedj@lprimero se considera el caso
tiempo-continuo. Un resultado fundamental sobre invaraes representado por el teorema
de Nagumo, que proporciona una condicibn necesaria y enfiicipara la invariancia para
un subconjunto cerrado del espacio de estados, para sss&mnt@mpo-continuo. Concep-
tualmente, tal teorema afirma que un conjunto es un invar@oditivo si y solo si el vector
velocidad es dirigido hacia el interior (0 tangente a la teom) del conjunto en cualquier
punto de la frontera. Intuitivamente, si el vector velodid® dirige hacia el interior del
conjunto, esto implica que las trayectorias en la frontaetea@ en el conjunto, entonces no
puede haber trayectorias que empiezan dentro del conjult@lyandonan. Esto implica
claramente invariancia.

Entonces, la atencion en (Blanchini and Miani, 2008) pasaso tiempo-discreto
x" = f(x),

para el cual la invariancia de un conjur800 puede ser asegurada a través de una condicion
de frontera.

Los autores expresamente declaran que:

"... Como se puede entend@dilmente, no hay ninguna extedsievidente de la condian
de Nagumo "de tipo frontera” para sistemas en tiempo-diszréntuitivamente, el hotlogo
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natural de la condidn de Nagumo... s&x
f(x) €S Vx e dS,

que quiere decir, aproximadamente, el estado en la frorteséia dentro”. Sin embargo,
esta condidn no es suficiente para asegurafxf € S para todo x S. De hecho, esé€il
proporcionar ejemplos tiempo discreto para los cuales lacslicha condi@n de frontera
puede estar satisfecha, pero el conjunto no es un invariposgivo. Por lo tanto lalnica
razonable "extengin tiempo-discreto” del teorema de Nagumo es la tauti@o§ es positi-
vamente invariante si yoo si

f(§9CsS

Afortunadamente, la situamn es completamente diferente si restringimos nuestraceten
a la clase de sistemas hon@weos (incluyendo los lineales) ... ”

Esto quiere decir que, considerando genericos sistemasaatbds el analisis de invarian-
ciatiene que implicar al conjunto entero, mientras que piatamas lineales (y homogéneos)
una condicion de invariancia de tipo frontera puede sentiteida. Una de las principales
contribuciones conceptuales de esta tesis es mostrar guendicion de invariancia de tipo
frontera puede ser enunciada también para sistemas adelneEl ingrediente que permite
deducir propiedades que afectan al conjunto entero astid®iéanalisis en la frontera es la
convexidad.

1.2.2.1 Contribuciones sobre la computadn de conjuntos invariantes para sistemas
no lineales

En primer lugar, merece la pena mencionar el trabajo (Kamrand Maciejowski, 2000) que
proporciona una revision sobre invariancia para sistemdgeales hasta el momento. El
articulo se enfoca principalmente en la caracterizatgoérica de la invariancia y su empleo
en el control, mas que en las cuestiones computacionales.

El problema del disefio de un MPC para sistemas no linealieataeen (Cannon, Desh-
mukh and Kouvaritakis, 2003). Con ese prop0osito, se censidl problema de como calcu-
lar un conjunto invariante para ser usado como conjuntoitedrEn particular, un conjunto
invariante politopico es calculado para un sistema LRlido dentro de una region. El pro-
blema es expresado como problema de programacion lingad, abjetivo es maximizar el
volumen del politopo, cuya complejidad geométrica estitada. En particular, se consid-
era la transformacion lineal de una bola en norma infingajecir, un parallelotope, cuyos
vértices son las variables de optimizacion.

El problema de sistemas lineales con particulares reatan&mes no lineales estaticas,
como las afines atrozos y la saturacion, ha sido consideradbtrabajo (Hu and Lin, 2004),
donde se proporcionan condiciones de invariancia parapsoale.
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El trabajo (Bravo, LimonAlamo and Camacho, 2005) trata el problema del computo
de conjuntos invariantes de control para sistemas no &seain restricciones. El enfoque
propuesto esta basado en la computacion de una aprowimiterior del operador a un
paso. Basado en este procedimiento, conjuntos invaridetesntrol pueden ser calculados
por recursion. En este trabajo, la aritmética intervaéaemplea para calcular el conjunto a
un paso.

Particular atencion ha sido dedicada a una no linealidag comn en los sistemas
dinamicos reales, la saturacion. El articulo (da SilvéBarbouriech, 1999) trata el problema
del analisis y la computacion de conjuntos invariantes-gontractivos para sistemas en
tiempo-discreto en presencia de saturacion. En partidokautores proponen particionar
el espacio en las regiones donde los valores superioresnoi®Es de la saturacion son
alcanzados y donde ninguna saturacion ocurre. Asitehs@gses asumido lineal y perturbado
por una perturbacion constante dentro de cada region.ohdicion necesaria y suficiente
para la contractividad de conjuntos poliédricos es eradzCi

En (Alamo, Cepeda, Limbn and Camacho, 2B&in método para estimar el dominio
de atraccion para sistemas saturados en tiempo-dis@qtoesentado. Se introduce una
nueva nocion de invariancia, denominada invariancia-SB& proporciona un algoritmo
para generar una secuencia de conjuntos invariantes asigiag demuestra que la secuen-
cia converge al conjunto invariante-SNS mas grande pasacksse de sistemas. También
se demuestra que los conjuntos invariantes-SNS generadeste algoritmo iterativo son
conjuntos poliédricos convexos y que constituyen unanestion del dominio de atraccion
del sistema no lineal. Los autores han abordado el mismdegmabtambién enﬁ(lamo,
Cepeda, Limbn and Camacho, 26D6

1.3 Convexidad e invariancia

Una de las claves de latesis, el concepto de convexidad gletosy funciones, es ilustrada
brevemente en esta seccion. Muchos esfuerzos han sigiddgial analisis de la con-
vexidad, véase por ejemplo (Boyd and Vandenberghe, 2006dkd®ellar, 1970; Schnei-
der, 1993; Ben-Tal and Nemirovski, 2001).

Hay muchas razones por las que se considera importantevexadad para temas rela-
cionados con la invariancia y la teoria de conjuntos enrobnita primera razon es la alta
complejidad de representacion y computacional induciddgs conjuntos no convexos. Por
ejemplo, desde un punto de vista practico, los proceditmgealgoritmicos estandar, por lo
general, generan secuencias de conjuntos cuya complejgéata después de pocos pasos,
cuando se tratan con conjuntos no convexos. De hecho, lasafade conjuntos consider-
ados en la literatura para problemas practicos relacasadn la invariancia comparten la
propiedad de convexidad, por ejemplo elipsoides, pagpponotopes y cajas.



22 1.3. Convexidad e invariancia

De otra parte, la convexidad de las funciones permite degdumpiedades satisfechas por
cualquier elemento de un conjunto mediante condicionesnplkcan sbélo un subconjunto
finito de puntos. Esta consideracion conduce tambiénkagmas de optimizacién convexos,
gue son computacionalmente manejables, y a algoritmosteazados por una complejidad
asequible. Asi que vale la pena recordar aqui algunasidefias basicas y propiedades
relacionadas con la convexidad de conjuntos y funciones.

Un conjuntoSC R" es convexo si, para cada pareja de element&; e&decir para cada
X,y € S, el segmento entero entre los dos puntos esta contenifio en

Una propiedad importante de los conjuntos convexos, gasekafellar, 1970), es que
un conjuntdSC R" es convexo si y solo si contiene todas las combinaciones&gan de sus
elementos. Esto quiere decir gueS&s convexo, cualquier punto que puede ser expresado
como una combinacion convexa de los elementoS pertenece & Ademas, si cualquier
punto que se puede expresar como combinacion convexa dietoentos d& pertenece a
S, entonces el conjunto es convexo.

Hay varios modos diferentes para definir la convexidad ddumzon. Una manera esta
basada en el concepto de conjunto convexo y proporciongyaifisado geométrico de las
funciones convexas.

Considerando una funcioh: R" — R, se define su grafo com{@x, f(x)) € R™?1: x ¢
dom f} y su epigrafe como el conjunto de puntosRéH! que estan por encima del grafo.
Una funcibn es convexa si su epigrafe es un subconjunteegordeR" 1, Es evidente
lo profundamente relacionados que estan los conceptosrgientos convexos y funciones
convexas.

Una caracteristica importante de la convexidad, ya meada, es el hecho de que una
propiedad que implica s6lo algunos elementos de un canpurde ser extendida a un con-
junto posiblemente incontable de puntos, cuando se usgantos convexos y funciones
convexas. Se vera que el hecho de que propiedades genmraten ser deducidas a través
de condiciones que implican solo algunos elementos de ojumim, permitira formular
procedimientos algoritmicos para el computo de congiimeariantes, algoritmos caracteri-
zados por una complejidad asequible.

Como ejemplo, introducimos brevemente la programacidwexa, que juega un papel
clave tratando problemas de programacion matematica. pkoblemas de programacion
convexa son caracterizadas por la minimizacion de unadarde coste convexa sobre un
conjunto factible convexo, o problemas equivalentes,Beyd and Vandenberghe, 2004).

La importancia de problemas de programacion convexa edalabhecho de que estos
son caracterizados por resolubilidad eficiente, es dee@gden ser solucionados en tiempo
polinomial. Los problemas generales de programacionnmealisuelen ser mucho mas exi-
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gentes computacionalmente, ver (Ben-Tal and Nemiroveki1p

Esto puede ser entendido intuitivamente recordando queinimm local para un pro-
blema convexo es también un minimo global, a diferenciadso de problemas no con-
vexos. En el contexto de problemas convexos, algoritmeatives, basados en el gradiente
de la funcibn de coste por ejemplo, pueden ser disefiadog¢Bazaraa and Shetty, 1979).
Asi, a través de las iteraciones del algoritmo, la dismiibnu del valor de la funcion de
coste en cada paso asegura la convergencia al 6ptimo. @inthrio, optimos locales no
son también globales, como es para problemas no conve®a)doritmos que explotan
el gradiente de la funcibn de coste no garantizan, en gefe@nvergencia a un minimo
global. Asi que, en el contexto de la programacion matieaala disponibilidad de una
representacion en forma de programacion convexa pareolema es crucial.

1.4 Motivacion y objetivos de la tesis

Como se ha ilustrado, la invariancia y los métodos basadda &oria de conjuntos son

unas técnicas muy importantes para el analisis de sistamlneales e inciertos. Ademas,
es evidente lo Util que es el uso de la invariancia y de las@stras relacionadas con la teoria
de conjuntos para la determinacion de estrategias deotoobustas, el disefio de leyes de
control en presencia de restricciones duras, el contre@ldmsn predicciones etc., es decir,
para la sintesis de control en general, para sistemaseaidse inciertos.

A pesar de tal fundamental posicion ganada por la invaiaanta teoria de conjuntos
para el analisis de sistemas y el control, sobre todo enltiasas décadas, s6lo muy pocos
resultados han sido proporcionados para sistemas nodsielabs resultados presentados
en la literatura han sido enunciados para casos partisutBreistemas no lineales (como
sistemas saturados, sistemas bilineales, etc.) y a meoyzleeden ser aplicados a genéricos
sistemas no lineales. Es decir, a pesar de la importanciale® éstructuras, su uso es
restringido a casos particulares.

Considérese la importancia mencionada de los conjunvasiamtes para el control pre-
dictivo basado en modelo para sistemas no lineales. En @stexto, la disponibilidad de
un conjunto invariante es usada a menudo para demostrae@eaoles deseadas para el sis-
tema controlado, como la estabilidad, la convergencia gtigfaccion de restricciones. De
otra parte, no es trivial, en la practica, obtener un caojimvariante para un sistema no li-
neal, generalmente requerido para ser usado como la regromal en el MPC. Es decir, en
muchas contribuciones sobre el control predictivo no liteedisponibilidad de un conjunto
invariante, que conlleva resultados generales, es asupatda no se aborda el problema
computacional de como obtener tal importante ingredieBste hecho podria contribuir a
una cierta pérdida de generalidad para tales resultadaspeactica.
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Existe claramente un vacio entre la importancia de la iamaia y de la teoria de con-
juntos para objetivos teoricos y la aplicabilidad préatile los resultados obtenidos, princi-
palmente para el caso de sistemas no lineales. Hay que n@taste vacio es menor para
el caso de sistemas lineales inciertos, para los cualesoamebtodos computacionales bien
establecidos estan presentes en la literatura. El objéé\esta tesis es contribuir en rellenar
este vacio. De hecho, se dedicara una atencion parteida sistemas no lineales.

El principal problema conceptual relativo a los métodoalitinos y computacionales
para sistemas lineales, es el hecho de que muchas propegadeacteristicas que son
intrinsecas a la linealidad no pueden ser exportadas &stesms no lineales. El teorema de
Nagumo es un claro ejemplo de condicion que no es aplicalbtaso de no linealidad.

La idea subyacente, comin a muchos de los resultados tadesren la tesis, es la de
adaptar aquellos métodos y propiedades que caractetizandlesis y el disefio de control
para sistemas lineales, a los no lineales. Se mostraramoaiehos casos la convexidad
es el ingrediente "que falta” para la formulacion de mé®d instrumentos analogos, que
garanticen las propiedades deseadas en presencia dealimédes.

Primero introduciremos el principal marco de modelado,llemados sistemas de in-
clusion de diferencias convexas (CDI). Esta clase demsasgalinamicos es profundamente
caracterizada por la convexidad, siendo su dinamica defimediante un conjunto de fun-
ciones convexasEsto implica que la evolucion dinamica de tales sisteneasasacteriza
por restricciones convexas, y el uso de muchos instrumenbpsos del analisis de sistemas
lineales conduce a problemas de programacion convexaopublmente complejos. Es
decir, intuitivamente, substituyendo la linealidad pocdavexidad, algunos resultados para
sistemas lineales son conservados para sistemas CDI,cab pie un leve aumento de la
complejidad computacional.

Muchos resultados importantes, analogos a aquellos biahlecidos para sistemas line-
ales, son expuestos y demostrados. Por ejemplo, el cordpléperador exacto a un paso,
las condiciones necesarias y suficientes para invarianti@gntractividad, los algoritmos
para generar secuencias de conjuntos que convergen alidataiatraccion, rigurosamente
desarrollados para sistemas lineales, se proporcionarsigaemas CDI.

La importancia de ese marco de modelado es evidente coaisdteque los elementos de
una muy amplia clase de sistemas no lineales pueden seirapans por sistemas CDI. Es
decir, considerando un sistema no lineal, si por un lado &isas de la aproximacion CDI
del sistema induce cierto conservadurismo, por el otrayrelg propiedades beneficiosas,
validas para sistemas lineales, son conservadas paema'sleDlEsto lleva a resultados
generales y fuertes para el sistema no lineal aproximado.

Otro aspecto del enfoque CDI es que muchas propiedadefesh#is por un conjunto
para el sistema CDI (la invariancia por ejemplo), se cumfaaerbién para cualquier sistema
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no lineal aproximado por el sistema CDI. Esto implica quesatarar un sistema CDI es la
base del analisis de una familia entera de sistemas nddgj)ezs decir todos los sistemas
cuya funcion dinamica es acotada por la funcion que tanaea el sistema CDI.

A pesar de que los resultados proporcionados para sistebBilaso@ fuertes, las suposi-
ciones que caracterizan tal marco de modelado no son dafoasstrictivas. Se mostrara
gue muchas clases comunes de sistemas son particulaeseassCDI o, por lo menos,
admiten aproximaciones CDI. Entonces, un importante problpractico, relacionado con
la teoria desarrollada, es como generar el sistema CDhguexima a un sistema no li-
neal dado. En este contexto introduciremos algunos aspectoputacionales sobre como
obtener una representacion CDI o una aproximacion CDd p@s elementos de algunas
clases comunes de sistemas no lineales.

Los sistemas de inclusion de diferencias convexas y escgCCDI) son la primera
clase de sistemas incluidos en el marco CDI. Tales sisteomagasticulares sistemas CDI,
caracterizados por un namero finito de funciones que datarnmsu dinamica. Muchos
sistemas no lineales pueden ser aproximados por un sist&bf Ge manera que so6lo un
namero finito de funciones de acotacion tienen que seulealas.

La segunda clase de sistemas no lineales para los cualespreaentacion CDI es un
instrumento muy (til, son los sistemas Lur’e. Estos sistesstan formados por un sistema
lineal en bucle cerrado con particulares leyes de realiacg&n con ganancia estatica y son
conocidos en el contexto de la teoria del control, pridolgate en tiempo continuo. En la
tesis se consideraran sistemas Lur’e en tiempo-discreto.

La clase mas importante de sistemas para los cuales undarapooon CDI se obtiene
facilmente son los sistemas llamados DC. Tales sistemasasanterizados por funciones
dinamicas que pueden ser expresadas como la diferencisnderies convexas (DC). La
importancia de las funciones DC se debe al hecho de queibddérminar funciones cota
superior e inferior convexas para cualquiera de ellas. [estara a la determinacion implicita
de un sistema CDI que aproxima al original DC no lineal. Ademuha muy amplia clase de
funciones no lineales puede ser representada por una DC.

Otra subclase de sistemas CDI son los sistemas linealesceridumbre paramétrica.
Este marco de modelado, para el cual algunos resultadas éisgonibles en la literatura,
permite aplicar técnicas propias de analisis y sintsisistemas lineales a la aproximacion
de un sistema no lineal. De hecho, por ejemplo, un sistemaeal Idefinido en una region
acotada puede ser aproximado por un sistema lineal conithaabre paramétrica acotando
el gradiente de la funcion no lineal en tal region.

La presencia de incertidumbre aditiva puede ser considgyach cualquiera de los mar-
cos de modelado mencionados. La asuncion de presenciaatédnmbre aditiva descono-
cida pero acotada hace el modelo mas realista en muchaos pasiiendo ser la suposicion
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de conocimiento perfecto de la dinamica del sistema demasestrictiva.

Finalmente, presentamos la estructura de la tesis, jumtidasocontribuciones sobre los
diferentes aspectos de invariancia y métodos basadog@oria de conjuntos.

e El segundo capitulo trata el problema del modelado. Serdacan definiciones y
caracterizaciones generales de sistemas dinamicoseadds) introduciendo los con-
ceptos de incertidumbre y de de mapas con conjuntos comg eatensamente em-
pleadas en la tesis. Luego los nuevos modelos propuestns,alanarco de modelado
CDI, seran presentados.

e Aspectos computacionales que relacionan los sistemas @blas comunes clases
de sistemas no lineales e inciertos son desarrollados eapéld tres. Se presen-
tan sistemas CCDI y sistemas Lur'e como subclases de sist@DI orientados a la
practica. Sus doble relacion, con los sistemas CDI poada Yy con comunes sistemas
no lineales por el otro, se enfatiza para demostrar que nsLgibi@mas reales estan in-
cluidos en estas clases de modelos. Los sistemas DC saadlostposteriormente.
Se proporcionan definiciones, propiedades y ejemplos pdedizar las principales
caracteristicas de esto modelos, particularmente ricmgyesivos. Se proporciona
una breve descripcion de las funciones DC para aclarar ¢bisos que nos conducen
a considerar esta clase particular de funciones no linede®mlmente, sistemas li-
neales con incertidumbre paramétrica son definidos. Dbeslases de sistemas li-
neales con incertidumbre paramétrica, como los lineadgendientes de parametro
variante (LPV) y los sistemas de inclusiones de difereniamesles (LDI), también
son ilustradas.

e En el capitulo cuatro se considerara la invariancia y serakcionados para sistemas
CDI. Importantes resultados, establecidos para sistameaés, son enunciados para
esta clase de sistemas. Se proporcionaran condicionesamess y suficientes para que
un conjunto convexo en el espacio de estados sea invariantmntractivo, también
en presencia de incertidumbre aditiva. Se demostraraejueaso de ausencia de
incertidumbre aditiva, la relacion entre conjuntos coge) -contractivos para sis-
temas CDI y funciones de Lyapunov, propia de los sistemasli@s, es conservada
para sistemas CDI. El operador a un paso es determinado gtexdzado, y un al-
goritmo para generar secuencias de conjuntos que convargeminio de atraccion
es propuesto. Finalmente, problemas computacionales s6bmo obtener conjuntos
invariantes convexos }-contractivos para sistemas CDI son abordados.

¢ El quinto capitulo trata el problema del calculo de cotggnnvariantes convexos y
conjuntosA -contractivos para particulares sistemas no linealesnantos. En parti-
cular, se consideraran clases de sistemas no linealesantts a la practica, ilustrados
precedentemente, como los sistemas DC y Lur'e. Se daraficiomes suficientes
para la invariancia y 1a -contractividad para sistemas DC. También se tratarasa c
de sistemas DC en presencia de incertidumbre aditiva. Sdaidoel problema de la
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computacion practica de un conjunto invariante convex® llevara a la definicion
de un procedimiento algoritmico para obtener un conjunteatio, convexo e invari-
ante en ausencia de incertidumbre. Se propone un métotlocagara obtener una
secuencia de conjuntos invariantes anidados para sistemiasTambién se mostrara
gue tal secuencia de conjuntos converge a una aproximecitwexa del dominio de
atraccion.

e El capitulo seis presenta resultados relacionados cawlelgma de la sintesis de con
trol. La computacion de leyes de control y de conjuntosriavdes de control para
sistemas CDI no autbnomos es el tema principal del capituh primera parte se
dedica a ilustrar las propiedades de los conjuntos inviasatie control convexos y
A-contractivos para sistemas DC. Se proporcionara unai@ondsuficiente para la
invariancia de control y 1& -contractividad de un conjunto convexo. En particular,
en el caso de conjuntos politopicos, se demuestra quelall@ae una accion de
control en los vértices del politopo que satisfaga unaiddn convexa, permite la
determinacion de una accion de control, definida sobre &aonjunto y tal que la
estabilidad asintbtica (exponencial) es garantizada phsistema no lineal. El op-
erador a un paso, Util para obtener una secuencia de cosjumariantes de control
anidados y una aproximacion del maximo conjunto estale, es analizado para
sistemas DC. También cuestiones computacionales soideoadas, definiendo algo-
ritmos para determinar la ley de control estabilizante.

e En el capitulo final se resumen las contribuciones y lodta$os ilustrados en la tesis
y las direcciones para la investigacion futura.
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Figure 1.2 Estructura de la tesis.



Chapter 1

Introduction

The main objective of this thesis is to contribute to the tgyment of set-theoretic methods
for the analysis and design of nonlinear and uncertain systeParticular attention will
be devoted to invariance andcontractiveness, very important concepts in the contéxt o
modern control design and analysis for nonlinear and uaicesiystems.

This chapter describes the motivation and objectives gfttiesis, presents the problem
we are dealing with and introduces the structure of the shasd the work developed. We
first introduce concepts related to set theory in control dyrdmic systems analysis, fo-
cusing in particular on invariance. Basic definitions andege description of properties of
invariant sets will be given. Some aspects which make evithenmportance of invariance
and set-theoretic methods in modern control theory willllostrated.

First an overview of the historical background which paveel way to main results in
the field is presented and then an introduction to the statheo&rt on invariance and set
theoretic methods follows.

An introduction to the concept of convexity, for both setd &mctions, is then presented.
Convexity deserves special interest being a keystone faymesults presented in this thesis.
Indeed, properties of convex sets and convex functions afelyvexploited, since, given a
set, convexity allows the formulation of general propartiased on conditions involving a
subset, possibly finite, of the set.

Finally the motivation, the objectives and the contribof@f our research are illustrated
and the thesis structure presented.

29
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1.1 Set-theoretic methods in control

Generically, with set-theoretic methods we refer to theshniques concerning properties
shared by all the elements of sets of the state space. Twatamp@xamples in the field
of dynamic systems and control design involving set-thigoreethods are represented by
invariance and the worst-case approach to the problemsabpfsas and design.

Set-theoretic approach is useful in the framework of amslgsd control design for un-
certain systems in presence of unknown but bounded uncgttai

1.1.1 Worst-case approach to analysis and design

The classical approach to deal with the standard analydis@amirol problems for uncertain
systems, up to the end of the sixties, was based on stochastimptions on the nature of the
uncertainty. The objective of optimal control in this franoek is usually the determination
of the input action minimizing the expectation of a cost fiime, under the assumption of
an uncertainty characterized by a given probability distiion. Analogously, assuming for
instance that the system is linear, the initial conditiond the measurements and system
noises are modelled by white Gaussian processes, the @stinpaoblem is solved by the
use of a Kalman filter, which provides the optimal solutiomimizing the expected value
of the estimation error.

A parallel, and in a certain sense dual, way of proceedingraugh the so-called worst-
case (or guaranteed) approach. This approach is basedferedifassumptions on the un-
certainty affecting the system. Indeed, in this scenar® uhcertainty is assumed to be
unknown but bounded inside a set. Such approach is basee ¢wllttwing considerations:

e The assumption of full knowledge of the probability distriion of noises and dis-
turbances can be too restrictive, while the assumption esemce of bounds on un-
certainty can be more realistic in many cases. Indeed, wast approach is often
justified by the fact that no probabilistic assumption onuheertainties can be made,
while bounds on the model errors can be established in matheafases. Consider
for example systems with dynamics depending on parameteosewalue presents
bounds due to known physical limitations. In this case thestvoase approach can be
more realistic than the stochastic one.

e When the system presents hard constraints, the worst-ppseseh has some advan-
tages. If we consider the stochastic approach, no guaraht@mstraints satisfaction
can be assured, while the results obtained using the wasst-approach ensure con-
straints satisfaction, provided that the assumptions emtitertainty hold.
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¢ Nonlinearities can be handled by assuming uncertaintiethel dynamic system is
known to be nonlinear, a linear system with bounded uncsggtaian be used, sup-
posing that the uncertainty models the mismatch with thdimear system. This ap-
proximation procedure, although introducing some coreemness, permits to apply
linear based results to nonlinear systems. Linear diffs¥enclusion (LDI) systems
and linear systems with additive bounded uncertainty aassatal modelling frame-
works raised in this context, see (Gurvits, 1995; Boyd etl&194).

The set-theoretic methods appear as sort of counterpahec$tochastic methods for
problems of stability analysis, robust control design aatksestimation for systems affected
by unknown but bounded uncertainties. The assumption ofefting the uncertainty as
unknown but bounded, rather than a stochastic process,stisfioduced in the pioneering
works by Witsenhausen (1968 Schweppe (1968), Bertsekas and Rhodes (1971).

It is worth noticing that the objective of worst-case appiogechniques is to obtain sets
of elements satisfying the desired features, rather thampdnticular element optimal with
respect to an evaluation criterion. For instance, regibtisastate space whose points ensure
constraints satisfaction for control is the counterpadtothastic LQG, while the guaranteed
set-membership estimation is the worst-case counterp&alman filter.

1.1.2 Invariance

The concept of invariance has become fundamental for thigsasand design of control

systems. Although many research efforts have been dir¢oteslated themes throughout
the whole second half of the last century, the field becantecpéarly active in the last years.

The importance of invariant sets in control is due to the iaifpstability properties of these

regions of the state space.

An invariant set for a given dynamic system is a region of tla¢esspace such that the
trajectory generated by the system remains confined in thié e initial condition lies
within it, (Blanchini and Miani, 2008). More formal definitns for invariance are provided
in Appendix A, a conceptual characterization of invariarecsufficient here for showing
how invariance can be used in control and its main properties

Particularly relevant is the property of robust (contralariance of a set, since it can be
used in the context of stability and constraints satistector dynamic systems in presence
of unknown but bounded uncertainties. Also the issue of emyence of model predictive
control strategies is strongly related to the concept afisbbontrol invariance. The diagram
in Figure 1.1 represents the relations between invariahemmntractiveness and the main
topics involved in control theory.
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Figure 1.1 Invariance in control.

1.1.2.1 Invariance and hard constraints satisfaction

We consider the standard definition of invariance for digctene deterministic autonomous
systems, see (Blanchini and Miani, 2008). More definitiams properties related to invari-
ance (for instance, for uncertain systems, for non-aut@musnsystems) -contractive sets,
etc.) are presented in the Appendix A.

Consider the autonomous discrete-time system
x" = f(x), (1.1)

wherex € R" is the statex™ € R"is the successor state ahdD — R" is a function defined
on the seb C R",

A subset of the state spad@,C D, is a positive invariant set if every trajectory given by
Xk, With k € N, generated by (1.1) and wikg € Q, is such thaky, € Q for all k € N. Roughly
speakingQ is a positive invariant set if every trajectory generatedhsy dynamic system
with initial conditionxg in Q, remains confined in the sét

Although invariance of a set is a property which concernshaltrajectories generated
by the dynamic system with initial condition @, it can be stated through an alternative
definition, which does not explicitly involve the trajedts. In fact, a se@ C D is a positive
invariant set for the discrete-time autonomous systen) {fLfl(x) € Q, for all x € Q.

It can be proved that any element of an invariantes mapped through the dynamic
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function insideQ if and only if the whole trajectory generated by the systenthunitial
state inQ, remains contained in the invariant set. Indeedgi€ Q then, by definition of
invariance, we have that; = f(xg) € Q, which impliesx; = f(x;) € Q and so on. Then
X € Q, forallk € N.

Notice that we employed the terpositiveinvariant set, to distinguish the concept from
simple invariance. Historically, the term invariant sendees a set of initial conditions whose
trajectory backward and forward in time is confined in the w#iile for a positive invariant
set only the future part of trajectories are required to bgho the set. Since in this thesis we
are interested exclusively in positive invariant sets, vilerefer to them simply as invariant
sets.

Positive invariance can also be expressed in terms of imagetbrough functionf (-).
In fact a seQQ C D is a positive invariant set if

f(Q)cQ.

Analogous definitions can be given for non-autonomous Bystéhat is, in presence of
control input. A control invariant set is a regiéhof the state space such that, for any of its
elementx € Q, there exists a control inputx) that maintains the successor state inge
It follows that, given a control invariant set, there exstéeast a control law(x) defined on
Q such that the set is an invariant set for the system in clésagwith u(x).

The relation between hard constraints satisfaction fomeege system and invariance is
evident. Suppose that the state of the system is required todintained inside a region
of the state space, say the 3etC R". The existence of an invariant setcontained inX
ensures that, if the current state of the system is contam@gthen no constraints violation
will occur, at any time steg € N.

In fact, for any invariant se@ C X we have that, by definition of invariance,
f(Q) CcQcX,

which means € X for all k € N, wherexc,1 = f(x), with initial conditionxp € Q. This
entails that any element of the trajectory does not leaveeb@, hence no constraint viola-
tion will occur in the whole future evolution of the systemn&2 more, it is worth pointing
out that, although invariance is a condition which involttes behavior of the system at any
time instant, from present to infinite, it can be given by afgargeometric set condition.

1.1.2.2 Maximal invariant set and one-step operator

The strong relation between hard constraints satisfaetnohinvariance justifies the interest
in the maximal invariant set contained in a region of theessglace, see references (Gutman
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and Cwikel, 1986; Gutman and Cwikel, 1987; Gilbert and T&91t Blanchini, 1999) and
(Kolmanovsky and Gilbert, 1998).

Given a regionX of the state space, many invariant sets can be contained koitin-
stance, itis evident that any equilibrium point containeH is an invariant set. The maximal
invariant set is a set which is invariant for the system andaias any other invariant set. It
is easy to prove that the maximal invariant set, when exisis&non-empty, is given by all
the elements oK such that their evolutions will never abandgn That means that a point
X belongs to the maximal invariant set if and only if the tré&peg generated by the system
with initial conditionxg = X never violates the constraint, i.g € X for all k € R". On the
other hand, if a point does not belong to the maximal invasat, then there will certainly
be a time step at which a constraint violation will occur. Boly speaking, the maximal
invariant set contained iK can be seen as the set of “safe” pointXinn the sense that no
constraints violation will occur in the future.

Although many algorithmic procedures for computing the mmet invariant set have
been proposed, there is a basic idea common to all of them.it@tadive procedures are
based on the use of the one-step oper@@Ej. Given a seQQ C X in the state space and a
dynamic system, the one-step §¥Q) relatesQ to the set of points itX whose evolution
through the dynamic function is contained(n That is, giverQ C X, a pointx belongs to
the one-step s&(Q) if x e X and f(x) € Q. Hence,X; = Q(X) is the set of points irX
which remain inX at least at the first instant. It is clear that iterative aggilon generates
a sequence of sed§ 1 = Q(Xx) N Xk, such that a poink belongs toXy if and only if the
trajectory generated with initial conditiog = x remains inX at least during the fir&t steps,
for all k e N. It should be also evident that the maximal invariant setizabtained iterating
the procedure for an infinite number of steps.

The result would be not very useful unless the maximal irdrset can be obtained after
a finite number of iterations. In this case the invariant sedaid to be finitely determined
and the number of iterations is denoted as determinatia@xindnportant contributions have
been provided in literature, mainly for linear systems,ahhpermit to establish conditions
under which the maximal invariant set is finitely determined

Another important property of the one-step operator is sl that applying the operator
to a set which is invariant, generates another invarianive&h contains the previous one.
Thus, the iterative application of the one-step operat@h & given invariant set as initial
element, produces a growing sequences of invariant setsiceNibhat the same iterative
process withKg = X as initial element, generates a sequence of sets not nabessariant,
which entails that invariance of the current set is not goted until the determination index
is reached (if finite).

In some cases, it can be proved that iterations initializedl &an invariant set converge to
the domain of attraction of an equilibrium point, that isthe set of points which converge
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to the equilibrium. Clearly, assumptions on stability af #ystem are required in this case.

1.1.2.3 Reachable sets and minimal invariant set

In this section we introduce two important set-theoretioaapts such as the reachable sets
and the minimal invariant set for dynamic systems affecteadditive uncertainty. Those
two concepts are strongly related, since the minimal iavdrset can be viewed as the limit
set of the sequence of reachable sets, as illustrated below.

Consider a linear asymptotically stable system in presehadditive uncertainty, that is
Xt = AX+w,

wherew is the uncertainty ana € W, with W bounded subset of the state space withW.
Note that, due to the presence of additive uncertainty,ubeessor of a state depends on the
realization of the uncertainty and all the possible suansssf a state form a set. That is,
given a statex the successor set is given by the @&teW) C R".

In this context, it is useful to introduce the concept of tedale sets. The reachable set at
k € N is the set of states that can belong at tke a trajectory for given initial conditions,
for a proper admissible uncertainty realization. We haw, thiven an initial seRy C R",
the reachable set, at any time instkrt N, can be obtained recursively as

k
Rei1 = AR@W = ARy o HAW.
i=0

The setRy is called reachable set, at tinkec N, the sequence dR is the reachable
tube, reachable frorRy. The sequence of reachable sets is interesting since is libéd
information about all the possible trajectories generégdn uncertain system with initial
condition contained iflRy. The reachable sets for a linear uncertain system can betoised
compute bounds on the real evolution of a nonlinear systeoviged that the mismatch
between the two models is boundedvih Moreover, the reachable tube can be viewed as
the result of state estimation in absence of measuremeathable sets computation is used
also in the worst-case approach to the problem of state astim) when integrated with the
information given by a measurement.

Particularly interesting are the reachable sets (and foba)linear uncertain system with
the origin as initial condition, given by

k
Rer1 = AR@W = AW,
i=0
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with Ry = {0}.

In presence of hard constraints for linear systems, redelsats can be used to pose a
sufficient condition for excluding any constraints viotatialong all the possible trajectories.
In fact, if the reachable sets are contained in the admessdgjion of the state space then no
constraint violation is possible.

This idea can be exploited to design control laws guaramgegleard constraints satisfac-
tion, see (Chisci et al., 2001). Those robust control lavsetan the information provided
by the reachable sets are referred to as tube based contitegsts. The reachable tube ap-
proaches presented first in (Witsenhausen, 49B8rtsekas and Rhodes, 197 Glover and
Schweppe, 1971) provides a solution for robust control @sence of unknown but bounded
uncertainty.

More recently, the approach has been extended to modekpvwedtontrol based strate-
gies, see (Mayne et al., 2000; Chisci et al., 2001; CamackioBamdons, 2004; Limon
et al., 2005; Bravo et al., 2006), and (Langson et al., 200dgmil et al., 2001), which has
been revealed to be one of the most appropriate robust ¢eitategies in presence of hard
constraints. It is evident how useful can result, in facg doncept of reachable sets in
the context of model predictive control of systems affedig@dditive uncertainty, where a
prediction of the state is required.

As claimed above, a particularly interesting invarianiséte minimal one. The minimal
invariant set for a system is the invariant set contained/@meother invariant set. It can be
proved that the minimal invariant set is the set of pointhadtate space that can be reached
from the origin. Conceptually, it is the set of all possibtates that can belong to all the
possible trajectories generated by the system, with tlggroais initial condition. It can also
be proved that the minimial invariant set for the uncertaiear system is given by

Ro = (DAW,
i=0

which is the reachable s&, from the origin, wherk tends to infinity. It is evident by
definition that, in general, the exact minimal invariant sah not be obtained. Methods
to compute approximations of the minimal invariant set aeedbjective of recent research
efforts, see (Rakovic et al., 2005; Ong and Gilbert, 2006).

Unlike the maximal invariant set which is interesting to lmenputed and analyzed for
both deterministic and uncertain systems (linear or nealijy minimal invariant set is mean-
ingful only in presence of additive uncertainty. Moreovehas to be pointed out that mini-
mal invariant set has been studied mainly for linear systems

The interest in the computation of the minimal invariant &ed its properties is more
recent. The reasons that make the minimal invariant seeistiag to the control community



Chapter 1. Introduction 37

are less intuitive than those of the maximal invariant see minimal invariant set is useful
in the following contexts:

e Important conditions on the existence and the finite deteation of the maximal in-
variant set for linear uncertain systems are based on themalimvariant set. Notice
that, if the minimal invariant set computed in absence okt@ints is not contained in
the admissible regioK, then no robust invariant set can be obtained. This means tha
if the minimal invariant set is not contained in the Xethen there exists a sequence of
uncertainty realizations which leads the state to violagedonstraints, for any initial
condition inX.

e The classical concept of asymptotic stability to an eqtilitm point for a system is
not applicable in case of presence of additive uncertaifg.recall here, only con-
ceptually, that a system is asymptotically stable if thgetiries stay bounded (at least
those starting in a neighborhood of the equilibrium) anddiseance from the state and
the equilibrium converges to zero. It is clear that, unlégsuncertainty is assumed
to vanish as the system approaches the equilibrium (cansidenstance the case of
uncertainty modelled as function of the state), the syst@mmot be maintained at the
origin. In fact, no equilibrium is admitted. A concept angbais to asymptotic stability
can be formulated, for the case of presence of additive taiogy, by replacing the
equilibrium point with a set in the state space and the digtdrom the equilibrium
with the distance of a state from a set. This concept is redeir as ultimate bounded-
ness. The set to which the system can be proved to converige mihimal invariant
set. Then, the minimal invariant set can be viewed as theogoak for uncertain
systems of the equilibrium point for deterministic systems

e Recently, a new approach based on tubes gained more and opriagty in the field
of robust control for linear systems in presence of additineertainty, see (Rakovic
and Mayne, 2005; Limon et al., 2008). Roughly speakinghdube-based control
techniques propose to split the control action in a localaméminal part. First, the
local control is designed to maintain the real state in alm@ghood of a nominal state,
then the nominal evolution can be steered to the equilibriihe nominal evolution
is obtained by the system dynamics in absence of uncertainty

Provided that the neighborhood of the nominal state is aariamt set for the uncer-
tain system in closed-loop with the local control law, it das proved that the tube
composed by the invariant set “centered” at nominal staietamns the real trajectory,
regardless on the uncertainty realization. The objectwben reduced to control the
nominal trajectory maintaining the tube inside the adrbissiegionX. It is clear that,

in general, the smaller is the invariant set determiningube shape, the greater is the
feasibility tube in which the nominal trajectory has to bafteed. Once the local con-
trol law is determined, using the minimal invariant set pdes the less conservative
reachable tube ensuring to contain the real evolution o$yiseem.



38 1.1. Set-theoretic methods in control

1.1.2.4 A-contractive sets and induced Lyapunov functions

It has been shown that invariance of a region of the stateespacproperty which implicitly
characterizes all the possible trajectories generatedsisiements, involving the transient
behavior of the system as well as the steady state, that [ ltavior at the limit. This makes
invariant sets a very useful tool for both purposes: guaeing hard constraints satisfaction
and ensuring stability. Convergence to an equilibrium ¢oatset) can also be related to
regions of the state space introducing the concept-obntractiveness.

Conceptually, a convex, compact $etcontaining the origin in the interior is A-
contractive set for a dynamic system if every initial state€i evolves into the scaled set,
AQ, with a positive scaling factor smaller than one. It follows that the image®@through
the dynamic function characterizing the system is conthinethe interior ofQ. Clearly,
if A =1, then the definition of invariance is recovered. Furtheand is evident thaf\ -
contractiveness implies invariance.

Analogous considerations are also valid for control irsatrisets. That is, also in pres-
ence of a control action it can be of interest to determinegareQ of the state space such
that there exists a control law mappifgnto A Q. Notice that, if the condition of convexity
of Q drops, then tha -contractiveness does not imply invariance, sih€eis not necessarily
contained inQ in this case.

The concept ofA-contractiveness of a set for a given dynamic system, cancene
Lyapunov function, and then asymptotic stability or ulttmboundedness. The relation be-
tweenA -contractive sets and Lyapunov functions can be illustraiemeans of the concept
of Minkowski function. Given a compact, convex get(containing the origin in the inte-
rior), its Minkowski function is a function of the statec R" defined as the minimat such
thatx is contained i Q and it is denoted a¥q (x).

In case of linear systems affected by both parametric andiagldncertainty, given a
A-contractive se2, any setuQ, with u > 1, isA-contractive, see property P1 in (Blanchini,
1994). It can also be easily proved that if there is no adeltiwm of the uncertainty, therQ
is A-contractive for all positive:. In the absence of additive uncertainties and assuming that
Q is a convex, compact-contractive set containing the origin in its interior, Msnkowski
function is a Lyapunov function. In fact, if the Minkowskiriation at a poinkis Wq (X) = a,
its value at its successar is smaller than or equal taA, i.e. Wq(x") < aA. It follows
that the Minkowski function decreases along the systeradtajies, ifA < 1 and the state is
not the origin. This, and the fact that the Minkowski funatig a definite positive function
of the state, ensures that it is a Lyapunov function.

It is important to point out that the fact th& is A-contractive implies that alsaQ is
A-contractive (for positiver), is not valid for nonlinear systems. Then induced Lyapunov
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functions cannot be determined in general. An importantrdmustion of this thesis concerns
this aspect. In fact, we propose modelling frameworks wipielmit to ensure asymptotic
(exponential) stability for a wide class of nonlinear syssedetermining induced Lyapunov
functions for systems bounding the nonlinear ones. Onceejyguch important property
relies on convexity.

These considerations permit to take into account Lyapuoagtfons whose level sets
are not the ellipsoidal sets obtained with classical quadigapunov functions. This means
that the characterization of geneAecontractive sets entails an implicit analysis of stailit
properties through a wider class of potential Lyapunov fiems. The use of polyhedral
Lyapunov functions, induced by polytoplecontractive sets, gained particular interestin the
last decades, see (Blanchini, 1994; Blanchini, 1995; Bilam@nd Miani, 2008). Polytopes
are in fact very versatile and permit to approximate evenyves set.

1.1.2.5 Model predictive control and invariant sets

Invariant sets are widely employed to design stabilizingtealers and, in particular, for
applying receding horizon control strategies. In fact, yneommulations of the model pre-
dictive control (MPC) need a terminal region within whiclsyanptotic) convergence can be
implicitly assured by a simple, often linear, control laeegMayne et al., 2000; Bemporad
et al., 2002; Camacho and Bordons, 2004).

We shortly recall the key features of MPC, to show the impuaréaof invariance for
this very popular control technigue. Although many vaadas of predictive controllers have
been formulated, we provide here the ingredients chaiartgrstandard MPC:

e Model based prediction. The control is based on the prexdfiaif the evolution of the
system. A dynamic model, linear or nonlinear, of the reateysis assumed to be
known. Since on-line computations are required to be peréorat every time step,
usually the model considered is discrete-time and assummegtibvariant. At any
instant, the real state is measured and a prediction of stersyevolution is obtained
as a function of the input, within a time range called pradicthorizonN,. The
numberN; of elements of the sequence of future inputs, called cohialzon, can
be different from the prediction horizon. The model perntgrevent constraints
violation that can occur in the future, within the predictioorizon.

e Constraints. The main reason for the increasing populafityiPC is its capability
to cope with hard constraints. Due to the presence of a maddprediction, the
control input sequences leading the system to constraioiation are implicitly dis-
carded from the set of all the possible ones. State and imqnst@ints can be posed
in the optimization problem solved on-line. The result igttbnly a subset of all pos-
sible input sequences are assumed feasible. Such set,asibiliey region for the
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optimization problem, is the subset of the space of inputiseges (obtained through
the Cartesian product of the input space) composed by oosetbequences that avoid
constraints violation. Thus, to any element of the feai$ybriegion is associated a
potential admissible trajectory.

e Cost function. The optimization problem is solved to obthia trajectory, among all
the admissible ones, minimizing a cost function. The costtion usually encom-
passes a part penalizing a measure of the distance betweepretticted trajectory and
the desired one and another part penalizing the controfteffotuitively, the objec-
tive is to compute the control sequence and the associasttory providing high
performance with low control effort. Different cost funmtis can be considered. An
important feature of the cost function is that it should besifve definite function of
the predicted states and the control input in the sequertis c@n be used to prove that
such cost function decreases along the real trajectoryeagytbtem controlled through
the MPC strategy, resulting then in a Lyapunov function amargnteeing asymptotic
stability.

e Receding horizon. The optimization problem is solved oe-kt each time step. Once
the optimal control input sequence has been computed, bslyirst control action
is applied. In that way, mismatches between the real beha¥ithe system and the
trajectory predicted through the model can be compensated.

Convergence properties of MPC are often ensured througbdfieition of a terminal
region and a local control law which guarantees stability, grossibly, asymptotic conver-
gence, see (Mayne et al., 2000; Camacho and Bordons, 20®dnLet al., 2005Alamo,
Ramirez, Mufioz de la Pefia and Camacho, 2007). It is heseawhvariance is fundamental
for MPC control.

In fact, a very common way to ensure asymptotic stabilityhaf $ystem controlled by
MPC is imposing that the final state of the predicted sequencentained in an invariant
set, where a local control law and a Lyapunov function arendefi

Intuitively, assume that there is a feedback control law anégion invariant for the
system in closed-loop. Then, once the system reaches suanfiaint set, it can be assumed
in the prediction that the MPC is “switched off” and the locahtrol law is applied. This
guarantees that no constraints violation would occur iarkut If also a Lyapunov function
is defined, then asymptotic convergence can be assured.eH#wcconcatenation of the
first Ny control actions, solution of the optimization problem, lwihe rest of the control
sequence obtained by means of the feedback control lawndietss an infinite sequence of
control actions and a trajectory admissible at any timeamsand converging to the origin.

Summarizing, the introduction of a terminal constrainttpose that the last state of the
predicted sequence belongs to an invariant set, providegfaluool to ensure fundamen-
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tal properties, such as asymptotic stability and hard camgs satisfaction for the whole
trajectory.

Although the definition of a Lyapunov function within theng@nal region of MPC is not
necessary for assuring stability (see, for example, (Bedvabd., 2006)), many results on MPC
for nonlinear and uncertain systems are based on this. Gothilee hand, only few results on
how to obtain such important ingredient for MPC like the im&at set for nonlinear systems
have been proposed. Particular attention is devoted irthib&s to this central problem, in
fact a key contribution of our research consists in the psegonethods for obtaining convex
invariant sets for nonlinear systems.

Also control invariant sets can be used in the design of obtaws in presence of hard
constraints, such as MPC. Assume that a control invaridfibsthe system is available. An
additional constraint, with which the state is imposed tlmbeg to the control invariant set
at next time step, guarantees, by definition of invarianoe,existence of a proper control
action ensuring no constraints violation. Notice that tmsgue constraint can replace all
the constraints on the state. If, moreover, the invariarnisse-contractive, then convergence
can be ensured, in some cases. Indeed, suppose that itlebéva control invariant set
Q ensuringA -contractiveness ofi Q for the system, foo € [0, 1] and for a proper control
law. Absence of additive uncertainty is often required teeheontractiveness afQ for any
positivea. Then, intuitively, given the current stateand its Minkowski functioriVq (x),
any control action such that the Minkowski functiorkatis smaller than\ Wq (x) makes the
setA-contractive in closed-loop. Since, by construction, éhexists at least a control action
satisfying such condition, the problem of computing(®) such that¥q(x") < AWq(X)
and it is optimal with respect to some performance measuaiviays feasible and ensures
exponential convergence to the origin. The computatioh-cbntractive sets for nonlinear
systems under a proper control law, leading to the syntleési€ontrol ensuring asymptotic
convergence in closed-loop, is not a simple task. A solufiiwrsuch design problem, for
particular nonlinear systems, represents another imqtactantribution of this thesis.

Also in case of robust MPC, the definition of a robust (contimolariant set as terminal
region is usually required to ensure ultimate boundednigse@ontrolled uncertain system.
The domain of attraction of the MPC strategies is usuallyrgjly dependent on the size of
such terminal region.

1.2 State of the art on set-theoretic methods

Many results have been obtained in the last years for deualitigthe worst-case approach
and for characterizing invariant sets. In this section v gle some important contributions
and results present in literature dealing with these therfoesboth linear and nonlinear
systems.
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1.2.1 Historical background

The pioneering works on this field appeared at the end of ttieesj see (Schweppe, 1968;
Witsenhausen, 1963, and the beginning of the seventies, (Bertsekas and Rha€&d).
The problem of set-membership estimation for systems taffieby additive uncertainties
concerns the issue of determining a sequence of sets sucthéhatate of the dynamic
system at time& € N is ensured to be contained in tkeh element of the sequence. This
is achieved by integrating the measurement informatioh e dynamic update, given in
practice by the computation of the reachable set for one step ahead. Notice that, in
absence of measurement, the reachable tube concept ieredov

Motivated by the problem of the tracking of an evasive targe{Schweppe, 1968) the
author addresses the problem of estimating the regionsddtdie space set containing the
true state of a linear system affected by disturbances osttte and on the output. The
system is assumed time-invariant and continuous-timelewhe observations are made at
discrete instants. Initial conditions and output distimdeare unknown but bounded by two
ellipsoids, while two kinds of bounds for the state disturtx@mare considered: an ellipsoidal
set and an energy type bound (i.e. a bound on the integrdips@&ildal approximations are
proposed.

Also Witsenhausen deals in (Witsenhausen, 1968th the problem of computation of
sets in the state space which are compatible with the olismmgaand the initial conditions.
In particular, a linear discrete-time time-varying systsneonsidered. The system is sup-
posed to be affected by disturbances on the state and on thetpassumed bounded by
compact and convex sets. The issues of complexity and ajppation are mentioned and
the ellipsoidal framework provided by Schweppe is refetedThe alternative proposal is
to use polyhedra, which yield to linear programming proldem

The work (Bertsekas and Rhodes, 1By concerned with the same estimation problem
considered by Schweppe but it is extended to the analysiseo€ases of smoothing and
prediction. Moreover, the adaptation to discrete-timaeys is explicitly exposed. The
main advantages of the methods proposed here with respibet 8&chweppe’s approach are
the pre-computability of the matrix defining the predictalpsoid and the convergence, for
time-invariant systems, to a steady-state solution astimeés to infinity.

More recently, in (Maksarov and Norton, 1996), the issuestingation of the feasible
sets (the set of state consistent with the model, the boundshee measurements) for a
discrete-time time-varying linear system with state anslepbation noises, with ellipsoidal
bounds, is considered. The noises are assumed to be unkobwaunded by ellipsoids, as
well as the initial condition. The estimation process isegiwy alternating the time-update
step with the observation update. Each step requires as@itial approximation to be per-
formed. The minimal-volume ellipsoidal approximationgioé sum and of the intersection
of two ellipsoids are employed. Three algorithms, baseditberdnt approximation proce-
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dures, are provided and compared.

In (Chernousko, 2002), the problem of estimation of theeddsible set for a continuous-
time time-varying linear (affine) system is considered. @hm is to determine an optimal
ellipsoidal outer approximation of the attainable set. Tigal set and disturbance bounds
are two ellipsoids and different criteria of optimality ax@nsidered, among them the volume
and the sum of squared axes.

The first contribution on invariance in the field of dynamis®ms has been probably
(Bertsekas, 1972). This work dealt with the problem of cotapan and characterization
of maximal robust control invariant set. In this seminal kyathe author considers non-
autonomous discrete-time nonlinear systems affected bgrtainty, that is, systems of the
form

X1 = (X, Uk, W),

with bounds on the statg € X and on the inputy € U(xc) which may depend on the
state. Bounds on the uncertainty also can be dependent ostdtee and the input, i.e.
wi € W(Xg, Uy). First a necessary and sufficient condition for control ifarece is presented,
then a characterization of the maximal control invariargii®en. Given the seX, the one-
step operator has been employed to define the sequence ,alemt$e thens(X), whose
elements can be maintainkdimes inX, for k € N, by means of a proper sequence of con-
trol actions. It has been proved a very interesting nontimturesult, that is the fact that the
intersection of such sequence of sets is not equal, in get@the maximal control invariant
set. A condition for this equality to hold is based on compass$ of the involved sets. A
particularly interesting case for which such conditionatisied, is given by systems affine
with respect ton, that is

Xk+1 = f(Xk, Uk) +W|(7

with U andW not dependent or and (x, u), respectively, setX andW compact and (-)
continuous. In this case the intersection of &tX), for k € N, converges to the maximal
control invariant set.

The computational aspects for the maximal invariant seehaeen addressed in two
works published in 1991, that is in (Gilbert and Tan, 1991 élanchini, 1994) (although
the second reference is relative to a paper published in,1®®4eliminary version of the
work was presented in 1991, in (Blanchini, 1991)).

In (Gilbert and Tan, 1991), the problem of characterizabod computation of the ma-
ximal output admissible invariant set for a linear detelistin system is studied, that is, for
x™ = Axwith y = Cx. In particular, the constraints are assumed to be defindukispace
of the output, i.e. in the forng € Y. This does not entail major differences with the case of
bounds on the state space. The main result concerns theioorafifinite determination of
the maximal invariant set. It is proved that, if the systerasgmptotically stable, the pair
C,A s observable, the admissible output ¥eas bounded and the origin is contained in its
interior, then the maximal output admissible set is finidyermined.
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In (Blanchini, 1994), the non-autonomous systems takem actount are linear with
parametric and additive uncertainty. The concept @fontractive set is introduced and an
iterative procedure to compute the maximatontractive set for a giveA € [0, 1] is pro-
vided. An important result proved in the paper is the fact tha maximalA-contractive
set is the intersection of the sequence of sets computed byisrad a sort of one-step ope-
rator, provided that the initial set is convex, compact andt&ins the origin in its interior.
The result is analogous to that presented by BertsekaspbAitdontractive sets. Lyapunov
induced functions and control design are also analyzed.

A first important survey paper on invariance is (Blanchi®92) summarizing the main
results on the field. Continuous-time and discrete-timeesys are considered, condition
for invariance for linear and nonlinear systems are givenorédver, induced Lyapunov
functions as well as control design problems based on iawee are analyzed. Also the
computational aspects are considered, in particular ftyt@oic and ellipsoidal invariant
sets.

Another very important and basic work on the field is (Kolmesiy and Gilbert, 1998).
The paper deals with the problem of characterization of tagimal output admissible in-
variant set for discrete-time linear systems affected byitaig uncertainty. The results
are strongly based on mathematical tools, such as suppwstidns and Pontryagin (or
Minkowski) difference, which are widely employed in thige#is. Necessary and sufficient
conditions for invariance are given, minimal and maximakant sets are characterized
and an iterative procedure to compute the maximal invagahis proposed. Very impor-
tant results presented in (Kolmanovsky and Gilbert, 1998)tlae necessary and sufficient
conditions for the existence of the maximal invariant set fam its finite determination. The
maximal invariant set is non-empty if and only if the mininralariant set is contained in the
admissible region, it is finitely determined if it is contathin the interior of the admissible
region.

More recent papers dealing with the problem of characteoizaof the minimal inva-
riant set for linear systems affected by additive uncetyadine, see (Ong and Gilbert, 2006;
Rakovic et al., 2005). Since the minimal invariant set eskinkowski summation of infinite
terms, it cannot be computed in general, and the attentiagheohuthors is focused on the
computation of approximations of the minimal invariant set

1.2.2 State of the art for nonlinear systems

Here we provide a short review on the results presented ilathgears on issues related to
set-theoretic methods and on invariance for nonlineaegyst

One of the main problems inherent to set-theoretic methppkcation and invariant set
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computation is the fact that, in general, nonlinearity @& flystem or the controller leads to
non-convex and non-polyhedral sets. This yields to a gudtgn unaffordable, computa-
tional complexity. Then approximations are usually empbbyand a trade-off between the
induced conservativeness and the computational complead to be reached.

First, an overview on reachability approximations andreetnbership identification for
nonlinear systems is recalled. The problem is the compmutati the sequence of sets in the
state space providing the guarantee of containing the stabe system. Notice that nonli-
near systems and linear uncertain systems are related,sfien the methods for computing
reachable sets and estimation sets for nonlinear systentsmaed on linear approximations.

The problem of reachable sets computation for nonlineaerysis addressed in (Kiihn,
1999) using mean value theorem related techniques to aippaitexthe nonlinear evolution.
That is, given a nonlinear system and a set, its reachableasebe obtained by approxi-
mating the nonlinear dynamic function with a linear funaotisith additive uncertainty. The
sequence of reachable sets is, then, obtained througha Inapping and a Minkowski
summation, at every step. This yields, in general, to anfargdble growth of the complex-
ity of the sets. The problem of complexity is solved by empigyzonotopes, which allows
to control the representation and computational compleattthe price of some conserva-
tiveness. Further developments on this direction have pesgyosed by (Girard et al., 2006)
which uses zonotopes and boxes to bound the system admaissdiution.

We recall that a way to deal with the problem of reachable satsputation for a non-
linear system is by approximating it with a linear uncertaystem. A novel approach
guaranteeing convergence of the sequence of approximasetiable sets is presented in
(Rakovit and Fiacchini, 2008), where properties of irmace are employed to determine a
basic shape for bounding the exact reachable sets. A procédised on homothety leads
to the determination of a computational procedure whichlmoes low computational effort
and convergence of the approximation error to zero.

Analogously, the problem of set-membership state estondtr nonlinear systems has
been addressed by means of set-theoretic approaches. ThEAlamo et al., 2005) presents
a new approach to guaranteed state estimation for nonliliearete-time systems with
bounded disturbances on the state and on the output. Anitalgoto compute a set that
contains the states consistent with the measured outputhanslystem model is provided.
This setis represented by a zonotope. The size of the zoaopinimized at each time step
by an analytic expression or by solving a convex optimizapooblem. Interval arithmetic
is used to calculate a guaranteed sequence of sets in thegtate.

In (Alamo, Bravo, Redondo and Camacho, 2007) a method for gtesdstate estima-
tion for nonlinear discrete-time systems with boundedudisinces is presented. The sets of
states that are consistent with the evolution of the sydtieemneasured outputs and bounded
disturbances are represented by zonotopes. The main ynavéthe usage of DC functions
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to compute the approximating sequence of sets. DC functiesdt very useful in order
to compute bounds on the optimal solutions of non-convegamming problems, and are
also used in this thesis.

It is not trivial to adapt to the nonlinear case those stashaaathematical tools, such
as the one-step operator and reachable sets, widely endpioyanalysis of invariance for
linear systems. Consider for instance the fact that thesbeyesetQ(Q) is not necessarily
convex for nonlinear systems, neither f@rconvex. Then its application can lead to the
generation of sequences of highly complex sets.

One of the major problems when moving from linear to nonlirgetems comes from
the fact that some useful properties related to linearigylast. A very interesting and clear
example is illustrated in the following considerations ba tondition for invariance, cited
from (Blanchini and Miani, 2008). In this work, first the contous-time case is considered.
A fundamental result on invariance is represented by thauNagtheorem, which provides
a necessary and sufficient condition for invariance for aediosubset of the state space, for
continuous-time systems.Such theorem claims that a set is positively invariant if anty
if the velocity vector is directed towards the interior (angent to the boundary) of the set
at any point of the boundary. Intuitively, if the velocityater heads inside the set, it implies
that the trajectories on the boundary enter the set, thea taanot be any trajectory starting
inside and leaving the set. This entails clearly invariance

Then the attention, in (Blanchini and Miani, 2008), move#®discrete-time case
X" = f(x),

for which invariance of a se&k cannot be ensured by a boundary condition.
The authors expressly state that:

“... As it can be easily understood, there is no evident esitenof Nagumo’s “boundary-
type” condition for discrete-time systems. Intuitivehg hatural counterpart of the Nagumao’s
condition,... would be

f(x) €S VX e dS

which means, roughly, the state on the boundary “jumps gisitHowever, this condition

is not sufficient to assure(X) € S for all xe S. Indeed, it is easy to provide discrete-time
examples in which the above boundary condition can be satisfet the set is not positively
invariant. Therefore the only reasonable “discrete-timemsion” of Nagumao’s theorem is
the tautology: S is positively invariant if and only if

f(9cs

Luckily enough, the situation is completely different if istrict our attention to the class
of homogeneous systems (including the linear ones) ...*

1The Nagumo theorem is not given formally here, only its getniced meaning is described.
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This means that focussing on general nonlinear systemstilgsés of invariance has to
involve the whole set, while for linear (and homogeneousjays a boundary-type condi-
tion for invariance can be given. One of the main conceptaatrdoution of this thesis is to
show that boundary-type condition can be stated also folimear systems. The ingredient
which permits to infer properties of the whole set from baanyebased analysis is convexity.

1.2.2.1 Contributions on invariant sets computation for nmlinear systems

First it is worth mentioning the work (Kerrigan and Maciegki, 2000) which provides a

survey on invariance for nonlinear systems up to the moni¥ém.paper focuses mainly on
theoretical characterization of invariance and its useoimtrol, rather than on the computa-
tional issues.

The problem of designing an MPC control for nonlinear syst&vaddressed in (Cannon
et al., 2003). For that purpose, the issue of computing aari@nt set to be used as target
set is considered. In particular, a polytopic invarianisebmputed for an LDI system valid
within a region. The problem is posed as a linear programrminglem whose objective is
to maximize the volume of the polytope, with bounded geoimmetmplexity. In particular,
the linear image of an infinity-norm ball is considered,, iseparallelotope, whose vertices
are the optimization variables.

The problem of linear system with particular static nordineeedbacks, such as piece-
wise affine and saturation, has been addressed in the worar{#iin, 2004), where condi-
tions for invariance for an ellipsoid are provided.

The work (Bravo et al., 2005) deals with the problem of coraiah of control invariant
sets for constrained nonlinear systems. The proposed agpre based on the computation
of an inner approximation of the one-step operator, thathe,set of states that can be
steered to a given target set by an admissible control adéiased on this procedure, control
invariant sets can be computed by recursion. In this wotkyual arithmetic is employed to
compute the one-step set.

Particular attention has been devoted to a common noniipgeiesent in real dynamic
system, the saturation. The paper (da Silva and Tarboyri€&9¥9) addresses the problem
of analysis and computation of invariant ahetontractive sets for discrete-time systems in
presence of saturation. In particular, the authors dividegpace in regions where the upper
or lower value of saturation is attained or where no satomabiccurs. Then, the system is
assumed linear and perturbed by constant perturbatiomswvany region. Necessary and
sufficient condition for contractiveness of polyhedraksgstgiven.

In (Alamo, Cepeda, Limon and Camacho, 2Bp& method to estimate the domain of at-
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traction for discrete-time saturated systems is preseAt@éw notion of invariance, denoted
SNS-invariance, is introduced. An algorithm to generatecuence of nested invariant sets
is provided and it is proved that the sequence convergegttatest SNS-invariant set for
this class of systems. It is also proved that the SNS-inmtigats generated by this iterative
algorithm are polyhedral convex sets and constitute ameasitin of the domain of attraction
of the non-linear system. The same problem has been tacklauthors also inlamo,
Cepeda, Limbn and Camacho, 26D6

1.3 Convexity and invariance

One of the keystones of the thesis, the concept of convekigts and functions, is briefly
illustrated in this section. Many efforts have been dirddtethe analysis of convexity, see
for instance (Boyd and Vandenberghe, 2004; Rockafellar01Schneider, 1993; Ben-Tal
and Nemirovski, 2001).

The importance of convexity for topics related to invariamnd set-theory in control is
manifold. The first reason is the high complexity of repréaton and computation induced
by non-convex sets. For example, from the practical poivi@#k, the standard algorithmic
procedures usually generate sequence of sets whose cay@eplodes after few steps
when dealing with non-convex sets. As a matter of fact, tingilfas of sets considered in
literature for practical issues related to invariance shiae property of convexity, for instance
ellipsoids, polytopes, zonotopes and boxes.

On the other hand, convexity of functions permits to infesgarties which are satisfied
by any element of a set by means of conditions involving onfinde subset of points.
This consideration leads also to convex optimization pwid, which are computationally
tractable, and then to algorithms characterized by affdedeomplexity. Hence, it is worth
recalling here some basic definitions and properties rtateonvexity of sets and functions.

A setSC R" is said to be convex if, for every pair of elementsfthat is for every
X,y € S, we have that the whole segment between the two points isic@u inS.

An important property of convex sets, see (Rockafellar(0)9% the fact that a s&C R"
is convex if and only if it contains all the convex combinatsoof its elements. This means
that, if Sis convex, any point that can be expressed as a convex cotiaiiod elements of
Sbelongs tdS. Conversely, if any point expressable as a convex combimati elements of
Sbelongs tdS, then convexity holds.

There are several different ways to define convexity of ationc One way is based on
the concept of convex set and provides a geometrical meaficgnvex functions.
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Given a functionf : R" — R define its graph a§(x, f(x)) € R™?1: xc domf} and its
epigraph the set of points IR"" lying above the graph. A function is convex if its epigraph
is a convex subset &1, It is evident how deeply related are the concepts of coneex s
and convex functions, as the latter can be defined in terntsedbrmer.

An important feature of convexity is the fact that a propenyolving only some ele-
ments of a set can be extended to a possibly uncountable peird§, when dealing with
convex sets and convex functions. We will see that the fattdgleneral properties can be
inferred from conditions involving few elements of a setl\p@rmit to formulate algorithmic
procedures for invariant set computation, algorithmsattarized by affordable complexity.

As an example, we shortly introduce convex programmingcivpiays a key role when
dealing with mathematical programming problems. Convegm@mming problems are cha-
racterized by the minimization of a convex cost functionraveonvex feasible set, or equiv-
alent problems, see (Boyd and Vandenberghe, 2004).

The importance of convex programming problems is due to dlsethat they are cha-
racterized by efficient resolvability, that is, they can lodved in polynomial time. The
general nonlinear programming problems are often much emrgutationally demanding,
see (Ben-Tal and Nemirovski, 2001).

This can be intuitively understood recalling that a locahimum for a convex problem
is also a global minimum, unlike the case of non-convex blin the context of convex
problems, iterative algorithms, based on the gradient efctist function for instance, can
be designed, see (Bazaraa and Shetty, 1979). Thus, throeglgorithm iterations, the cost
function value decreases at every step and then convergetive optimum is ensured. If,
on the contrary, local optima are not also global, as for comvex problems, the algorithms
exploiting the gradient of the cost function does not gut@nin general, convergence to a
global minimum. Hence, in the context of mathematical paogming, the availability of a
convex programming representation for a problem is crucial

1.4 Motivation and objectives of the thesis

As illustrated above, invariance and set-theoretic mettaod very important for the analysis
of nonlinear and uncertain systems. Moreover, it is evidhemt useful is the application of
invariance and set-theory related structures for the ohgtation of robust control strategies,
the design of control laws in presence of hard constraingsliption based control etc, hence
for control synthesis in general, for nonlinear and uncegstems.

Despite such fundamental position gained by invariancesatidheory in systems ana-



50 1.4. Motivation and objectives of the thesis

lysis and control, mainly in the last decades, only very fesuitts have been provided for
nonlinear systems. Results presented in literature hame derived for particular cases of
nonlinear systems (such as saturated systems, bilindansysetc) and they often cannot be
applied to general nonlinear systems. That is, despiteeointiportance of such structures,
their application are restricted to particular cases.

Consider the mentioned importance of invariant sets in ra@elictive control for non-
linear systems. In this context, the availability of an inaat set is often used to prove the
desired properties for the controlled system, such aslgyalsobnvergence and constraints
satisfaction. On the other hand, it is not trivial in praetio obtain an invariant set for a
nonlinear system, usually required to be used as termigamen MPC. Roughly speak-
ing, in many contributions on nonlinear predictive contta availability of an invariant set
leading to general results is assumed, but the computafpoollem of how to obtain such
important ingredient is not tackled. This fact might caoite to lose some of the generality
of such results, in practice.

There is a clear gap between the importance of invarianceeiatheory for theoretical
purposes and the practical applicability of the obtainedlts, especially for nonlinear sys-
tems case. It has to be pointed out that this gap is less wid@dacase of linear uncertain
systems, for which many well established computationahdd are given in literature. The
objective of this thesis is to contribute in filling this gdparticular attention is in fact devoted
to nonlinear systems.

The main conceptual problem when moving from analytical @putational methods
for linear systems, is the fact that many properties andifeatwhich are intrinsic to linearity
cannot be exported to nonlinear systems. The Nagumo themrenctlear example of a
condition based on local analysis that is not applicablesewf nonlinearity.

The underlying idea, common to many of the results presantéte thesis, is to adapt
those methods and properties characterizing analysis @mtdot design for linear systems
to nonlinear ones, exploiting convexity. It will be showedat in many cases convexity
is the "missing” ingredient which allows the formulation ahalogous methods and tools,
preserving the desired properties in presence of nonligear

First we will introduce the main systems modelling framekyaalled convex difference
inclusion (CDI) systems. This class of dynamic systems aeply characterized by conve-
xity, as their dynamics are defined by means of a set of conwestibns. This implies that
the dynamic evolution of such systems is characterized hyeoconstraints, and the appli-
cation of many tools proper to the analysis of linear systlrads to convex programming
problems, polynomially complex. That is, intuitively, taping linearity by convexity, some
results for linear systems are preserved for CDI systenthegtrice of a slight increase of
the computational complexity.
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Many important results, analogous to those well estaldigbelinear systems, are ex-
posed and proved. For instance, computation of the exaest@peoperator, necessary and
sufficient conditions for invariance adcontractiveness, algorithms to generate sequences
of sets converging to the domain of attraction, rigorouslyedoped for linear systems, are
provided for CDI systems.

The importance of such framework is evident considering #my element of a very
wide class of nonlinear systems can be approximated by a ¢&¢m. That is, given a
nonlinear system, if on one hand the analysis of the appratim CDI system leads to
some conservativeness, on the other, some beneficial piexpealid for linear systems are
preserved for CDI systems. This yields to general and stresglts for the approximated
nonlinear system.

Another aspect of the CDI approach is that many propertiesfiea by a set for the CDI
system (invariance for instance), is fulfilled for any noelar system approximated by the
CDI system. This implies that considering a CDI system ulieethe analysis of a whole
family of nonlinear systems, that is, all the systems whag®uthic function is bounded by
the function characterizing the CDI system.

Although the results provided for CDI systems are strong,aesumptions characteri-
zing such framework are not too restrictive. It will be shothhat many common classes of
systems are particular CDI systems or, at least, admit @gdtapproximations. Then, an
important practical issue related to the theory developduw to generate the approximat-
ing CDI system, given a nonlinear one. In this context we mtlloduce some computational
aspects on how to obtain a CDI representation or a CDI apprabon for the elements of
some common classes of nonlinear systems.

The first class of systems enclosed in the CDI framework isrghwy the convex-concave
difference inclusion (CCDI) systems. Such systems areqodait CDI systems, characteri-
zed by a finite number of functions that determine their dyicamMany nonlinear systems
can be approximated by a CCDI system, since only a finite numileounding functions
are required to be computed.

The second class of nonlinear systems, for which a CDI reptation is a powerful
tool, are the Lur'e systems. Those systems are formed byearlisystem in closed-loop
with particular static gain feedback laws and are well knawtine context of control theory,
mainly in the continuous-time. Discrete-time Lur’e sysgawill be considered in the thesis.

An important class of systems for which a CDI approximat®aasily obtained is given
by the called DC systems. Such systems are characterizeghlaynilc functions that can be
expressed as the difference of convex (DC) functions. Tip@nance of DC functions is due
to the fact that it is straightforward to determine convexdoand upper bounding functions
for any of them. This will lead to the implicit determinatioha CDI system approximating
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the original nonlinear DC one. Moreover, a very wide classatflinear functions can be
represented by a DC one.

Another subclass of CDI systems is given by linear parametncertain systems. This
modelling framework, for which some results are availablditerature, permits to apply
techniques proper to linear systems analysis and syntteethe approximation of a nonli-
near system. In fact, for instance, a nonlinear system daefimea bounded region can be
approximated by a linear parametric uncertain system héted by bounding the gradient
of the nonlinear function over such region.

The presence of additive uncertainty can be consideredniprofthe mentioned mo-
delling frameworks. Assuming the presence of additive wmkmbut bounded uncertainty
makes the model more realistic in some cases, since sugpbsiperfect knowledge of the
system dynamics can be too restrictive.

Finally, we provide the thesis structure, along with thetdbntions on the different
aspects of invariance and set-theoretic methods.

e The second chapter deals with the modelling problem. Wdlrgeaeral definitions
and characterizations of nonlinear dynamic systems,datimg the concepts of un-
certainty and the concept of set valued map, widely emplayékde thesis. Then the
proposed novel models, the CDI framework, will be presented

e Computational aspects relating CDI systems to classesmifman nonlinear and un-
certain systems are developed in chapter three. CCDI sgsdechLur’e systems are
introduced as practice-oriented subclasses of CDI systamastheir twofold relation,
with CDI systems on one hand and with common nonlinear systmthe other, is
stressed to point out that many real systems are encloski iclasses of models. DC
systems are then illustrated. Definitions, properties aadles are provided to stress
the main features of this particularly rich and expressieelets. A short overview on
DC functions is provided to make clear some reasons whiah Usao consider this
particular class of nonlinear functions. Finally, lineargmetric uncertain systems are
defined. Two subclasses of linear parametric uncertaiegystas the linear parame-
ter varying (LPV) systems and the linear difference in@duasi(LDI) systems, are also
illustrated.

¢ In chapter four invariance and related topics for CDI systame considered. Impor-
tant results, well known for linear systems, are statedHla tlass of systems. Ne-
cessary and sufficient conditions for a convex set in the sfaéce to be invariant and
A-contractive, also in presence of additive uncertainty,movided. It is proved that,
in case of absence of additive uncertainty, the relatiowé&enh convex -contractive
sets for CDI systems and Lyapunov functions, characteyiiimear systems, are pre-
served for CDI systems. The one-step operator is detern@ndctharacterized, and
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a sketch of the algorithm for generating sequences of setgeoging to the domain
of attraction is given. Finally, computational issues owlto obtain convex invariant
andA -contractive sets for CDI systems is illustrated.

e The fifth chapter deals with the problem of computing convesariant sets and -
contractive sets for particular classes of autonomousmeenl systems. In particular,
practice-oriented classes of nonlinear systems prewolisstrated, such as DC and
Lur'e ones, are considered. Sufficient conditions for iravaze and\ -contractiveness
for DC systems are given. Also the case of DC systems in pcesehadditive un-
certainty is treated. Practical issues on computing a comxariant set are tackled,
yielding to the algorithmic procedure ensuring to provideom-empty convex inva-
riant set in the absence of uncertainty. An ad-hoc methodtaim a sequence of
nested invariant sets is provided for Lur’e systems. It$® ahown that such sequence
of sets converges to a convex approximation of the domaittrafcaion.

e Chapter six presents results concerning the problem of@m®ynthesis. Computation
of control laws and control invariant sets for non-autonas@DI systems is the main
topic of the chapter. The first part is devoted to illustrataperties of convex control
invariant andA -contractive sets for DC systems. A sufficient condition ¢ontrol
invariance and\ -contractiveness of a convex set is provided. In particutacase of
polytopic sets, it is proved that the computation of a cdratetion at the vertices of the
polytope satisfying a local (convex) condition, allows thetermination of a control
action defined over the set such that asymptotic (exporgstability is guaranteed
for the nonlinear system. The one-step operator, usefubtaima sequence of nested
control invariant sets and an approximation of the maxirtaddiiizable set, is analyzed
for DC systems. Also computational issues are considerefihidg algorithms to
determine the stabilizing control law.

¢ In the final chapter we summarize the contributions and tegdlustrated in thesis and
the directions for future research.
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Chapter 2

CDI framework for nonlinear systems

The thesis deals with nonlinear and uncertain systems.idrcttapter, the main modelling
framework of dynamic systems employed will be illustrated.

First, a basic classification of dynamic systems will be gjatarting with generic char-
acterizations of nonlinear systems and following with tlesatiption of uncertainty. The
concept of set valued map will be introduced: intuitivelysia function relating a set to any
point of the space. Many systems considered in the thesisham@acterized by set valued
maps as dynamic functions, for instance parametric andiagldincertain systems.

Then, the main modelling framework used in the thesis, Cenvex Difference Inclu-
sions (CDI) systems, will be described and their propestigisbe given. CDI systems are
characterized by particular set valued maps. Convexitggnees are assumed for the set va-
lued maps, such that beneficial invariance related feathasacterizing linear systems are
valid also for CDI systems. These properties will enableoustéite necessary and sufficient
conditions for invariance andl-contractiveness for CDI systems, in particular boundary-c
ditions.

The fact that CDI systems represent a tool to approximatenawile class of nonli-
near and uncertain systems, provides generality to thisdveork in order to characterize
invariance and design computational procedures for neafisystems.

CDI systems provide the more general modelling frameworkleyed in this thesis.
Other models, more practice-oriented, presented in tHewolg chapter can be approxi-
mated by CDI systems or they are particular cases of CDI sysste

59
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2.1 Nonlinear systems

In this thesis we consider and analyze discrete-time sysiestate space representation, that
is, systems determined by difference equations, rathaerdtiferential equations. Hence, we
implicitly assume in what follows that time variabkeis an element of natural numbers,
k € N, and the state vectore R", at timek, is a function of the state and, possibly, of the
control input and uncertainty, at the previous instant.

To define and characterize nonlinear systems, it can beutétpfecall the definition of
linear system and the main property of these systems, treg@ogition principle.

Consider a discrete-time autonomous system
x" = f(x),
wherex € R" is the current state and” € R" is the successor, or a non-autonomous system
x" = f(x,u),

with u € R™ control input.

The system is linear if functiofi: R" — R" is linear, that is, if it is such that

o fx+y)=f()+f(y), WxyeR"
e f(ax)=af(x), vx e R", Va € R.

Hence, it is easy to see that a linear system has the %orem Ax, for the autonomous
case, and™ = Ax+ Bu, for the non-autonomous one.

Intuitively the superposition principle says that, if theatise”a leads, through the dy-
namic system, to the “effecti, then zaleads to B. Moreover, ifc leads tad, thena+cleads
to b+ d. This entails that the analysis of particular pairs cautseepermits to completely
characterize the whole relation cause-effect represdaytélde system, or, equivalently, that
the complete behavior of the systems can be inferred indkgpely from the particular con-
tingency.

In fact, linear systems are completely characterized bgtjuare state-transition matrix
A € R™" and, possibly, by € R™™M, and their analysis can be treated with linear algebra.

Nonlinear systems are systems for which the superpositiagiple does not hold. This
is the key reason for which it is far more complex to deal witimimearity. The relation
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between any “cause” and its “effect” should be taken intmaot independently, no general
characteristic can be inferred by the analysis of a pagdrcatcurrence. In the nonlinear
framework, local results are often pursued, in contrash wie globality and generality of
properties usually ensured for linear systems.

Another aspect to be underlined is the fact that frequensgdanethods for analysis
and design, widely exploited in the context of linear systeane not applicable for general
nonlinear systems. This is because the output of a nonlsyesdem excited by a sinusoidal
input is not another sinusoid with same frequency, prodeityled by stable linear systems
(after the transient). Hence, many classical methods fallyais and control design for linear
systems are not valid when dealing with nonlinear systems.

On the other hand, nonlinear systems permit to model a mudbrvalass of dynamic
systems, see (Vidyasagar, 1993; Khalil, 2002). Nonlingstiesns provide a far richer frame-
work, it could be claimed that no real system is linear, dbtullany interesting phenomena
of dynamic systems are due to nonlinearity, for instanae(lKbalil, 2002), multiple isolated
equilibria, limit cycles, chaos, etc.

Then, if on one hand nonlinear systems provide a very powedlito model the reality,
on the other, the complexity involved can be often an insummtable obstacle to generality
of properties and results.

2.1.1 Uncertain nonlinear systems

The concept of uncertainty in systems analysis and con@sigd is fundamental. Many
research efforts have been directed to the problem of robsst In practice, the assumption
of full and complete knowledge of a dynamic system is notiséeal This lack of knowledge
of the dynamics of a system is modelled as uncertainties ®@dyhamic functions. Consi-
dering uncertain models is natural, in fact, since in gdrestiaer an exact model of reality is
not available, because we are unable to recover the whokentigrrichness of a system, or
because a too complex model would not be suitable for theysisand control objective.

Then, it is reasonable to assume that the model used to ezprageality, a dynamic
system, is not perfectly known, that there is a certain mismbetween the ideal behavior
and the real evolution of the system. The mismatches betthearal system and the model,
denoted in general as uncertainties, can have severah®agd different representations. A
first discrimination between uncertain models can be duessoraptions on the nature of
uncertainty. In the stochastic scenario, uncertainty gpsesed to be characterized by a
probability distribution.

In this thesis we consider unknown but bounded uncertainiibat is, the effects of un-
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certainty are assumed to be dependent on a signal or a paransially varying with time,
unknown but bounded in a region of the space in which it liegs Worth noticing that also
state and input dependent uncertainties are taken intauatao this framework, provided
that bounds on their effects are assumed. This assumptads te the so-called worst-case
approach, whose objective is usually to ensure that pregestre preserved no matter the
realization of the uncertainty, provided the uncertainbyifids are not violated. Then, the
analysis is directed to guarantee properties and/or peeince assuming that the uncertainty
is the worst possible, supposing that the uncertainty @ayactive role contrasting the con-
trol aims.

It is clear, then, why an important role on the robust analgsid robust control design is
played by game theory, see (Basar and Olsden, 1999). Gawry ikeapplied to problems,
among all, in which two players act pursuing opposite olyjest which is what we have
when considering the uncertainty as an active agent whasesao prevent the achievement
of the control objective, see (Bertsekas and Rhodes,&33lbver and Schweppe, 1971).

2.1.1.1 Setvalued maps

We introduce here the concept of set valued maps, which Wilwato define a class of
dynamic systems that encloses many of the models considethd thesis. Suppose that
the system dynamics is not given by a function with valueshmndtate space, but by a
set valued map, that is, by a function defined on the stateegjpassibly on the Cartesian
product of the state space and the input space) with subisiits state space as values. We
first define some particular sets of subsetBaf R", useful in the following.

Definition 2.1 Given any DC R", we denote witl” (D) the set of subsets of D, withi (D)
the set of convex, compact subsets of D and with(D) the set of convex, compact subsets
of D containing the origin in their interior.

By definition, we have the following relation? °(D) C .# (D) C.#(D) for all D C R".

A set valued map- (+) is a function defined ofR" and whose values are elements of
S (R"), that isF : R" — . (R"). Therefore, for anx € R", we have thaF (x) is a subset
of R". Particular interest will be devoted in this thesis to séti@d maps whose values are
elements of# (R").

We consider the autonomous discrete-time systems

x" € F(x), (2.1)
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wherex € R" is the statex™ is the successor state, and functif) is a set valued map,
i.e.,F:R"— .7(R").

For this kind of dynamic systems, the trajectories gendrate sequences of subsets in
the state space rather than sequences of points. We defimeathe?r () associated to the
dynamic function of system (2.1) and the set valued mé&p, as

e (D) = | J F(x), (2.2)

xeD

whereD C R".

Property 2.2 For any set valued map (F), map.Z¢ : (R") — . (R") defined in (2.2) is
monotone, that is, for every,@ € . (R") with D C C it follows that

AMe (D) C A4r(C).

Given an initial set of points in the state spageC R", the sequence of sets ensuring to
contain the state generated in time by the dynamic systeihw&th initial conditionxg € Xg,
are obtained through the following iteration

xk+1 - '%F (Xk),

with initial setXy and where the mapZr (-) is defined in (2.2). The sé& is the reachable
set at timek, for k € N, mentioned in the introduction.

It can be proved that the set of points reachable at kraeN from Xg by the dynamic
system (2.1) is given by

X(Xo) = {xe R": there exist®, ..., xK € R" such that:

. . _ (2.3)
X € F(X1),Vi e Ny, X0 € X, x=xk}.

In the thesis, both autonomous and non-autonomous systentsia@n into account. A

discrete-time non-autonomous system characterized byalsed map is given by

X" € F(x,u), (2.4)

wherex € R" is the state and € R™is the control input. FunctioR (-, ) is a set valued map,
ie,F:R"xR™— .#(R") and therF (x,u) C R" for all x € R" andu € R™. Analogously

to the case of autonomous system, given a sequence of inflgts R™ and an initial set
Xo € R", the trajectory of the uncertain system is a sequence ofrstts state space.
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2.1.1.2 Parametric uncertainty

A particular case of systems whose dynamic function is aaeed map are the parametric
uncertain ones, that is, systems whose dynamic functiorrabepon a parameter. Given a
setRC R™, consider the autonomous discrete-time system

x" e F(x)={p(x,r): reR},

wherex € R" is the statex™ is the successor state, vectoe R™ is the parameter and
p:R"x R™ — R"is a function defined for evenye R.

A discrete-time non-autonomous system affected by paranetcertainty is given by
xT e F(x,u) = {p(x,u,r): r R},

wherex € R" is the statey € R™ is the control input, vector € R™ is the parameter and
p:R"xRMx R"™ — R"is a function defined for evenyc R.

Different assumptions on the knowledge of the parantetiead to different frameworks.
Supposing that only the sBtis known, all the possible successor statesfarR", i.e., the
whole set(x) C R", have to be taken into account for state estimation, cod#sign, etc.

In case that set valued function determining the dynamicthefuncertain system is
implicitly defined through linear functions, we have theledlLinear Difference Inclusion
(LDI) system, see (Boyd et al., 1994; Gurvits, 1995) or thedar Parameter Varying (LPV)
system, see (Shamma and Athans, 1991; Shamma and Xiong, tiepending on the as-
sumed knowledge of the dynamics, as illustrated in Sectibn Butonomous linear para-
metric uncertain systems are given by (2.1) with the setadhinap given by

F(X) ={Ax: Ae &}, (2.5)

wherewz C R™", while non-autonomous linear parametric uncertain systese the form
(2.4) with
F(x,u) = {Ax+Bu: [A/B] e .Z}, (2.6)

where.# C R™ (™M and[A, B] denotes here the matrix obtained concatenating mathices
andB.

A very effective tool to deal with parametric uncertaintiated problems for linear sys-
tems are the LMI-based (Linear Matrix Inequality) optintiea solvers, which permit to
efficiently solve robust analysis and control design profdes convex programming prob-
lems, see (Boyd et al., 1994; Ben-Tal and Nemirovski, 2@0damo, Normey-Rico, Arahal,
Limon and Camacho, 2006; Kothare, Balakrishnan and Mota86).
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2.1.1.3 Additive uncertainty

Another possibility is considering the uncertainty as aalgvhich is added to the dynamic
function. The common assumption in the worst case appraathat it is unknown but
bounded inside a set. Recall that also state (and input)hdepé uncertainty are conside-
red with this approach, through properly determined boutidis worth noticing that also
additive uncertain systems are characterized by a setdvatag.

Additive uncertainty can be considered affecting lineat aanlinear systems, as well as
systems affected also by parametric uncertainty. Formestaconsider the linear discrete-
time system

X" = AX+Ww,

where now the state-transition matie R" is assumed to be constant and known while the
signalw € R" is supposed to be an element of theWet R", subset of the state space in this
case, that isv € W. Usually the bounding s&V is supposed to be compact. In fact we pose
the following assumption, used throughout the thesis wieatimg with systems affected by
additive uncertainty.

Assumption 2.3 We assume that W& R" is a compact set in the state space withke
int (co (W)).

Notice that the uncertainty term could be a function of the state(and, possibly, of
the inputu) and other terms representing noises and exogenous @etgb, as assumed in
some works in the literature related to robust control.

As an example of problems related to dynamic systems affdnteadditive uncertainty,
consider the problem of robust fulfillment of hard constisurf it is ensured that the system
evolution is maintained inside the admissible set for argusace ofw(k), k € N, then
the system real trajectory does not violate the constramisnatter the realization of the
uncertainty. Particular importance is devoted, in protd@ifhard constraints satisfaction, to
the sequence of uncertainty which opposes more effectteetyich aim. Ensuring that the
system satisfies the constraints under the worst possibkrtamty realization, excludes any
constraint violation. For this reason, this way of dealinthwincertainty is often denoted as
worst-case approach.

Additive uncertainty is commonly employed with linear ysis, as the uncertainty can
be read as the effect of the nonlinearity. Roughly speakiing,behavior of a nonlinear
system can be approximated by a linear one and the effedts afismatch between the two
systems can be modelled by the additive uncertainty comypone
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Remark 2.4 The effect of uncertainty is often considered affectinditiear systems addi-
tively or parametrically, it is not usual to take into accduooth uncertainty structures.

A reason is that, in many cases, the selection of the uncgytiamework stems from
assumptions made on the system and from the nature of tleersigself. For instance, when
uncertainty reflects the dependence of the real system dgsam endogenous or exoge-
nous signals or physical parameters, the parametric urgety framework might fit better,
while when uncertainty models the effect of noises andridiahces, additive unknown but
bounded uncertainty is more appropriate.

Nevertheless, we can assume that the system is affected twyathincertainty contribu-
tions, for the analysis and control design process.

Finally, it is worth noticing that it is not common, in the fiebf dynamic systems ana-
lysis and control design, to deal with both nonlinearity amgertainty. This is due to the
fact that the uncertainty is often employed to model thectdfef nonlinearity, allowing to
apply analysis and robust control techniques proper tatisgstems. That is, deterministic
nonlinear systems are often treated as linear uncertaiaraysvhile in this thesis we direct
our attention also to nonlinear uncertain systems.

2.2 Convex difference inclusions: CDI systems

We introduce here the modelling framework used in the thiesdetermine the behavior
of families of nonlinear and uncertain systems. The syst@ken into account are named
Convex Difference Inclusions (CDI) systems and are chargetd by a particular class of
set valued maps as dynamic functions. Recall that for thid kif systems, a sequence of
sets can be generated, the reachable sets. In particulavilveee that the set valued map
determining a CDI system is such that, given a point in theespace, its image through the
map is a convex and compact set. That is, denoting ith the set valued map determining
the dynamics of the CDI system, thefi: R" — 7 (R"), which means tha# (x) € .7 (R")

for every statex € R". This assumption will assure that the reachable sets ¢edeaae
convex and compact. Furthermore, we will see that the cgeeperator for CDI systems,
applied to convex, compact sets provides convex, closed set

Moreover, we require a further convexity condition to bessegd by the set valued map.
Given a state, the support function of its successor, i.e., of the. 8€k), with respect to a
given directiom) € R" is the maximum of T zfor all z€ .% (x), by definition, see Appendix
C. Now, if we fix the directiom € R", the value of the support function of the s&t(x)
depends, clearly, on The required condition is that such dependence satisfien\gexity

property.
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Such structure will allow us to determine necessary andcseiffi conditions for invari-
ance and\-contractiveness of sets, for the CDI systems. Moreovearh sionditions are
boundary conditions, that is, they involve only the elersemt the boundary, just a finite
number of points (the vertices) in case of polytopic setxaftimg here that such very desi-
rable properties are lost when moving from linear to norairsystems, we see that convexity
conditions on the dynamic set valued functions are the mggsigredient for generic nonli-
near systems.

Similar considerations will lead us to the definition of dgsmethods for determining
control laws which ensure exponential convergence for GBlesns, in absence of additive
uncertainty.

Finally, it is important to stress that many nonlinear systeadmit CDI representations
or can be approximated by CDI systems. This means that toégeslid for CDI systems
can be used to obtain invariant setsgontractive sets, control invariant sets, approximated
reachable sets, for a very wide class of nonlinear systems.

As a matter of fact, the analysis of a CDI system can be coreidas the analysis of
families of systems, since any nonlinear system bounded 6pbhone (we will clarify
below the meaning of bounding systems) share importantianvee related properties with
the CDI system.

Formal definition of a CDI systems follows. Let the system be
xt e .Z(x), (2.7)

wherex € R" is the statex™ is the successor an# (-) is a set valued map dR", that is a
function which relates a set to every pokg R".

Particular importance in the following is devoted to seuea dynamic functions, such
that.7 (x) € ¢ (R") for anyx € R", and the graph of? (-) is determined by a set of functions
convex with respect tg, as stated below.

Assumption 2.5 Assume that the set valued m&p: ]R{‘ — J (R") determining the system
dynamics (2.7) is such that, for evegye R", functionf, : R" — R defined as

fo(x)= sup n'z (2.8)

e .7 (X)

is convex orR", and f, (0) = 0.

In what follows, we will refer to dynamic systems (2.7) for g Assumption 2.5 holds,
as Convex Difference Inclusions (CDI) systems and to famstif, (-) as convex bounding
functions.
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Notice that, under Assumption 2.5 and for any R", functionsﬂ, () can be considered
as support function aj € R", determining the se# (x) (see Appendix C for the definition
and properties of support function). That is, givea R" and by convexity and compactness
of .# (x), we have that

F(x)={zeR": nTz< fh(x),¥n € R", (2.9)
with 5
fr(x) = sup n'z=@zx(n), (2.10)
7.7 (X)

for everyn € R", where@z ) (1) is the support function of se¥ (x) evaluated afj € R",
see Appendix C. The only, important, requirement of thiéetipport functions (depending
onx) is thatfy (-) has to be convex with respectxan R".

Remark 2.6 It is also important to note that for every e R" and every x R", there exists
apoint2x,n) € .# (x) such that

r’TZ(Xv r’) = Fn (X>7
which means that the plafg c R": nTz= an (x)} is a support hyperplane of (x).

Remark 2.7 In the following, with a slight abuse of notation, we say thaet valued map
F:R"— (R") is overbounded by the set valued mzp R" — ¢ (R") if

F(x) C.Z(x), vxeR" (2.11)
and we denote such condition asF.% .We recall here that, from (2.9), we have that
F(x)={zeR": nTz< fp(x), ¥n €R"},
and then FC . means
n'z< fp(x), vneR", vzeF(x),
for all x € R".
Clearly, for functions with values oR", i.e., f: R" — R", we say that §-) is over-
bounded byZ (-) if, defining
Sz ={f: f(x) € Z(x), ¥xe R"}, (2.12)
we have that £ Sz, which means
nTfX) < fH(x), vneR",
for all x € R".

Analogously, we say that a dynamic system is overboundeddiyl aystem if the dy-
namic function of the former is overbounded by the set vatoapl of the latter.
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We present here an example of how useful the CDI frameworkresult to deal with
nonlinear systems. In fact, we will show that for any nordingystem whose dynamic func-
tion is twice differentiable, its Taylor series expansi@iatmines a CDI bounding system

valid in a given region.

Example 2.8 Consider a generic discrete-time nonlinear system
x = f(x),

where xe R" is the state and f R" — R" is a nonlinear function assumed twice differentia-
ble in a set DC R". This implies that for every;f-), with j € Ny, the gradient]f;(-) and
the Hessian, denotedHi;)(-) = HI(-), exist at every x D.

Then, exploiting the Taylor series expansion and, in paticthe Lagrange form of

Remainders, which is based on the Mean value theorem, wethatvgiven a ¥ € D, for
every xe D there exists &(x) = X € D such that the following equality holds

1 .
f (%) = fj(x0) + (x=%0) " Ofj (x0) + 5; (X —%0) " H! (%) (x—x0),
for every je N,. Define the convex bounding functions as in the following

209 = 3 {mi(1300) + (xx0)" 013 000) + om0 20)T 30}

for everyn € R", with p € R" such that

1 i o

51 (X=%0) THI(R) (x=x0) | < pj(x—0)" (X—X0),

forall x € D andX € D, with j € N,. A possible choice fop; is the maximal absolute value
of the eigenvalues @ 5H!(X), that is its spectral norm, for at € D.

The related CDI system overbounds the nonlinear one, infiacall x € D, we have that

—
—

(x) = jglnj(fj(XoH(><—><o)Tij(><o)+%(X—XO)TH"O?")(X—xO)) <
n;(fj(xo

N (f;(%0) + (x—x0) TOf; (%)) + pj[Nj| (X —%0) T (x—X0)) = fq (),

n

< )+ (x—x0)TOfj(x0)) + [N | 21 (x—X%0) THI(KI) (x— x0) | <

[y

IA

IMsIIM3>

[y

for everyn € R", which means that € Sy, see Remark 2.7, wher# (-) is the set valued
map defined by functiorfg (-).
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We give now a one-dimensional and a two-dimensional exargfl€DI systems. The
main interest of these particular examples lies in the géocaéinterpretations of set va-
lued maps and convex bounding functions, as we provide grajepresentations of these
structures.

Example 2.9 Consider the system (2.7) with set valued functionR — 7 (R) given by
FX) ={yeR: —[x <y<|x]}. (2.13)

This means that, for instance, we have

F(2)=F(-2)={ycR: —2<y<2}.

The graph of functioo” (-) is depicted in Figure 2.1.

Figure 2.1 Left function.Z(.). Right functionsfi(-) andf_1(-).

Itis also straightforward to determine convex boundingctions forn = 1andn = —1,
in fact we have that

i =Ix,  f100 =1,

also represented in Figure 2.1, are convex functions®fksatisfying Assumption 2.5.

Example 2.10 We consider here a two-dimensional CDI system, that is, ttte & xc R2.
The dynamic system is given by (2.7) with set valued.fAafR? — .7 (R?) defined as

F(X)={zeR?: Z7Pz<x"x} = {zeR?: Z'Pz< ||x||3}. (2.14)
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where Pc R?*? is a positive definite matrix: P- PT > 0. For instance, take
1 05
P— ,
05 2
whose eigenvalues a@7929and2.2071
20

15+

10

X2
o
T

-15+

_20 1 1 1 1 1 J
-30 -20 -10 0 10 20 30

Figure 2.2 Image setsZ (x!), Z (x?) and.Z (x3), with .7 (-) defined 2.14.

We list below the expressions of the images of three valubs sfate vector, %= [1, 1],
x2 =[-2, 2]T and ¥ = [-3, —4|", through the set valued maf (-), that is the sets related
to the three elements of the state space are given by:

F(xY) ={zeR?:2"Pz< 2},
F(x%) ={zecR?:2'Pz< 8},
F(x3) ={zeR?:7'Pz< 25}.

The sets are depicted in Figure 2.2.

Clearly . (x!) is the image through# (-) of any point x in the state space such that
x"x = 2, which is a circle in the state space. Analogously the seth®fstate space for
which.Z (x) = .7 (x?) and.Z (x) = .7 (x3) are circles with radius,/8 and5, respectively.
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It is not easy to represent properly the graph of the set \élmap.%(-) for the two
dimensional CDI system, since it lies in the four dimensiepaceR*. If we fix the value
of %, assume for instance x= 0, the graph of the set valued map as a function,ofan be
depicted, just for sake of geometrical insight, see Figuge 2

Figure 2.3 Graph of set valued maf (-), defined in the (2.14), projected ap= 0.

Also the convex bounding functions can be computed. Giver &2 and a xc R?, we
have that

fn(x) =sup{nTz: Z'Pz<x"x} = sup{nTz: (LP> z<1} =

7
X
zeRR2 zeR2 P2

=/NTPn|xI5=/nTP1n ||Ix|2

convex with respect to® R? for everyn € R?, since the triangular inequalitija+ bf|2 <
|al|2+ ||b]|2 is satisfied for all ab € R". Functionfy (-) for particular value of =[-2, 0.7]"
is depicted in Figure 2.4.
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9%
SRS
S5
"'l;'lll
0,,'1,/0/

Figure 2.4 Convex bounding functior, (-) for n = [-2, 0.7]7 and.Z(-), defined in (2.15).

Since the triangular inequality is satisfied by every normdbfinition of norm, in fact),
any set valued map defined as

F(x) ={zeR?: Z'Pz< |X|5}. (2.16)

determines a CDI system, for everg R such that p> 1. In fact a derivation analogous to

(2.14) leads to 5
fn (%) = vnTP=1n [X[|p,

convex with respect to x.

In Figure 2.5 convex bounding function fgr= [—2, 0.7] and p= 1 and p= 4 are
represented.

Remark 2.11 CDI systems enclose a large class of nonlinear and uncesisgtems and can
be used to approximate many others, see Example 2.8, fanicest We will see, in the next
chapter, other modelling frameworks, more practice-otéeh which are particular cases of
CDI systems or can be easily approximated by them. Hencedae practical examples of
CDI systems, for instance saturated and Lur’'e systems, fee te those presented in the
following chapter.
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X2 -0 -10 X1 X2 -0 -10 X1

Figure 2.5 Convex bounding functionsfn(-) for n = [—2, 0.7]7 and.Z(-), defined in (2.16), for
p =1 (left) andp = 4 (right).

Assuming the existence of a convex bounding functﬁﬁ,)h) for every direction) € R"
can appear a quite restrictive condition, at least from tlaetral point of view. Looking
at the CDI system as a bounding system of a, more common neamlsystem, we have to
be able to determine such uncountably many (one forrpeyR") bounding functions to
construct the CDI system, and this can result a hard tasknergé Nevertheless, it can
be sufficient to defineﬂ,(-) only for a finite number of direction € R", provided they are
convex inx € R" and the sets bounded by suﬁl,‘(-) are compact (and convex) for every
x € R". From those finite number dvh(-), the convex bounding functions can be inferred
for any othem € R", as shown in the following.

Remark 2.12 First, notice that the set off € R" under analysis can be restricted to the
boundary of the unitary sphere, i.e., foc dBS where

oBY={neR": |n|2=1}. (2.17)
In fact, the support function is positively homogeneousrdéioone with respect tg, see
Appendix C, that is, for an@ C R"

@(an) =sugan)'z=asupn’z=ag(n),

zeQ 2cQ

foranya > 0. The case of) =0, thatisa = 0, can be obtained fixinjo(x) =0. Then
assumingf,, (-) defined for all elements @fB}, we have that functions

. 1 .
209 = @(1) = 1200 (=n ) = Inlaf |
nii2

for all x e R", where, clearly(mn) € 0B, are the convex bounding functions defined for
all n e R".
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The consequence is that, in many cases, the analysis castbeteg to thep such that
Inll2=1, i.e., ton € dBY. On the other hand it has to be pointed out that elemendB§f
are still uncountable many.

In the following we show that a finite number of convex boumdianctions can be suf-
ficient to determine the CDI system. First we prove that cei@inding functions defined
for n € E with E C 0B} are sufficient to determine a CDI system, provided that theed
set valued map” (-) has compact values. Clearly such subset of directibaan be finite.

Property 2.13 Consider the set valued map defined by
F(x)={zeR": nTz< fy(x),¥n €E} (2.19)

wheref, : R" — R, for all n € E C 9B}, are functions convex dR", with f,(0) = 0, such
that 7 (x) € ¢ (R") for every xe R" and condition (2.8) is satisfied for af] € E and all
xeR"

Then Assumption 2.5 holds f&f (-).

Proof: We have to prove that, given the convex bounding funct'rfms) forn e R"in
a subsekE C dBY, bounding functions can be defined also for evgrg R" such that7 ()
satisfies Assumption 2.5. We prove such condition fonall 0B), from Remark 2.12 this
determines bounding functions on the whole sfgate

The proof is constructive: we provide a method to deternﬁjﬁe) foranyn € dB), from
functionsfn(~) defined forn € E. We proceed defining function‘%(-) foranyf € 0B and
proving that such functions satisfy (2.8) and are convek wespect tok. This entails that
proposed functionsfﬁ () are bounding functions of Assumption 2.5.

Givenfj € dB] and ax € R", define

f () = sup{iTz: n"z< f3(x), vn € E}, (2.20)

zeRD

that is, the maximal value dj'z taken by an element of? (x), determined byﬂ,(x) for
n cE.

Condition (2.8) follows from definition of~,7 (-)and (2.19), in fact

f7(x) = sup{fiTz: nTz< fy(x), ¥vn €E} = sup f'z
ZeRN e 7 (X)

for everyf € 0BY.
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We have to prove thaf,~,(~) are convex irx for any fj € dBJ. Givenx!, x2 € R" and
A €0, 1], setsA.Z (xt) and(1— A).Z (x?) are given by

AZ (XY ={AzeR": ze ZF(x})} =
= {AzeR": nTz< fy(x}),vn €E} =
={y=AzeR": nT3y< f(x}),vn €E} =
= {yeR": nTy<Af,(x}),vn cE} =
= {zeR": nTz< A fy(xY),Vn €E}
and
(1-A)F(@) ={(1-A)ZER": z€ F(x2)} =
={zeR": nTz< (1-A)fh(6®),¥n € E}.

The support functions at vectgre E are given by

o f
O zpa)(N) =A T (X), . (2.21)
Pr-nz02)(N) = (L=A) fp(x),

foralln € E.
Now we can prove convexity df (-). We have that, by convexity df, (-) for all n € E,

f(AXE+ (1 2A)X®) = supepn{fiTz: NT2< fr(AXE+(1-A)x%), Vn € E} <
< sup{fiTz: nTz<AfH(x) +(1-2A)f (@), Vn € E} =
ZeR"

= sup{fi"z: NTz2< @ 7 (N) + P12, 702)(N); VN € EY,

ZeRN

(2.22)

where the last equality follows from (2.21). Since for alheexQ1, Q, C R" we have that
P10, (1) = ¢, () + ¢, (n), see Appendix C, then

O 7 1-1)202) () = @ 200 (N) + Qa_nyz02)(N), VN EE.

From this and (2.22), it follows that

f (At +(1=2A)3) < sup{ii’z: NT2< @ ziappa-n) 702 (M), VN EE}. (2.23)

zZeRn

Now, since sed.Z (x}) @ (1—A).Z (x?) is compact and convex, there A.Z (x}) & (1—
A)F(x?) if and only if nTZ < @ z)(1-1).702)(N), for all n € E. This is equivalent to
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say that there exist € A.7 (x!) andz? € (1— A).Z (x?) such thaz = zt + 22 if and only if
N'z2< @ zutyo(1-2) 702 (), forall n € E. Then from (2.23) we have

fiAX+ (1 -2 < sup {AT(Z+2): 2eAF (), 2 (1-1)F ()} =

2 Z2cRn
= sup{ATZ: Z2c A7)} + sup{fiTZ: Zec(1-2).7(x)} =
ZeRn 5 2cRN
= sup{ATZt: nTZA <A f,(xY), Vn € E}+
ZeRn 5
+ sup{fiTZ: nT2 < (1-A)fp(x), ¥n €E} =
Z2eRN

=A fﬁ(Xl)—l—(l—)\)fﬁ(Xz),

that is
f(AXE+ (1 =2)@) < AT () + (21— 2) f (), (2.24)

which means convexity ofﬁ(-) onx, for all fj € dBY. Then.# (-) satisfies Assumption 2.5,
with convex bounding functio, (x) = f, (x) for all n € R" andx € R". |

Since functionsfv,7 (-) determine the hyperplanes defining any.g€), for all x € R", if
the set valued map is characterized by a finite number of sopeanding functions, then
Z (x) are polytopes.

In the case of non-autonomous systems with set valued magrasnic function, an
analogous definition of CDI system can be given, recallireg hfunctionf (x, u) is said to
be convex if its epigraph is convex, see Remark B.9. In the odpresence of control input,
the discrete-time non-autonomous system is given by

X" € .Z(xu), (2.25)

wherex € R" is the stateu € R™ is the control input and? : R" x R™ — 7 (R") is a set
valued map.

A set valued map, for which the following assumption holdstedmine the CDI non-
autonomous system.

Assumption 2.14 Assume that the set valued mgp: R" x R™ — 7" (R") determining the
system dynamics (2.25) is such that, for everyR", functionf, : R" x R™ — R defined as

fo(x,u)= sup n'z (2.26)

ze.7 (X,u)

is convex orR" x R™ and f, (0,0) = 0.
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Considerations similar to those related to autonomous @&iems could be stated, with
proper adaptations, in the case of presence of input. A nésramous CDI systems is such
that, for anyx € R" andu € R™, and for everyn € R" we have

F(xu)={zeR": nTz< fp(xu),vn € R"},

with

fa(xu)=sup N'z=Qzyyn).

ze.7 (X,u)

convex, in(x,u) € R™M. As for the autonomous CDI systems, convex bounding funstio
fh(-,-) can be viewed as support functions of sét$x, u), depending on state and input.
Furthermore, also in this case, a finite number of boundimgtfans can be employed to
determine a non-autonomous CDI system, the set valued dgrfanction of which has
polytopic values.

The fact that Assumption 2.5 (Assumption 2.14 for non-aatoaus systems) holds for
the dynamic function of a system allows us to exploit feagurdnerited by properties of
convex functions and convex sets. Some useful propertelsséed below.

e Set relations, such as set inclusion, involving the image sfatex through the set
valued map, i.e..Z (x), for anyx € R", can often be posed as a set of convex con-
straints. The condition of set inclusion of the successdhefstate is often required
to be checked in order to ensure invariance and set-thelatgdeproperties. It will be
made clearer in the following that, then, for systems as .in)(@nd under Assumption
2.5, condition of inclusion of the successor state can b@gag through a set of con-
vex constraints, which can yield to convex problems, effitijesolvable, see (Ben-Tal
and Nemirovski, 2001; Boyd and Vandenberghe, 2004).

e Convexity related properties of the dynamic set valuedtiongin particular convexity
of the directional bounding functioné,(-), for all n € R", permits to infer features
shared by all the elements of a set by means of condition$vimgponly a subset of
elements, possibly finite.

e Assuming that the effect of the parametric uncertainty ignated by convex functions
is not very restrictive, therefore the family of dynamictgyss under analysis encloses
a large class of functions. Many methods to approximateineat systems lead to
systems with a structure that can be reduced to CDI systesragfaned in (2.7), see
Example 2.8 for instance.

This means that, although a generic system defined by eittheteaministic function
f(-) or a set valued functioR (-), is not in form of CDI systems, it is often possible to
determine a CDI system with dynamic functigfy(-) for which Assumption 2.5 holds
and such that

F(x) C Z#(x), or f(x) € .7 (x),
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for all x e R" or more shortly, such thad (-) or f(-) are overbounded by#(-), as
defined in Remark 2.7. Therefore, any invariant set for thr@pmating CDI system
is also an invariant set for the original system. More prgjsonce an invariant set
Q C R"is obtained for a CDI system, it is also an invariant for arscdite-time system
whose dynamic function satisfies conditibrc .# or f € S, see Remark 2.7.

Intuitively, then, the analysis of CDI systems should beautjitt to as the study of cha-
racteristics and properties of a family of dynamic systemuslinear and/or affected
by parametric uncertainty.

¢ Inthe case that the system presents a form of CDI systemga3)nwith Assumption
2.5, the results presented are quite strong: the maximatiamt set, for instance, can
be well approximated. It is worth recalling that computataf the maximal (robust)
invariant set can be an hard task also for linear systemagidinear systems very few
results have been provided in literature. Similar consitiens are valid, evidently, for
non-autonomous CDI systems (2.25) supposing that AssomptiLl4 holds.

2.2.1 Uncertain CDI systems

Definitions and assumptions in the context of CDI systeme lu@en given for the determi-
nistic case, or, if we regard the set valued dynamic map asyaowapresenting the effect
of uncertainty, for the parametric uncertainty framewad\k. additive uncertainty have been
considered so far. It is, anyway, direct to extend the caraiibns on CDI system to the
case of additive uncertainty.

Consider the following discrete-time autonomous systdectéd by additive uncertainty
X" e.Z (X)W, (2.27)

wherex € R" is the statex™ is the successow is the additive uncertainty bounding set and
Z(-) is a set valued map dR".

If Assumption 2.5 holds fo# (), then the system is denoted as an uncertain CDI system.

Remark 2.15 Although the fact that functio# (-) is set valued rather than single valued
can be viewed as the representation of parametric uncdstawe will refer to CDI systems
(2.27) as uncertain CDI systems, to distinguish them fronh &Btems of the form (2.7).

Analogously, the discrete-time non-autonomous systeetttl by additive uncertainty
X" € .Z(xu) oW, (2.28)

whereu € RMis the input, is denoted as uncertain non-autonomous CDésys Assump-
tion 2.14 holds for the set valued ma&g(-, -).
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2.3 Conclusions

In this chapter the key modelling framework, i.e., CDI sys$e used in the following has
been presented. CDI systems are systems whose dynamimfuisca set valued map rather
than a function from the state space to the state space. Thalsed map is, hence, defined
on the state space, but its values are convex, compact sufsleé space and are determined
by convex bounding functions. The assumption of convexityaunding functions will be
useful in next chapters to determine, for a given set, gépeoperties based on boundary
type conditions.



Chapter 3

Computation of CDI systems

As claimed in the previous chapter, CDI systems represenbdsic framework which will

permit to develop the main results of this work. We prove is tthapter that mild assump-
tions are required to be fulfilled by a dynamic system to be 4 @iz and that in many
common cases it is easy to obtain a CDI approximation of aineat system.

In this chapter some methods to obtain a CDI representati®nyell as to compute a
CDI approximation, of a nonlinear and/or uncertain systeen@esented. The classes of
nonlinear and uncertain systems treated in this chaptdiséed below.

e Concave-Convex Difference Inclusions (CCDI) systemssThass of systems is com-
posed by particular cases of CDI systems. CCDI systems aaderized by set
valued maps determined by a finite number of bounding funstia particular byn
pairs of concave and convex functions.

e Lur'e systems. They are particular nonlinear systems, lyisieidied in classical lit-
erature, mainly in continuous-time. They are linear systentlosed-loop with static
nonlinear feedbacks which satisfy a sector condition. Heeeconsider a particular
case of discrete-time Lur’e systems. We show that, for tlaisscof nonlinear systems,
a CDI approximation is available.

e Generalized saturated systems. They are systems compgpsadirear system in
closed-loop with particular nonlinear functions, the sdled generalized saturated
functions. Generalized saturated functions are chaiaeteby convex and concave
bounding functions and it will be showed that a CDI systemribganding a general
saturated one can be determined directly from such bouridimagions.

¢ Difference-of-convex (DC) systems. They are charactdrizg dynamic functions
which can be expressed as the difference of two convex fumetiDC systems permit

81
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to model a very wide class of nonlinear systems, since madssimptions on the dy-
namic function guarantee the existence of a DC representatiat least an arbitrarily
close approximation. The fact that DC functions are eaglyan and lower bounded
by concave and convex functions makes direct the computatia CDI system over-
bounding the DC one.

e Linear parametric uncertain systems. They are charaeteby a dynamic function
which belongs, in some sense, to a family of linear (or affifnegtions. Depending
on the assumptions on the knowledge of the current reaizati the dynamic func-
tion, different frameworks raise. It will be shown that spygbry popular, modelling
framework is composed by a subclass of CDI systems, in péatithose systems
whose convex bounding functions are linear or affine (henogex).

3.1 Concave-Convex Difference Inclusions: CCDI systems

An interesting subclass of CDI dynamic systems is the fawfilyystems of the form
xt € .Z(x), (3.1)

and with map% (-) elementwise bounded by functions which are concave andegomith
respect to the state We consider in what follows systems characterized by skiteda
maps such that, for anye Ny, the projection of set (x) over thej-th axis is bounded by
functionsfj(-) andfj(-), convex and concave respectively, an() = f;(0) = 0.

Assumption 3.1 Assume that the set valued mgp: R" — _# (R") determining the system
dynamics (3.1) is given by

F(x)={zeR": fj(x) <z < fj(x), V] € Nn}, (3.2)

where functignsﬂ- :R" — R and fj : R" — R are convex and concave @, respectively,
and f;(0) = f;(0) =0, for every je Np.

We will refer to Concave-Convex Difference Inclusions (OLBystems, when treating
systems with dynamic function satisfying Assumption 3.1C@DI system is then characte-
rized by convex and concave bounding functions, a pair fgrdamension of the state space,
then sets# (x) C R" are parallelograms.

In terms of CDI representation for CCDI systems, the bougdiimctions of.% (-) are
defined only for a finite subset gf € R", that is for vector®! and—e!, with j € N;,, where
el is the vector with all zeros but a 1 as th¢h entry. A CDI representation can be obtained
for any CCDI system, see Properties 3.3 and 3.5 below.
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The set valued functiong (-) with values inR" satisfying Assumption 3.1 form a subset
of those set valued functions fulfilling Assumption 2.5. Téfere, since this means that
a CCDI system is also a CDI one, theory developed for CDI systis also valid in this
framework.

The following example shows that many generic convex andaan functions can be
employed to define the bounding functions for a CCDI system,ristance exponential,
absolute value, quadratic functions.

Example 3.2 Consider the two dimensional CCDI system given by (3.1) dytiamic set
valued map given by (3.2) with

~

f1(X) =% —14€%, f1(X) = X1+ Xe;

. X 3.3
fo(x) =100 + |xa|),  fa(x) = 1— i1, (33)

The convex and concave bounding functions ferljand j= 2 are depicted in Figure 3.1.

3 2 X1 X2 -1 X1

Figure 3.1: Convex and concave bounding functiofs:) and f1(-) (left) and f,(-) and f,() (right),
defined in (3.3).

For any xe R? the image through set valued ma(-) is a box, whose maximal and
minimal values with respect to both directions are deteadiby (3.3). A projection of the
graph of.Z (-) onR3 is represented in Figure 3.2 (recall that the graph of thevsdtied map
lies onR%).
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Figure 3.2 Graph of set valued maf (-), defined by (3.3), projected ogq = 0.

It is proved below that CCDI systems are also CDI systems,ishéhat it is possible to
obtain convex bounding functions fulfilling Assumption Z:6m a CCDI representation, by
imposing a proper convex constraint for everg R".

Property 3.3 For any set valued may (-) defined oriR" for which Assumption 3.1 holds,
also Assumption 2.5 holds with convex bounding functiovegby

%"IJ '71f (%), (3.4)

forallxe R"andwherek =k, (n)={jeNy: nj>0}andk =k_-(n)={jeNn:n; <
0}.

Proof: Although the result is direct consequence of Property Zakfinstructive proof
is given below.

Consider the set valued map(-) for which Assumption 3.1 is valid. First, notice that
the convex bounding functiorf () for n =e! € R", andn = —e! e R", for all j € N,,, are
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given by

—h
(]

0 = (), -
fveJ()_ () (59

for all x e R". Clearly f i(-) andf_(-) in (3.5) are convex, for every € N,,. For these
particularn € R", condition

v

fo(x) = sup n'z

2.7 (X)
characterizing7 (x), is satisfied, in fact € .7 (x) implieszj < ﬂ(x), with j € Ny, and for
n = el we have

~

n'z=(e)Tz=z < fj(x) = fs(x).

Similarly, z; > ﬂ- (x), for everyj € Ny, and then fom = —el we have
n'z=(-€)'z= -z < —fj(x) = f_ai(x),

forall j € Nj.

Hence, so far we have proved that convex and concave fusassumed in Assumption
3.1 determine bounding functloh,( ) as in Assumption 2.5 for particular vectaqs We
have to demonstrate that bounding functldﬁs) can be defined for alh € R" in such a
way that Assumption 2.5 holds.

For alln € R" we have that the bounding convex functions are obtained as
n ~
X) = Z |'7j|f{sgn(nj)ei}(x)7 (3.6)
j=1

where sgr(-) is the sign operator. Convexity cﬁ,( ) stems from convexity of functions
fyi(-) andf 4 (-) defined in (3.5), fofj € Ny, and the fact that the sum of convex functions
is still convex (notice that, trivially,n;| > 0 for all j € Ny,). Inequality characterizing” (x)

as in (2.8) is satisfied for every € R", in fact

n n
= ,Z nizj = ,Z Injlsan(n;j)zj =

v

n v
|m|<sgn(m)e‘) jglmjlf{sgnm,-)ej}(X) = fn (%),

HM::

for all x e R" and everyz € .#(x).

_ Now, we prove the equivalence between definitions (3.4) 8r&j.(In fact, recalling that
fj(x) = fei (x) and fj(x) = —f_gi(X), for j € Ny, it follows that

Njfei(x) = n; fj (%), if n; >0,

. 'F . H X) = - ~
M3l Tgsgn(n;) ey (%) { -njf_e(X) =njfj(x), otherwise
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for everyj € Ny and every) € R", which means that the terms of the summatories defining
fh(x) in (3.4) and (3.6) are the same.

Thus, we proved that for everyc R", if z€ .7 (x) thennTz < ﬂ, (x), for everyn € R",
with f,,(-) defined in (3.4). This geometrically means that the 8€x) is contained in the
set determined through convex bounding functions (3.4)alicx € R". It can be proved that
such sets are the same, simply considering that the camtstralative to convex and concave
functions for the CCDI systems are also present in the CDesgmtation, from (3.5).

It remains to be proved that the convex bounding functiﬁvms) are tight. In other words,
we have to prove that, for every € R" and every € R", there exists a poir#(i},x) = Z ¢
Z (X) such than) TZ= f,(x). Givenx € R" andn € R", the point defined by

i {f}(x) if nj >0,
]:

Z] ~
fi(x)  otherwise

for j € Ny, is an element of7 (x) and such that TZ = an (x), from (3.4). u

Hence, the link between a CCDI system and the related CDésepitation is direct. For
any given CCDI system, the convex bounding functions deteng the CDI representation
are explicitly expressed in (3.4).

As for CDI systems, the definition of CCDI function can be exted to non-autonomous
systems. In presence of an input control, in practice, thebmg functions depend on both
the statex € R" and the inputu € R™ and are convex and concave in the Cartesian product
of the spaces of andu, as stated below.

Assumption 3.4 Assume that the set valued m&p: R" x R™ — 7 (R") determining the
system dynamics
X" € .Z(xu), (3.7)
is given by A 5
F(x,u)={zeR": fj(x,u) <z < fj(x,u),Vj € Np}, (3.8)
where functlonsfJ R"xR™— R andfj : R" x R™— R are convex and concave & x R™,
respectively, and,(O 0) = f; i(0,0) =0, for every je Ny,

Also for the case of a non-autonomous CCDI system, the oslatith its CDI represen-
tation can be expressed defining the convex bounding fumtio

Property 3.5 For any set valued mag (-, -) defined orR" x R™ for which Assumption 3.4
holds, also Assumption 2.14 holds with convex boundingifumegiven by

%m xu+ n; fi(xu), (3.9)
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forall (x,u) e R"xRMandwherek =k (n)={jeNy:nj>0}andk =k_(n)={j e
Np: nj <0}.

Similarly to the case of CDI systems, also CCDI systems canitathe presence of
additive uncertainty. Uncertain CCDI systems are given yayaghics (2.27) with the set
valued maps% (-) fulfilling Assumption 3.1, for the autonomous case, and bpaiyics
(2.28) with function (-, -) satisfying Assumption 3.4 for the non-autonomous one.

3.1.1 CCDI subsystems

Now, suppose that the dynamic function defining a CCDI sysggiven by a linear part
and the linear combination of a function, denotéit R" — JZ(R™), with m < n, such
that Assumption 3.1 is satisfied lg(-). In some cases it can be beneficial to determine a
proper linear mapping that permits to confine the nonlingaffects in a subspace of lower
dimension than the dimension of the whole state space. Tlbhissaone to consider, in the
mapped space, the subspace relative to the linear dynanddaha subspace relative to the
nonlinear dynamics. The procedure will be illustrated tetdth an example, and it can be
applied also to CDI subsystems.

Suppose that the nonlinear system is a discrete-time systdm form

X" € AX® B¢ (), (3.10)

wherex € R" is the state ané € R™" andB € R™™, with m < n. Assume also that the
columns ofB are linearly independent. Functign: R" — ¢ (R™) is a set valued map such
that Assumption 3.1 is satisfied Igy(-). Recall that, from Property 3.3, such set valued map
satisfies also Assumption 2.5, then the system is a CDI sytstem

By assumption, there exisfs: R" — R™ convex onR" and¢ : R" — R™ concave oRR",
with ¢ (0) = ¢ (0) = 0 and such that, for everyc R" we have that
$j(x) <zj < j(x), Vj € Nm, (3.11)
forall ze ¢(x).
Define asB, the matrix inR™ (™™ whosen — m columns are linearly independent and
normal to the subspace generated by columr dfhen,B is such that

BIB - On7m7m.

Define, moreover the left-side inverse of matBixthat is

B=(B"B) 1B,
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that exists since, from assumption of linearly independefaolumns oB, matrixBTB is
nonsingular, hence invertible. CleaByc R™" is such that

BB=(B'B) 1B"B=Ipn,

Notice that the subspace spanned by columrsisthe same subspace spanned by those
of BT, being the latter a linear transformation®f Therefore, also the columns Bf are
linearly independent and orthogonal to thos®oefand then matrix defined

é nxn
1

is invertible and such that
BB |
TB=| | = mo. (3.12)
BJ_B 0n—m,m

Thus, matrixXT is a square nonsingular matrix and it determines the limaasformation
IT : R" — R" defined as$r (x) = Txand its inversé; 1(y) = T~y. Define the state variable in
the mapped spage= T x, thenx = T ~1y, which leads to the dynamic system in the mapped
space

yr=Txt € TAx+TBp(X) = TAT ly4+TBp(Tty) =

| BAT 1 T1
STAT Yy | ™M Ty = YT
n—m, m BLAT_ y
from (3.12). Therefore, the obtained system is
¢1(T1y)
T—l
yrel(y)=TAT ly+ P 0 Y) (3.13)

0

The set valued functiog(-) is such that Assumption 3.1 holds and the concave and con-
vex bounding functions can be recovered from the concaveeandgex functions bounding
¢(-),i.e., from@;(-) andd;(-), for j € Ny. In fact, for everyj € N, and everyy € R",

A

Gily) <z <jly), vzel(y), (3.14)
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(3.15)
(3.16)
(3.17)

-) is linear.
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where, forj € Ny, (i.e., the firstm elements of functiong(-)), we have
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TAT y+ (T ),

i(y)
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while, for j € Ny 1 n, We have

which means that, for the last- m components, functiod
Example 3.6 Consider the following nonlinear system

is a nonlinear function defined dR? as

wherey : R? - R

W(X) = (x4 +5) sin(xq + ),

X1

depicted in Figure 3.3.

Figure 3.3 Functiony(-) defined in (3.17).
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The set valued mag(-) defined through the convex and concave functions
¢(X> - (X%-FX%), ¢(X> - _(X%_i_x%)v
satisfies Assumption 3.1 and overbounds functigr), that is ) € Sy, see (2.12). Then
system (3.10) witkp(-) defined above overbounds the nonlinear system. Altoughothie n

nearity affects both states of the systems, it can be confiredubspace of dimension one.
Defining

BJ_ = ’ T= ) T - ) T y=
1 -1 1 1 05

it follows that

y1 — 0.5y
y1+0.5y, |

(T~1y) = —(y1—0.5y2)® — (y1+0.5y2)? = —2y§ — 0.5y3,
(T~1y) = (y1— 0.5y2)? + (y1+ 0.5y2)* = 2y5 + 0.5y3.

We have a CCDI system in the mapped state variabielk of the form (3.13), given by

y; € {a(y) = 0.8y1+0.05y>+ ¢ (T y),
Y5 = {a(y) = —0.4y; + 0.9y5.

The graphs of concave and convex bounding func‘rzf@héf andfl(-) and of linear func-
tion {»(-) are represented in Figure 3.4.
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Figure 3.4 Graphs of functionsfl(-) andfl(-) (left) and{z(+) (right).
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3.2 Lur'e systems

Lur'e problem, mainly in the continuous-time case, is aglzd problem in control theory
and nonlinear systems theory, see (Vidyasagar, 1993). The problem, whose name is
due to Russian scientist A.l. Lur’e, involves a class of moedr systems composed by a
linear system in closed-loop with static nonlinearities.

The importance of Lur'e systems in the context of controbtigestems from the fact
that different control schemes appearing in practical iappbns can be formulated using
the Lur'e systems structure (Wada, Ikeda, Ohta and Siljg@81Slotine and Li, 1991; Chu,
Huang and Wang, 2001). The particular case of saturatiohneamity is widely treated in
literature, see for example (da Silva and Tarbouriech, 001

The stability analysis of Lur'e systems can be performed,efcample, by means of
Popov and circle criteria, see (Weissenberger, 1968; \diayar, 1993; Khalil, 2002). Parti-
cular approaches are available for Lur’e systems with pieseaffine nonlinearities. In this
case, the domain of attraction can be estimated by meansefewse quadratic Lyapunov
function (Johansson and Rantzer, 1998). Also, a noveltresdeal with this class of Lur'e
systems can be found in (Hu, Huang and Lin, 2004), where a&pge to compute invariant
ellipsoids is presented.

In particular, assume that the continuous-time system

{ X(t)
y(t)

is controlled in closed-loop through a static nonlinearction of the output

u(t) = —¢(y(t)),

with x € R" andu, y € R™ with m < n. The only assumption on the nonlinear function is
thatg (0) = 0 and its values at < R™ lie in a sector determined by two scalard € R with
a < bas in the following

[#(y) —ay[oy—¢(y)] >0, VyeR™ (3.18)
For the case of : R — R, condition (3.18) is satisfied if

ay<¢(y)<by ify>0,
by<¢(y) <ay otherwise

AX(t) +Bu(t),
Cx(t),

with a < b, for everyy € R.

The classical Lur'e problem concerns the conditions undeckvthe system is globally
uniformly asymptotically convergent to the origin, the aloge stability problem.
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Thus, for the classical approach to Lur’e problem (i.e.,std@ring condition (3.18)) we
might consider nonlinear functions whose graph is conthinea sector bounded by linear
functions. In our case, sectors determined by convex fanstwill be considered and it will
be shown that, in many case, this will permit to reduce theseorativeness.

Remark 3.7 The study of Lur'e system, as defined above, involves irhplibie analysis
of a family of dynamic systems characterized by a commorbouading system. Once the
sector on the spac®? containing¢(y) for all y € R is defined, a minimal overbounding
system is determined. Every Lur'e system whose nonlinedb&ek function is contained in
the sector, shares the stability results and any invariattfer the overbounding system is
invariant also for any system of the family.

In this thesis we consider the discrete-time Lur’e system

{ Xer1 =A% —Bo(yk) (3.19)
Yo =FX

wherex, € R" represents the state vector apd= Fx € R the output of the system and the
nonlinear feedback functiog(-) satisfies the following conditions.

Assumption 3.8 Assume that the nonlinear functign: R — R determining the system dy-
namics (3.19) is such that, for everygyR, the following conditions hold:

() ¢(y) is piecewise affine.
(i) ¢(y) is a continuous odd function.

(iii) ¢(y) is concave iR,..

Since the functiorp(-) is odd, we have thap (—y) = —¢(y) and then it is convex if
restricted toR_. The following property characterizes all the functioh§) that satisfy
Assumption 3.8.

Property 3.9 (Hu et al., 2004) The piecewise affine functifpty) is concave inR . if and
only if it can be expressed as

Koy ify e [0,by)

kiy+c1 ify € [bg,by)

¢(y) = , Vy=0, (3.20)

| kny+on ify € [by, o)
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where the scalarsjkfori € Nio, N bi, fori € Ny and g, for i € Ny satisfy
O<by<by<...<by,

ko>k1>k2>...>kN,

o _ | (o—koby, if i =1,
| gt (ki—k)bi, if 2<i<N.

r

/ sk c -7

) koy ,/ fyta .
7/

/
/ L,/ - o(y)
/
C3 / -

C2 /

C1

by by bg Y

Figure 3.5 An example of a piecewise affine functigri-) concave inR .

See Figure 3.5 for an example of piecewise affine concavdiamin R, (N = 3). Itis
easy to determine the convex bounding functions defineRl for a functiong (-) satisfying
Assumption 3.8. First we define

koy, ify>—Dby,

_ (3.21)
¢(y), otherwise

¢ (y) = max{koy,d(y)} = {

which is, then, linear on the sgt [—bj, ) and convex oty € (—. —by), then convex on
R. Define also

k0y7 if y < b17

_ (3.22)
#(y), otherwise

¢ (y) = min{koy, ¢ (y)} = {
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concave orR, for analogy. From this we have that

$(y) < o(y) < (),

for everyy € R.

Hence, in the Lur'e problem under analysis, we considerinealtities for which the
sector is determined by concave and convex functions, matia® only by linear ones as
for the classical approach. In some common cases, this fstomieduce the conservatism
introduced by the overbounding process, as shown in thewoilly example.

Example 3.10 Consider a Lur'e system whose static nonlinearity is givgn(320) with
N=2k=2k=1k=05c=1c=2 b=1and b =2 Itcan be seen, by
geometric inspection, that considering the classical euapproach, the sector containing
¢ (-) is delimited by function8y and0.5y, while, for our approach, the sector is determined
by 2y and¢(y), as shown in Figure 3.6.

2y

< o

Figure 3.6. Bonding sectors for functiot (-).

An immediate way of determining the CDI system bounding tiseréte-time Lur'e
system (3.19), that is, the set valued niap ) such thalAx— B¢ (Fx) C .#(x) for all x e R",
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is by defining
v n AX— n B¢ F if n B<O
{ X ( X>7 ! -7 (3.23)

fn(X) =
() nTAx—nTB@(Fx), if nTB>0,

for all n € R". Functionsfn(-) defined above are convex &' and the CDI system cha-
racterized by the set valued mag(-) for which Assumption 2.5 holds witlﬁn(~) given by
(3.23), overbounds the Lure system. In fact we have tHax—nTB¢ (Fx) < f,(x) for all

n € R"andx € R".

Moreover, the nonlinearity can be confined in a subspaceroédsion one through a
proper linear transformation, as illustrated in SectiohB.and the system in the mapped
space can be bounded by a CCDI system, for which only the firemic function is a set
valued map.

Remark 3.11 Note the analogies between classical Lur'e systems and ¢féms. Con-

sider in fact the minimal CDI system overbounding a Lur'delys that is system (3.1) with
Z (-) satisfying Assumption 2.5 and bounding functions (3.23hiléAthe bounding func-

tions determining the sector for the classical Lur’e prablare linear, for CDI systems the
region is defined through convex functions. ConceptualyCDI systems we exploit pro-
perties of convex functions and convex sets, rather thanresof linearity, as for classical

Lur'e systems.

Note that the results presented can be extended to systehesform
Xer1 = AxXc— B (Y,

where¢(-) is an odd piecewise affine function convexin (it suffices to defingp(-) =
—¢(-),A=AandB = —B).

3.3 Generalized saturated systems

We present here a family of nonlinear systems enclosing a widge of common static non-
linearities, such as saturation, dead-zone, hysterdsisAay generalized saturated system
is easily overbounded by a CDI system, as illustrated below.

First the definition of generalized saturated functionsiiduced. The dynamic systems
composed by one of these functions in closed-loop with alimystem are referred to as
generalized saturated systems and determine a class ohemnsystems which encloses
many common and popular nonlinear models.
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< o

Figure 3.7. Example of generalized saturated function.

We recall here the definition of generalized saturated fanst introduced in (Tarbouriech,
QueinnecAlamo, Fiacchini and Camacho, 2009).

Definition 3.12 The scalar functionp : R x R — R is said to be a generalized saturated
function with saturation levelgye R, yo > 0, dead-zones € R" , o > 0, and linear slope
HER, u>0,if

“T(=y) <o,k <T(y), WeR,VkeN, (3.24)

whererl (y) = max{u(y+ o), —Yyo} and ke N is the discrete-time instant.

Notice that a generalized saturated function can be timging, while functionl (-) is
assumed time-invariant. We provided here the definitiortherscalar case of generalized
saturated functions. The vectorial definition can also atedt see (Tarbouriech et al., 2009).
We considered that the scalar case is expressive enougtradune an example related to
practical control problems.

In Figure 3.7, the geometrical concept of generalized asgdrfunction is illustrated. A
generalized saturated function is a functionyaf R, and possibly of tim& € N, whose
graph is contained in the region B enclosed between the graphldfy) and—I (—y).
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Some examples of common static nonlinear functions whiohbearepresented as gene-
ralized saturated functions are saturation plus dead-andehysteresis, depicted in Figure
3.8. It is clear that also saturation, one of the most comnuotimearity affecting real sys-
tems, is a particular case of generalized saturated furgtio

Figure 3.8 Examples: saturation plus dead-zotedt] and hysteresigight).

Hence, given the generalized saturated funcfi¢)-), a dynamic system of the form
X1 = Ax+ B (FX, K), (3.25)

whereF € RN s called generalized saturated system.

Analogously to the case of Lur'e systems, a CDI system owerimg a generalized
saturated one can be determined. In fact, notice that from

F(y) =maxqu(y+0o), —yo} = max{uy-+Ho, —yo— HO + U0} =
= max{ly, —Yo— 1O} + U0,
we have that (3.24) is equivalent to
—TO(=y) — o < $(y,k) <T°(y) + o,
with
r(y) = max{uy, —yo— Ho}.

For everyn € R" and every € R", we can define the following convex functions

£ () = nTAx+nTBr(Fx) = nTAx+n"Br°(Fx) + n"Buo, if TB>0,
M) nTAx—nTBI(—Fx) = nTAx—nTBr(—Fx) — nTBuo, if nTB<O0,
(3.26)
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which are such thayTAx+ nTB¢ (Fx,k) < f,(x) for all n € R" andx € R, but do not
satisfy conditionf, (0) = 0. Then they do not fulfill Assumption 2.5. As a matter of fawg,
have to define an uncertain CDI system, rather than a CDImsys$tebound the generalized
saturated one.

Define the convex bounding functions as

. TA TBrO(F if NTB>0
{n x+nTBrO(Fx), if NTB>0, 3.27)

fh(X) =
() nTAx—nTBro(—Fx), if nTB<O0,

for all n € R" and allx € R". The set valued may () with convex bounding functions
given by (3.27) satisfies Assumption 2.5. We prove that tleettain CDI system whose set
valued map is7# () @ W with convex bounding functions (3.27) and

W={w=Bv: —uo <v<uo},

overbounds the generalized saturated system. In factyéoy g € R", we have

B if nTB>
(RN(U)ZSUIOWTWZ sup nTBv:{'7 Ho, it n'B>0,

wew —po<v<uo

—nTBuo, if nTB<O,
and then, for every) € R" andx € R" we have

Prxow(n) = sup n'z= sup n'z+ supn’w= f;(x)+ supnTw= f;(x),
ze F (X)W ze % (X) weW wew
wheref, (-) are defined in (3.26) anﬂ7(~) in (3.27). Thus, the uncertain CDI system over-
bounds the generalized saturated one.

3.4 Difference-of-convex (DC) systems

In the previous section we considered as a possible mogé&limework for nonlinear and/or
uncertain systems a class of systems characterized bylsetivamaps bounded by convex
functions. The particular structure of CDI systems permaiesxploit properties of convexity.

We introduce here the concept of DC functions, which allow$aumodel a very wide
family of nonlinear functions and then can be employed to ehatany nonlinear systems.
A function is DC if it can be expressed as the difference of teovex functions, the formal
definition of DC function follows, see (Adjiman and Flouda896; Horst and Thoai, 1999;
Carrizosa, 2001).

Definition 3.13 A functiona : RP — R defined on a convex setODRP is a DC function if
there exist two convex functiofisy : RP — R defined on D and such thetx) = 3(x) — y(x)
forall x € D.
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From continuity of convex functions on any open convex seltained in its effective
domain, see Theorem (B.10), it follows that, given func$ifii-) andy(-) such thatr (x) =
B(X) — y(x), with a(-) DC function defined oI, open, convex and such thatC domf N
domy, thena(-) is continuous oID.

Remark 3.14 Note that, unlike the case of convex functions which can bemsd defined
on the whole spacRP considering its extension, see Remark B.6, itis not triciagletermine
an extension for DC functions.

In fact, assume for example that both functi@s) and y(-) defininga(-), as in Defini-
tion 3.13, are such that dofh= domy = D. The extension of any convex function outside of
its effective domain ig-c0 and, if in this case we employed the same criterion to exgdnd
andy(-), functiona (-) would not be defined outside D.

For this reason, when dealing with DC functions we exprestslie that they are defined
on a convex set D, no extension is considered.

In the following we refer to a functioa : RP — RY9 as a DC function ifa;(-) is a DC
function for all j € Ng. Recall that, similarly, a functiofs : RP — R%is denominated convex
if Bj(-) is convex for allj € Ng. Moreover, we claim that a functioa : RP x RP« — R
is a DC function with respect to variablescs D C R andu € E C RP1, meaning that
a(x,u) = B(x,u) — y(x,u) wherea(-,-) andf(-,-) are convex with respect {x,u) € D x E.

3.4.1 Brief overview on DC functions

We provide here some important properties of DC functionsstAt is worth mentioning
that the set of DC functions defined on a compact convex det & dense in the set of con-
tinuous functions of this set. Therefore, every functiofirdesl on a compact convex set can
be approximated by a DC function with any desired precisMoreover, given a twice diffe-
rentiable function, i.e., &2-function, it is always possible to obtain a DC represeatatin

effect, suppose thdpc: D — R satisfiesad—xz2 foc(x) > —2al, for all x € D with a> 0. Recall

now that a&?-function is convex irD if and only if d"—xzz fpc(x) > 0, for all x € D. Bearing
this in mind, it is easy to see thépc(X) = ge(X) — he(X), with ge(X) = fpc(x) + ax” x and
he(x) = ax' x constitutes a DC representationfet:(x). A systematic method to obtain (by
means of interval arithmetic) an appropriate valua @ a given%’?-function can be found
in (Adjiman and Floudas, 1996).

The following example illustrates this idea. Consider thedtion fpc(x) = x3+x2 41
in the domairx € [—1,1]. Sinced"—xz2 fpc(X) = 6x+ 2, it results that(;y—xz2 foc(x) > —4, for all
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x € [~1,1]. Thus, fpc(X) +2x? satisfiesg—;(ch(x) 42x%) > 0 for all x € [-1,1]. Defining
ge(X) = fpc(X) + 2x2 andhe(x) = 2x2, the equivalent functioripc(X) = ge(X) — he(X) is a
DC function inx € [—1,1].

Some properties of DC functions, formally presented andguan (Horst and Thoali,
1999), are listed below.

Property 3.15 DC functions satisfy the following properties:

() Every function f: R" — R whose second partial derivatives are continuous every-
where is DC.

(i) Let D be a compact convex subset®f. Then, every continuous function on D is
the limit of a sequence of DC functions which converges umifoon D; i.e., for any
continuous function tD — R and for anye > 0, there exists a DC function:D — R
such thatc(x) — f(x)| < &, forall x € D.

(iii) Let f : R" — R be a DC function and let gR — R be convex. Then, the composite
function(go f)(x) = g(f(x)) is DC.

Operations between functions that preserve the DC natrgsepted in (Horst and Thoai,
1999), are summarized in the following property. Proofshef property (except for part (ii)
that is proved in (Horst and Thoai, 1999)) are given here. @Weho point out that notation
f1(-) in the following property denotes thjeth element of an ordered set of functions, rather
than the power of such function. We employ, in this propemtyation(f(x))! to express
j-th power of valuef (x).

Property 3.16 Let f: D — R and fl : D — R, for j € Ny, be DC functions defined on
D C R" convex. Then the following functions are also DC:

m .
(i) Any affine combination of DC functions, i.e. for ahye R™, function 3 A;f!(x).
=1

(i) The pointwise maximum and minimum of DC functionax;cy,,{ f1(X) } andminjey,, { (%)}

(iii) The absolute valuéf(x)

, functionsmax{0, f(x)} andmin{0, f(x)}.

m .
(iv) The product of DC functions] f!(x).
j=1

Proof:
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(i) Recall that, ifg(-) is convex, then functiomg(-) is convex fora > 0 and concave
for a < 0 and the fact that the sum of convex functions is convex whiéesum of
concave functions is concave. For ahy R™, denote withk_ = k_(A) the set of
indexesj € Ny, such thatj; < 0 and withk,. =k, (A) the set of indexe$ € Ny such
thatA; > 0. Thatisk (A) ={j € Nm: Aj <0} andk,(A) ={j € Ny: A; > 0}. Then,
denotlng withg! (-) andhl (-) the convex functions such thét(x) = g/ ( ) hi(x), for
j € Nm, we have

ngfW) g g'(x) — gA

:<,Z Aigh (%) )\h' ( Ahl(x) - 5 )\jgj(x)>,
jeky ]€k+ jek_

which is the difference of two convex functions, since thenein brackets are both
convex.

(i) This proof can be found in (Horst and Thoai, 1999).

(iii) Functions in case (iii) are subcases of (ii). In fadt(x)| = max{ f (x), —f(x)}, then a
DC function. Denotingf%(x) = 0, which is trivially a DC function, ma$0, f(x)} =
max{ f9(x), f(x)} is the pointwise maximum of two DC functions and fdnf (x)} =
min{ f9(x), f(x)} is the pointwise minimum of two DC functions.

(iv) The proofis based on last point of Property 3.15. We pribfor m= 2, generalization
to any positivem follows. Consider two DC function$(x) and f2(x) defined orD.

For everya, b € R we have thafa-+ b)? — a2 — b? = 2aband therab = &+2° &-t"
This means that,

i 209 = (2004 P00~ () (1702

Then if we prove that f(x))? is a DC function for everyf( ) DC, we have also that
the product of two DC function is DC, beinig(x) f2(x) expressible as the sum of DC
functions in that case. Thisis a stralghtforward applmatnf point (iii) of Property
3.15, posingy : R — R given byg(y) = y?, clearly convex orR.

Finally, note that there exist infinitely many DC represéntes for every DC function
foc(x). Infact, given the DC functiorfipc(x) and convex functionge(x) andhc(x) such that
foc(X) = ge(X) — he(X), also functiongd(x) = ge(X) + k(x) andhg(x) = he(x) +k(x), with
k(x) convex, are convex functions arigc(Xx) = gc( X) — he(X).

Examples of applications of DC functions in the field of systanalysis can be found
in (Alamo, Bravo, Redondo and Camacho, 2007), where DC funstaoe employed to
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determine a set-membership estimation algorithm, and iav@Alamo, Fiacchini and Ca-
macho, 2007), in which the authors proposes a system idetiifn method based on DC
functions properties.

3.4.2 DC systems and DCDI systems

Consider the nonlinear discrete-time autonomous system
X" = f(x), (3.28)

wherex € D C R"is the current state¢™ € R" is the successor state and functiorD — R"
is nonlinear. The system is said to be a DC system if the dymdumniction f(-) is a DC
function, that is, if the following assumption holds.

Assumption 3.17 Assume that f D — R" in (3.28) is a DC function defined on D R"
convex withO € int(D) and differentiable at the origin. Denotg-g and N(-) the convex
functions such that (k) = g(x) — h(x), for all x € D and assume that(@) = 0 and h0) = 0.

Hence, considering the autonomous discrete-time syste28)(3he DC system has the
following form

91(X) — ha(x)
xm = f(X) = g(x) —h(x) = : (3.29)

Gn(X) —hn(X)
whereg;(-) andh;(-) are convex functions iR", for all i € Nj,.

DC systems are a very wide class of nonlinear systems, sascown in Section 3.4.1,
many nonlinear functions admit a DC representation.

Similarly to the case of Example 2.8, every DC system admiteaerbounding CDI
system. Remarkably useful is the fact that the CDI systemmbowending the DC one is
implicitly defined by the linearization of functiorg (-) andgj(-), for j € N, at the origin,
as illustrated below. This implies that the overbounding €tem has not to be explicitly
calculated and that it can be employed in simple computatiprocedures. The following
property provides the convex bounding functions detenngisi CDI system overbounding a
DC system.

Property 3.18 Given the DC function f D — R" as in (3.28) such that Assumption 3.17
holds and an € R", consider the set valued mag (-) defined by the following convex
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bounding functions
fp(x) = % n; (9i(x) —hj(x)) + 5 nj (g5 () —hi(¥), (3.30)
i€ jeke
where ¢ (x) = 05 gj(0)x and H(x) = Oxhj(0)x, for j € Ny and ky = ki (n) = {j € Np:
nj>0tandk =k_(n)={jeNn: nj<0}.

Then, Assumption 2.5 holds f&f () and f € Sz.

Proof: Proving that% () satisfies Assumption 2.5 is analogous to the proof of Prgpert
3.3. We have to prove that the induced CDI system overbour&@B€ one.

By definition, a CDI system overbounds the DC system, thatdsSs, see Remark 2.7,
if
nTf(x) < fh(x), V¥xeD, ¥neR" (3.31)
where.7 (-) is defined by (3.30).

SincegjL(-) and hjL(~) are, by definition, the linearizations at the origin of thenoex
functionsgj(-) andhj(-) respectively, forj € Ny, it follows

L . .
gjL(x) <gj(x), VJ. € Ny, Vxe D, (3.32)
from convexity of functiong;(-) andh;(-) onD. Thus,
nj hlj‘(X)—hj(X) <0 Vjek,, ¥xeDb, (3.33)
ni(g;(x)—g5(x)) <0 Vjek , vxeD.
for everyn € R".
Hence, from this and (3.30),
- n
nTEx) —fp(x) = PR (9i(%) = hj(x)) - jezk+'7j(gj(><) —hj(x))-
= 3 gy —hj(¥) = 3 nj(hj(x)—hj(x)+ 5 nj(gi(x) —dj(x)) <O.
jek- jeky jek_
for all n € R" and for anyx € D. |

Analogous considerations can be given for non-autonomysiess. Consider the non-
linear discrete-time time-invariant dynamic system

x" = f(x,u), (3.34)
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wherex € D C R" is the current statest € R" is the successor state,c E C RM is the
control action and functiofi : D x E — R" is nonlinear. If the dynamic function is DC then
the system is a non-autonomous DC system.

Assumption 3.19 Assume that fD x E — R"in (3.34) is a DC function defined on:bE C
R™™M with D C R" and EC R™ convex with(0,0) € int (D x E), and differentiable at the
origin. Denote @-,-) and K-, -) the convex functions such thaixfu) = g(x,u) — h(x, u), for
all (x,u) € D x E and assume that(@,0) = 0 and h(0,0) = 0.

Hence, a non-autonomous system is DC if there exist two iomeg(-,-) andh(-,-)
convex onD x E, such thatf(x,u) = g(x,u) —h(x,u), for all x € D andu € E, and the
system has the following form

01(x,u) — hy(x,u)
x" = f(x,u) = g(x,u) —h(x,u) = : (3.35)

gn(X,u) — hp(x,u)

Note that in both cases of autonomous and non-autonomous/&t€nss, we assumed
that the nonlinear function is differentiable at the origfiis allows to obtain lower bound-
ing functions of convex terms of the DC functions, throughraper linearization at the
origin. This assumption can be removed. In fact, since tiggrobelongs to the interior of
the domain of the DC function, the subdifferential of any\@nterm of the DC function at
the origin is not empty and then a linear lower bounding fiamctan be obtained also for
any function which is not differentiable at origin.

Also a CDI system overbounding the DC system, for non-autengs case, can be ea-
sily obtained, as illustrated below. No proof have beenudetl since analogous to that of
Property 3.18.

Property 3.20 Given the DC function f D x E — R" as in (3.34) such that Assumption
3.19 holds and @ € R", consider the set valued m&(-, -) defined by the following convex
bounding functions

~

fiocw = 3 m (g —w)+ 5 m(ghcw-hxw). @30

where ¢ (x, u) = Ckgj (0,0)x+ 0ug;j (0,0)u and K- (x, u) = Oxh;(0,0)x+ Clyh; (0,0)u, for j &
Nnandk. =ki(n)={jeNp: nj>0}tandk =k_(n)={jeNn: nj<0}.

Then, Assumption 2.14 holds t67(-,-) and f € Sz.
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3.4.3 Difference-of-Convex Difference Inclusion: DCDI sgtems

We define here also a class of systems whose dynamics arelyivsst valued maps rather
than real valued functions, analogously to the case of CBtesy. This framework is useful
for those cases in which the uncertainty is parametric, ihhatthen the system’s dynamic
function depends on a parameter.

Consider the discrete-time autonomous nonlinear systeemdpy
x"eco(fl(x): jeNy), (3.37)

wherex € D is the statex® is the successor state and functidiig-), for j € Np; with
nj > 1, are DC functions. System (3.37) is referred to with thent®ifference-of-Convex
Difference Inclusion (DCDI) system if every functidi(-) is a DC function defined over a
common domaid C R", for j € Ny, as formally stated in the following.

Assumption 3.21 Assume that for every functior fD — R" determining the system (3.37),
Assumption 3.17 holds, with © R" common convex domain for everl( ), for all j € Np,.
Denote with ¢(-) and H(-) the convex functions such that(X) = g’(x) — h!(x), for all
xeD.

In case that the dynamic function of the system is given byglsiDC function, i.e. case
in whichnj = 1, the DCDI system is a DC system. The family of DC systems iso&lass
of DCDI systems.

The definition can be extended to controlled systems, thabissidering the following
discrete-time non-autonomous system

xteco(fl(xu): jeNy), (3.38)

wherex € D is the statey € R™ is the control input and function§ (-, -) for j € Np; with
nj > 1, are nonlinear functions, which satisfy the followingusgtion.

Assumption 3.22 Assume that for every nonlinear functioh:fD x E — R" determining
the system (3.38), Assumption 3.19 holds, with B C R™M common convex domain of
fi(-,-), for every je Np,. Denote with ¢(-,-) and h(-,-) the convex functions such that

fl(x,u) =gl (x,u) —hi(x,u), for all (x,u) € D x E.

As for the case of autonomous DCDI systems, if we hayve: 1, the non-autonomous
DC system is recovered.
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3.4.3.1 Uncertain DCDI systems

A first modelling framework considering the uncertainty D@ system with additive uncer-
tainty. That is, the uncertain autonomous DC system is gen

xt = f(x)+w, (3.39)

wherex € R", w € R" is the bounded additive uncertaintyc W and f : D — R" fulfills
the Assumption 3.17. For the non-autonomous case we havehth®C system has the

following dynamics
X" = f(x,u) +w, (3.40)

where nowf : D x E — R" fulfills the Assumption 3.19.

A more general framework is given by the uncertain disctiete- autonomous DC sys-
tem given by .
x" eco(fl(x,w): jeNy), (3.41)

wherex € D is the state andl € W is the unknown but bounded uncertainty and the following
assumption holds for functiorfd (-, -).

Assumption 3.23 Assume that functions f D x W — R" in (3.41) are such that:

o fl(-,w) satisfies Assumption 3.17, for everygwy,

e fl(x,-)is affine in w, for every x D,
for every je Ny, with nj > 1.

Similarly, uncertain non-autonomous DCDI systems are ddfas
X" eco(fl(x,uw): jeNy), (3.42)
wherex € R" is the stateu € E is the control input anav € W is the unknown but bounded
uncertainty and function§! (-, -, -) satisfy the following assumption.

Assumption 3.24 Assume that functions f D x E x W — R" in (3.42) are such that:

o fl(.,-,w) satisfies Assumption 3.19, for evergwy,

e fi(x,u,-)is affine in w, for everyx,u) € D x E,
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for every je Np, with nj > 1.

The case of DCDI systems where the uncertainty appears akldgivaterm, is included
in the class of systems (3.41) or (3.42).

3.5 Linear parametric uncertain systems

Another framework which permits to analyze discrete-timnalimear systems as well as un-
certain systems is given by linear systems with parametdetainty, mentioned in Section
2.1.1.2. This is the case in which the system is assumed limidla state-transition matrix
A € R" depending on a parameter. The parameter can evolve in ton@dtance in case
that the dynamics depends on external signals, or can beownkbut bounded. Different
scenarios raise, depending on the assumptions on the garaméure and on the degree of
knowledge of such parameter.

It will be shown that this framework entails a subclass of Gi¥tems, in particular those
CDI systems whose convex bounding functions are linear.celecomputing a linear para-
metric uncertain system approximating a nonlinear systeane of the way of generating
an overbounding CDI system.

In the general case, we consider the dynamic system given by
X(k+1) = A(k)x(k), (3.43)

wherex(k) € R" is state and\(k) € R"™*" is an element of a set of the spdR&", for every
k € N. Denoting such sety C R™", the set valued map (2.5) determines bounds on the
system evolution, that is

X(k+1) =A(k)x(k) € {Axk): Ae o}. (3.44)

Analogously, in case of non-autonomous linear parametrgertain systems, we have
that dynamics is given by

X(k+ 1) = A(K)x(k) + B(k)u(k) € {Ax(k) +Bu(k) : [A, B] € .#}, (3.45)
wherex(k) € R"is the current statey(k) € R™is the control input and matripA(k), B(k)] €
M C Rnx(n+m)_

In both cases, the uncertainties affecting the systemsasemetric. Also additive un-

certainty can be considered and the systems take the form

X(k+1) = A(K)x(K) + w(k) € {Ax(k) +w: Ae &7/, we W}, (3.46)
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for autonomous systems, and

x(k+1) = AK)X(K) + B)U(K) +w(k) € {Ax(K) +BUK) +w: [A, B] € ., we W},
(3.47)
for the non-autonomous case, where W and.# C R (n+m)

Different assumptions on the knowledge of the dynamic roegti yield to different
frameworks. The following two scenarios are of interest:

e A(k) (and possiblyB(k)) is unknown for anyk € N, only the bounding set7 C R™"
(or .# C R™(™M) is known. In the analysis and synthesis it must be taken into
account any element o¥ (or .#): Linear Difference Inclusions (LDI) systems.

e matrix A(k) (andB(k), eventually) is known at any time instakt N. Matrix can be
assumed dependent on a paramgiéhnat can be function of the stateinputu and/or
an external signal. The system is called, in that case, a Linear Parameter N@ryi
(LPV) system.

Particularly relevant are the linear parametric uncersistems for which the set/
is polytopic subset of the spad®™". A linear parametric uncertain system is said to be
polytopic if the following assumption holds for the set vadumap determining its dynamics.

Assumption 3.25 Assume that, for a given/ C R™", there exists a set ofyrelements
Al € R™" such that _
o =co(Al e R™": jeNp,). (3.48)

MatricesAl, for j ¢ N n, are the vertices of polytope’.

Remark 3.26 Given.«Z C R"™" for a linear parametric uncertain system, the set valued
map determining the dynamics is

A (X)={AxeR": Ae &}, (3.49)
then, in case of polytopic linear uncertain system we hasae th

o (X) =co(AlxeR": jeNy). (3.50)

Notice that the set valued mag(-) satisfies the Assumption 2.5 beingx) € .7 (R")
for all x € R", and the convex bounding functions linear, hence convez.riibans that, any
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polytopic linear parametric uncertain system is a CDI systén fact, for every) € R", the
function of x given by " Ax is a linear function of xc R", hence convex in x, for anyé\.«7.
Therefore, function

fn(x) = E\nE%;(nTAX (3.51)

is the pointwise maximum of a family of convex functions) ttevex, see (Boyd and Van-
denberghe, 2004), and defines the CDI representation ofysters whose set valued map is
().

Analogous considerations are valid for linear parametmzertain systems that are non-
autonomous and/or affected by additive uncertainty, a¢ésaling to CDI systems since the
related set valued maps satisfy Assumptions 2.14.

In many cases, if we are able to ensure a property for eveggiidynamic system given
by Al, with j € Ny, the property holds also for the LDI system, no matter theresdization
of A(k).

3.5.1 Linear difference inclusions: LDI systems

A classical way of representing the effect of lack of knowge@n the systems, as parametric
uncertainty approach, is through Linear Difference Inicdnssee Section 2.1.1.

LDI systems are of the form (3.43), for which the state-titors matrix A(k) € R™" is
assumed to be an unknown element:6fC R™". When.«Z is a polytope in the spad@™",
the system is called polytopic LDI.

Such framework finds its justification in the fact that noen functions can be approxi-
mated on a bounded set of the space by a linear function,iérglthe Taylor expansion and,
in particular the Lagrange form of Remainders, which is Hasethe Mean value theorem.

Conceptually, these theorems state that any real valuetidunf : R — R, differentiable
atx € [a, b], can be written as a constant term plus a linear one as in Hoevfog:

df(c)

F(%) = f(x0) +

for a properc € [xo, X|, for everyxg € [a, b).

This means that, under the assumptions of differentigtulitf (-) on a segment (which
can be often relaxed to simple convexity) the value of a gememlinear functionf(-) at
X € [a, b] can be expressed as a linear function whose parametersvarelyi the value of
f(-) atxp € [a, b] and the derivative of (-) at a pointc € [a, b].
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The practical problem is that, in general, once fixgdthe pointc depends on the evalu-
ation pointx, i.e. ¢ = ¢(x), and such relation is unknown. On the other hand equati&?2)3.
permits to determine an overbounding functionfof), that is, a set valued function such
that its image of any point € [a, b] contains the valué(x).

In fact, given a nonlinear functiofi : [a, b] — R and a pointx € [a, b] we have, from
(3.52), that

. df(c) df(c)
f —Xo) < f(x) < f — 3.53
(o) + min =g (X=%0) = T = T00) + max =g =(x=>0),  (3.53)
for all x € [a, b] if x> Xp and
df(c) . df(c)
— 2 (X—Xg) < < ——(X— :
f(Xo)+Cr6n[§é ax X XO)_f(X)—f(XO)‘i‘CrETﬂ)] gx X—%). (354
for all x € [a, b] if x < xo. Then, denoting
dm= min L(C), du = maxdf(c),
cela b dX cela,b]  dX

the set valued function
F(X) ={(f(Xo) — dxg) +dx: d € [dm, du]}, (3.55)

is such thatf (x) € .%(x), for all x € [a, b]. Note that, the set valued functiof (-) defined
as in (3.55), is given by a set of linear functions whose dape those lying in the segment

[dm, dwm].

Methods based on interval arithmetic allow to compute guaed boundsly, anddy,
and then the LDI system overbounding the nonlinear one,Be&d et al., 2005).

For instance, for nonlinear system (3.28) withD — R" andD C R" convex and com-
pact, an overbounding LDI system can be determined knowi@@pounds on the gradient of
every component;(-) of the dynamic function, i.e[Jf;(-), at any point inrx € D. Assuming
that the origin is an equilibrium for the nonlinear dynamystem (3.28), i.e.f (0) =0, and
f(-) is differentiable on the compact, convex Betc R", with 0 € D, the LDI system (3.44)
with matrix A(k) € <7, whereoz C R™" is defined as

<A < max i) Vi,jeNn}, (3.56)

o = AcR™N: minﬁfi(x)
xeD  OX; T xeD  0Xj

is such thaff (x) € <7 (x), with <7 (X) defined in (3.49). This means that the LDI system with
A(K) € <7 is an overbounding system of (3.28).

Remark 3.27 The set# is a polytope orR™" if D is compact onR". Hence, it can be
determined by a finite set of vertices, that is, by a finite betadrices inR"*". Such matrices
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are given by all the possible combinations of maximal andmmahvalues of the elements of
</, any other element can be expressed as convex combinasoglof/ertices. The vertices
of o are, at most2".

Also in this case the CDI representation is given by convexnbling functions (3.51).
From the practical point of view, computing such maximum banmeduced to checking the
values for the vertices af/, whose number can be very high.

Nevertheless, in our case, knowingandx, it is straightforward to compute the maxi-
mum in (3.51). In fact, for any given € R" andx € R" we have that

n n
fp(x) = maxn T Ax= niA X,
n i;j; iALjXj

Acd/
where
. max—a;i)g_x), if nixj >0,
Aj=1 "P o
’ min &8X if nixj <0
xeD 9% ] ’

for everyi € N, andj € N,

3.5.2 Linear parameter varying systems: LPV systems

A discrete-time autonomous LPV system has the followingifor
X(k+1) = A(K)x(k) = Ayaox(K), (3.57)

wherex(k) € R"is the current state, fdre N, the time-varying state-transition matixk) =
Ay € R™" depends on the parametes= y(k) € I' C RP, henceA,, : RP — R™M.

Assumption 3.28 Assume that matrix A= R™" depends affinely on the parametee ',
that is, there exist p martice® € R™", for j € N, andA® € R™" such that

. P
A=A+ 5 Ay,
>
andl" C RPis a polytope.
Remark 3.29 Under Assumption 3.28 it can be proved that the set

(M) ={A,ER™N Yy €T}, (3.58)

is polytopic.
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It can be proved that, under Assumption 3.28, any vertex/¢f ) is determined by an
extremal realization of . Roughly speaking, we have thag is a vertex ofe7 (I") if and only
if there existsy vertex ofl" such thatAy = Ay,

Analogous definition is given for discrete-time non-autooas LPV system
x" = AK)X(K) + B(K)u(k) = AyiX(K) + By u(k), (3.59)

wherex(k) € R" is the current statey(k) € R™ is the input, fork € N, and both the time-
varying dynamic matricea(k) = Ay € R™" andB(k) = By, € R™™ depend on the pa-
rametery = y(k) € I C RP, thenA, : RP — R™" andBy : RP — R™™M, Additive uncertainty

can be also considered for LPV.

3.6 Conclusions

In this chapter, modelling frameworks related to CDI systdrave been presented. Since
many important results will be provided in what follows foDCsystems, it is necessary to

point out that such analytical scenario is quite generalsrahgly related to many common

nonlinear and uncertain systems. Methods to obtain a CDésemtation of a system and to
compute a CDI approximation have been exposed.

First, presenting CCDI systems, it has been shown thatngiveonlinear system, it can
be sufficient to determine a finite number of bounding fundito obtain a CDI system and
that the CCDI framework encloses common nonlinear and teioesystems.

Then, classical nonlinear systems, such as Lur’e ones, i@ presented in discrete-
time. It has been provided a direct method to recover the @Pasentation for particular
Lur'e systems. This makes Lur'e systems a particular sutf¥eDI systems.

Another class of nonlinear systems related to CDI ones aegéimeralized saturated
systems. They are systems whose dynamic function is givemlimear system in closed-
loop with a generalized saturated function. It has been shizat an overbounding CDI
system can be easily obtained.

Then, DC systems have been introduced. Their dynamic fumstare related to DC
functions, i.e., functions expressible as the differerfa@avex functions. Also in this case,
convexity is the central ingredient that relates DC systeiitis the overbounding CDI sys-
tems.

Finally, linear systems affected by parametric uncerydnatve been illustrated. LDI and
LPV systems, particularization of linear parametric utaersystems, have been presented.



Chapter 3. Computation of CDI systems 113

This framework, well known in the field of systems theory andtcol design, is considered
here being another particular subclass of CDI systems.
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Chapter 4

Set-theory and invariance for CDI
systems

In what follows we present the results related to set-thessecially focused on invariance,
for CDI systems. First we provide a necessary and sufficemdition for a convex set to be
an invariant set or & -contractive set for generic CDI systems, together withctieracteri-
zation of other aspects involved in invariance. It is wodballing that an invariant set for a
CDI system turns out to be an invariant set also for any systerbounded by the CDI one.
This justifies the interest devoted to the analysis of CDtays, providing a deep insight
on a wide class of systems. Another important concept styaetated to invariance, as the
one-step operator for CDI systems, is considered in thipteina

Computational issues on how to obtain an invariant ad@ntractive set for a CDI
system are dealt with in the last section of the chapter. énctise of polytopic potential
invariant sets, the necessary and sufficient conditionrfeairiance reduces to checking the
satisfaction of a finite number of convex constraints at tbeiees of the polytope. Then,
the computational burden required is affordable and thelition can be used to design an
efficient algorithmic procedure.

The results presented in this chapter are based on the tdréstics of particular func-
tions related to any CDI system and denotedrés-) andF(-,-). We will refer toF (-, )
andlf(-, -) as directional upper and lower bounding functions, respagt The results pre-
sented, such as necessary and sufficient conditions foriamee andA -contractiveness of
convex sets for CDI systems, as well as other useful pr@gsenwill be posed in terms of
such functions.

115
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4.1 Convex invariant sets for CDI systems

We consider here a generic discrete-time autonomous Ciérsyshat is a system the dy-
namics of which is given by (2.7), i.e.,

xt € .Z(x), (4.1)

under Assumption 2.5. Recall that this means that the dymamction is a set valued map
7 (-) defined by particular convex bounding functioiag-), one for everyn € R".

Remark 4.1 The results presented in what follows are valid for CDI anddT8ystems. We
will refer to Assumption 2.5 defining CDI systems. For whatassns CCDI systems, we
recall that the convex bounding functions for the CCDI fraragk are derived in Property
3.3.

It could be also useful to remind that we refer 1&,)(-) as convexbounding functions,
forall n € R", whileF(-,-) andF(-,-) are calleddirectionalbounding functions, upper and
lower respectively.

Remark 4.2 The definitions of directional bounding functioRé-,-) and F(-,-) have been
introduced to make explicit their dependencerpa R" as well as their condition of convex
upper bound and concave lower bound, respectively, althailighe results presented could
have been posed in terms Bf(-).

First we define the directional upper bounding functionsG& systems. The fact that
it is an upper bounding function af’z for all z < .#(x) and for allx € R", is a direct
consequence of Assumption 2.5 and Assumption 3.1.

Definition 4.3 Let Assumption 2.5 hold for a given mafx-). Define the directional upper
bounding functior : R" x R" — R as

Fxn) = fp (%), (4.2)
where functiond, (), for everyn € R", determineZ (-).

It is straightforward to prove th&t(-,n) provides an upper bounding functionmf f(-),
foranyn € R", and any functiorf € Sz, whereSz = {f: f(x) € #(x), ¥x€ R"}.

Directional bounding function& (-,-) for CDI systems, defined in Definition 4.3, are
convex with respect te and provide upper bounds opl z, for everyz € .7 (x) and every ¢
R". The property follows directly from the characteristicslué convex bounding functions

f (-).
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Property 4.4 Let Assumption 2.5 hold for a given ma&(-). FunctionF (-, -) as in Defini-
tion 4.3, is a convex function iR" for anyn € R", such that

max n'z=F 4.3
Zey(i)nz x,n), (4.3)

for every xc R" andF (0,n) = 0, for all n € R".

Proof: If Assumption 2.5 holds an# (-, -) is defined in Definition 4.3, convexity and
satisfaction of (4.3) are implied directly by definition. fact Assumption 2.5 ensures that
1“V,7 (+) is convex and satisfies (4.3), where the supremum can beegplgth maximum since
Z (X) is supposed compact, i.e.,

F(x,n)=f,(x)= sup nTz= maxn'z
ze.7(x) ze.7(X)

From (4.3) and the fact thd}, (0) = 0 for all n € R", we haveF (0,n) = 0. |

Similarly, the directional lower bounding functions can defined such that, given a
vectorn € R", a lower bound om Tz with z € .% () is easily obtained.

Definition 4.5 Let Assumption 2.5 hold for a given mafy-). Define the directional lower
bounding functiorF : R" x R" — R as

v

Fx,n)=—f_4(x). (4.4)

Properties analogous to those of directional upper bogrfdinctions- (-,-) can be given
for directional lower bounding functiori%(~, -), simply applying a sort of duality process,
where convexity is replaced by concavity, upper boundinplser bounding, maximum by
minimum, and so on.

We provide the dual of Property 4.4, whose proof is avoide® h&nce it follows the

same lines as that of Property 4.4, recalling that
T T 4
min Z=— max —n'z=-—"f_p(x).
zeﬂ(x)r’ e 7 (X) L TI< )

Property 4.6 Let Assumption 2.5 hold for a given maf(-). FunctionF(-,-) as in Defini-
tion 4.5, is a concave function iR" for anyn € R", and such that

min n'z=F(x,n), (4.5)

e 7 (X)

for every xe R" andF (0,n) = Ofor all n € R".
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From the Properties 4.4 and 4.6, the following corollarypsé proof is avoided because
straightforward, stems directly. The corollary ensuresd the directional lower and upper
bounding functiong (-,-) andF (-, ) provide guaranteed bounds on the image of any func-
tion f : R" — R" overbounded by the set valued(-). This permits to use directional upper
and lower bounding functions of the CDI system as bounds éoeegc nonlinear, possibly
noncontinuous, dynamic systems.

Corollary 4.7 Let Assumption 2.5 hold for a given mafx(-). FunctionF (-, ) as in Defini-
tion 4.3, and functioif- (-, -) as in Definition 4.5 are such that

F(x,n)<n"f(x) <F(x,n), (4.6)

for every xe X andn € R" and every fe Sz.

Continuity of directional bounding functiorfs(-,n) andF (-, n), for everyn € R", on
open subsets of their effective domains stems directly fcomtinuity of convex functions
on (relatively) open subsets of the domain, see Theorem B.10

Remark 4.8 Note that, given the vectay € R", the directional upper and lower overboun-

ding functionsF (-,n) andF(-,n) are continuous on the relative interior of their effective
domain, ridonF (-,n)) and ri(donF (-,n)), since, from Assumption 2.5, any elemé)

for CDI systems is convex d&I". It is worth recalling that the effective domain of convex
function is given by those points of the space at which thetimmtakes values different from

+00.

4.1.1 Necessary and sufficient condition for invariance fo€DI systems

As illustrated in the previous section, directional lowedaipper bounding function@,(-, )
andF(-,-), share the properties of convexity and concavity, respelgticontinuity, etc. All
the assumptions concerning a CDI system are summarizee ifolllowing assumption, to
which we will refer when dealing with one of those dynamictsyss, for sake of simplicity.

Assumption 4.9 Let Assumption 2.5 hold for the set valued nzap R" — 7' (R") deter-
mining the system dynamics (4.1), andeR"x R" - R andF : R"x R" — R as in
Definition 4.3 and Definition 4.5, respectively.

We consider at first a generic convex, compaciet X with 0 € int(Q), recalling that
x € Qifand only if

n'x< @(n), (4.7)
forall n € R", see Appendix C.
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Remark 4.10 Since invariance and set-theoretic methods find one of thain justifica-
tions for control in their capability to deal with hard comaints satisfaction, we introduce
in what follows state constraints& X C R", and input constraints & U C R™ for non-
autonomous systems. Clearly the case of unconstraineghsystenclosed, simply given by
X=R"andU=RM,

Constraints on the state, represented by the subset ofatesgiaceX C R", will be
considered in many cases. The following assumption on thX seR" will be referred to
when constraints on the state are taken into account.

Assumption 4.11 Assume that the constraint set on the staté R", is closed, convex and
with 0 € int(X).

In (Kolmanovsky and Gilbert, 1998) a characterization efance for linear systems
in terms of support functions is given, as well as some pitagseof the support functions.

The necessary and sufficient condition for invariance faa@onomous linear uncertain
system, presented in (Kolmanovsky and Gilbert, 1998), aptetl below to formulate the
condition for A -contractiveness and invariance of a set for system (4.4¢mwAssumption
4.9 holds, that is, when the system is a CDI system.

First, we present a property characterizingontractive sets and invariant sets for generic
systems whose dynamic function is a set valued map, as iy @though we enunciate
the property here for CDI systems (4.1). Recall that, givenget valued mag(-), map
Mz S (R") — L(R") is defined as

Mz(Q) =] F (). (4.8)

xeQ

forall Q € 7 (R"), see (2.2).

Property 4.12 Let Assumptions 4.9 and 4.11 hold for the set valued figy determining
the system dynamics (4.1) and the state constraint set XenQi [0,1], a convex, com-
pact setQ € .7 °(X) is a A-contractive set (an invariant set A = 1) for system (4.1) and
constraints x X if and only if

n'z<A@(n), Vze Z(x), ¥xeQ, VneR" (4.9)

Proof: Recall that a convex, compact €tC R" with 0 € int (Q) is a A-contractive
set for a dynamic system if the image of any poirat Q through the dynamic function is a
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subset ofA Q. In particular, for a system (4.1) condition for invarianse

Mz(Q) =] F(x) CAQ, (4.10)

xXeQ

where.# #(-) is the set map defined in (4.8), related%q-). Condition (4.10) is equivalent
to
F(X) CAQ, ¥xeQ,

and, from convexity ofQ and by Property C.4, it can be expressed in terms of support
function as
Vz(N) < Ga(n), ¥xeQ, VneR",

which, from Property C.5, is equivalent to

Orx(N) <A@m(n), vxeQ, vneR" (4.11)

By definition of support function we have that invariance dition can be rewritten as
condition
sup N'z<A@(n), ¥xeQ, VvneR"

7.7 (X)

which is equivalent to condition (4.9), then the propertgrigved. [ |

Notice that the condition foA -contractiveness and invariance (4.9) involves any point
x € Q. Necessary and sufficient condition for invariance can s&ioted to the boundary
of the setQ and can be posed as a set of convex constraints, through fileyanent of the
directional upper bounding functid?1(~, -), defined in the previous section for CDI systems.

Theorem 4.13 Let Assumptions 4.9 and 4.11 hold for the set valued #i@p determining
the system dynamics (4.1) and the state constraint set XenGi¢ [0, 1], a convex, compact
setQ € #%(X) is aA-contractive set for system (4.1) and constraintsX if and only if

F(x,n) <A@m(n), ¥xe€dQ, VneR" (4.12)

Proof: First we prove that from Property 4.4, we have that condiffbh?) evaluated at
any element of2 rather than only on the boundary, that is

F(xn) <Ag(n), VxeQ, neR" (4.13)
is equivalent to contractiveness condition (4.9). In f&ctin (4.13), we have that

n'z< mQX)nTz:ﬁ(x,n)sA%(n), Vze Z(X), ¥xe€Q, neR"
VAS X
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meaning that condition (4.13) is sufficient for contraatigss, since it implies (4.9). We
prove necessity by contradiction supposing thas$ A -contractive and that there exist Q
andn € R" such that

~ L —

F(X.n)>A@(n).

This means that, denoting withthe element of7 (X) such that"Z= max. g n" z,
which exists by compactness & (x), we have that

n'z=F(xn) >A@(n),

hence condition (4.9) is violated afllis notA -contractive, which is a contradiction.

Then we have to demonstrate that condition (4.12), invghanly the boundary of2,
holds if and only if (4.13) is satisfied, concerning everynadat of Q. Necessity is trivial,
sincedQ C Q. Sufficiency has to be proved. From compactness and cosnaxi it follows
that givenx € Q there exists a set of points a2 such thatx is their convex combination
(see Theorem 18.5 of (Rockafellar, 1970)). That means ksaietexist a non-empty set of
p pointsx! (X) € 9Q, with p= p(X) € N, and a set op real number®! () € R, for j € Ny,
such tha= 37, 81(x) x}(X), 81(x) > 0 for all j € Np, andy?_, 6/(X) = 1. By convexity
of functionlf(-, n) on the convex, closed sEtand equation (4.12), we have that

E&n) =F <§ 6l (%) xi@n) <3 OI@EX®.N) <
=1 =

=)

< 30X Am(n)=A@(n), VxeQ,VneR"
=1

This means that condition (4.12) implies condition (4.3 ¢hen it is an also sufficient
condition forA-contractiveness d@ for system (4.1). [ |

Recalling that any\ -contractive set for a given dynamic system and constraintsalso
an invariant set, then the corollary below follows with nedef proof.

Corollary 4.14 Let Assumptions 4.9 and 4.11 hold for the set valued &) determining
the system dynamics (4.1) and the state constraint set Xnverpcompact s& ¢ 7 %(X)
is an invariant set for system (4.1) if and only if

F(x,n) <@(n), vxeodQ, ncR"

Theorem 4.13 and Corollary 4.14, provide necessary andcgufi conditions forA -
contractiveness and invariance of a@dbased on a set of convex constraints.
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It is worth recalling the fact that conditions farcontractiveness and invariance for non-
linear discrete-time systems can be restricted to the bayraf the set only for particular
cases, such as linear and positively homogeneous systeen@lanchini and Miani, 2008),
usually the analysis has to involve the whole QetHowever, conditions stated in Theorem
4.13 and Corollary 4.14 concern only the boundary ofet

We show here the strong relation betwe@erontractive sets and Lyapunov stability the-
ory. The following important property, useful to prove aptotic convergence for CDI
systems, can be stated.

Property 4.15 Let Assumptions 4.9 and 4.11 hold for the set valued #dp determin-
ing the system dynamics (4.1) and the state constraint sefoX every convex, compact
A-contractive seQ € .7 °(X) for system (4.1) with contracting factdr € [0,1], also the
setaQ C X, with a € [0,1], is a convex, compact-contractive set for system (4.1) with
contracting factorA.

Proof: Compactness and convexity af for all a € [0,1] follows by definition. We
have to prove thatZz(aQ) C A (aQ) for all a € [0, 1].

From Theorem 4.13) -contractiveness condition of s@tcan be expressed in terms of
functionF(-,-) as
F(x,n)<A@(n), vYneR", (4.14)

with A € [0,1] contracting factor for system (4.1), with condition (4.1d)be satisfied for
everyx € Q (which is equivalent to be satisfied only on the boundaryrased in the proof
of Theorem 4.13).

Recall that, by definitionx € aQ if and only if there exists & € Q such thatx = ax.
This means that every element of the g€ can be written asrx with x € Q. We consider
the pointax € aQ and we point out thadtx = ax+ (1 — a)0. This means that any point of
setaQ can be expressed as the convex combination of the originraetémeni of Q with
(1—a) anda as convex parameters. From convexity of functicn, n) for everyn € R"
and since~ (0,n) = 0 by assumption, we have

F(ax,n) =F(ax+(1-a)0,n) <
<afF(xn)+(1-a)F(0,n) <aAr@(n) =Aga(n), ¥neR",
for everyax € aQ, which proves the property. [ |
We claimed that strong relations link asymptotic stabitifya system and -contractive

sets. In fact, the most common approach employed to ensyrep#stic stability for a
dynamic system is based on Lyapunov functions. It will benghthat aA -contractive set
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for a CDI system induces a Lyapunov function for the systemal8gous results are known
in the context of linear and particular nonlinear systeras,(®lanchini, 1995; Blanchini and
Miani, 2008).

We first recall that the Minkowski function of s€ C R" convex, compact and with
0€int(Q), is defined as
Wo(x) = m>ig{a : xeaQ}. (4.15)
a>

Based on the concept of Minkowski function (4.15), we introel function?g (), which can
be used to define a Lyapunov function for systems charaetetiy set valued maps. We
recall here that, given the initial s¥p € . (X), the trajectory for a CDI system (4.1) with
dynamic function# () is obtained through iteration

Xirr = M 7 (%), (4.16)
where operator# # (-) is defined in (4.8).

Definition 4.16 GivenQ < .#%(R"), define the functiontg : - (R") — R as

7a(D) =maxWq(X) = maxmin{a : x€ aQ} =
xeD xeD a>0 (417)

=min{a: xeaQ, YxeD}=min{a: DC aQ}.
a>0 a>0

forall D € .7(R").
Thus¥g(-) associates a value to any §et .7 (R").

Corollary 4.17 Let Assumptions 4.9 and 4.11 hold for the set valued #dp determin-
ing the dynamic system (4.1). Every convex, compaobntractive seQ € .7 °(X) with
contracting factorA € [0,1) induces a local Lyapunov function on the et

Proof: The function?q(-) defined in (4.17) is a local Lyapunov function.if(Q). In
fact, from Oc int(Q), function (4.17) is positive definite, i./p(D) > 0 forallD € . (R"),
with 7o(D) = 0 if and only if D = {0} and it decreases along the system trajectories as
shown in what follows.

Notice that, from Definition 4.16, it follows directly that
Yo(aQ)=a, (4.18)

forall a > 0and?q(D) < #o(C) for all D, C € .(R") such thaD C C.
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From Property 4.15, monotonicity o#  (-), see Property 2.2, amd-contractiveness of
Q, givenD € . (Q) such that/q (D) = a with a € (0, 1], we have thaD C aQ C Q and
then

M7 (D) C M7(aQ) CAaQ,

which implies
Yao( Mz (D)) < Vo(#z(aQ)) < Vo(AaQ)=Aa < a = 7¥q(D), (4.19)

with a € (0,1]. Notice that, ifa = 0, thenD = {0} and the inequalities in (4.19) become
equalities. Hence we proved théy (.Z # (D)) < 7o(D), for all D € . (Q) different from

the sef{0}, that is, that the value of functiorg (-) decreases along the trajectories of system
(4.2). u

A consequence of Corollary 4.17 is that [0, 1) induces a bound on the decreasing rate
of the Lyapunov function along the trajectories. That isegiXp € .7 (Q) (with Xy # {0}),
which impliesXp C Q and7q(Xo) < 1, we have that

Ya(Xir1) <A %K) < Ya(X),

and then
Yo (X) < AK,

for all k € N. Geometrically, it means tha§ C Q implies
X, C AKQ

for all k € N. Hence given any set it¥’(Q) as initial condition, the set valued trajectory
converges to the compact set composed by only the originfansgyistem is asymptotically
(exponentially, in fact) stable.

Property 4.18 Let Assumptions 4.9 and 4.11 hold for the set valued #dp determin-
ing the dynamic system (4.1). Given two convex, compaaintractive set®; € .7 9(X)
and Q, € #9(X) for the system (4.1) and contracting factors € [0,1] and A, € [0,1],
respectively, their convex hullz = co (Q1, Qp) is a convex, compadt-contractive set with
contracting factorAiz = max{A1, Ay}, for system (4.1) and € int(Qg).

Proof: Compactness d23 follows directly from the fact the convex hull of two compact
sets is compact too (see (Rockafellar, 1970) Th. 17.2). @atywof Q3 and the fact that
0 € int(Q3) follow by definition of convex hull. Moreove®R3 C X sinceX is convexQ1 C X
andQ, C X which implies that any convex combination of elementfefandQ, belongs
to X.
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We prove now thaf)s is aA-contractive set with contracting factdg = max{A1, A}.
Condition ofA -contractiveness d2; andQ> is equivalent to

F(x,n) <A1, (n), YX€Qi, Vn cR",
F(x,n) <Ao,(n), VX€Qp, VN eR",

from Property 4.13. Conside? € Q3, there exisk! € Q1, X2 € Q, anda € [0,1] such that
x3 = ax! + (1— a)x?, by definition of convex hull. Notice thatz > A; andAz > A,. We
have

FOGN) = F(axt+ (1-ap@ n) < aF (,n) + (1- a)F O, ) <
< aAagn, (1) + (1 @) Ao, (1) < aAag, () + (1 - a)Aagn, () <
(

_|_
< aA3@os(N) +(1—a)Asgn,(n) = Az, (n),

for all n € R", and where we employed the following property of supportfioms

w(n) <@ (), vneR"

for all U,V C R", with V closed and convex, such tHatC V, andQ; C Qz andQ, C Qs.
Moreover we used the fact that, given a convexsey (i) > 0 for all n # 0 if and only if
0 €int(U), which leads ta\1¢x, (n) < Az, (n) andA2¢n,(n) < As@n,(n) foralln € R".
We obtained that

FOG,N) <Asg,(n), WCeQs, vneRM,

hence the property is proved. [ |

In previous properties and results, we often assume campvelkihe invariant set under
analysis. It can appear restrictive to consider only corsugxsets of the state space. The
following corollary, direct consequence of Property 4 4i8ws that no loss of generality is
due to convexity assumption, since the convex hull of angrilant set, is an invariant set
itself.

Corollary 4.19 Let Assumptions 4.9 and 4.11 hold for the set valued #gy) determining
the dynamic system (4.1). Given a compact invarianKsét X with 0 € int (Q), for the
system (4.1), the s& = co (Q) is a convex, compact invariant set.

Proof: Proof of the corollary is simply obtained consideriag = Q, = Q in Property
4.18 andA = 1. [ |

A direct consequence of Corollary 4.19, and then of Prop&itg, is that the maximal
invariant set contained iX C R" is convex. We recall that a s&t, C X is said to be the
maximal invariant set if, beside of being invariant, is sticht for any invariant se® C X
we have thaf2 C Q.
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Corollary 4.20 Let Assumptions 4.9 and 4.11 hold for the set valued gy determining
the dynamic system (4.1) and state constraint SEtX". The maximal invariant s€y C X
IS convex.

Proof: Suppose, by contradiction, that the maximal invariantgtC X is not con-
vex, which means that there exists at least one pointo (Qum) such thaix ¢ Qy. From
Corollary 4.19, we have that 2\ is an invariant then also its convex hull is an invariant.
Moreover, since, by definition of convex hull, for evey, C R" we have

Qu Cco (Q|\/|), (4.20)

then the set cdQy) is convex, invariant and strictly contaify, sincex ¢ Qy butx €
co (Qum). Finally, since by convexity oX it follows that co(Qum) C X, we have thaf)y is
not the maximal invariant set iX, which contradicts the hypothesis of maximality@f.

u

4.1.2 Robust invariance for uncertain CDI systems

Results presented in the previous section can be extend&ditsystems of the form (2.27),
that is, systems presenting additive uncertainty, seeddez2.1. We recall here that, for the
autonomous case, we are considering systems whose dynargiesn by

X" €.Z(X) oW, (4.21)

where.% (+) is the set valued map characterizing CDI systems\dnd R" is the bounding
set of the unknown but bounded uncertainty.

We recall here that we distinguish CDI systems with additimeertainty referring to
them as uncertain CDI system. Remind that also CDI system é.1) could have been
considered uncertain, since the set valued nature of dynfamction can be viewed as un-
certainty representation, see Remark 2.15.

Remark 4.21 Notice that, givenZ (-) in (4.21), we could have defined the set valued func-
tion
Fw(X)={zeR": ze F(x) DW}, (4.22)

leading to a system'xe Ay(X), as in (4.1). Nevertheless, such system would not be a CDI
system, although characterized by a set valued map, sioce AAssumption 2.5 we must
have.Z\y (0) = {0} for the system to be a CDI system, and such condition doesoitfdr
non-trivial cases of W {0}.
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First we provide a characterization of robdstontractive sets and robust invariant sets
for an uncertain CDI system. This will allow us to provide &@ssary and sufficient condi-
tion for A-contractiveness and invariance in terms of directionaloling functiong= (-, ),
analogously to the case of CDI systems. We recall here thtatAssumption 2.3, used be-
low, we suppose that the s@t is compact and the origin lies in the interior of its convex
hull.

Property 4.22 Let Assumptions 2.3, 4.9 and 4.11 hold for the set valued #i&p and
uncertainty bounding set W determining the uncertain CBtey (4.21) and the state con-
straint set X. Giverd € [0,1], a convex, compact s& € .7 9(X) is a robustA -contractive
set (a robust invariant set X = 1) for system (4.21) and constraint&xXX if and only if

nN"z<A@(n)—@n(n), Vze F(x), ¥xeQ, VvneRM" (4.23)

Proof: A convex sef2 C R" is a robusf\ -contractive set (a robust invariant sekif= 1),
for an uncertain CDI system (4.21) if

Mz (Q) = | (F(X)®W) CAQ, (4.24)

XeQ

where.Z g, : # (R") — 2 (R") is the set map defined in (4.8), related®y (-) in (4.22).

Condition (4.24) is equivalent to
F(X)WCAQ, VYxeQ.

In terms of support function we have tlats a robusfl -contractive set with contracting
factorA if and only if

Prew(N) < Ga(n), YxeQ, VneR",
and from Property C.6, we have
Prx(N) < Graln) —@w(n), ¥xeQ, VneR"

which is equivalent to

Pz (N) <Ag(n) —a@v(n), YxeQ, vneR"

By definition of support function) -contractiveness can be formulated as

sup NTz<A@(n)—@u(n), ¥xeQ, vneR",
ze Z(X)

which is equivalent to condition (4.23). This proves thegany. [ |
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Notice that, as for the case of CDI systems with no additiveediainty, condition for
robustA -contractiveness and invariance (4.23) involves any eléme Q. We can employ
directional upper bounding functiorﬁs(-,-) to obtain an equivalent condition concerning
only the elements belonging to the boundary of the candidédugstA -contractive set.

Theorem 4.23 Let Assumptions 2.3, 4.9 and 4.11 hold for the set valued &y and
uncertainty bounding set W determining the uncertain CBteay (4.21) and the state con-
straint set X. Giverd € [0, 1], a convex, compact s& € .7 °(X) is a robustA -contractive
set for system (4.21) and constraints X if and only if

F(x,n) <A@(n)—@u(n), Yx€0Q, vnecR" (4.25)

Proof: The proof is analogous to the proof of Theorem 4.13, thatnisézessary and
sufficient condition forA-contractiveness for CDI systems, in absence of additiveern
tainty. The main difference is that the bound for the dii@wdl upper bounding function is
nowA@n(n) — @v(n), for all n € R", hence it depends also on the support functiolof
with respect ta) € R". [ |

The case oA = 1 yields, trivially, to a condition for robust invariance ©f which is
stated in the following corollary.

Corollary 4.24 Let Assumptions 2.3, 4.9 and 4.11 hold for the set valued &y and
uncertainty bounding set W determining the uncertain CBteay (4.21) and the state con-
straint set X. A convex, compact €2t .7 °(X) is a robust invariant set for system (4.21)
and constraints x X if and only if

F(x.n) <@(n)—ew(n), vx€dQ, vneR"
Notice that no assumption on convexity of ¥éthas been required, see Assumption 2.3.

Remark 4.25 It is evident that a necessary condition on a convex, comget€ C R" with
0 € int (Q) to be a robust invariant set is that

ev(n) < @(n), vneR" (4.26)

Indeedlf(o,n) = 0 for all n € R" by assumption and hence, if condition (4.25) is vio-
lated, condition (4.23) does not hold.

The geometrical meaning is clear. In fact condition (4.26¢quivalent to the fact that

co (W) Cco(Q),
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and, from convexity a2 € R", we have
WCco(W)Cco(Q)=Q,
that is WC Q. Ifitis not fulfilled, then we have, foipx= {0},
X1 € F(0)oW =W,

which violates the geometric condition for robust invagar(4.24) withA = 1.

4.2 One-step operator and domain of attraction

An important operator which is widely employed in iteratc@mputation of invariant sets,
is the one-step operator. Consider an autonomous dynarsiensyand a subs& of the
state space. The one-step operator associai2ste set of points whose image through the
dynamic function is contained iD. We provide the definition for CDI systems.

Definition 4.26 Let Assumptions 4.9 and 4.11 hold for the set valued #i&j) determining
the dynamic system (4.1) and the state constraint setX". The one-step operator is
defined as

Q(Q) ={xeX: Z(x) CQ}, (4.27)

forall Q € 7 (X).
The one-step operator for autonomous CDI systems satikédsltowing property.

Property 4.27 Let Assumptions 4.9 and 4.11 hold for the set valued #dp determin-
ing the dynamic system (4.1) and the state constraint set X". Suppose that XC
ri (domF(-,n)) for anyn € R". We have that the one-step operator is

QQ)= () {xeX: F(xn) <@}, (4.28)

nern

and is convex and closed for every €€ 7 (X).

Proof: First we prove thaQ(Q) defined in (4.27) is equal to (4.28). Given a convex
compact sef), a pointx € X is mapped byZ (-) insideQ if and only if

n'z< go(n), Vze F(x), vneR"
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which is equivalent to
max n'z< @(n), vneR",
7.7 (X)
and therefore, by definition d¥(-,-), we have that necessary and sufficient condition for
x € X to be mapped insidQ, is that

F(x,n) < (n), vneR" (4.29)

The set of elements € X mapped insid&€ by .%(-), is composed by those elements
x € X fulfilling condition (4.29). Notice that for any) € R" we have an inequality as in
(4.29) determining a set of points fulfilling it. Then, theips mapped insid€ is the set
given by the intersection of such sets, see (4.28).

We use condition (4.29) to prove convexity of the Q) C X, assumed? convex.
Suppose that!, X2 € X are mapped if2 , i.e., F(x},n) < @(n) andF (32, n) < @g(n),
for all n € R". Then, by convexity of functio#(-, n) and convexity oiX (see Assumption
4.11), for alln € R, for everya < [0,1], pointx3 = x3(a) = ax! + (1— a)x? is such that
x3 € X and

FOS,n) =F(axt+(1—a)n) <afF(dn)+(1—a)F(x%,n) <
<agn)+@A-a)mn)=@(n), vneR"

This means that i, x> € Q(Q), then any of their convex combinations is an element of
Q(Q) too, which is equivalent to convexity 6}(Q).

To prove the closure o(Q), some technicalities are required. Since the intersection
of an arbitrary collection of closed sets is closed, see KRfatlar, 1970), if we are able to
prove that se{x e X : F(x,n) < g(n)} is closed for any;, closure ofQ(Q) is proved.
From (Rockafellar, 1970) Th.7.1 and related consideratid@grcan be proved that a (proper)
convex functionf (-) is closed (i.e., its epigraph is closed), if and only if set

{xeX: f(x)<a}, (4.30)

is closed for evenyx € R, and that a proper convex functidi{-) agrees with its closure
except perhaps at the boundary of the effective domain,.ZhSince the points of boundary
of the effective domain are not containedXrby hypothesis, then replacirv@-, n), convex
by construction, with its closure does not affect the lewtt £4.30). This means that level
sets (4.30) are closed and then their intersection is clmsedhenceQ(Q) is closed. [ |

In Property 4.27 we proved that the one-step operator for adybBamic system (4.1)
maps compact convex sets, in closed, convex sets. Compaadtneot preserved in general
through the one-step operation. This can be pointed out lanmef an illustrative example.
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Example 4.28 Recalling that a subset &" is compact if it is closed and bounded, we have
to prove that, for a CDI system,(Q) is not bounded for a compa€l. Consider the one-
dimensional discrete-time linear systems

xt =0,

with X = R. The dynamic function can be considered a particular sete@function whose
images are points (the origin in fact), that is

F(x) = {0}, WxeR.

Also the convex bounding functions, fpe B3 = [—1, 1], can be recovered trivially, in
fact they are given by

Evidently Assumption 4.9 is satisfied. Now considefing {0} and applying the one-
step operator, we have that

Q({0}) = {xeR: F(x) = {0} € {O}} =R,

that is the whole spadg, hence closed and convex but not bounded.

If we add the hypothesis of boundedness of state consiXame have that the one-step
operator maps convex, compact subsets into convex, corapbsets, that iIQ : 7 (X) —
H(X).

Corollary 4.29 Let Assumptions 4.9 and 4.11 hold for the set valued #i&;) determining
the dynamic system (4.1) and suppose that X is bounded ahdrsaicX C ri (domF(-,n))
foranyn € R". Then, the set M) is convex and compact for every §et 7 (X).

Proof: The result follows from Property 4.27 and since, by defimit@(Q) is bounded
for everyQ, providedX is bounded. [ |

Property and corollary stated above mean that the set otpoiapped through¥ (-)
inside aQ € .7 (X) is a convex, closed set, compackifis bounded.

Remark 4.30 We give here a conceptual definition of domain of attraction.

The domain of attraction of an asymptotically stable (todhigin) system is given by the
set of points of the state space converging to the origin.
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For a CDI system with dynamic functio# (-), the domain of attraction of the origin is
the set of points of the state space such that the Hausdstrdie between the elements of
the trajectory and origin converges to zero. That is, pok#sX such that setspe .77 (R")
generated by

Xk+1 - %j(Xk),
with Xo = {x}, are such that XC X for all k € N and
dy (ka {0}) —0,
as k— o, where ¢ : /(R") x . (R") — R is the Hausdorff distance defined as

dn(D,C) = max{sup inf d(x,y), supinf d(x,y)},
xeD YeC xeC Yeb

forany D.C € .(R") and d -, ) is a distance irR".

While the domain of attraction of a continuous-time nordingystem is open, see lemma
below, we have that the domain of attraction for a CDI (disestene) system is compact,
besides convex, under assumption of boundedneXs dhis is proved below, and results
useful to approximate the domain of attraction for a CDI egsare given.

First we report Lemma 45 of (Vidyasagar, 1993), stating thatdomain of attraction of
continuous-time nonlinear systems is open.

Lemma 4.31 (L. 45 (Vidyasagar, 1993))Suppose thad is an attractive equilibrium of a
continuous-time nonlinear system, then the domain of etitva of the origin is open, con-
nected and invariant.

Characterization of the domain of attraction for CDI systesprovided in the following
theorem.

Theorem 4.32 Let Assumptions 4.9 and 4.11 hold for the set valued sAgy determining
the dynamic system (4.1) and suppose that X is bounded ahdtsatcX C ri (domF(-,n))
for anyn € R". Given anyA -contractive sef € .#°(X) with contracting factoi € [0, 1),
the sequence of sef) obtained withQy = Q and

Qi1 = Q(Qu), (4.31)

for k € N, is such that:

() Qyisinvariant for all ke N,
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(i) is a nested sequence, thatx C Q. 1, forallk € N,

(iii)

Qy is convex, compact and contains the origin in its interi@,,Q, € .7 °(X),

(iv) the sequence converges to the domain of attradfipn

(v) the domain of attraction is convex, compact and contdirsorigin in its interior, i.e.,

Qe . O(X).

Proof: First recall that, from Corollary 4.17, any-contractive set induces a Lyapunov

function and then the CDI system is asymptotically (expdiadiy, in fact) stable.

(i) (i)) We prove both points recursively. Suppose tigtC X is invariant. This means, by

definition, that
XeQy, = F(X)CQx Wxe Q.

Since, by definition of one-step operator, see (4.27), awdtibn (4.31), we have that
Qi1 =Q(Qk) = {xe X: .Z(x) C Q},
and it follows that

xeQy, = Xe€ Qk+1,

which means tha®y C Q. ;. From this inclusion it follows that
X€Qi1, = F(X)C QT Qxya,

that is equivalent to
U F(X) € Qi1

XEQ 1

which is the definition of invariance fd@y 1, see (4.10). Then invariance Qf im-
pliesQy C Qy 1 and invariance of)i ;. SinceQq is assumed invariant, the statements
are proved.

(i) Compactness and convexity €, for k € N, follow directly form Corollary 4.29 and

(iv)

0 € int (Q) sinceQq € .#9(X), by assumption, an@ C Q. 1.

Suppose that € X is an element of the domain of attraction, ixes Q. By definition
of domain of attraction, see Remark 4.30, it means that go§in= {x} and iterating
through (4.16), from asymptotic stability, we have thatr¢hexists a&(x) € N such
thatxr((x) C Q. This is equivalent to say that for amyin the domain of attractiof,

we havex € Q, for a properk € N.
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(v) Convexity ofQ is due to the fact that, given two pointd, X2 € Q, there exist two
valuesk! = k}(x!) € N andk? = k?(x?) € N such thatx! € Q.1 andx? € Q,2, see
the proof of the previous point. Henog, x*> € Q,s, with k3 = max{k!,k?} since,
from point (i), Quu € Qs and Q2 C Qs, and then any convex combination xf
andx? is an element of),s, hence also element é3. This means tha® is convex.
The origin is contained in the interior @ since Oc int (Qo) and the sequence is
nested. FinallyQ is compact because the space of compacts subsets of theatompa
X, i.e., 2 (X), equipped with Hausdorff distance is a complete metric sexd any
converging sequence in a complete space has its limits isphee itself.

Similar results have been proved for saturated systems arid kystems, in/(damo,
Cepeda, Limon and Camacho, 2008lamo, Cepeda, Fiacchini and Camacho, 2009). We
notice here that such cases can be easily overbounded by syS@em.

4.2.1 One-step operator for uncertain CDI systems

Results analogous to the case of CDI systems can be recdeenaacertain CDI systems,
that is, in presence of additive uncertainty. In particutanvexity and closure of sets given
by the one-step operator is proved.

Property 4.33 Let Assumptions 2.3, 4.9 and 4.11 hold for the set valued #i&p and
uncertainty bounding set W determining the uncertain CBteay (4.21) and the state con-
straint set X and suppose thatXri (domF (-,n)) foranyn € R". Given a convex, compact
setQ € 7 (X), the set

Qw(Q) ={xeX: FXNBOWCQ}={xeX: F(x) CQoW}=
= N {xeX: F(xn) <@m(n) -av(n}

nern

(4.32)

is convex and closed, and compact if X is bounded.

Proof: The proof of Property 4.33 is a straightforward modificatafnthe proof of
Property 4.27 and Corollary 4.29. Substantially, the prcarfi be recovered considering
the effect of additive uncertaintyy, for instance, replacingn(n) with ¢o(n) — @v(n) in
inequalities of the proof of Property 4.27. [ |

The one-step operator for uncertain CDI systems can be os#ekign an iterative pro-
cedure to obtain a sequence of nested robust invariant set@rging to the domain of
attraction, as illustrated in Theorem 4.32.
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4.2.2 One-step operator complement

It has been shown in the previous sections that directiomah@ing function§(~, -) provide

an analytical tool for invariance andcontractiveness, particularly suitable due to its conve-
xity. Convexity of the directional bounding functions alls us, in fact, to infer convergence
and stability for an entire set simply posing convex cowndisi on the boundary.

Moreover, it has been shown that the directional upper bigrifdnction can be used to
characterize the one-step operator, that is the set of p@pped inside a given s@tthrough
the set valued mag (-), see (4.28). In this section we show that directional lovgemizling
functionslf(-, -) can be used to characterize convex regions belonging tathelement of
the one-step operator. First we define the basic geometnicepd of halfspace, useful in
what follows.

Definition 4.34 Given a vectom € R" with n # 0 and de R, we define as#’(n,d) the
halfspace containing the elements R" such thainTx < d, i.e.,

A (n,d)={xeR": nTx<d}. (4.33)

Notice that the scalat is related to the support function of the halfspace, i.e.,

®rng)(n) =d, (4.34)
and that, clearly
d)=.7(%n,d 0
2 (n,ad) f”f(arz, ); Va >0, (4.35)
H(n,ad)=H(-5n,—d), Va<O0.

Then an halfspace is defined by a directipre R" and a scalad € R which can be
interpreted as a sort of distance between the boundary tidlfepace and the origin.

Property 4.35 Let Assumption 4.9 hold for the set valued n#)-). Givenn € R" with
n # 0and de R, we have that# (x) N7 (n,d) = 0 if and only if

F(x,n)>d. (4.36)

Proof: By definition of halfspace, a pointe R" is such thak ¢ 27 (n,d) if and only
if nTx>d. Then,.Z (x)N.2(n,d) = 0 if and only ifn Tz > d, for all z€ .7 (x), which is
equivalent to

min n'z> d.
ze Z(X)

From Property 4.6, the claim follows. [ |
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The meaning of Property 4.35 is that, given a pairtR" the image ok € R" through
Z (-) does not intersect the halfspa¢€(n,d), which means that ¢ .77 (n,d) for all ze
Z (X), if and only if condition (4.36) is satisfied.
We prove here that, given a directigne R" andd € R, the elements oR" satisfying
condition (4.36) forms a convex set.

Property 4.36 Let Assumption 4.9 hold for the set valued n7ap-). Givenn € R" with
n #0and de R, the set of points ¥ R" such that# (x) N7 (n,d) = 0 is convex.

Proof: From Property 4.35, we have to prove thaglie R" andx? € R" satisfy condi-
tion (4.36), then every poin€ € co (x, x?) satisfies condition (4.36).

By assumption we have thatF (x',n) < —d and—F (x2,n) < —d and, for every e
co (x}, x%), there exists & = 6(x*)  [0,1] such that® = 6x' + (1— 6)x%. From concavity
of functionF (-, n), it follows that

_FA(X37'7) = _lf(exl—i_ (l_ 9>X27r’> S
<—6F(x,n)— (1-6)F(x%,n) < —6d—(1—6)d = —d,

which proves the statement. [ |

From Properties 4.35 and 4.36, given the €t 7 (X), a condition to determine
whether a convex set is contained in the complement of thestepeseQ(Q) can be given.

We give here a formal definition of the set of points R" whose image through the
set valued map¥ (-) do not intersect the hyperplan&(n,d). Note that we employ in the
definition the directional lower bounding functiéti-, -), to stress the dependence on the set
valued functionZ ().

Definition 4.37 Let Assumption 4.9 hold for the set valued m@p-). Givenn € R" with
n # 0and de R", we define the set

€(n,d)={xeR": F(x,n) >d}. (4.37)
Moreover, given a se® € 7 (R"), we define
“a(n) =% (n,¢a(n) = {xeR": F(x.n) > @m(n)}, (4.38)
and, finally
% = U %)= U {xeR":F(xn)>@N)}=
NneR", n#0 neR", n#0 (4.39)

={xeR": I3neR", n#0: F(x,n) > @m(n)}.
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Although trivial, it is worth stressing the fact that the g&f(n) is the set of points in the
state space whose image througit-) does not intersect the halfspace

AN, ¢a) ={XeR": nTx>@(n)},

from Property 4.35 and by definition &q(n). Hence, setq is composed by all those
points of the state space whose image through the set valapditi) does not intersect the
setQ. Conceptually, it can be viewed as a sort of complement obtieestep set 2. As

a matter of fact it is not the complementQfQ), since, given a seé® and a pointx € R",
there are three possibility:

Points for which the first possibility holds belong to the etep set o2, those for which
either the second or the third option holds form the complenoé the one-step set. The
set%q is composed by thosesatisfying the second condition, hence it is a subset of the
complement of the one-step operator.

Notice that checking whether a point of the state space bsltw¥ () can be reduced
to a convex constraint to be tested, hence easy to be checked.

Remark 4.38 Givenn € R" with n # 0 we have that’(n,d) = ¢(an,ad), for all a
R with a > 0. Moreover, from homogeneity of order one of support fumgtice., since
@m(an)=ag@(n), forall a > 0and for anyQ C R", we have thatq(n) = ¢a(an), for
all a > 0. For this reason it is sufficient to conside&k (1) for anyn € B} to have a full
characterization of setg(n) for all n € R" with n # 0 and we have that

to= |J %a(n).
neoBy

With the following theorem we make apparent the relatiomieen the one-step set of
Q e % (R") and set6n(Nn).

Theorem 4.39 Let Assumption 4.9 hold for the set valued m&jp-) determining the dy-
namic system (4.1). Gived € 7 (R"), the setén(n) C R" defined as in (4.38) is a convex
set such that

%a(n)NQ(Q)=0. (4.40)

for all n € R" with n # 0, where Q-) is defined in (4.27) and
¢anNQ(Q)=0. (4.41)
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Proof: Convexity of the se¥q(n) =% (n,@(n)) follows from Property 4.36. Given
a compact, convex s& € ¥ (R"), condition (4.40) follows directly from Property 4.27 and
definition (4.38). Finally condition (4.41) follows from fileition (4.39). [ |

The result presented for a CDI system can be easily adaptbd tase of uncertain CDI
systems, that is in presence of an additive term of the usiogéyt whose dynamics is given
by (4.21). The objective is to determine a condition at anyipaof the state space,c R",
ensuring that its image through the dynamic set valued fAggx) = . (x) ®W has empty
intersection with a given halfspace. Recall that the image tbrough the set valued map
Zw(+) is the successor offor the uncertain CDI system, whef8y (-) is defined explicitly
in (4.22).

Property 4.40 Let Assumptions 2.3 and 4.9 hold for the set valued #dp) and uncer-
tainty bounding set W determining the uncertain CDI systéral). Givenn € R" with
n #0and de R, we have that.Z (x) W) N .77 (n,d) = 0 if and only if

F(x,n)>d+a@v(—n). (4.42)

Proof: By definition, a poinx € R" is not an element of a halfspace, ixe¢ 77 (n,d)
if and only if nTx > d. Then,(.Z(x) @W)N.#(n,d) =0 if and only if nTz > d, for all
ze 7 (x) ®W, which means

min n'z>d.
26 F (YW

From Property 4.6, we have that

e min T2 min{n'z: z=y+w ye F(x), we W}

=min{nTy: ye.Z(X)} +min{nTw: we W} =
— i T ; Tw—_E _ nN\Tw=F o o
= min nly+minniw=Fy(xn)-max—n)'w=F(xmn)-@v(-n)

YEZ (X)
where we use the fact that mim f(x) = — maxep —f(X), for any setD and any function
f(-), and supremum is equal to the maximunm\@rsinceW is compact. The claim follows.
[ |

Also convexity is preserved for the uncertain CDI systensecéince the proof is ana-
logous to that of Property 4.36 it is not provided here.

Property 4.41 Let Assumptions 2.3 and 4.9 hold for the set valued dp) and uncer-
tainty bounding set W determining the uncertain CDI systéral). Givenn € R" with
n # 0and de R, the set of points ¥ R" such that(.% (x) W) N7’ (n,d) = 0 is convex.
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Then, from Properties 4.40 and 4.41, the points of the stateeswhose image through
the set valued map” (-) ® W defining an uncertain CDI system do not intersect a given
halfspace is a convex set characterized by condition (4.42)

Remark 4.42 Alternatively, condition (4.42) can be written as

F(x,n) >d+ew(n), (4.43)
since
@v(—n) =max—n)"w=maxn’(—w) = maxn'w= q@_w(n). (4.44)
weWw we-W

wew

Although, maybe, trivial, it is important to point out theefahatQ oW andQ @ (—W)
(used below) are not the same set, in general. In fact, given B, we have

—W={-veR": veW}={veR": -ve W},
which is, geometrically, the mirror image of W with respexthe origin. This means that
Q& (—W) is the set obtained as the Minkowski sun@aind the mirror image of W, usually
not equal to the Minkowski difference@fand W. In fact
Qo (—W)={z=x+Vv: xeQ, -ve W},
QoW ={zeR": z+we Q, Ywe W},

which are equal only if W= {0}.

The relation between the one-step Q(Q) and the convex seéfo.,_w) (1) is stated
below. By definition (4.38), we have that

Gao(-w)(N) ={XER": F(x,N) > @og-w)(N)} =
={XeR": F(x,n) > @m(n)+ew(n)}= (4.45)
={XeR": F(x,n) > @(n)+@v(—n)}.

We recall here thato.—w)(n) is the set of points in the state space whose image through
Zw(-), defined in (4.22), does not intersect the halfsp#tén, ¢ (n)), from Property 4.40
and by definition oféo.,_w)(n). We can conside¥q.,_w) as a sort of complement of the
one-step se®y (Q) for an uncertain CDI system, defined in (4.32).

Theorem 4.43 Let Assumptions 2.3 and 4.9 hold for the set valued #dp) and uncer-
tainty bounding set W determining the uncertain CDI sys#il(). GiverQ € .7 (R"), the
set@oq(-w)(N) € R" defined as in (4.38) is a convex set such that

Cao-w) (M) NQw(Q) = 0. (4.46)
for all n € R"with n # 0, where Qy(-) is defined in (4.32) and
Cae(-w) NQW(Q) = (4.47)
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Proof: Convexity stems directly from Property 4.41, while corutiti(4.46) follows
from (4.45) and Property 4.33. In factife €qq—w)(n) then

@ (n)—ew(n) < e(n)+av(—n) <F(xn) <F(xn), (4.48)

since, by assumption of@int (co (W)), then@y(n) > 0 for all n € R". Thenx ¢ Qw(Q).
Condition (4.47) follows from definition (4.39). [ |

The results presented in this section can be used to desiglgarnthm to compute in-
variant sets for a CDI system. Consider the strategy predent(Bravo et al., 2005). The
algorithm proposed is a branch and bound procedure. At &py atset of boxes in the state
space are considered. For every box of the set, it is checkether its image is contained in
the union of boxes. An approximation method based on intantmetic is used to com-
pute a bound of such image. If the image of a box (or, beteeagproximation) is contained
in the union of boxes, then such box is maintained in the sborés for the next step. If its
image does not intersect the union, then the box is remowed fihe set of boxes. Finally if
the image intersects the union of boxes, then such box isaspliits parts are added to the
set of boxes for the next steps. Now, the procedure to cheethehthe image of a box is
contained in a set can be reduced in our case to check cantib2) (or (4.25) for the un-
certain case) at its vertices (with= 1), while the condition for empty intersection is given
by testing at the vertices if condition (4.36) (or (4.42) hegence of uncertainty) is satisfied.
Recall that in our case, no approximations are needed, #ireceonditions presented are
necessary and sufficient, hence no conservatism is inteatindhe process.

4.3 Computational issues

One of the main purposes of this thesis, beside of charaitgriheoretically invariance
and set-theory for nonlinear systems, is to provide contjautal procedures to obtain an
invariant or aA -contractive set for nonlinear systems. The aim of thisigeas to illustrate
how the theoretical results concerning CDI systems, ptedeand proved in this chapter, can
be used to define algorithms for numerical issues. It is wethlling, in fact, that a relevant
motivation of our research is to contribute to fill the gapvestn the great, and increasing,
importance of invariance and set-theoretic methods inrobfdr nonlinear systems and the
practical applicability of the computational techniquesgented in literature.

The method for computing invariant andcontractive sets for CDI systems that we
propose here is based on the following scheme.

e First, we obtain an ellipsoidal invariant set for an LDI mstwhich locally over-
bounds the CDI one. By means of an LDI approximation, valid meighborhood of
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the origin, we are able to determine an ellipsoid which isamant also for the CDI

system, applying procedures based on powerful and well kremvnputational tools,

like convex programming and LMI. Since in practice it can ftermassumed that the
mismatch between the CDI system and the overbounding LDismall, the beha-
vior of the two systems can be expected to be close, at ledsnwine neighborhood.
Then the resulting invariant ellipsoid captures the locgtdvior of the CDI system
and it is obtained by means of simple linearity-based coatprtal techniques.

e The resulting ellipsoidal invariant set is then employedetermine a polytopic inva-
riant set for the LDI system, denoteQ@, . This is an important computational step,
since, as shown in the next step, the conditions for invagandA -contractiveness
for CDI systems, provided in the previous sections, enta tomputational burden
when applied to polytopic sets. The procedure to obtain tigtgpic invariant set
from the ellipsoidal one is based on an iterative algoritfimtely determined and
whose determination index is provided below.

¢ Given the polytopic invariant s€_ for the LDI system, the elements of the family of
sets obtained scalin@,, that isaQ for a > 0, are used as potential invariant sets for
the CDI system. Roughly speaking, the shap@pfs used to determine a larger $&t
for which the condition of invariance holds. In fact, ne@gsand sufficient conditions
for invariance and -contractiveness can be employed to determine whetheytopel
in the state space is an invariant set for the CDI system, ansief a finite number
of convex constraints, as proved below. This implies thatedures for checking the
condition for invariance (oA -contractiveness) of a polytope, characterized by affor-
dable computational effort, can be defined and used to desigaigorithm to obtain
an invariant set or a-contractive set for a generic CDI system.

e Eventually, further techniques which permit to enlargewegiinvariant se, or aA-
contractive one, are proposed. The main benefit of such icpobs, a sketch of which
will be presented here, is that the basic shape of the invaset can be modified, and
adapted to the particular nonlinear nature of the CDI system

The steps which lead to the definition of the algorithm for potimg a polytopic invariant
or A-contractive set for a CDI system are detailed below.

4.3.1 LDI system locally overbounding a CDI system

First, it is worth presenting some considerations on thaticsl between CDI and LDI sys-
tems, to show that the latters provide overbounds of thedosm

Recall that CDI systems, as stated above, find one of thein fuatification in their
capability to approximate nonlinear systems. Hence, andyBiem overbounding a CDI one
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entails a further level of conservatism introduced, whesdus bound a nonlinear system.
On the other hand, it has to be noticed that

¢ the LDI overbounding system will be defined in a neighborhobthe origin, where
the mismatches with the original CDI system (and also with flossible nonlinear
systems whose bound is the CDI one) are small;

¢ the LDI system is used to obtain a preliminary invariant setlie CDI system, whose
shape and geometry matter more than its size. Then the sittes afivariant set is
enlarged by means of the other, subsequent, steps.

Thus, the degree of conservatism introduced by the use ofvarbound of the CDI
system is compensated by the computational benefits prbbigéhe linearity properties of
an LDI system.

Here we provide methods for obtaining an overbounding LPpresentation of a CDI
system, which justifies the use of such modelling frameworiitain a first invariant set for
generic systems.

4.3.1.1 LDI systems overbounding CDI and CCDI systems

Given a CDI system, it is trivial to obtain an overboundingfGystem. Recall that a CDI
systems is a dynamic system (4.1) whose dynamics are deeiroy the set valued map

Fepi(X) = {zeR": nTz< f(x),¥n € R"},
with ﬂ,(-) convex functions. Consider the system (4.1) given by theaeed map
Feepi(x) = {ze R fj(x) <z < fj(¥), Vj € Nn},

with 5 3 A 5
fi(x) = fei(x), fj(x)=—TF_i(X), Vje€Ny,

whereel € R" is the vector with all entries equal to 0 but tfih, which is 1. Trivially,
the latter is a CCDI system, see Assumption 3.1, and ovedsotire CDI one. In fact, for
everyx € R", the set%ccp(X) is defined by a subset of those convex constraints deterginin

ﬁcm (X)

Hence we can consider the problem of generating an LDI systerbounding a CCDI
system. For that purpose the reader is referred to Secttoh, 3vhere a method to obtain
an LDI system overbounding a nonlinear one is provided. hiqaar, consider a nonlinear
system

x" = f(x),
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with f : R" — R" defined on a neighborhood of the origlhC R" and such thaf(0) = 0.
The LDI system
X(K+1) = A(K)x(K),

with A(k) € & and«Z C R™" defined in (3.56), overbounds the nonlinear system withen th
setD. Clearly the computational procedures presented in tlusoseand based on an LDI
overbounding system, can be directly applied to nonlingstiesns, using the approximation
method illustrated in Section 3.5.1.

For a CCDI system, an analogous procedure yields to an oweddog LDI system. In
fact, recall that the dynamic function for a CCDI system isedmined by a set of convex
and concave functions. If everyone of those functitfm@) and ﬂ- (), are overbounded by an
LDI function, then the related LDI system overbounds the CGRe. Hence, the polytope
in the spacer C R"™" obtained as

o ={AeR™": A ;<A j<A; Vi jeN}, (4.49)
with

ofi(%) ofi(x)
%% o 1 (4.50)
A = max{ maxep 25, mavep 252 1,

A= min{minXGD , MiNyep

foralli, j € Ny, provides the LDI system overbounding the CCDI system. Glesuch LDI
system overbounds also any other system overbounded byGbé £ystem.

Assuming that the analytical expression of partial denestof functionsfvj (-)and ﬂ- (+),
with | € Ny, are available, the problem of computing their maximal amimmal values, or at
least bounds of them, can be solved by applying intervdirauétic, see (Bravo et al., 2005).

Particular classes of CDI systems whose elements are easiipounded by LDI sys-
tems, at least locally, are Lur'e systems and systems ptiegayeneralized saturated func-
tions. Lur'e systems, in fact, are linear in a neighborhobithe origin, see (3.19). Then, the
linear system given by

Yo = FX,

is equal to the Lur’e system for amye R" such thatFx| < by, which is a band in the state
space containing the origin, sinbg > 0, see Assumption 3.8 and Property 3.9.

{ X1 = (A—BkoF )X,

Similarly, for a system presenting a generalized saturfatection in feedback, see Def-
inition 3.12, we have that there exists a neighborhood obtigen within which the system
matches a linear system presenting an additive boundedtaimtg. In fact, the system

Xer1 = (A+BUF )X +w(k),

wherew(k) e W = {w=Bve R": —uo <v < uo}, defined in the seD = {x ¢ R":
|Fx| < % + o} overbounds the generalized saturated system (3.25). é\ibiét in this case
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asymptotic convergence to the origin can not be proved,dheapt of ultimately bounded-
ness should be employed. For sake of simplicity, in the Yalhg the case of LDI system in
absence of additive uncertainty is considered, see (Bogl,€t994; Gurvits, 1995).

4.3.2 Polytopic local invariant set

In what follows, we suppose to know a polytopic LDI system rpeeinding the original
CDI one, which is defined by the set valued m#j-). That is, suppose that there exists a
polytopic setez C R"™" for which Assumption 3.25 holds and such thatC 7. Then the
system (see Section 3.5)

xt e o (x), (4.51)

overbounds the CDI system. Recall that, from AssumptioB 3l set= can be expressed
as the convex hull of a finite numbeg € N of matricesAl € R™", with j € Ny,.

A method for capturing the geometry dfcontractive invariant sets with high contracting
factor, for the LDI system, is proposed here. This contvacsiet is used to enhance the
results of the proposed methodology. Recall that, if a qataddkyapunov function is defined
for an LDI system, its level sets ake-contractive ellipsoids and then invariant sets for the
system.

One of the major benefit of quadratic Lyapunov functionseéstétct there are methods and
computational tools to compute them and obtain, among @lptssible quadratic function,
the optimal one with respect a to certain criterion. A qutdrainctionV (x) = x' Pxis a
Lyapunov function for the LDI system (4.51) if matixe R"*" is such that

P=PT >0, (4.52)
(AWTPAl —P <0, VjeNp,. '

whereAl € R™" are then, matrices whose convex hull defines the LDI system.

Hence, any square matrixe R™" satisfying (4.52) determines a Lyapunov function for
the LDI system (4.51). This well known result and the fact tifee level sets o¥/(-) are
A-contractive sets for the LDI system (4.51) can be provedaiiy to Corollary 4.17.

Here we propose as an optimality criterion to select amomgyegossible Lyapunov
function, the minimization of the induced contraction tacof the level sets. Solve the
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following LMI optimization problem:

max y
P=PT, y>0

st. P>, (4.53)
P < ul,
(A)TPA —P < —yP, V] €Ny,

whereAl ¢ R™" are the vertices of polytope’.

The optimization variablg € R is related to the contraction factor of the level sets. In
fact, condition(Al)TPAl < (1— y)P is equivalent to

(xT)TP(x™) < max x" ATPAx= max x" (A)TP(A)x < (1—y)x"Px,
AEJZV ]ENna

wherex* is given by the LDI system (4.17). Then given the ellipséi(P) = {x € R":
x"Px < 1}, from x € &£(P) it follows thatx* € \/I—y&(P), or, in terms of set inclusion,
A& (P) C \/1—y&(P) for everyA € o/. That is equivalent to say that, for everg R", we

have
XPx<a = (xHTPx")<(1-ya, Vx e(x), (4.54)

forall a > 0.

The contraction factor of the ellipsoid is minimized (andriithe decreasing rate of the
Lyapunov function is maximized) maximizing subject to condition number constraints,
as the inclusion of the constraintsc P < ul, with u > 1, guarantees that the condition of
matrix P is bounded byu.

The following definition and lemma allow the determinatidrad\ -contractive polytope
ensuring a contracting factor arbitrarily chosen but gretiten the contracting factor of the
ellipsoidal invariant set, i.e,/1—y.

Definition 4.44 Given a matrix He R™" define the polytope

Z(H) ={XER": |HX|| < 1}. (4.55)

The proof of the following lemma can be found ildmo, Cepeda, Limén and Camacho,
2006).

Lemma 4.45 Consider the ellipsoid’(P) = {x< R": xT Px< 1}, with P=PT > 0. Suppose
thatA;, i=1,...,nare the eigenvalues of matrix P andgR", i=1,...,n the corresponding
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orthonormal eigenvectors. Denote

vy (ph)T
rP) =2 : (4.56)
n)‘n(pn)T
Then 1
%@@(P) Cr(P)C &(P). (4.57)

ConsiderQ =T (P) as defined in (4.56). In the following it will be shown thatodsing
an appropriate value &f, aA-contractive polytopic set can be iteratively obtaineglging
a finitely determined algorithm similar to those presentedGilbert and Tan, 1991; Kol-
manovsky and Gilbert, 1998). Furthermore, an upperbogndatue of the determination
index as a function of the contraction factgfl — y of the ellipsoid and the required con-
traction factorA for the polytope is provided. Such value allows one to compheA -
contractive set avoiding the iterative algorithm.

It is useful to recall the concept of reachable sets and itiqoder to give here the ex-
pression for an LDI system characterized by the polytepe R™". Given the initial set
Xo C R", the reachable sets are given by

Xer1(Xo) = A (X)) = |J “(x), keN, (4.58)
XEXk(Xo)

where the dependence on the initial condition is expressplicély. Clearly Xy can be a
singleton inR".

Theorem 4.46 Consider P and/ obtained solving the optimization problem (4.53) dhe-
M(P) = {xe R": Hx < 1} defined in (4.56). Given the contraction factor

AZ(\/]'_% 1)7 (459)

and the integer i> 0, G} (Q) is defined as
CM(Q) = {xeR": X;(x) CAIQ, Vj € Njgjj},

where %(x) C R" are the reachable sets generated by recursion (4.58) wjt)%= {x}.

Then G (Q) is a non-emptyA-contractive set for the LDI system (4.51). Moreover,
C)(Q) =CA(Q) foralli >i*, where

o nn_ o (4.60)

n(15)




Chapter 4. Set-theory and invariance for CDI systems 147

Proof: Given the functior(x) defined as
®(x) = max|y/nki (§) X,
1€NRp

we have thak € Q if and only if ®(x) < 1, by definition (4.56).

Notice that, givenQ, the setC* (Q) is the set of points € Q such that all thej-th
reachable sets, withe Njg;;, generated by (4.58) with initial conditiofy = {X} are subsets
of the elements of the sequence of contractedsk®s then

CM(Q) = {xeR": Hx; < AJ1, ¥xj € X{(x), Vj € Njgj }

Thus, we have thate C* (Q) if and only if®(x;) < AJ, for all x; € Xj(x), forall j € Njg .
Clearlyx € CA(Q) if and only if ®(xj) < Al for all xj € X;(x), for all j € N. We provide a
condition on index such that, if satisfied, thenc C* (Q) impliesx € CA(Q). Note that

Px= 3 A((R) 07,

and from .
®?(x) = maxnAi((p') %),
ieNp
it follows that

2 .
P _ maxA;i ((p)Tx)? < x"Px
n i€Np

By the definition ofC} (Q) and (4.57) we have thag € C} (Q) impliesx{ Pxy < 1. Then,
asP is the solution to (4.53) and from (4.54), it follows
®(xi11) <X 1PX 1 < N(1—Y)xTPx <n(1—y)hgPx < n(1—y)*
for all x;j € X;(Xo), with j € Njg;, fori > 0. From the former inequality, it follows that, given
X0 € C1(Q), the condition
D(xiy1) < AL VXir1 € Xip1(Xo), Vi>i¥,

is fulfilled if n(1—y)"+1 < 220+ fori > i*. Notice that this yields € CA(Q) and hence
C Q) =CL(Q).

. . i+1
Proving than(1—y)'*1 < A20+D for all i > i* is equivalent to prove thm(%) <1

foralli > i*. A necessary condition for this to be fulfilled is tr@l <1, and it is satisfied
by every value ofA defined in (4.59). Then, we have

1-y +1 i 1-y ; Inn
n(v) <1l < Inn+(|+1)ln<v> <0 & i+1>——75~. (4.61)
In(—)

1-y
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Hence, we obtain that if

thenn(1—y)' 1 < A20+1), u

It is clear that the greater ig, the smaller is the admissible contracting factor of the
obtainedA -contractive polytopic set, see (4.59). &8t(Q) is polytopic and it captures the
geometry of the highly contractive ellipsoidal invariaat.s

Remark 4.47 Another positive consequence of computing the maxynsthat the deter-
mination index for computingZQ) is reduced. In fact, from (4.60), the biggerysthe
smalleris f.

4.3.3 Algorithmic computation of aA-contractive set for CDI systems

We provide here the algorithm to obtai acontractive set for a CDI system. The procedure
is based on the steps mentioned at the beginning of thiogecti

The algorithm is based on the necessary and sufficient ¢onddr invariance andh -
contractiveness of a set for a CDI system, stated in Theor&B ¥Ve recall here that, from
convexity of the directional bounding functions determmia CDI system, such necessary
and sufficient condition is a boundary condition.

Computationally, it is not possible to check the conditiondeneric set) € .7 (R"),
since it can involve an infinite number of constraints, orreefeeryx € dQ and for everyy €
R". On the other hand, for the particular case of polytopic Setthe number of constraints
is equal tony n,, wheren, andny, are the numbers of vertices and facet€xpfas proved in
the following.

Property 4.48 Let Assumptions 4.9 and 4.11 hold for the set valued sgp determining
the system dynamics (4.1) and the state constraint set XlyfopeQ = {x € R": Hx < 1},
with H € R™<" and whose vertices ard & R" for j € Ny, is a A-contractive set for a
A €]0,1] and constraints x X if and only ifQ C X and

F(VLHT) <A, VjeN, VieN,. (4.62)

Proof: Since (4.12) is a necessary and sufficient condition for @geQ € 7 (X)
to be aA-contractive set for a CDI system, then the equivalence éatwi4.12) and (4.62)
provides the proof of the property.
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We recall that for a polytopE = {x € R": Hx < b}, with H € R™*" andb € R™, we
have that

xel & n'x<@(n),VneR" <« Hx<b=gH), vieNy,

that is, the condition of set-membership for a poirgnd a polytopd in terms of support
function is reduced to a finite humber of constraints, camogr only dlrectlonsl-lT for

I € Np,, see Appendix C. Then from Property 4.12 and Theorem 4.13have that the
necessary and sufficient condition forcontractiveness of polytofg@ is given by

FXHT) <A, Wx€dQ, VieNg. (4.63)

which involves all the points of the boundary but omly directions. We prove in what
follows that (4.62) and (4.63) are equivalent. Notice tHa638) implies (4.62) since the
vertices are elements of the boundary, Mb.¢ Q, for all j € N,,. We prove the inverse
implication.

Assume that (4.62) holds. Any element 9Q can be expressed as the convex combina-
tion of vertices ofQ, that is there exist a set of real number§1( X) € R, for j € Np,, such
thatX = ZJ: 6i(%)vl, 81(%) >0 forall j € Ny, andz 8!(X) = 1. Then, from (4.62) we
have that

=)
2

~ ~ 1 i i nV
FRHT) =F(Y 01R) VI, HT) < 5 81(®) F(v/,HT) sz =A, VReoQ,
=1 =1 J=1

for all i € Ny, , from convexity of functions (-, H."). Then condition (4.62) implies (4.63).
[ |

Then, Property 4.48 provides a necessary and sufficientittmmdbr a polytope to be a
A-contractive set, consisting i, n, constraints. The results presented in such property can
be used to check whether a polytopic set is-eontractive set, an iterative procedure can be
designed. Given & -contractive sef)y atk-th step, a se® such thatQ, C Q is generated
and invariance or contractiveness is checked. If th€detfils conditions of Property 4.48,
thenQ, 1 is posed equal t@ and an enlarged-contractive set is obtained.

In what follows we present a result that will permit to gerera point e X such that
XK ¢ Q, and the related s& = co (XX U Qy) satisfies Property 4.48.

Property 4.49 Let Assumptions 4.9 and 4.11 hold. Consider a polyfope{xc R": Hx <
1} € X, with He R™*", andA € [0,1], such that hypothesis of Property 4.48 holds@r
and, giverx € X, define the sdb = co(QUX). If X € X is such thaE (X, HT) <A, for every
I € Np,, thenQ is a A -contractive set (a control invariant setAf = 1) for system (4.1) and
constraints x X.
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Proof: Under the hypothesis of the property, we have that, from éhtgpt.48,
FVLHT) <A, VjeNy, VieNg, (4.64)
wherevl € R", with j € Ny, , are the vertices d®, and

FRHT) <A, VieNg,. (4.65)

Recall that any element of a polytope can be expressed ativexccombination of
its vertices and notice that vertices @fare given by a subset of the vertices @fand,
eventually, poink.”Moreover, for any elemente Q, there exist® € R™+1 with 6j > 0, for

all j € Ny, 41, such thalzT“jll 6;=1and
LI i
X= gl OV + Oy, 11X
Hence, as in the proof of Property 4.48 and from (4.64) aréb{4it can be proved that
FxHT) <A, VieNg, (4.66)
for all x € Q. Since, from Theorem 4.13, condition (4.66) is equivalent t
F(X) CAQ,

then, for everk € Q we have thatZ (x) C AQ C A Q and this means th& is aA -contractive
set for system (4.1). [ |

Now, given a directiom¥ € R" (assumed generated randomly in the algorithm) and the
setQ = {x € R": H*x < 1} with HK € R™*", we compute the point as the solution of
the following convex programming problem:

max nkxk
ex (4.67)
st. FXHOT) <A, Vvie Nrge

The optimizer of problem (4.67) is such thdte X and eithexX € dQy or X ¢ Qy and
satisfies condition of Property 4.49. Then(& U X*) is aA-contractive set. Hence, it has
to be only checked i lies on the boundary or not.

Finally, we provide the algorithm to computeAacontractive polytopic set for a CDI
system.
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Algorithm 1 Computing aA -contractive set for a CDI system (4.1).
Given the CDI system (4.1) under Assumption 4.9:

(1) Obtain the polytopic LDI system locally overbounding 8Dl one. Denote witi\]
theng matrices determining the LDI system.

(2) ObtainP andy from optimization problem (4.53) for the overbounding Lktgem.

(3) Chooseél € (v1—-vy,1) and obtainQ_ = Cﬁ (F(P)) where

(4) ChooseX € (3\, 1] and computer| , the maximala > 0 such thatQ = aQ__ fulfils
condition (4.62). Pos@o = a.Q andk = 0.

(5) Generate) € R" and computeX € X as an optimizer of the convex problem (4.67).

(6) If X< ¢ Qy, thenQi,q = co(QUXK) = {x € R": H¥+1x < 1}, with HK+1 ¢ R xn
and a propenfrl € N, otherwise go to (5).
(7) Posek =k+ 1. If k > knax Stop, otherwise go to (5).

(8) ReturnQy, A-contractive set for system (4.1) with contracting factor

Remark 4.50 In case that the nonlinear system is overbounded by an waineZDI system
(for generalized saturated systems, for instance, se@oBex8), slight modifications of the
algorithm have to be introduced. Thatis, in case that the §Btem bounding the nonlinear
one has the form

X" e.Z(X)pW,

one possible way to proceed, is to consider the CDI system
xt e .Z(x),

for the first three steps of the algorithm. That is, the pragzedo generate an LDI system
and to compute first an ellipsoidal invariant set and then &apic one for such LDI sys-
tem, might be performed neglecting the additive uncengamiunded by W. Alternatively,
methods, present in literature, for computing ellipsoiaddust invariant sets can be applied.

Then, in step (4), the uncertainty can be considered by cémipcondition (4.62) with
the following .
FIVHT) <A —@u(HT), VjeNn, VieNn, (4.68)
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which, can be proved to be the necessary and sufficient ¢ondlir invariance @ -contracti-
veness, in fact) for uncertain CDI systems and polytépic

For what concerns the enlarging procedure, in step (5) thevea optimization problem
(4.67) to be solved to obtairf xhas to be replaced with

max nkxk
ex (4.69)
st. FOXK(HOT) <A —a@uHT), Vie Ni;

in which the effect of the additive uncertainty is taken itoount. The following steps are
not affected by the presence of the additive uncertainty.

The resulting sequence of sets are polytopicontractive sets for the uncertain CDI
system with contraction factak.

4.3.4 Numerical example

We provide here an example of the application of Algorithnorldomputing an invariant set
for CDI systems.

We consider a generalized saturated system (3.25), seéers8a@, that is

Xk+1 = AXk+ B¢(ka7k)7

with matrices

11 1 05
A= . B= . F= [ 05236 —1.1264 |,
0 11 11

and the generalized saturated function bounded as
—T(=y) <oy <T(y), VyeR, vkeN,

wherel (y) = max{u(y+ o), —Yyo} with u =1, 0 = 0.2 andyp = 1.8. The bounding sector
characterizing the generalized saturated function iseseprted in Figure 4.1.

We recall that, as shown in Section 3.3, the generalizedaatl function can be over-
bounded by the uncertain CDI system

X" €.Z(X) oW,
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Figure 4.1 Bounding sector for the generalized saturated function.

where the set valued mag (-) satisfies Assumption 2.5 with convex bounding functions
given by (3.27), that is

(%) = nTAx+nTBro(Fx), if nTB>0,
T nTAx—nTBrO(—Fx), if nTB<0,

for all n € R"and allx € R" and with

r(y) = max{py, —yo— po} = max{y, —2},
and the bounds on the additive uncertainty are

W={w=Bv: —puo<v<puog}={w=Bv: -0.2<v<0.2}.

The state are assumed to be constrained in the region

X={xeR?: —15<x; <15 —6< x < 6}.

As illustrated in Remark 4.50, we consider first the CDI systeeglecting the contribu-
tion of the additive uncertainty for the first steps of theagithm. Notice that a local LDI
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Figure 4.2 SetsQ_ and Q, and evolutions of the vertices 6f .

system overbounding the CDI one is given by

0.8382 04368
X1 = (A+BF)Xc= ,

—0.5760 —0.1390

whose eigenvalues are3396+0.1133, lying in the unitary circle. Notice also that, actually,
the LDI system is a linear one.

As a matter of fact, in the region of the state space given by

D={xeR": |Fx g%-i—a}:{xeR”: IFx| <2},

the CDI system (in absence of additive uncertainty) anditieal one are exactly the same.
Hence, we solve the optimization problem (4.53) which palesithe ellipsoidal invariant

set for the linear system. The ellipsoid is defined by matrix

o_ | 9.5583 74099
| 7.4099 74183’

with y = 0.7693, which means a contracting factgf — y = 0.4803. In step (3) we compute
the polytopicA-contractive sef), for the linear system witlhA = 0.5063, that yields to
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-6
-15

Figure 4.3 Sequence of robust invariant s€lg for the CDI system, fok € Ny, ., generated by
the enlarging process.

determination index= 7. It is worth pointing out that, since the overbounding sysis a
linear one, standard algorithms for computation of polidapvariant sets could have been
applied in this case. Figure 4.2 shows the polytopic invarsetQ, as well as the polytope
AQ_. Moreover, in dotted lines, the evolutions of the verticeQpthrough the linear system
are depicted. It can be notice that every verteQpfis mapped inside the s&Q, , which is

a graphical confirmation of-contractiveness d@, .

Now, since we are interested in a robust invariant set foutieertain CDI system, we
chooser = 1 and apply the following steps of the algorithm. Due to thespnce of additive
uncertainty, the modification of the algorithm exposed imfaek 4.50 are applied. In Figure
4.3, the sequence of robust invariant sets generated byntasgmg process are depicted.
The inner set i€2g computed at step (4) of the algorithm, obtained by means afteotbmic
procedure.

Finally, the biggest robust invariant ., with kmax= 100, computed through Algo-
rithm 1 is shown in Figure 4.4. Notice that the state constsaare satisfied, as the robust
invariant set is contained in the sét
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Figure 4.4 Robust invariant se®, for the CDI system, generated through Algorithm 1.

4.4 Conclusions

In this chapter invariance amd-contractiveness of convex, compact sets for CDI systems
have been characterized. First, directional lower and uppanding functions, denoted
F(-,-) andF(-,-) respectively, have been introduced and their properliestiated.

Conditions for invariance and-contractiveness are posed as a sets of constraints in-
volving directional upper bounding functions. Thanks towexity of such constraints, they
can be imposed only at the boundary of the potential inva i&arcontractive) set, unlike
generic nonlinear systems. This will lead, in next chapterdefine procedures for comput-
ing polytopic invariant sets based on convex constrairtisfaation, hence with affordable
computational requirements, for particular classes ofinear systems.

Also the classical tool for iterative computation of inari sets, the one-step operator,
has been analyzed for CDI systems. It has been proved thantistep operator for CDI
systems preserves convexity and compactness, under raidhasions. The related results
can be applied to generate a sequence of invariant setsédtih system, converging to
the domain of attraction, provided asymptotic stabilitytloé origin. Properties of concave
directional lower bounding functions allow us to deterntoavex regions of the state space
contained in the complement of the one-step set, for a gigteR.s
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The chapter ends with a section treating some computaiispaicts. In particular, a pro-
cedure to obtain an invariant onacontractive set for a CDI system is illustrated. The proce-
dure is based on the necessary and sufficient conditionyariance and\ -contractiveness
for CDI systems.
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Chapter 5

Convex Invariant sets for nonlinear
systems

In this chapter the practical problem of how to obtain an iiiar# set for a nonlinear system
is addressed. The attention is focused on two particulaseBof nonlinear systems, that is,
DC and Lur’e systems, whose dynamics are given by singleeddiunctions rather than set
valued maps. Recall that both frameworks enclose a widdyarhnonlinearities frequently
encountered when dealing with real systems. The main obgect this chapter is to pro-
vide algorithmic procedures for obtaining an invariant@ea A -contractive set for a given
nonlinear system.

Summarizing, in this chapter we particularize the resusented in Chapter 4 to a very
wide class of nonlinear systems. The particular nature osixZems and Lur’e systems and
the generality of properties presented in Chapter 4, allotoyprovide relevant results valid
for a wide family of nonlinear systems and to define prac@gbrithmic procedures for the
computation ofA -contractive and invariant sets.

In the first section, a sufficient condition for invariance tmnstrained DC systems is
given. In particular, exploiting some properties of DC ftiogs, a condition for invariance of
a polytopic set is provided. Both cases of deterministicamzkrtain systems are considered.
An algorithm for computing a local invariant set, possibly-aontractive set, for a nonlinear
deterministic DC system is presented. It will be shown thaler mild conditions, the
algorithm always provide a non-empty invariant set.

Similarly, a condition for robust invariance for the uneént nonlinear DC systems is
proposed. A relation between the contraction factor ofAtfmontractive set for the nominal
nonlinear system and a measure of the maximal uncertaiatycin be tolerated before the
set loses invariance in case of uncertainty is provided.

159
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In the second section, an analysis method to estimate thaidarhattraction of a class
of discrete-time Lur'e systems is presented. A new notiomeériance, denoted NL-
invariance is introduced. This new concept generalizesitii®n of SN Sinvariance intro-
duced in Alamo, Cepeda, Limdn and Camacho, 2bpfbr saturated systems. Although a
discrete-time Lur'e system can be considered as a parnticate of CDI system, as shown
in Chapter 3, we present a specific method to address theydartproblem. Then we will
show that the problem can be solved also from the point of Wie®DI systems. In fact,
we will see that the definition of a CDI system overboundirgltire one and the applica-
tion of properties of CDI systems, will lead to the same rssobtained through thad hoc
method for Lur'e systems.

5.1 Convex invariant sets for DC systems

An autonomous DC system is a nonlinear system whose dynamatidén fulfills Assump-
tion 3.17. We recall here that with Assumption 3.17 we supgbatf(-) is a DC function
defined on the convex s&t C R" with 0 € int(D), it is differentiable at the origin, and the
convex functiong)(-) andh(-), such thatf (x) = g(x) — h(x), satisfyg(0) = 0 andh(0) = 0.

Summarizing, we consider the autonomous nonlinear des¢iete system
x" = f(x), (5.1)

wherex € R"andf : D — R" is a DC function satisfying Assumption 3.17.

Assumption 3.17 implies that the origin is a root of the DCdiion, that isf(0) = 0.
Note that if f (0) = 0, then conditiorg(0) = 0 andh(0) = 0 yields no loss of generality.
In fact, if g(0) =r andh(0) = s, thenr = s from f(0) = 0. Denotingg(x) = g(x) —r and
h(x) = h(x) —r, we have thaf (-) admits a different DC representation) = §(x) — h(x)
with §(0) = 0 andh(0) = 0. Furthermore, in what follows, we will assume that funitfd-)
is twice differentiable, see Assumption 5.1.

It is worth recalling that any convex function defined on aemgetD is continuous on
any (relatively) open subs&t C D. Since a DC function is representable as the difference of
two convex functions, Assumption 3.17 implies local couatiy of f(-), see Theorem B.10.

Assumption 5.1 Assume that a given DC function b — R" is twice differentiable at the
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origin and the eigenvalues of the Jacobian ¢f) fat the origin,

05 f1(0)
3(0) = 07 f2(0) ,
O fa(0)

lie in the interior of the unitary circle.

Assumption 5.1 implies that the origin is an exponentiatigbte equilibrium for the
linearized system

X" = J(0)x. (5.2)

From classic stability theory for nonlinear systems, seeiristance the center mani-
fold theory, it follows that there exists> 0 such that for any initial conditiory € €B) =
{xeR": ||x||2 < €} C D the corresponding trajectory converges to the origin,imkﬁlm Xk =

0, wherex 1 = f(Xk).

Moreover, twice differentiability of the dynamic DC funoti is useful to prove that
the proposed procedure guarantees the computation of @mpty invariant set. In fact,
as shown in what follows, if the dynamic DC function is twiceferentiable, then a\-
contractive set, hence invariant, for the linearized systealso invariant for the DC system,
if appropriately scaled.

Remark 5.2 With Assumption 5.1, functior(-} is supposed to be twice differentiable at the
origin. Then, under this assumption, there exist two cartsta > 0 and o > 0 such that
oB5 C D and

| f(X) — K(0)X||o < pXTX, Vx € 0B,

where, by definitiorB) = {x e R": ||x||> < 1}.

In fact, from the Lagrange form of the Remainders, we havettieaTaylor expansion of
fi(-), for every ie Ny, is defined iroB} as

fi(x) = Of fi (0)x+ X" Hy, (c'(x))x
for a d(x) € oBYJ and a propero > 0, where H(-) is the Hessian of function (f), defined

in a neighborhood of the origin, for all¢ Ny. Then a finite bound on the linearization error
can be found, yielding to an overbounding CDI system, seenle&a2.8.
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5.1.1 Contractiveness and invariance condition for DC sysims

The theorems presented in this section provide sufficiemditons for checking whether a
set is an invariant set, or &-contractive set, for a DC dynamic system. The main feature
of these conditions is the affordable computational burggpuired, for the polytopic case.
This allows one to employ them to design a simple algorithmcfumputing a convex -
contractive invariant set for the DC system.

Property 5.3 Given a DC function f D — R", functionnT f(-) is a DC function defined on
D C R", for everyn € R".

Proof: The claim follows directly from the fact that DC functionsariosed under the
sum operator and since

n
T
n f(x) =3 nifi(x),
i; (|
forall xe D andn € R". [ |

In the following, the functiorF (-, n) related to a generic vectgre R" is defined for the
CDI system overbounding the DC system, see Definition 4.3 h&Ve already proved, see
Proposition 3.18, that for any DC system there exists anbmeerding CDI system directly
determined by the convex bounding functidheﬁ-), for n € R", defined as

0= 5 mi (g0 -10)+ 5 mj(dh)—hix)). (5.3)

jeky jeko

for everyx € R" and everyn € R", whereg(x) = 05 gj(0)x and hir(x) = X hj (0)x, for
jeNpandk, =k (n)={jeNn: nj >0} andk_ =k_(n) ={j € Ny: nj <0}. Notice
thatk, () is the set of indexes of non-negative elements of vegt@andk_(n) the set of
indexes of negative elements ipf

Definition 5.4 Given the DC function f D — R" as in (5.1) such that Assumption 3.17
holds and an € R", define the directional upper bounding functien R" x R" — R as

F(x,n) = f(x), (5.4)

where functionsfv,7 (+), for everyn € R", are given by (5.3).

Convexity of directional bounding functiorﬁs(-, n), for all n € R", stems directly from
convexity of functionsfy (-).



Chapter 5. Convex invariant sets for nonlinear systems 163

Property 5.5 Given the DC function fD — R"asin (5.1) such that Assumption 3.17 holds,
for everyn € R", functionF (-, n) defined in (5.4) is convex with respect te ©.

Proof: Although it is a direct consequence of (5.4), a sketch of tto®fis recalled
here. By Definition 5.4, functioﬁ(-, n) is the sum of elements composed by the sum of a
convex term and a linear one. In factji€ k. thenn; > 0, njg;j(x) is convex and—n,h'—( X)
is linear; for j € k_, sincen; < 0 and—h;j(x) is concave—njh;(x) is convex and7]gj( X)
is linear. From the fact that a linear function is convex (andcave), and since the sum of
two convex functions is a convex function, thEf, n) is convex with respect te € D, for
alln e R". [ |

The following theorem states that the approximation emdrf (x) — F (x,n)|, due to the
overbounding process, vanishes quadratically #&nds to the origin. This property will be
used in the following for proving that the proposed algarithlways provides an invariant
set for the deterministic DC system.

Theorem 5.6 Let Assumptions 3.17 and 5.1 hold. There eXist0 andp > 0 such that

N f(x) =F N < [In]lopx"x,

for all n € R" and xe 6BY, where functiorF (-, -) is defined in (5.4).

Proof: By Assumption 5.1g(-) andh(-) are twice differentiable at the origin. Then,
there exists & > 0 such thaiy(-), andh(-) are twice differentiable i®B). From twice
differentiability of g(-) andh(-), it follows that there ar@g ; > 0 andpn ; > 0, j € Ny, such
that

19j(X) — gF (X)| < pg jxTX,
[F(x) = hy ()] < pnjx"x,

for all j € N, and for allx € 6Bj, see Remark 5.2. From (5.5) and by definition of function
F(-,-) we have that

(5.5)

INTE)—Fxm =1 3 ni(hx)—hj(x))+ ¥ nj(gi(x) —gr(x)| <
]€k+ ck

jek-
Sjezhmj'llh%(x) (>|+ 2 Inil1gi(x) = gy (x)| <

> 19i(9 — )I) < ||f7||ooj_ 5 (Pgj+pnj)X

<1l (jezh 709 =hj ()] +

jek,

n
for everyn € R" andx € dBj. Makingp = Z (Pg,j+pnj), the theoremis proved. ®
J_
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Note that the constamt does not depend on the vectpr

In the following it is proved that, given a vectgre R", the functionlf(-, n) provides an
upper bound of the DC function’ f(-).

Property 5.7 Given the DC function fD — R"as in (5.1) such that Assumption 3.17 holds,
for everyn € R" we have 3
n"f(x) <F(xn), VvxeD, (5.6)

whereF (-, n) is defined in (5.4).

Proof: The theorem follows directly from Property 3.18 and Defonti5.4. In fact,
the convex bounding function, (), for n € R", defined in Property 3.18 determine an
overbounding CDI system, which means

nTf(x) < fp(0)=F(xn), vxeD

for all n € R", where the equality is given by Definition 5.4. [ |

We now address the analysisdfcontractiveness and invariance for nonlinear systems,
particularizing the results of Chapter 4 to the case of DQesys. In (Kolmanovsky and
Gilbert, 1998) a characterization of invariance for linegstems in terms of support func-
tions is given, as well as some properties of the supportims.

The necessary and sufficient condition for invariance foaatonomous linear uncer-
tain system, presented in (Kolmanovsky and Gilbert, 19883dapted below to formulate
the condition forA -contractiveness and invariance of a set for any nonlingstem (5.1).
State constraints € X, are considered. We recall that with Assumption 4.11, usedhat
follows, we suppose that the constraint set on the $tateR", is closed, convex and with
0 €int(X).

Property 5.8 Let Assumption 4.11 hold for constraintExX. GivenA € [0,1], a convex,
compact sef € .#9(D) is a A-contractive set (an invariant setAf = 1) for the nonlinear
system (5.1) and constraintsexX if and only if

nTf(x) <A@(n), ¥xeQ, VvneRM" (5.7)

Proof: Recall that a se® € .#9(X) is aA-contractive set for system (5.1) G C X
andf(Q) C AQ, see (A.9), and, from convexity of s&tand Property C.4, we have that
is A-contractive if and only if

@r)(N) <@®a(n), VneR" (5.8)



Chapter 5. Convex invariant sets for nonlinear systems 165

which, from Property C.5, is equivalent to

@) () <Aga(n), VneR"

SinceQ is a compact set then, for amye R", and by definition of support function we
have
T T
= max n z=maxn' f(x).
@r () (N) max 2= maxi (X)

and therefore conditions (5.7) and (5.8) are equivalenthadlaim follows. [ |

The meaning of Property 5.8 is that the image of any elemenf through the nonli-
near functionf (-) has to be contained inside the € C X, definition ofA -contractiveness.
Hence the necessary and sufficient condition for &Xxtet be A -contractive (5.7) is a condi-
tion involving any element of the s& and any directiom € R". Such condition is given,
then, by an infinite number of non-convex constraints, oneveryx € Q and everyn € R".

First we present a convex relaxation of conditionfecontractiveness, in order to obtain
an only sufficient condition but composed by convex constsanvolving only the elements
on the boundary of the convex €etC D.

Theorem 5.9 Let Assumptions 3.17 and 4.11 hold for the system dynamit}y §6d the
state constraint set X. A compact, convex®et .7 °(X) such that

F(x,n)<A@m(n), ¥xe€dQ, VneR" (5.9)

where functiorF (-, -) is defined in (5.4) and < [0,1], is a A-contractive set (an invariant
setifA = 1) for system (5.1) and constraintsexXX with contraction facton .

Proof: From Property 5.7, it follows that
F(x,n)<Aga(n), ¥eQ, VneR" (5.10)

implies satisfaction of condition (5.7), and th&rcontractiveness d2. Since the inverse is
not true in general, aé € Sy with % (-) set valued map of the overbounding CDI system,
the condition is only sufficient. To finish the proof, we hageshow that (5.9) is satisfied if
and only if condition (5.10) is fulfilled. We refer to the pifaaf Theorem 4.13, in which an
analogous property is proved for CDI systems. [ |

Theorem 5.9 provides a sufficient condition foicontractiveness of a s& based on a
set of convex constraints. Remind that the condition foairance for nonlinear discrete-
time systems can be restricted to the boundary of the setfonlgarticular cases, such
as linear and positively homogeneous systems, see (Blararid Miani, 2008), while in-
equalities (5.9) provide a condition far-contractiveness and invariance involving only the
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boundary ofQQ. Furthermore, in the particular case in whi@hs a polytope, the condition
will be given by a finite number of convex constraints.

Before that, results regarding the case of nonlinear uaicestystems, with additive un-
certainty, are presented.

5.1.1.1 Robust invariant set for DC systems

In the previous section the necessary and sufficient camditiA -contractiveness for a com-
pact setQ for a nonlinear deterministic DC system is given in Propéit§. A convex
relaxation yielding to a sufficient condition far-contractiveness and invariance has been
provided in Theorem 5.9. Analogous conditions for uncartainlinear systems will be pro-
vided in this section, in particular, the results preseméhe previous section can be directly
extended to DC systems presenting additive uncertainties.

Consider the uncertain autonomous nonlinear system
Xt = f(x)+w, (5.11)

wherex € R", w € R" is the bounded additive uncertaintye W and f : D — R" fulfills the
Assumption 3.17.

First we provide the necessary and sufficient condition foompact, convex se@ <
2 9(X) to be a robush -contractive set and a robust invariant set for the unaertanlinear
system (5.11). We recall here that with Assumption 2.3 w@esp that’w C R" is a compact
set in the state space with<int (co (W)).

Property 5.10 Let Assumptions 2.3 and 4.11 hold. Giver [0, 1], a convex, compact set
Q € #9(X) is a A-contractive set (a robust invariant setif= 1) for system (5.11) and
constraints xc X if and only if

nTE) <Aga(n)—@w(n), YxeQ, vneR" (5.12)

Proof: By definition of Minkowski summation, the image of $®tthrough dynamic
function of system (5.11) is given bf(Q) ®W. As proved for Property 5.8, condition of
A-contractiveness d® (invariance ifA = 1) in terms of set inclusion is that the image®f
through the dynamic function is contained in the A& < .#°(X), which meansf(Q) ®
W C AQ. Interms of support function, we have tifais aA -contractive set with contraction
factorA if and only if

@ aw(N) < ®o(n), VneR", (5.13)
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and from Property C.6, it follows that this is equivalent to

P (0)(N) < @ra(n) —@w(n), vneR",
and therefore, equivalence betweetontractiveness and condition (5.12) follows. m®

Notice that no assumption on convexity of ¥éthas been required. As for the case of
deterministic DC system, condition is given by a constrainohconvex in principle, that has
to be proved for every point € Q and every vecton € R". Analogously, exploiting con-
vexity of functionF (-, -) defined in Definition 5.4, a sufficient condition can be foratati
such that its fulfillment at the points of the boundarybimplies A -contractiveness for the
uncertain nonlinear system (5.11).

We recall here the meaning of the assumptions involved ifoll@ving theorem, charac-
terizing aA-contractive set for a DC dynamic systems in presence otigddincertainties
and state constraints. Assumption 3.17 concerns the DQenafuthe dynamic function
f(-), Assumption 4.11 the hypothesis on the state constrairaisd Assumption 2.3 the
uncertainty bounding s&V.

Theorem 5.11 Let Assumptions 2.3, 3.17 and 4.11 hold. A compact, conv€xser °(X),
such that 5
F(x,n) <Awg(n) —@w(n), ¥xe€dQ, vneR" (5.14)

where functiorF (-,-) is defined in (5.4) and,, € [0,1], is aA-contractive set (an invariant
setifA = 1) for system (5.11) and constraintsxX with contraction factoi\y.

Proof: From Properties 5.7 and 5.10, it follows that if condition

F(xn) <Auwgo(n) —@w(n), ¥xeQ, VvneR", (5.15)

is fulfilled, thenQ is a A-contractive set for the uncertain autonomous DC systefii 5.
Thus, the condition is only sufficient, as the converse istnugt in the general case. As for
the proof of Theorem 5.9, we have to prove that conditiongpidvolving every element of
Q is satisfied if and only if condition on the boundary (5.14juBilled. As in the case of
proofs of Theorems 4.23 and 5.9, the result can be provealiwig the line of the proof of
Theorem 4.13. [ |

Notice that, as for the case of deterministic nonlinear D&ey, the condition foA -
contractiveness and robust invariance in presence ofiaelditcertainty (5.15) involves only
points on the boundary of the 9@t

Given aA -contractive sef with contraction factoi, for the deterministic system (5.1),
consider the uncertain system (5.11) with same DC funcfiof. An explicit relation
between the contraction factdy and the uncertainty bounding &t such thatQ is A-
contractive also for the uncertain system (5.11) can beriede
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Property 5.12 Let Assumptions 2.3, 3.17 and 4.11 hold, whefg ih (5.1) and (5.11) is
the same. Suppose that the convex, compad@set# °(X) satisfies condition (5.9) with
A = A, forain € [0,1]. If there exists @ € [0, 1] such that

ev(n) < (Aw—An)@(n), VneR", (5.16)

thenQ is a A-contractive set with contraction factay, (a robust control invariant set if
Aw = 1) for the uncertain system (5.1) and constraints X.

Proof: From condition (5.9), supposed fulfilled, and (5.16), ildals immediately
F(x.n) < Angn(n) < Awa(n) —@w(n), vxe€dQ, vneR",

and then, from Theorem 5.1Q is aA-contractive set with contraction factay, (a robust
invariant set ifA,, = 1) for the uncertain DC system (5.11). [ |

The relation between the contraction factor of a compadctriant seQ for the determi-
nistic system (5.1) and the sét bounding the uncertainty in (5.11), provided in Property
5.12, can be employed to design a robust invariant set fanrtisertain system.

In the following section we focus on computational issudateel to the deterministic
system, the result can be extended to the uncertain casileong the sufficient condition
for robust invariance (5.14) and using the relation (5.16).

5.1.2 PolytopicA-contractive and invariant set

Previous sections provide sufficient condition focontractiveness and invariance of com-
pact setQ for deterministic DC systems, condition (5.10), and Aecontractiveness and
robust invariance for uncertain nonlinear systems, (5.B6jh conditions are given by a set
of convex constraints involving only the elements of bougdd Q, for all n € R".

In the case that the s& is a polytope A -contractiveness and invariance conditions are
represented by a finite set of convex constraints to be cemhly at the vertices ad2. As
shown in the following, this allows one to design an algantto check whether a polytope
is aA-contractive set for the deterministic DC system, algonitithich ensures to obtain a
non-emptyA -contractive set or an invariant set, under mild assumption

We consider here the deterministic DC system (5.1), and wenas that the candidate
setQ is a polytope containing the origin in its interior, i. € .#%(X). It is worth recalling
that, given a polytop®& = {x € R": Hx < p} with H € R™*" andp € R™, we have that
@ (H") = pi for alli € Ny, and then

Q={xeR": Hix< @H), Vi e Ny},
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see Property C.3. For every polyto@ewith 0 € int(Q), there exist a finite integet, and a
matrixH € R™*" such that
Q={xeR": Hx<1}.

The sufficient condition for polytop@ C D to be aA-contractive set with contraction
factorA for DC system (5.1) follows.

Theorem 5.13 Let Assumptions 3.17 and 4.11 hold. Givedge [0,1], a polytopic set
Q= {xeR": Hx< 1} C D, with H € R™*" whose pvertices are denoted with j € Ny,
with ny € N, such that

F(VLHT) <An,  VjeNp, VieN,, (5.17)

where functiori (+,-) is defined in (5.4), is & -contractive set with contraction factdy, (an
invariant set ifA, = 1) for the nonlinear DC system (5.1) and constraints X.

Moreover, if xe Q, then x obtained through (5.1), for k N, with x = X, satisfies
X € AkQ, forall k € N.

Proof: By definition, Q is a A-contractive set if and only if (Q) C AnQ, and then,
from considerations analogous to those of proof of Theorémitis sufficient to prove that
(5.17) is necessary and sufficient condition for fulfilmehtondition (5.10). This implies
the claim ofA-contractiveness of the polytoge For that, it is sufficient to recall that any
element of a polytope is the convex combination of its vericThat is for anx &€ Q, there
existsny values6! (%) > 0, with j € Ny, such thatx= 3, 8)()v/ and 37, 61(%) =
Therefore the claim can be proved in a way similar to the podvEheorem 5 9.

The second part of the theorem is proved next. Congidef0, 1]. From the convexity
of F(-,H), for alli € Ny, , and (5.17), itis inferred that

F(evl,HT) —eAn < max {F(evl,HT) — A, )} =
( |) n= 86[01{ ) n}

= max{F(0,HT) - 0; F(vl,HT) — A} <max{0, F(v/,HT) — A} =0,
for all j € Ny, andi € Ny, that is,
F(evl,HT) <eAn, VjeN, VieN,, (5.18)

for all € € [0, 1]. From convexity oK, and then convexity ofQ, and the fact thaztvi_, with
j € Ny, are the vertices 0fQ, anyX € €Q can be expressed as:Az?Vzlel(f()(st), for

properfi(R) > 0, for j € N, andz] 161(R) = 1. Then,

X) = (z 6l ( )(8vj)) <F (nzv Gj(f()evj,HiT> <
=1 (5.19)

Hi f (
Ny . Ny
z JR)F(evl, HT) < 3 61(R)€An = €An,
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for all i € Np,. This means thaky € £€Q implies X1 = f(x) € €AnQ, for all € € [0,1].
Hence,Q is aA-contractive set with contraction factap for the nonlinear DC system and
Xo € Q impliesx, € AXQ. ]

The former theorem provides a criterion for checking whethpolytopic seQ C D is a
A-contractive set for a nonlinear system (5.1). Thus, it seffito checlk, - ny inequalities
to determine if the sufficient condition far-contractiveness in fulfilled.

Another important feature of Theorem 5.13 is that any p@itsetQ fulfilling condition
(5.17) induces a Lyapunov function and implicitly provepenential stability of the origin
for the deterministic nonlinear system (5.1), as provedDi systems in Corollary 4.17.

Analogously, condition for a polytop@ to be aA-contractive set or a robust control
invariant set for the uncertain nonlinear system (5.11) lmarformulated as a finite set of
convex constraints to be checked for every vertex and ewsvyof matrixH.

Theorem 5.14 Let Assumptions 2.3, 3.17 and 4.11 hold. Givel,& [0, 1], a polytopic set
Q={xeR": Hx<1} C X, with He R"*" whose pvertices are denoted with j € N, ,
with n, € N, such that

FVLHD) < Aw—a@w(HT),  VjeNy, VieNy, (5.20)

where functiorF (-, ) is defined in (5.4), is & -contractive set with contraction factd, (a
robust invariant set i\, = 1) for the uncertain DC system (5.11) and constrairt X.

Proof: The proof is a direct adaptation of proof of Theorems 5.11348. [ |

Note that in case of uncertain nonlinear systéwgontractiveness of polytopic s&t
does not imply exponential stability; it is not possible teagantee asymptotic stability for
systems in form (5.11), affected by additive unknown butrimted uncertainty. Convergence
to a set can be proved in that case, that is a Lyapunov functitside a set can be induced
proving that the system is ultimately bounded, see (Blani@nd Miani, 2008).

The relation between contraction factor oflacontractive sef for the deterministic
system and the measure of the bounding/éetuch thaQ preserves -contractiveness and
invariance in presence of uncertainty, inequality (5.16juces to a finite number of convex
inequalities whem2 is a polytope.

Property 5.15 Let Assumptions 2.3, 3.17 and 4.11 hold, whefe in (5.1) and (5.11) is
the same. Suppose the polytopicQet {x € R": Hx < 1} C D, with H € R"™*" satisfies
condition (5.17) for @, € [0, 1]. If there exists &\ € [0, 1] such that

max@y(HT) < Aw—An, (5.21)

IENnh
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thenQ is a A-contractive set with contraction factady, (a robust control invariant set if
Aw = 1) for the uncertain DC system (5.11) and constrairt X.

Proof: From condition (5.17) and supposition of existence df,ac [0,1] such that
(5.21) is satisfied then

FOGHT) < An < Aw— maxgw(HT) < Aw—@w(HT), Vi € Ny,
le h
recalling that, from Assumption 2.3, the origin is an eletrafrco (W) and then the support
function of W with respect to any vectay € R" is positive, i.e.mN(HiT) > 0, foralli € Ny, .
Then also condition (5.20) is satisfied aRds aA -contractive set with contraction factdy,
for the uncertain DC system (5.11). |

The relation between the contraction factor of a compactriant setQ for the determi-
nistic system (5.1) and the sét bounding the uncertainty in (5.11), provided in Property
5.12, can be employed to design a robust invariant set fanrtkertain system.

5.1.3 Computational issues

In this section a method, based on DC functions properte@s;dmputing aA -contractive
set for a nonlinear system is presented. The method is bas¢ldeodetermination of a
A-contractive set for the linear system obtained as the fin&igon of system (5.1) at the
origin. Recall that, by Assumption 5.1 the linear systemsignaptotically stable and hence
A-contractive sets can be obtained.

For that purpose, the approach illustrated in Section 4.3yémeral CDI systems and
overbounding LDI systems can be applied. It has to be noticata linear system can be
considered as an LDI system whose characterizing polytotiesi space of square matrices,
o/ C R™"M is a singleton, that is, a single matrix. Hence, solvingdhgmization problem
(4.53) withn, = 1 andA! = J,(0) provides a contracting ellipsoid for the linearized system
determined by the optim& and with contraction facto{/(1—y). The polytopeQ captu-
ring the geometry of the ellipsoi€l(P) is obtained a$§ (P), see (4.56). Then, the results of
Theorem 4.46 provide a bound of the determination indeand a polytopic -contractive
set can be determined computing iteratively the@&iQ) = CA(Q) with i > i*. Alterna-
tively, setC2(x, Q) can be obtained explicitly by choosing> i* and removing redundant
inequalities from the system

Hx <1,
HAX< A1,
H(A)x <A1,
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whereA = Jy(0).

Remark 5.16 Suppose that & -contractive set for the linearized system, dend@eds ob-
tained. From Remark 5.2 antk-contractiveness oD, it is easy to infer that there ig > 0
such that fx) € aQ, ¥x € aQ. This means that, the setQ is an invariant set for the
nonlinear system.

The following procedure permits to obtain an invariant setliie nonlinear autonomous
system (5.1):

e A polytopeA -contractive invariant set for the linearized system (& 2jyst computed,
employing the results from Section 4.3 as illustrated abdires set will be denoted
Q.

e Exploiting the sufficient condition fok-contractiveness and invariance (5.9), the great-
est value ofn guaranteeing thd® = aQ is an invariant set for the nonlinear system is
computed.

A similar strategy for linear saturated systems was progaséTarbouriech and Gomes
Da Silva Jr., 1997) without using DC functions. The maindieabf our criterion is the affor-
dable computational burden needed and the generality @ppeach, since it is applicable
to a wide class of nonlinear functions.

Algorithm 2 for computing an invariant set for a nonlinear Bgstem is given below.

Note that thel admissible is greater thapil — y to make finite the upper bountion the
determination index defined in (4.60). The proposed algorialways yields a non-empty
invariant set, as the following theorem states.

Theorem 5.17 Let Assumptions 3.17 and 5.1 hold for system (5.1). Therrifigo2 con-
verges to a non-empty-contractive seQ = aQ, with contraction factorA, for the DC
system (5.1).

Proof: From twice differentiability of functiong)(-) andh(-), there exist® > 0 such
thatg(-), h(-) € €2 for all x € 5BY. From Assumption 5.1 and the results of previous section,
it is clear thatQ is non- empty and constituteshacontractive set with contraction factf)r
for the linear system. That i€ = {x e R": Ax < 1}, with H € R™*", satisfiesHAX< A,

vx € Q. First, the setrQ has to be contained i}, that is,a < (0, &] whered = max{a >
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Algorithm 2 Computing aA -contractive set for nonlinear DC system (5.1).
Given the DC system (5.1):

(1) Obtain the Jacobian at the origi(0).
(2) ObtainP andy from optimization problem (4.53) with, = 1 andA! = J,(0).

(3) Choose\ € (vI=y,1) and obtairQ = C (' (P)) where

(4) ChooseX € (5\, 1] and compute the maximal > 0 such thatQ = aQ fulfills the
assumptions of Theorem 5.9.

(5) ReturnQ, A-contractive set for system (5.1) with contraction factor

0:aQC oBS}. Note that, from the twice differentiability aj(-) andh(-), it follows that
there is ay > 0 such that

IHi(f(X) —AX)| < [|H [loyx"x, VX € 6BY,

for i € Np.. From this and Theorem 5.6, giveroas (0, a] and denoting/, for j € Ny, the
ny vertices ofQ, we have that

F(avi,HT) = HiAavl + Hi(f(avl) — Aavl) +F(avi, HT) —Hif(aV)) <

< HAavl + [Hi(f(avl) — Aav))| + [F(avi,AT) — Hif (av)| <

< aA + A [loya?(V) TV 4 AT [wpa?(v)TV,

foralli e Nn, andj € Np,. Hence, if
aA + A [lwya2(v) TV + AT epa®(v)) TV < a),

for all i € Np., j € Ny, then the theorem is proved. Such condition is fulfilled éoe

(0, min{a, a}] where

) _ A=A
i€Nn. , j€Nn, HHiTHOO(V+ p)(VH)TVI
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5.1.4 Numerical example

Consider the following DC function

1+ 0.1x; + 0.5x, — e* 14
f(x) :

~ | 0.14+0.9% — 0.1% — 0.1c0gxp) + 0.05

wherex = [x1, o] € R2. Note that it can be expressed in standard DC féf®) = g(x) —
h(x), posing

O.5X2
9(x) = 2 |
0.1+ 0.9x1 —0.1cogx2) +0.05x5
r 2
—1—-0.1x + >4
h(x) = .
0.1x,
1
P IR
0.8t - ‘< .
. ~
0.6F N4 ',-" = ~ E
7/ ’/ \‘\ ‘\
o4l s s .\ \ ]
/ Vi : \
_J _I \. [}
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Figure 5.1 A-contractive invariant set for the linearized syst@m(solid line) and ellipsoidg’ (P, 1)
and&'(P,3) (dashed lines).

Functiongy(-) andh(-) are globally convex, in fact the Hessians of functign§), ga(+),
hy(+), hy(+) exist and are positive semi-definite in the whole spée The nonlinear DC
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system has been linearized around the origin, obtainingtdtg#e dynamic matrix

A_ | 01000 05000
~ | 0.9000 —0.1000 |’

whose eigenvalues are0.6782 and (6782.

First, theA -contractive set for the linear system is computed. Soltieg_MI optimiza-
tion problem (4.53), we obtain

2.2363 —0.0699
—0.0699 12579

], y=0.54.

HenceA € [0.6783 1) and the contraction factor is set fo=0.733. Employing the
results of Theorem 4.46, the-contractive set for the linearized system is computed and i
is represented in Figure 5.1, jointly with the ellipsoiiéP, 1) and @@(P,r—l]). Although the

bound on the determination indeis i > 4, one iteration suffices to obtaid.

Then, the sef)A: CA(T'(P)) is used in Algorithm 2. The contraction factor has been
chosen greater thanand close to 1A =0.9973. Choosing a value df close to 1, the algo-
rithm provides a greateY-contractive set with respect to those obtained employingller
A (at the expense of reducing the contractiveness of thersgtanvariant set). Hence, the
setQ = aQ is aA-contractive invariant set for the DC system. In particukee value ofa
is computed by means of a dichotomic-search based procedure

Finally, the sefQ is compared with a numerical estimation of the domain ofatton of
the DC system. Some points in the state space have been alaoskemly as initial condi-
tions. In Fig. 5.2 only the initial conditions which lead tsyanptotically stable trajectories
have been depicted. The convex hull of such points providespproximation of the do-
main of attraction for the DC system. Note that, despite efstrong nonlinearity of the
function (an exponential term is present), theontractive and invariant s€& represents a
good portion of the domain of attraction.

A greater invariant set can be obtained by employing an gim@method analogous to
the one presented in Section 4.3 for CDI systems.
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Figure 5.2 Asymptotically stable initial points (dots) amd-contractive invariant set for the DC
system.

5.2 Convex invariant sets for Lur’e systems

In this section, we introduce a new concept of invariancelLiore systems, calledlNL-
invariance. Conceptually, a s@tis anLNL-invariant for a Lur’e system if, for everye Q,
both the successors obtained through the Lur'e system dgesand through the dynamics
obtained by linearizing it at the origin, are containedn

An algorithm to determine the largeshL-invariant set for this class of systems is pro-
posed. Moreover, it is proved that thélL-invariant sets provided by this algorithm are
polytopes and constitute an estimation of the domain o&etityn of the nonlinear system.
Based on its geometrical properties, a simple algorithnbtaia the largest NL-invariant
set is proposedLNL-invariance is a more conservative concept than traditiowariance
but its geometrical properties allows us to obtain a polgt@stimation of the domain of
attraction of the nonlinear system. It is shown that anyriiavd set obtained for an LDI ap-
proximation of the Lur'e system is dtNL-invariant set which is included into the obtained
estimation of the domain of attraction.
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We remind that Lur'e systems under analysis, see SectigraB2dynamic systems in
which a static one-dimensional nonlinearity appears infdleelback path. In particular we
assume that such nonlinearity has a piecewise affine nasivegll as concave iR and odd,
as specified in Assumption 3.8. That is, we consider theviotig discrete-time system

X1 = Ax— B (k)
Yk = FXk7
wherex, € R" is the state vector angk = Fxx € R the one-dimensional output of the sys-

tem and¢ : R — R satisfies Assumption 3.8, that is, functign-) is a continuous, odd,
piecewise-affine concave iR, .

A characterization of functions satisfying Assumption &8&jiven in Property 3.9, as
provedin (Hu et al., 2004). An example of function fulfillidgsumption 3.8, hence defining
a Lur'e system, is shown in Figure 3.5. We analyze here somgepties of functiorp(-).
For that purpose the following definition is introduced.

Definition 5.18 Given the piecewise-affine odd function concavig in

koy, ify € [0,by),
k if bi,b
py) =4 fyTenyelbuba.
kny+eon,  ify € [y, ),
the odd functiong;(y), i € Ny are defined as:
A ify € [0,di),
oi(y) = Koy , y€0.d) vy > 0, (5.22)
kiy+ci,  ifye[di),
Ci .
where = ——, fori € Ny.
qd oK N

It might be useful to provide the expression of a piecewiieeodd functiong (y) for
y < 0. Recall that a functiog (-) is odd if

¢(y) =—0(-y),
for all y € R. Then we have that, for negative valuesypthe function defined in Definition
5.18 is given by
k0y7 if ye (_b170)7

kly—C]_, if ye (—bz,—bl],

o(y) = Wy <0,

kNy_CN7 IfyE (—00,—b2],
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and functionsp;(y) are

¢i(y)={ o, Ty e (.0, Vy < 0,

kiy— Gi, if ye (—oco,di],
forall i € Ny.

Figure 5.3 shows functiong;(-), for i € N3 corresponding to functiog (-) of Figure
(3.5).

$1(y) )

b) o) #3()

ns e
00

n2

m

y
dy y dy Y ds

Figure 5.3 Functionsg;(-), i € N3 corresponding to functiot (-) of Figure 3.5.

It can be observed in Figure 5.3 thgaty) is the pointwise minimum o1 (y), ¢2(y) and
#3(y). The following lemma states a useful relationship betwection¢ (-) and functions
¢i(-), i€ Nn.

Lemma 5.19 (Hu and Lin, 2004; Hu et al., 2004) Suppose tigdt) is an odd piecewise-
affine function concave iR,.. Then

e ¢i(y) eco(koy,¢(y)), forally € R and for all i € Ny.

o d(y) €co(Pa(y),d2(y),...,on(y)), forally e R,

Hereafter, the concept dfNL-invariance is presented. This notion of invariance is
stronger than the classical one. However, lthe -invariance has some geometrical proper-
ties that allows one to obtain the greateltl-invariant set by means of a simple algorithm.
Moreover, it will be shown that every-contractive set for the nonlinear system is contained
into the greatedtNL-invariant set provided by the proposed algorithm.
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Definition 5.20 Consider systemyx; = Ax — B@ (Fxy) and let functionp (-) be defined as
in equation (3.20). Functions(X) and f (x) are defined as

f(x) =Ax—B¢(Fx),

(5.23)
fL(X) = Ax—BkoFx.

The notion ofLNL-invariance is introduced in the following definition.

Definition 5.21 A setQ is said to be LNL-invariant for system.x = Ax — B (Fx) if
x € Q implies

f(x) = Ax— B¢ (Fx) € Q,

fL(X) = Ax—BkoFx € Q.

This implies that, ifQ is LNL-invariant it is also invariant but not viceversa. We will
see that this leads to obtain the greatest comvontractive invariant set for the Lur'e
system, or alternatively seen, that any convex invariamttfactive) set is contained in the
LNL-domain of attraction.

Remark 5.22 LNL stands for Linear and NonLinear. Note that the new constraint(k) €
Q added to the concept of LNL-invariance is not a very strongst@int as there is a neigh-
borhood of the origin where (k) equals { (X).

Definition 5.23 We say that §S;,...,S is an admissible sequence if §{1,—-1}, i =
0,....k.

Definition 5.24 Given x and & {1,—1}, function Gx, S) is defined as follows

f(x) if S=1,

G(X’S>:{ fl(x) if S—=-L1

Definition 5.25 We say that x belong to the LNL-domain of attraction of system =
Axc — B¢ (Fxy) if the recursion

Xk+1 - G(Xk7 S()? XO - X7

converges to the origin for every admissible infinite seged®y, S, S, ... }-
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As it will be shown, thed_NL-domain of attraction is a convex set that can be obtained by
means of a simple recursion.

In the following definition, some one-step operators relatgth the notion ofLNL-
invariance are presented.

Definition 5.26 Given a sefQ and the systemx; = Ax — B¢ (Fxk), whereg¢ -) is defined
in Definition 5.18, the one-step operatorg@-), QL(-) and Q n.(+) are defined as follows

QnL(Q) ={xeR": Ax—B¢(Fx) € Q},
QL(Q) ={xeR": Ax—BkFxe Q},
QNL(Q) = QL(Q)NQNL(Q).

As stated in the following property, the opera@i. () allows one to determine whether
a set is arLNL-invariant or not.

Property 5.27 Q is an LNL-invariant set if and only 2 C Q nL(Q).

Proof: This result is a direct consequence of Definitions 5.21 af@.5. [ |

Given a convex se@, the one-step sen(Q) is not necessarily convex due to the
nonlinear nature of functiof(-). The non-convex nature @y (Q) makes it difficult the
use of operato@Qy (-) in the computation of invariant sets for the considered & gystems.
The most remarkable property @ ni(-) is that, given a convex polytopic sé@t Q i (Q)
is a polytope. To prove it, the following auxiliary opera@n,i(-) are defined.

Definition 5.28 Given functiongp;(-), for i € Ny, defined in equation (5.22), the operators
QunLi(+) | € Ny are defined as

QLNL,i(Q) = QL(Q) N {X eR": Ax— B¢i(FX) € Q}.
The following lemma is propaedeutic for the proof of the sdagent theorem.
Lemma 5.29 Given an odd piecewise-affine functigi-), concave inR, consider func-

tions¢;(-), fori € Ny, defined as in Definition 5.22. Then:

agi(y) < max{akoy,aky — |aG|}.
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Proof: There are two different possibilitiegy| < d; or |y| > d;, that will be analyzed
separately.

If |y| <d; thengi(y) = koy and the inequality holds.

In case thaty| > d;, theng;(y) = kiy+ sign(y)ci. Note that due to Property 3.8; < ko,
ni > 0 andd; = kocjki > 0. There are now four different possibilities:

i. a> 0andy > d;. In this casea¢;(y) = aky+ag < akpy.

ii. a>0andy< —d;. In this casea¢;(y) = aky— ag = aky— |ag]|.
iii. a<0andy> d. Inthis casea¢i(y) = aky+ag = aky—|ag]|.
(

iv. a< 0andy < —d;. In this caseagi(y) = aky —ag < akpy.

The following theorem states th@ nii(-) iS a convex operator.

Theorem 5.30 LetQ be a polytope given bl = {x € R": Hx<g}, QunLi(Q) is a polytope
that can be obtained from the equality

QunLi(Q) =R(Q), ieNy,

where
R(Q)=QL(Q) N{xeR": HA-BkF)x< g+ |cHB|},

and |ciHB| denotes the vector whose entries are equal to the absoliies/af the entries
of vectorniHB.

Proof: Let us suppose that therexss R (Q) such thatx & QunLi(Q). SinceR(Q) C
QL(Q), itresults thak ¢ Q_nLi(Q) impliesx & {x: Ax—B¢i(Fx) € Q}. Thatis, there exists
j such that

Hj(Ax—B¢i(Fx)) > gj,

whereH; andg;j denote thej-th row of H andj-th component ofj respectively. Using the
inequalityag;(y) < max{akopy,aky— |aG|} (see Lemma 5.29) it follows that

—H;B¢i(Fx) < max{—H;BkoFx, —HjBkFx— |H;Bg|}.

Two different cases must be considered:
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1. —HjBkFx> —HjBkFx—|HjBg|. In this case
gj < Hj(Ax—Bgi(Fx)) < HjAx— HjBkoFx = Hj(A— BkoF )x.
This contradicts the fact th&t(A — BkoF )x < g (recall thatP (Q) C QL (Q)).
2. —HjBkoFx < —HjBkFx—|H;Bg]. In this other case

gj < Hj(Ax—B¢i(Fx)) < HjAx—H;BkFx— [H;Bg|.

This contradicts the fact that(A— BkF )x < g+ |ciHB| (see the definition of (Q)).

Then,x € R(Q) impliesx € QunL,i(Q). This proves thal (Q) C QunL,i(Q).

To conclude the proof it will be shown th@ ni (Q) C R(Q). Suppose thate QunLi(Q).
Note that the functions defined in (5.22) can be expressed as

¢i(y) = ky+cio (kOT_IKy) :

wherea(y) = sign(y) min{|y|, 1} is the saturation function. As|cHB| < —ciHBo(y),
for everyy € R, it follows that

ko — ki

H(Ax— BkFx) — |ciHB| < H(Ax— BkFXx) —HBQG( Fx) =H(Ax—B¢i(Fx)) < g,

where the last inequality follows frome Quni,i(Q). This proves that ik € Q n.i(Q) then
x € BR(Q), or equivalentlyQ nLi(Q) C R(Q). [ ]

In the following theorem it is shown that the opera@ry.(-) can be obtained from
operatorQn,i(-), i € Nn.

Theorem 5.31 LetQ be a polytope given b = {x € R": Hx < g}, then

N
QNL(Q) = [ QunLi(Q).

i=1

N
Proof: First, it will be shown thaQni(Q) € N QunLi(Q). Let us suppose thate
i=1
QuLnL(Q). Then, by definition
Ax—B¢(Fx) € Q,

(5.24)
Ax— BkFx € Q.
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Lemma 5.19 states thak(Fx) € co (koFx, ¢ (Fx)), i € Ny. Bearing this in mind it is
inferred from equation (5.24) and the convexitydthat

Ax—Bgi(Fx) € Q, i€ Ny.

N
That is,x € QunL,i(Q). This proves tha@ ni(Q) € ) QunLi(Q).
i=1

N
To finish the proof it is sufficient to show tha) Qun,i(Q) € QunL(Q). Suppose that
i=1

N
X € () QunLi(Q). By definition,
i=1

Ax—BkoFx € Q,
Ax—B¢i(Fx) € Q, VieNy.

Since Lemma 5.19 states thfatF x) € co (¢1(FX),...,¢n(FX)) itis concluded that

Ax—B¢(Fx) € Q,
Ax—BlkgFx € Q.

Thereforex € Q_nL(Q) and the statement is proved. [ ]

Theorem 5.32 Let Q be a polytope given b = {x € R": Hx<g}. Then QnL(Q) is a
polytope that can be obtained from the following equality

N

QL(Q) = R(Q), (5.25)

i=1

where RQ) =QL(Q)N{xeR": H(A—BkF)x<g+|ciHB|}.

Proof: The proof is a direct application of Theorems (5.30) andi(p.3 [ |

Now, theLNL-domain of attraction (see Definition 5.25) can be obtaingdkeans of a
simple recursion. It is also stated in this section that Argontractive set is contained in
the LNL-domain of attraction. As it will be shown, this implies ttiae proposed approach
outperforms any estimation strategy based on linear éifieg inclusions. The following
theorem provides an important result.
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Theorem 5.33 Denote I(F) the region of linear behavior of system (3.19), that i€ .=
{xeR":|Fx <b;j}. Suppose tha® C L(F) is a polytopic invariant set, with non zero
volume, corresponding to the asymptotically stable sys¢em= (A — BkoF)x«. Denote
now Gy = ® and consider the following recursion

Cir1 = QunL(Cy).
Then:

(i) Cyis a polytope, for all k= N.
(i) Ckis an LNL-invariant set, for all k& N.
(iii) Ck belongs to the LNL-domain of attraction of the system, fok & N.
(iv) The sequencfCy,Cy, ...} converges to the LNL-domain of attraction of system (3.19).

(v) The LNL-domain of attraction of system (3.19) is a corpetx

Proof:

(i) Theorem 5.32 states that® is a polytope then alsQ_n(Q) is a polytope. This, and
the fact thaCy is a polytope, prove that the recursig, 1 = Quni(Ck) always yields
polytopes.

(i) As Cpbelongs td_(F) it results that., 1 = Ax — BkoF Xk = Ax — B¢ (Fx), for every
x € Co. ThereforeCy is not only an invariant set for the linear systgm= Ax— BkyFx,
but also for the nonlinear systexi® = Ax— B¢ (Fx). This is equivalent to say tha@
is anLNL-invariant set.

Suppose tha€y_; is anLNL-invariant set. Property 5.27 guarantees #Gat; C
QLNnL(Ck-1) = Ck. Therefore, ifx € C¢ then Ax— BkoFx € C_3 C C¢ and Ax—
B¢ (Fx) € C_1 C Ck. This proves the claim.

(iii) From theLNL-invariance ofZy C L(F) and the asymptotic stability of the non-saturated
system it is inferred thaEy belongs to the.NL-domain of attraction of the system.
Note that ifCy_1 belongs to th&.NL-domain of attraction the@y = Q_nL(Ck_1) also
belongs to the_NL-domain of attraction. This is due to the fact ti@(ix,S) € Cx_1,
for all x € C and for allSe {1,—1}. Therefore, the recursiddy, 1 = Q. nL(Ck) With
Co = @ yieldsLNL-invariant sets that belong to thé&lL-domain of attraction.

(iv) Suppose now that belongs to the.NL-domain of attraction of the system. Asis
an invariant set with non zero volume, there existsuch that the recursiox.1 =
G(x«, &) with xo = x satisfiesxp € ® = Cp for all admissible sequen®,S;,...,Sp.
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This is equivalent to say thatis included inCp. That is, ifx belongs to theeNL-
domain of attraction then there exists a finite integsuch thai is included into the
p-th LN L-invariant set provided by the algorithm.

(v) Itis sufficient to show that given two poinkg andx, belonging to the_NL-domain
of attraction, Ax; + (1 — A)xz belongs to thé.NL-domain of attraction for every €
[0,1]. If x; andx, belong to theLNL-domain of attraction then it is clear from the
previous claim that there exigh and p, such thatx; € Cp,, X2 € Cp,. Denote now
p = max{p1, p2}, taking into account thal, C Cc 1, Yk > 0, itis inferred thak; € Cp
andx; € Cp. From the fact tha€, is a convex set contained in théNL-domain of
attraction of the systemiit is concluded that + (1— A )xo belongs t&C, and therefore
to theLNL-domain of attraction for every € [0, 1].

The recursion presented in the previous theorem requir@svanant set for the linear
systemxy.1 = (A— BkoF )X, included inL(F). This admissible invariant set can be obtained
by standard algorithms (see (Gilbert and Tan, 1991; Blanch999)).

Property 5.34 Suppose tha® is a A-contractive set in the sense defined in (Milani, 2002),
that is, there exista € [0, 1) such that

xeeQ = Ax—B¢p(Fx)cAeQ, Vee]|0,1]. (5.26)

ThenQ is an LNL-invariant set and it belongs to the LNL-domain dfadtion of the
system.

Proof: First, it will be proved that ifQ fulfills (5.26) then it is alsd_NL-invariant, that
is, forallx € Q,
Ax—B¢(Fx) € Q, (5.27)

and
Ax—BkgFx € Q. (5.28)

Equation (5.26) and the fact thad C Q guarantee that equation (5.27) is satisfied. It
remains to show that equation (5.28) is fulfilled for every Q.

Givenx € Q, there existg € [0, 1] such thatFex| < b;. From this,
¢ (Fex) = koFex,

andex € €Q.
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Hence, from equation (5.26) we have that
Aex—BloF ex = Aex— B¢ (Fex) € A Q.

It follows that
Aex—BkgFex e A€Q.

Notice that this is equivalent tx— BkgFx € A Q. This proves that if2 is aA -contractive
set, then it is also abNL-invariant set.

In the following it will be proved thaf) belongs to thé.NL-domain of attraction of the
system. This means that,xf0) € Q, then, for every admissible sequen@®, S, ..., &},
lim x¢ = 0 wherexc 1 = G(x, ). Following the same arguments as before, it can be

k—s 00
shown that ifx € AX71Q, thenG(x,S) € AKQ, for all S€ {1,—~1}. That is,x € AkQ, for
every admissible sequen¢&,, S, ..., S 1} Therefore,k limx, = 0, for every admissible

sequencg S}y . This proves the claim. u

A relevant consequence follows from Property 5.27. Indéed,well known that any
invariant set obtained using a linear difference inclusadrthe nonlinearity yields a -
contractive invariant set (see (Blanchini, 1994)). Fromgderty 5.27 it follows that any
approach based on a linear difference inclusion providesn&ractive set that is contained
in the one obtained with the proposed result. Another imetgtion of the former property
is that any estimation of the domain of attraction obtaingdieans of a Lyapunov function
induced by a convex set is contained in tiéL-domain of attraction.

5.2.1 CDI approach to invariance computation for Lur'e sysems

Now we propose an alternative approach to the problem ofckenization and computation
of invariant sets and of the domain of attraction for a Luystem. This approach is based on
the results proved for CDI systems. In fact, we employ a CBtey characterized by the set
valued functionZ (-) overbounding the Lur’e system, that is such that- B¢ (Fx) C .7 (X).

_In particular, the CDI system is determined by means of its/er bounding functions
fh(-), for n € R", as illustrated in Section 3.2, which are recalled here:

£ (0= nTAx—nTB§(Fx), if nTB<DO,
TV nTAx—nTBR(Fx), if nTB>0,
where

Koy, if y> —by,

¢<y>=ma><{koy,¢(y)}={ ().  otherwise
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and
Koy, if y <by,

¢(y>=min{koy,¢(y>}={ b(y).  otherwise

Recall moreover that, from Property 4.27, the one-stepatpenf a sefQ is defined
by means of the directional bounding functidné, -). From Definition 4.3, the directional
upper bounding function for € X andn € R" is given by

. . nTAx—nTB§(Fx), if nTB<O,
Foen) =fa0=¢ ' .

n'Ax—n'B@(Fx), if n"B>0,
and the one-step operator is given by

QQ) = [ {xeX:F(xn)<g(n)} (5.29)
nern

Below we prove that functioﬁ(-, -) can be alternatively expressed as the pointwise ma-
ximum of affine functions. In fact, by geometric inspectioe have that
P (y) = max{koy, kiy—ci1, koy—co, ..., kny—cn},
¢ (y) = min{koy, kiy+c1, key+Cz, ..., kny+cn},
and thus
o) — { nTAx—nTBmax{koFx, kiFx—cy, ..., kvFx—cn}, if nTB<O,
’ nTAx—nTBmin{koFx, kiFx+cy, ..., k\Fx+cn}, if nTB> 0.

Since, for every set gb functionsf;(x), with i € N, and every € X, we have
max{ fi(x) : Vi € Np} = —min{—fj(x) : Vi € Np},
amax{ fi(x) : Vi e Np} = max{afi(x): Vie Ny}, if a>0,
amax{ fi(x) : Vi e Np} =min{afi(x): Vi e Np}, if a<O0,
it follows that

nTAx+max{ —nTBkFx,
—nTBkF B
N’ BxiFX+1"BC, it nTB<0,
—n"BkyFx+nTBay},

F(x.n) =

nTAx+ max{ —nTBkFx,
—n"BkFx—nTB
TEAEX=N"8a 4 pTeso,

\ —nT"BkyFx—nTBay},
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Now, from the fact that

n"B=—|n"B, if nTB<O0,
n'B=|n"B|, if nTB>0,

and fromc; > O for everyi € Ny, it follows that

F(x,n)=n"Ax+ max{ —nTBkFx,

—n"BkFx—|nTBc
n' BkiFx—|n'Bay, (5.30)

ey

—nTBkyFx—[nTBay|}-

Hence, finally we have thate Q(Q) if and only if

nTAx—nTBkoFx < ga(n),
nTAx—nTBkFx—[nTBa| < @ (n),

M

nTAX—nTBkyFx—[nTBa| < @ (n),

which meansF (x,n) < @ (n), for all n € R". Such condition, in case of polytopic sets
Q is given by a finite number of linear constraints, as for theecaf Q n(Q2), see (5.25).
The one-step operator for the CDI system overbounding thi&elane can be used in the
algorithm illustrates in Theorem 5.33 to compute a sequendevariant sets for the CDI
system. Any invariant set for the CDI system is invarianbdts every overbounded system,
hence also for the Lur’e one.

Finally, we prove that the one-step operators, for the CBtesy and for the Lur’e sys-
tem, are the same. This means that the algorithm gener&esithe sequence of invariant
sets.

Property 5.35 Given Q € #(R") and a Lur’e system (3.19) for which Assumption 3.8
holds, we have that

QunL(Q) = Q(Q), (5.31)
where the one-step operators are defined in (5.25) and ir9]bvidth If(-, -)in (5.30).

Proof: The property follows directly from the definitions of onegtoperators (5.25)
and (5.29), witm™ = Hj andgn(H{") = g;, for everyj-th row of matrixH. ]
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5.2.2 Numerical example

We provide here two numerical examples of application ofrdseilts presented in this sec-
tion. A two-dimensional and a three-dimensional Lur’e eyss are considered.

Example 5.36 Let us consider the syster.x = Ax — B¢ (Fxy) with

12 1| , |05
0 12|’ 1| (5.32)

F=[0.6290 12261.

A—

and the odd functiog (-)

Y, ify €[0,2)
¢(y) =< 0.25y+ 1.5, ifye[2,4) , Vvy>O. (5.33)
2.5, ify € [4, )

This function is represented in Figure 5.4. The matrix F is HQR gain for the linear
region computed employing identity matrices as weights.

Figure 5.4 Nonlinear functiong (-).
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Theorem 5.33 shows how to obtain a sequence of LNL-invas@ist that constitutes
an estimation of the domain of attraction of the nonlineasteyn. This sequence has been
computed for system (5.32) and it is shown in Figure 5.5.

Figure 5.5 Sequence of invariant sets for the Lur'e system.

In that figure, the most inner set is an invariant set of thedinsystem corresponding
to the zone of linear behavior of the system. The sequefc€C... converging to the
LNL-domain of attraction is represented in that figure.

This is not the only method to determine invariant sets fec@wise-affine feedback sys-
tems. In (Hu and Lin, 2004), the authors propose an algoritbiwbtain ellipsoidal invariant
sets for saturated feedback systems. Figure 5.6 showslijpgogdal invariant set obtained
by means of the results presented in (Hu and Lin, 2004), thgqmc LNL-invariant ob-
tained by means of the algorithm proposed in this paper andiraarical approximation
of the non-convex maximal invariant set. As can be seen,dlytopic LNL-invariant set
provides an improvement with respect to the ellipsoidal ame it is a sharp convex appro-
ximation of the maximal invariant set.
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Figure 5.6. LNL-invariant set (thick line), ellipsoidal invariant setithine) and non-convex invariant
set (dotted line).

Example 5.37 Consider the systemx= Ax— B¢ (Fx) with

12 1 3 1
A= 0 11 1 |,B=]05],
0O 0 12 1 (5.34)

F =[0.3447 05178 17351.

The matrix F is the LQR gain obtained using identity matriaesveights and the nonli-
nearity is the same as in the previous example, see Figure 5.4

The resulting tridimensional invariant sets are repregehn Figure 5.7. Again, it can be
appreciated that the ellipsoidal invariant set obtainedtigh the method presented in (Hu
and Lin, 2004) lies inside the LNL-invariant set. This is sotprising because the result of
(Hu et al., 2004) are based on the use of linear differenclugions.
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15

10

Figure 5.7: LNL-invariant set and ellipsoidal set.

5.3 Conclusions

In this chapter computational issues related to convexi@nee for the DC and Lur’e sys-
tems are addressed. We proposed here the computationadprecfor these particular
families of nonlinear systems, since they represent twéulfameworks for dealing with

real systems, which often present nonlinear dynamic fanstrather than set valued ones.

First DC systems have been considered. Sufficient conditioninvariance and -
contractiveness of a convex set for DC systems are presdhtadthe obtained results are
particularized to the case of polytopes in the state spaus.|dads to interesting properties
which can be employed in the design of algorithmic proceslfwecomputing invariant sets
for nonlinear systems.

Thus, an algorithm for computinglecontractive invariant set for discrete-time nonlinear
DC systems has been presented. We propose a method whicbneerthe main problem of
the computation of local invariant sets for a nonlinearaystthe computational complexity,
often unmanageable. In particular, we exploited propeaifeDC functions to formulate the
algorithm for computing a -contractive invariant set.
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Then, the problem of estimation of the domain of attractiblour’e systems is presented.
The results concerning iterative computation of converiiant sets and the one-step ope-
rator is developed for Lur'e systems. The procedure prapasbased on an convex appro-
ximation of the one-step operator for a Lur'e system. It hasrbproved that the algorithm
generates a sequence of nested invariant sets convergihg ltdlL-domain of attraction,
which represents a convex estimation of the real (possiiyconvex) domain of attraction
for the system.

The same problem is treated also from the point of view of GBtams. It is shown that,
for every Lur’e system, an overbounding CDI system can biyeasmputed and, employing
the one-step operator related to the approximated CDI sygtee obtained results are the
same as those achieved through the ad-hoc Lur’e approach.

The main feature of the proposed algorithms is their sintglend their affordable com-
putational burden, indeed no global optimization probleas to be solved. Moreover, they
have been demonstrated to be quite general, since they capplied to a large class of
nonlinear systems.
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Chapter 6

Control invariant sets for nonlinear
systems

In this chapter we consider control invariance for nonlimsan-autonomous systems. The
main objective is to provide methods for the practical cotapan of A-contractive and
control invariant sets, and the related control law, forlim@ar non-autonomous systems,
possibly uncertain. This means that we are interested smveleich areA -contractive and
(robust) invariant for the considered nonlinear systemlased-loop with a proper control
law. Since the chapter is focused on practical and compuiatissues, we will consider non-
autonomous DC system, which, we recall, encloses a very eléds of nonlinear systems.

The chapter deals with deterministic and uncertain nooraarhous DC systems. Con-
ditions for A -contractiveness and control invariance, based on CDésysproperties, will
be first given for generic convex and compact sets, then teatain will be directed to the
case of polytopic sets, more suitable for computationakaidnother important concept,
useful in the contest of control invariant sets computatamthe one-step operator for DC
systems, is analyzed. Then, practical issues concernguagitdmic procedures to obtain
control invariant sets and the related control laws aregoesl and applied to a numerical
example.

6.1 Control invariant sets for DC systems

We consider here an uncertain non-autonomous DC systehis thaonlinear discrete-time
time-invariant dynamic system

X = f(x,u)+w, (6.1)

195
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wherex € X C D C R" is the current statex” € R" is the successor statec U C E C R™
is the control actionw € W C R" is the unknown but bounded uncertainty ahd,-) is a
particular DC function. The state constraint seXiand the input constraint setls, while
setsD andE determine the domain on which functidi-, -) is defined.

In this chapter Assumption 3.19 will be extensively used. Mfeall here that with
Assumption 3.19 we suppose that D x E — R" in (6.1) is a DC function defined on
D x E C R™M with D C R" andE C R™ convex with(0,0) € int (D x E), and differen-
tiable at the origin. Moreover, denotirgy-,-) andh(-,-) the convex functions such that
f(x,u) =g(x,u) —h(x,u), for all (x,u) € D x U, we assume thaf(0,0) = 0 andh(0,0) = 0.

In the sequel we will suppose that Assumption 3.19 holdseterchine the DC nature of the
dynamic functionf(-,-) in (6.1).

Hypothesis on the state and input constraidt@andU, are expressed in the following
assumption, to which we will refer along the chapter.

Assumption 6.1 Assume that the constraint sets on the state K" and on the input UC
R™, are closed, convex and withe int(X).

In the following, when dealing with the presence of additimeertainty, also an assump-
tion on the uncertainty bounding 3&tis often supposed to hold. In particular Assumption
2.3 is referred to, meaning that C R" is assumed to be a compact set with it (co (W))

(no convexity is required).

Remark 6.2 We consider here nonlinear systems with additive uncestaaithough the
results presented can be applied to more generic framewsdes Remark 6.5. Moreover,
many of the results presented in this chapter can be extetodB@ functions f-,-) which
are not differentiable at the origin, see Remark 6.9.

A further assumption, not too restrictive in fact, is that tnearization of system (6.1)
is stabilizable.

Assumption 6.3 Assume that the linear system obtained linearizing funcfig, -) in (6.1)
at the origin and in absence of uncertainty, is stabilizable

We recall here that a s€ C R" is a robust control invariant set for system (6.1) and
constraintsx € X andu € U if Q C X and for allx € Q there exists ai(x) € U such that
f(x,u(x)) +w e Q, for all w e W, see the Appendix A. Then, a s@tis a robust control
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invariant set for the system if there exists an admissibfgroblaw u = u(x) € U defined for
all x € Q such that every trajectory of the controlled system (6.4aitistg within Q remains
inside it regardless on the uncertainty realization.

Also the definition ofA -contractive set for the uncertain non-autonomous DC syste
recalled here. A se® C R" is said to be a\-contractive set for the uncertain DC system
(6.1) and constraintsc X andu € U if Q C X and for allx € Q there exists a(x) € U such
that f (x,u(x)) +we AQ, for allw e W, with A € [0, 1]. Clearly,A-contractiveness implies
control invariance.

Remark 6.4 In case that the s is polytopic andd € int(Q), that is if there exist a finite
np € N and a matrix He R™*" such thatQ = {x € R": Hx < 1}, the condition for the set
Q C X to beA-contractive is the existence of & € U such that H fx, u(x),w) < A, for
allx e Qandwe W.

In the following we propose a condition for a convex@esubset of the state space, to be
a robust control invariant set for the uncertain non-autooas DC system. Then the condi-
tion is employed to design an algorithm for computation aflaust control invariant set. The
affordable computational burden required and the gengia@le important characteristics of
the proposed approach.

Remark 6.5 The results provided here can be extended to the dynamiensgsjiven by
x = f(x,u,w), where WC R" is a polytope and the dependence of functign-f-) with
respect to we W is affine, i.e., for every € X andu € U, function f(x,u,w) is affine in w.
In this case the system can be expressed as

X" eco(f(x,uw),ieNy,),

where W, withi e Np,, are the g, vertices of polytope W. It can be proved that if aQet X
and a control law (x) € U defined for all xc Q, are such tha) is a control invariant set

for every system’x= f(x,u(x),w'), with i € N, thenQ is a control invariant set also for
system X = f(x,u(x),w).

6.1.1 Control invariance condition for DC systems

In this section we present theoretical properties and t®eualcontrol invariance for a convex
set and a DC system, which will be useful to define controtegjias for nonlinear systems.
In the following, in fact, such properties are employed foe tase of polytopic control
invariant sets, leading to computational procedures cieriaed by affordable complexity.
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_ Giventhe DC functionf (-, -) as in Assumption 3.19 the directional bounding functions
F(-,-,n) foranyn € R", is defined below.

First it is worth recalling here that the CDI system overbding a non-autonomous DC
system is characterized by

faxu) =S nj(gixu)—hrx,u)+ $ nj(g5(xu)—hj(x.u)), (6.2)
i€ jek_
wheregh(x, u) = Oxgj (0, 0)x+ 0ygj (0,0)u andh (x, u) = Oxh; (0,0)x+ Cyh; (0,0)u, for j €
Nnhandky =k (n)={jeNn: nj >0} andk_ =k_(n) ={j € Nn: nj <0}, see Property
3.20. Recall thag;(-,-) andhj(-,-) denote thg-th components of(-,-) andh(,-), j € Ny,

respectivelyk, =k, (n) is the set of indexes of non-negative elements of vegterR" and
k_ =k_(n) the set of indexes of negative elementsg)jof

Definition 6.6 Given the DC function fD x E — R"as in (6.1) such that Assumption 3.19
holds andn € R", define the directional upper bounding functien R" x R™ x R" — R as
IE(X7 u?”) = f},(X, U), (63)

where functionsfv,7 (-,-), for everyn € R", are given by (6.2).

Then we have that the explicit expressiorl—:céf(, u,n)is

~

Foxun) = nj(gj(xu)—hr(xu)+ Z nj (g5 (x,u) —hj(x,u)). (6.4)
jek_

IE

Property 6.7 Let Assumptions 2.3, 3.19 and 6.1 hold. Given the DC fundtiofixU — R"
as in (6.1), for everyq € R", functionF (-,-,n) defined in (6.4) is convex with respect to
(x,u) e X xU.

Proof: By Definition 6.6, functionF (-,-,n) is the sum of elements composed by the
sum of a convex term and a linear one. From the fact that arlifue&tion is convex and
since also the sum of two convex functions is a convex functioe claim follows. [ |

In the following we prove that, for ang € R", the functionlf(-, -, 1) provides an upper
bound of the functiom T f(,-).

Property 6.8 Let Assumptions 2.3, 3.19 and 6.1 hold. Given the DC fundtioix U — R"
asin (6.1), for every; € R" we have

nTf(xu) <F(xun), V(xu)eXxU, (6.5)
whereF (-,-,n) is defined in (6.4).
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Proof: SincegjL(~, ) andhjL(-, -) are, by definition, the linearizations at the origin of the
convex functiong;(-,-) andhj(-,-), respectively, forj € Ny, it follows

glj_(x7u) ng(X,U), \V/J GNn, \V/(X,U) GXXU,

| : (6.6)
hi(x,u) <hj(x,u), Vj€ Ny, V(x,u) € XxU.

Thus, nj(hf(x,u) —hj(x,u)) < 0if j € k; andnj(gj(x,u) —gr(x,u)) <0if j € k_, for
all j € Ny and any(x,u) € X x U. Hence, from this and (6.4), we have

nTf(x,u)—F(x,un)= élnj (9j(x,u) — hj(x,u)) —

> Ni(g;(xu) —h(x,u) — 2 (g7 (¢ u) —hj(x.u)) =

jeks
= 3 nj(hy(xu)=hj(x,u)) + ¥ nj(gj(x,u)—gf(x,u)) <O
jeky jek_
for all n € R" and for any(x,u) € X x U. u

Remark 6.9 Notice that differentials at the origin of functiong(g -) and h(-, -), with res-
pectto x and u, for £ Ny, are used to determine linear functiorljs(g -)and H[(-, -) fulfilling
the inequalities (6.6), see Definition 6.6. In case fundigy-,-) and hy(-,-), for j € Ny, are
convex but not differentiable at the origin, linear functsosatisfying inequalities (6.6) can
be obtained by means of the subdifferential @f,g) and hy(-,-) at the origin with respect to
x and u.

Another important property of functidﬁ(-, -,+) is presented in what follows.

Property 6.10 Let Assumptions 2.3, 3.19 and 6.1 hold. Given the DC fundtiod x U —
R" as in (6.1) andy € R", for every collection of pelements;k € R" and 6, > 0, with
k € Np,, such thaty ¥ , 6= 1andn = 3%, 6n*, we have
N,
Fixun) <y 8Fxun), v(xu)eXxu, (6.7)
K=1

=

whereF (-,-,n) is defined in (6.4).

Proof: Both sides of inequality (6.7) are given by a sumnaerms. For the lefthand
side term, this stems directly from the definitionkeff-, -, -). For the righthand side term, for
everyk € Ny, we have that

Fooun= 5 nf@ow—mxw)+ Y nk(ghw—hixu),
jeky (nk) jek-(n%)
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and then

n

+ 2 n}‘(gjL(X,U)—hj(X,U))>=_Z > 6k,

j=1k=1

where
Gik(X) = { 8900 —hy(x)). if nf=0.
| Bnf(gy() —hj(x),  if nf<0,
for everyj € N, andk € Ny, .

We prove that the-th term of the lefthand side is smaller than théh term of the
righthand side, for every € Ny,. This, clearly, implies (6.7).

Given a generig € Ny, denoted = d(j) = [n{, n?,...,n*|" and defina™ = 5 6nk
kek,(d)
andd™ = Y Gkn}‘. We have that™ > 0, d~ < 0, by definition, and thg-th term of the
kek_(d)
righthand side of (6.7) is given by

3 e3u00 = a8 (g,00) ~H )+ (g )~y

Suppose thay; € k, (), the case of)j € k_(n) is similar. We have to prove that
nj(gj(xu) —h-(x u)) < d*(gj(xu) —hb(x,u)) +d= (g (x,u) — hj(x,u)). (6.8)
Sincen; =d* +d~ by definition,g;j (x,u) — g (x,u) > 0, hj (x,u) — h%(x,u) > 0 by convexity,
andd~ <0, we have
nj(gi(x u) —hi(x.u)) < (d"+d7)(gj(x.u) —hf(x,u))-
—d=(gj(x,u)—gdf(x,u)) —d~ (hj(x,u)—h}(x,u)),

since the righthand side term in (6.9) is obtained by addogitjve quantities to the lefthand
side one. Notice that (6.9) is equivalent to (6.8), then ttoperty is proved. [ |

(6.9)

The previous properties are the basis for the followingltesan control invariance and
A-contractiveness of a convex, compactQdor a non-autonomous DC system.

Property 6.11 Let Assumptions 2.3, 3.19 and 6.1 hold. Gi¥ea [0, 1], a convex, compact
setQ C .#9(X) is a A-contractive set (a robust control invariant setif= 1) for system
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(6.1) and constraints ¥ X and ue U if and only if there exists a control law= u(x) € U
such that
nTfxux) <Aga(n)—aw(n), YxeQ, vneR" (6.10)

Proof: By definition,Q C .#9(X) is aA-contractive set for system (6.1) and constraints
x € X andu € U if there exists a control law = u(x) € U such that

xT=f(x,u(x))+weaAQ,  VxeQ, vwecWw. (6.11)

Taking into account tha® is a convex, compact set and equation (C.2), we have that-cond
tion (6.11) is equivalent to

nT(f(x,u(x)+w) < @o(n), ¥xXeQ,yweW, v¥n cR". (6.12)
Notice that, by definition of support function, we have

®a(n) = supn'x=supn'Ax=Am(n), vnecR"
XEAQ xeQ

and therefore (6.12) is satisfied if

nTf(xu(x) <A@m(n)—supn'w, YxeQ, vneR",
weW

which, in turn, is equivalent to equation (6.10). [ |

The necessary and sufficient condition for a @eto be a robust control invariamt-
contractive set, given by (6.10), is very hard to be testadesieven if the control law is
assumed to be known, checking the condition requires irtipeato verify the fulfillment of
an infinite number of non-convex constraints, one foxalQ and alln € R".

In what follows we present a convex relaxation of such coowlito obtain an only suf-
ficient condition for a convex se@ C X to be A-contractive. The convex nature of the
proposed condition allows one to devise a simple algoritbrohteck its fulfillment. The
sufficient condition forA -contractiveness of a s is given in the following property. Note
that it has to be verified only on the boundaryof

Property 6.12 Let Assumptions 2.3, 3.19 and 6.1 hold. Giver [0,1] and a compact,
convex sef C 7 0(X), if there exists a control law & u(x) € U defined on xc dQ such
that

FOxu(),n) <A@m(n)—a@w(n), vxedQ, vneR", (6.13)
where functiorif(-, -,+) is defined in (6.4), the@ is a A-contractive set (a robust control
invariant set ifA = 1) for system (6.1) and constraintsexX and ue U.
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Proof: First note that, from Property 6.8, it follows that
Fxun) <Am(n)—aw(n), vxeQ, vneR" (6.14)

implies fulfillment of equation (6.10), and thércontractiveness and robust control invari-
ance ofQ. In general the inverse is not true, for this reason the ¢mmdis only sufficient,
while it is necessary and sufficient for the CDI system imelg overbounding the DC one.
We prove that there exists a control layx) € U defined ondQ such that the condition
(6.13) is satisfied if and only if there existiéx) € U defined o2 such that condition (6.14)
is fulfilled.

Necessity is trivial, sinc€ compact impliedQ C Q. Sufficiency has to be proved.
Suppose, hence, that there exists a control law u(x) € U, for all x € dQ such that
condition (6.13) is fulfilled. From compactness and contyeri Q it follows that given
X € Q there exists a set of points 6 such thatx’is their convex combination (see The-
orem 18.5 of (Rockafellar, 1970)). This means that therstexnon-empty set gb points
xI(R) € dQ, with p = p(X) € N, and a set ofp reals 8)(X) € R, for j € Ny, such that
£=73",6/(%)x(%), 81(%) > 0 for all j € Np, andy?_; 81(%) = 1. Since also the set
has been assumed convex and the controluéxy € U is defined on the boundary 61,
then, denoting! (%) = u(x)(%)), for all j € N, we have that(X) = y_, 61 (%) ul (%) is such
that U(X) € U. By convexity of functionF (-,-,n) on the convex seX x U and equation
(6.13), it follows that

i=1

F(RR.) = F (§ 01 X(R). 3 61(%) uj(*%n) <
=1 |
< $ 01 F 045, < 3 015\ gal) ~aw(m) -

=Aga(n)—en(n), VXe€Q,VneR"

This means that condition (6.13) implies condition (6.4 ¢ghen it is a sufficient condition
for A-contractiveness d® for system (6.1). [ |

Property 6.12, besides giving a sufficient conditionfecontractiveness and robust con-
trol invariance based on convex constraints satisfacpoovides a simple way to compute
an admissible, nonlinear in general, control law definedonn fact, a family of control
laws defined 012 C X can be obtained from the knowledge of the control determameithe
boundary ofQ, as illustrated in the corollary below.

Corollary 6.13 Let Assumptions 2.3, 3.19 and 6.1 hold and consier[0, 1|, a compact,
convex sef C .#%(X) and a control law (x) defined ordQ such that equation (6.13) is
fulfilled. Any control lawdi() defined ak € Q as () = 37_; 61(X) ul (%), where pe N,
x/(%) € 9Q and 61(%) € R, for j € Ny, are such thak = 37, 61(%) xI (%) and 61(%) > 0
and Z'jozl 6)(%) = 1, is an admissible robust control law such ti@tis a A-contractive set
(a robust invariant set iA = 1) for the nonlinear system (6.1) in closed-loop.
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This means that, given a poirte Q, any admissible set of pointd with j € Np on the
boundary such that is a convex combination of them, determines an admissiliralo
input atx. Any control law defined o2 as a selection at € Q among all the admissible
control input determined in that way provides an admisgibleist control law.

6.1.2 Condition for control invariance for polytopic Q.

The aim of the section is to propose a condition for contnadirance, and -contractiveness,
simple to be computed. In particular, under the assumphiat(l is a polytope, we provide
a condition for control invariance given by a finite numbercohvex constraints involving
only its vertices.

First we consider a sufficient condition for a polytaRes .#9(X) to be A -contractive
for the deterministic nonlinear system

x" = f(x,u), (6.15)

wheref (-, -) is the DC dynamic function of (6.1). Then the result will béexded to provide
a sufficient condition for robust control invariance of aygope for the uncertain nonlinear
system (6.1).

Property 6.14 Let Assumptions 3.19 and 6.1 hold. Givane [0,1] and a polytopeQ =
{x e R": Hx < 1} C X, with H e R™*"and denoting as lve RM, for j e Np,, its n,
vertices, if there exist control actions defined at the cesj U = u(v!) € U, for all j € Ny,
such that o

F(V UL HT) <An, VjeN,, Vi €Ny, (6.16)

where functiorif(-, -,-) is defined in (6.4), the@ is a A -contractive set (a control invariant
set if A, = 1) for system (6.15) and constraintseXX and ue U. Moreover, there exists a
control law ux) € U defined o2 such that for any x€ Q the trajectory{xx }ken generated
by (6.15) with control law W= u(x), satisfies ke AXQ, for all k € N.

Proof: First notice that, from Property 6.8 and equation (C.3)libivs that
FOGUHTD) <AmHT) =2, ¥xeQ, VieN, (6.17)

implies fulfillment of equation (6.10) withV = {0}, and then -contractiveness a®. In
general the inverse is not true, for this reason the comdit@nly sufficient. Similarly to

the case of generic se® < .#%(X), see Property 6.12, we have to demonstrate that there
exists a control law! € U defined at vertices!, for j ¢ Np, such that the condition (6.16)

is satisfied if and only if there exist@&X) € U defined onQ such that condition (6.17) is
fulfilled. Necessity is trivial, since! € Q forall j € Np,. Sufficiency has to be proved.
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Notice that, since any point of a polytopec Q, can be expressed as the convex com-
bination of its vertices then there ex&t(x) > 0, j € Ny, such thak = zj”v:lel (x) v}, and
S, 61(x) = 1. Moreovem(x) = 3., 6(x) ul is admissible, i.eu(x) € U, from convexity
of U. Considere € [0, 1]. From the convexity oF (-,-,HT), for anyHT € R" and (6.16), it
is inferred that, for allj € Ny, andi € Ny,

S . B
F(evl, eul H, )—e)\ngOrggagxl{F(evl,euJ,Hi )—€An} =

=max{F(0,0,H) —0; F(vl,ul,HT) —A,} <0,

sinceF (0,0,H.") = 0 from Assumption 3.19, and that means thatv!, eul, HT) < eAp,
for all j € Ny, andi € Ny, for anye € [0, 1]. Considexc €Q and notice that there exists
x€ Qsuchthak=ex= 3y, 8)(x)ev), by definition. Definai(X) = eu(x) = 3}~ 6! (x)eu,

clearlyd(R) € U. From Property 6.8 and convexity of functiéi-, -, H.T), for anyHT € R",
it follows that if X € €Q then

“ “ Ny . .o Ny . .
Hif (%,0(R)) < F(RG(X),HT) =F ( s Bl(x)evl, 5 GJ(x)sul,HiT> <
j=1 j=1

Ny . . . Ny .
<5 OI(x)F(evl,eu, HT) < 5 Bled, = eAn,
i=1 =1

for all i € Ny, . This means that condition (6.17) is satisfied posingfer1 and thak'c £Q
implies f(X,u(X)) € €AnQ, for all € € [0,1]. Hence,Q is a A-contractive set for the DC
system (6.15) angp € Q impliesx, € AQ. |

The following corollary will be employed to enlarge a (robusontrol invariant set.

Corollary 6.15 Let Assumptions 3.19 and 6.1 hold. Consider a polytopi€set{x € R" :
Hx <1} C X, with He R™*" its vertices veR"for j e Np, and admissible control actions
defined at the vertices'u= u(v!) € U for all j € Ny, such that condition (6.16) is fulfilled.
Giveng € X, defineQ = co(QUR) = {x € R": Hx < 1}, whereH € R™%*" and n, € N.

If there existsd = ((R) € U such thatF (%,0,HT) < Ap, for every i€ Ny, thenQ is a A-
contractive set (a control invariant setAf, = 1) for system (6.15) and constraint&xX and
ueU.

Proof: ConsiderQ as candidate\ -contractive set in Property 6.14. %< Q, then
Q = Q, trivial. Considenx# Q. We have to check condition (6.16) forand all its vertices,
which are given by and a subset of the vertices@f Pointxfulfills condition (6.16) for all
I—A|iT by hypothesis, we consider now any verteXbf

SinceQ C Q we have thag; = ma&{lflix: x € Q} <1, for everyi € Nr . Since strong
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duality holds, see (Boyd and Vandenberghe, 2004), we hate th

8= min a
a,8'cR™

6. >0, VkeNp,

which means that the dual optimizer, denot@iic R™, is such thatd; = ", iH and
s, 6l =a <1,foralli € Np.

From Property 6.10, for all) andu!, j € Np,, we have that

S k. N
Fov,u, AT < > BiF (v, ul HJ) < Y Bidn=aiAn < An,
k=1 k=1
for all i € Ny, since vertices of2 are assumed to satisfy condition (6.16). The result is
proved. [ |

Any setQ asin Corollary 6.15 is a control invariant set, with conti@e factorA,. Prop-
erty 6.14 provides a criterion to design a control law anddtednine whether a polyhedral
setQ C X is a robust control invariant set for a discrete-time DCaysin absence of uncer-
tainty, the subsequent corollary permits to determine #arged control invariant set. These
results are easily extended to the uncertain DC system (6.1)

Property 6.16 Let Assumptions 2.3, 3.19 and 6.1 hold. Consider a polyfdpe{x € R":
Hx < 1} C X, with H € R™*"its n, vertices veRfor je Np,, and the uncertain DC
system (6.1). If there exists an admissible control law defat the verticesu= u(vl) e U
forall j € Np,, such that

FVLuLHD) < Aw—aw(HT),  VjeNy, VieNy, (6.18)

for a Ay € [0, 1], where functiorF (-, -, -) is defined in (6.4), the is a A-contractive set for
the DC system (6.1) with contraction facty.

Moreover, given ang € X and denotind) = co(QUX) = {xe R": Hx< 1} withH
R, if there existsl = u(X) € U satisfyingF (%,0,H") < Ay — @v(H"), for alli € Ny, also
the setQ is a A -contractive set for the DC system (6.1) with contracticrtdaA,,.

Proof: Condition onQ to be aA-contractive set for the uncertain DC system is that
H(f(x,u(x)) +w) < Ay, for all x e Q andw € W. Inequalities (6.18) implies the fulfillment
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of the condition at the vertices, j € N, , in fact

Hif (v, ul) + Hiw < F(vi,ul HT) + Hw <
<F VI, ul HT)+ supHiw=F (V),ul,HN + @y (HT) <Ay,
weWw

for all j € Ny, andi € Ny,. From convexity of functiorF(-,-,n), for anyn € R" and
convexity of Q andU, the results can be proved similarly to Property 6.14 and[Goy
6.15. [ |

Then, Property 6.16 provides a sufficient condition for agipolytopeQ € .#%(X) to
be a robust control invariant addcontractive set for the uncertain DC system (6.1). In what
follows we demonstrate a convexity related property of tteo$ polytopes for which the
sufficient condition is satisfied. For this purpose, a deénits introduced here.

Definition 6.17 Let Assumptions 2.3, 3.19 and 6.1 hold. We denote Aifhy,) C .7 9(X)
the set of polytopeQ C X which satisfy hypothesis of Property 6.16. That is, pqlgto
Q € A(Aw) if there exists an admissible control law defined at its wegisuch that condition
(6.18) is fulfilled.

Roughly speaking, givehy,, € [0, 1], the set\(Ay) is composed by those polytopesXn
which satisfy the sufficient condition for robust invari@mrandA -contractiveness (6.18) for
the non-autonomous uncertain DC system.

Property 6.18 Let Assumptions 2.3, 3.19 and 6.1 hold. Given a poly@pe {x € R":
Hx <1} andAy € [0, 1], the set

M(Q,Aw) ={yeRy: yQeA(Aw)} (6.19)

is an interval inR ..

Proof: First notice that G2 ' (Q, Ay), since this would imply the existence ofe U
such that
£(0,u) ®W C {0},

which contradicts the assumptiorednt (co (W)). Then we considey > 0.

~ Denoting the vertices a2 asvl, for j € Ny, then the vertices of the polytope are
v{, =yvl, forje Np,, with y > 0. Moreover, since for any > 0 we have

yQ={xeR": Hx<y} ={xeR": %/ngl},
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then it can be proved thgf satisfies condition (6.18) if and only if there exiét: ul () e
U such that

F(WLulHT) < yAw—a@w(HT),  Vj €Ny, ¥ie Ny, (6.20)

In fact we have that condition (6.18) for sg® is given by

. —— 1 . )
F(w',uly,;HD SAW—aw(;HF), Vj € Np,, Vi € N,

and from
. 1 1. .
F(W’,u{,,;HiT) = ;/F(yv‘,u{,,HiT), Vj € Np, Vi € Ny,
and
1,00 1 0
@V(;Hi):;(ﬂN(Hi ), VieNp,

then conditions (6.18) and (6.20) are equivalent.

Assume thatr € ' (Q,Ay) andB € ' (Q,Ay), i.e., there exist two control Iawﬁ, eu,
defined at the verticeg, of aQ, and ub € U, defined at the vertices;; of BQ, for all
j € Np,, such thato Q and BQ satisfy the hypothesis of Property 6.16. For &y [0, 1],
denoted = 5(6) = 6a + (1 6)p and defines; = uj(6) = Oug -+ (1—6)ug, forall j € Ny,
Note thatu) € U, j € Ny, by convexity of. From convexity of functior-(-,-,n) for any
n € R", it follows that

F(ovl,uf,HT) = F(Bavl + (1— 6)Bvi, Bul + (1— B)up HT) <
< BF (av),ug, HT) + (1 - 8)F (BV),up, HT) < 3Aw—@w(HT), j€Nn, i€ Ny,

_ (6.21)
which means thadQ with control Iawug defined at its verticedv!, for ] € Ny, satisfies
hypothesis of Property 6.16, théf2 € A(Ay). This implies thatd(0) € I'(Q,Aw) for any
0 € [0,1], or equivalently, thal (Q, Ay) is a convex set ifR, hence an interval iR ;. |

An explicit relation between the contractive faciyy for the deterministic DC system
(6.15) and the uncertainty that can be tolerated by the sybtforeQ looses its condition
of invariance is easily inferred. That is, given a contrev land a sef2 whose contraction
factor isA, for system (6.15), if

max@y(H') < Aw—An, (6.22)

|€Nnh

thenQ is aA-contractive set for the uncertain system (6.1), with caction factorA,.
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6.1.3 One-step operator for non-autonomous DC systems

We present here some considerations on the one-step apferdtte particular case of non-
autonomous DC systems and polytopic €tslt has been already pointed out the impor-
tance of the one-step operator, on which many iterativerdhgos for the computation of
invariant and\ -contractive sets are based. See for instance Theoremadd32. 33, which
provide properties of the sequence of invariant sets obthapplying iteratively the one-
step operator for CDI systems and Lur’e systems. Similarlt@san be stated for the case
of non-autonomous DC systems.

Itis worth pointing out that, in what follows, we consideethon-autonomous DC system
(6.15) and that for the one-step operator and its convexoappations defined below the
dependence on the contraction fackois posed explicitly, for notational clearness.

Definition 6.19 Let Assumptions 3.19 and 6.1 hold. Consider a polytQpe {x € R" :
Hx <1} C X, withHe R™*" A €[0,1] and the DC system (6.15). Define

Qr(Q,A)={xeX:3ueU, F(x,uH") <A,Vie Ny},

(6.23)
Q(Q,A)={xeX:JueU, f(x,u) e AQ},

where functiorF (-, -, -) is defined in (6.4).

OperatorQr (-,-) provides a convex inner approximation of the exact one-gpepator
Q(+,-), widely employed in many classical recursive algorithmedmpute control invariant
andA -contractive sets. Recall that Property 6.14, to which ieriie the following property,
is the sufficient condition fol -contractiveness for polytopic sets and deterministic-non
autonomous DC systems.

Property 6.20 Let Assumptions 3.19 and 6.1 hold. For any polyt@pe {x € R": Hx <

1} C X, with He R™*" "andA € [0,1], set @(Q,A) is convex and closed and such that
Qr(Q,A) CQ(Q,A). If Qis such that hypothesis of Property 6.14 holds, ©en Qg (Q,A)
and Q:(Q,A) is aA-contractive set with contraction factar.

Proof: Convexity and closure follow from the definition, since foreeyi € Ny, the set
PE(QA)={(x,u) € X xU :F(x,u,H/)<A,Vi € Ny},

is convex and closed, from Property 6.7 and Assumption 6d.Qg (Q, A) is the projection
on the state space of the $81{Q,A) C X x U.
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InclusionQr (Q,A) C Q(Q,A) follows from Property 6.8. Inclusiof@ C Qr (Q,A) isdue
to the fact that ifx € Q then there exists € U such thafF (X, u, HiT) <A,forallie Ny, as
proved in proof of Property 6.14. Finally, contractivenissue to the fact thate Qr (Q,A)
impliesx € Q(Q, A ) and then the existence ofx) € U such thatf (x,u) e AQ CAQe(Q,A).
That is,x € Qe (Q, A ) implies the existence af = u(x) € U such thatf (x,u) € AQr(Q,A),
which is the definition ofA -contractiveness for the s@ (Q,A). |

Hence, given a polytop@ < .#%(X) andA € [0, 1], the iterative application of operator
Qe (), provides a sequence of nesfeadontractive sets for the DC system (6.15). The main
problem from the computational point of view is th@¢ (Q,A) is not a polytope in general
case, thus the sequence of sets generated by applyingviégrdhe one-step operator are
not polytopic, not even if the initial set is a polytopic caooitinvariant set. Alternatively,

a polytopic inner approximation can be computed. The falhguproperty is instrumental
to that purpose and provides a deeper insight on the chaeatten of the convex one-step

operatorQg (-, -).

Property 6.21 Let Assumptions 3.19 and 6.1 hold. Given any polyfope{xc R": Hx <
1} € X, with He R™*" andA € [0,1], then G (Q,A) = Qr (Q,A) with

Qr(Q,A)={xeX:TuecU,F(xu,n)<A,vn € O(H)}, (6.24)

where functiorF (-, -, -) is defined in (6.4) and

N

OH)={neR":30 cR™, 6 >0, Zf“” ZGHT} (6.25)

Proof: Notice thato(H) C R" is the polytope whose elements are those vectoRs'in
that can be expressed as convex combinations of the rowstedkri that is ofH.", with
I € Np,.

We prove thaiQr (Q,A) € Or (Q,A) andQr(Q,A) € Qr(Q,A). The latter is trivial,
sinceH" € ©(H), foralli € Np,, and therQr (Q,A) is defined by a set of constraints which
are a subset of those deﬁm@(Q A). We proveQr(Q,A) C Qr (Q,A) by reduction to
absurd. Suppose that there ig @ Qr (Q,A) such thax¥ Qg (Q,A). Then, there exists a
n € ©(H) such that

F(x0,n)>A, VYieU.

Fromx e Qg (Q,A) and Property 6.10, we have that
A <F(%0,n <ZGF>20 <ZG)\<)\

A

for a proper selection of € R™, which is absurd. The@g(Q,A) C Qe(Q,A), and the
property is proved. [ |
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The meaning of Property 6.21 is clear: a poirt X belongs to seQr(Q, A ) if and only
if there existau € U such thaf (x,u,n) < A, not only forn = H", withi € Ny, , but also for
any vectom that belongs to the polytog@(H) C R".

Corollary 6.22 Let Assumptions 3.19 and 6.1 hold. Consider a polyt@pe {x € R":

Hx <1} C X, with He R™*" andA € [0,1], such that hypothesis of Property 6.14 holds
for Q, andX € Qe (Q, A). Then the se® = co(QUX) = {x e R": Hx< 1}, whereH € R™*"
and n, € N, is aA-contractive set (a robust control invariant se\if = 1) for system (6.15)
and constraints x X and ue U.

Proof: We prove that als® satisfies the hypothesis of Property 6.14, which, we recall,
provides a sufficient condition for a polytope to ba aontractive set. Analogously to the
proof of Corollary 6.15, we have th& C Q implies the existence of! > 0 such that
Al =51 6HE L 54, 6 < 1, which is equivalent t6i] € ©(H), for all j € Nr,.. Property
6.20 andxe Qr(Q,A) imply thatQ C Qe (Q,A), because alsQ is a subset 0Qr (Q,A)
and seQr (Q, ) is convex. From this and Property 6.21 we have that for exery) there
existsu € U such thatfF (x,u,n) < A, for all n € ©(H), and in particular for every vertex
of O and eveni[, j € Ny.. Hence hypothesis of Property 6.14 holds frthenQ is a
A-contractive set. [ |

Property 6.22 means that, given a polytopic@ehat satisfies the sufficient condition for
A-contractiveness, any poirtrithe seQr (Q, A ) determines anothar-contractive polytope
for the non-autonomous DC system. Then, this permits taydesn algorithmic procedure
to generate a sequence of nested control invariaht@wntractive polytopic sets for the DC
system.

6.1.4 Practical issues on design.

The first issue to be tackled in order to apply the results shiomthe previous section is
how to define the potential control invariant §&tOnce a suitable guess foris given, the
sufficient condition for control invariance can be appli€she possible choice is to select, as
initial guess ofQ, a (robust) invariant set for the linear system obtaineddrizing the DC
system.

Standard iterative algorithms to determine a (robust)riavé set for linear systems have
been proposed in literature, see for instance (Gilbert ard T991; Blanchini, 1999) and
(Kolmanovsky and Gilbert, 1998). In case of absence of uat#y, given aA -contractive
invariant seQ, for the linearized system with contraction fachoe [0, 1), a properly scaled
setaQ, with a > 0, can provide an invariant set also for the nonlinear system
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Once a (robust) control invariant S&tis given, many approaches can be considered in
order to obtain the control law such that €etis a robust invariant set for the nonlinear
DC system (6.1) in closed-loop. From a practical point ofwié is sufficient to define a
control action at any of the vertices, i&. = u(v}), to obtain a control law defined over the
whole setQ. In fact, as illustrated above, a proper convex combinatforaluesu(v!), with
] € Np,, determines a control value at every Q such that invariance d® is ensured for
the closed-loop system, from convexity@fand functiong (-, -, n).

Here we propose an algorithm to generate a control invagantfor the deterministic
DC system. We select as initial shape for the control inveusat, a polytop& which is a
control invariant set for the system linearized at the origi

Recall that by Assumption 6.3, there exists a linear feekllsach that the linearized
system is asymptotically stable. A sketch of the algoritloiiofvs, whereknax € N is the
number of maximal iterations performed.

Algorithm 3 Computing a control invariant set for a deterministic DCteys
Given the DC system as in (6.15):

(1) Compute a linear feedbagke R™" such that the linearized system is asymptotically
stable in closed-loop and compute an invariantxédr the closed-loop linear system.

(2) Obtaina, (a lower approximation of) the maximal such thataQ fulfills (6.16).
DenoteQo = 4Q = {x € R": H% < 1}, with H? € R™*" and a propen? ¢ N, and
k=0.

(3) GenerateX € X such thaxk ¢ Q, and defin€) = co(QUxK) = {x e R": Hkt1x< 1},

. k-+1
with Hk*1 € R and a propenttt € N.

(4) If there existsu“ € U such thatF (X, u¢, (HKH)T) < Ay, for everyi € Nyea then

Qi1 = Q, otherwise go to (3).

(5) Posek = k+ 1. If k > knax Stop, otherwise go to (3).

Once a stabilizing feedback law is determined, we employntie¢hod illustrated in
(Fiacchini,AIamo and Camacho, 2007) to obtd& invariant set for the linearized system in
closed-loop with the linear feedback. The sufficient candifor control invariance (6.16)
for a polytopic seQ is employed in a dichotomic algorithm to compute an appration
of the maximala > 0 such thataQ is a control invariant set for nonlinear system (6.1).
Checking if inequality (6.16) is fulfilled by every vertex a, is achieved by solving a set
of convex problems. Once a control invariant a&€ has been obtained, Corollary 6.15 is
used to enlarge the set. Random poitis the state space are generated: if¥oe X there
exists alk e U fulfilling the hypothesis of Corollary 6.15, then the new trohinvariant set
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is obtained as the convex hull of the current control invatriget and poinkX.

It has to be pointed out that the enlargement step often nexja considerable com-
putational effort. An accurate procedure to select prgpeointsx should be defined for
high dimensional cases, with the aim of reducing the conigyleikie to the computation of
hyperplanes determining ses

Another computational problem involves the choicexbfc X such thatx ¢ Q, that
can be a non-trivial procedure for high dimensional prolde/e propose an alternative
procedure based on the following corollary, which is a dicemsequence of Property 6.22.

Corollary 6.23 Let Assumptions 3.19 and 6.1 hold. Consider a polytQpe {x € R":

Hx < 1} C X, with He R™*" ‘andA € [0,1], such that hypothesis of Property 6.14 holds
for Q, and, giverk € X, define the sd&b = co(QUX). If there existsl = (i(X) € U such that
ﬁ(x,o, HiT) < Ap, for every i€ Ny, thenQ is a A -contractive set (a control invariant set if
An = 1) for system (6.15) and constraints&xX and uc U.

Proof: Altough the result can be considered as an application gfd?tp 6.22, the proof
is provided. It is worth pointing out that under the hypoiked the corollary we have that

FROH) <An, VieN, = HfRO)<A,VieN, = f(&0)eAQ,

and f(x,u(x)) € AnQ for all x € Q and a propeu = u(x) € U, beingQ a A -contractive set.
This does not imply\ -contractiveness d®, that is f (x,u(x)) € ApQ, for all x € Q and for
properu = u(x) € U, which is the claimed result and has to be proved.

We consider the non-trivial casex# Q. We prove that als@ satisfies the hypothesis of
Property 6.14. Denotd € R">*", with ng € N, the matrix such thad = {x e R": Hx < 1}.
Remind that the set af vertices ofQ is composed by and a subset of vertices 61
and then, by assumption, every vertex(fsatisfies (6.16). We prove that satisfaction of
condition (6.16) wittH.", for everyi € Ny, , implies fulfillment also witH3|jT, forall j € Ny,.
Analogously to the proof of Corollary 6.15, we have tatC Q implies the existence of
6] € R™ with 8] >0, such thatlT = 37 1 OHS . 2, 6 < Lforall j € Ny, From this and
Property 6.10 we have that for verté&o”f Q there exists/e U such thaf (%, 0K, I:|jT) <An,

for all j € Ny, and everyk € Ny,. Hence hypothesis of Property 6.14 holdsdprthenQ is
aA-contractive set. [ |

The meaning of the previous corollary is that given a polgtQpsatisfying the sufficient
condition for A-contractiveness for DC systems (6.16), any poirt X for which there
existsu{R) € U such thafF (%, 0, HT) < Ap, for everyi € Ny, , determines a set which satisfies
the same sufficient condition, hence itAscontractive. Thus the corollary can be used to
generate a sequence of nested polytopes sharing the groparcontractiveness.
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Then, a convex problem can be solved to determine pafnisX to enlarge the control
invariant set. The 3-rd and 4-th steps of Algorithm 3 showdaédplaced with the following.

(3a) Generate)X € R" and compute € X anduk € U as an optimizer of the convex

problem
max {(n%)Tx: F(x,u,(H{)T) < An,¥i € Ny}

xeX,ueu

k+l><n

(4a) 1f X< ¢ Qy, thenQy 1 = co(QUXS) = {x e R": H*1x < 1}, with HK*1 ¢ R™
and a propenfrl € N, otherwise go to (3a).

Although a random component is still present, in the chofoesetor n, with this en-
larging method pointX lies in the complement d®K or on its boundary. For this reason, in
point (4a), we check if¢ ¢ Q. On the other hand, if for all direction € R" the solutiorx
is on the boundary, we found the maximal convex set fulfilifrgperty 6.14.

Remark 6.24 Notice that, with the modification proposed, two importaomputational
problems are overcome. The first is the fact that the choigepfint X ¢ Q, and X € X,
which can be a very demanding computational task for higredsron, is avoided in prac-
tice. The second problem is related to the necessity of ctingpmatrix H<t1 from point
x€ and Q. Also this computation can be demanding for high dimengten it is strongly
preferable to avoid it, at least for all those point§ discarded in step (4) of Algorithm 3.
Through the modification proposed the computation of maitix! is performed only for
points X inducing an enlargement.

Finally, since there exists a relation between the contmadactor for the determinis-
tic system and the maximal uncertainty affordable, seeuakty (6.22), the procedure for
computing a control invariant for the deterministic case ba employed to obtain a robust
control invariant set. Moreover, considerations analegouhose of Remark 4.50 permit to
directly adapt the algorithm to the uncertain case.

6.1.5 Numerical example

To illustrate the proposed method to compute a control iamaiset and design a control
law, we apply it to an example proposed in continuous-timesige in (Chen, Ballance
and O’Reilly, 2001), where ellipsoidal invariant sets anagsidered. The same system, dis-
cretized, has been used by (Cannon et al., 2003) to testéseits on computation of control
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invariant parallelogram. The example allows us to compaetoposed technique with dif-
ferent methods.

The bilinear discrete-time system, obtained discretitivegcontinuous-time system pre-

sented in (Chen et al., 2001), is
+(1-p) 1o Xk p U
H 0 _a k

&+T{u

with the sample tim& = 0.01 and the parametgr= 0.9, the constraints on input and state
areU={ueR: |u <2} andX = {xeR?: ||x||» < 4}. Note that the assumption of

stabilizability is satisfied. The system considered ishei@stic, no uncertainty is assumed
at first. Since we are interested in a control invariant setsetA, = 1.

Xk+1 =

1

Figure 6.1 Polytopic control invariant sets generated by Algorithm 3

The algorithm has been applied to the case under analysisgtiuence of control inva-
riant sets is depicted in Figure 6.1. The initial §gtis the inner polytope drawn in bold line,
polytopesQy, k € Ngo, are represented in thin lines. The final set obtained kyith = 60 is
the external polytope, depicted in bold line too.

In Figure 6.2, a comparison between the ellipsoidal coritredriant set proposed in
(Chen et al., 2001), the parallelogram provided by (Canrtoal.e 2003) and the control
invariant set obtained applying the proposed algorithnpreszided. It is evident the im-
provement achieved exploiting the DC structure of the systdlowing the control law to
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be nonlinear and dependent on the particular geometry afahiol invariant set. The price
to pay is the complexity increase of the representation®fritiariant set.

Finally, also a robust control invariant set is computed.plmg relation (6.22), we
found that, if additive uncertainty for the continuous-#isystem is bounded W = {w €
R": ||w|| < 0.4}, the set depicted in dashed line in Figure 6.2 is a robustrabint/ariant
set.

Figure 6.2 Comparison: invariant ellipsoid, invariant parallelagr and polytopic invariant set and
robust invariant set generated by Algorithm 3.

6.2 Conclusions

In this chapter the problem of obtaining control invariagtssfor nonlinear systems has been
tackled. Particular attention has been devoted to compuotdtaspects, with the purpose
of proposing algorithmic procedures to obtaircontractive and control invariant sets for
nonlinear systems. The class of non-autonomous DC systitesministic and uncertain,
has been considered. Properties of CDI systems have beptedda such class of systems
and to polytopic sets to provide practical applicabilitythe results presented. A sufficient
condition for control invariance of a set has been employetha basis of the algorithm
proposed. Also the one-step operator characterizatioméas provided, pointing out the
beneficial properties for computational purposes.
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Chapter 7

Conclusions

In this thesis we dealt with issues related to set-theoryiarghrticular, invariance for nonli-
near systems. The main objective of this thesis is to pravideretical results to characterize
invariance related topics and computational tools to olitapractice control laws and inva-
riant andA -contractive sets, for nonlinear and uncertain systems.

As exposed extensively in the introduction and throughbet thesis, invariance has
gained in the last years great importance in the field of dyoagstems analysis and control
design. In fact, invariant antl-contractive sets are regions of the state space whosemieme
can be related to many key properties often required in obtiteory, such as stability, con-
vergence, hard constraints satisfaction, Lyapunov theobystness, etc.

Particularly significant is the case of prediction basedrhaws, such as MPC. We re-
call here that MPC-related strategies found their mainfjoation in their capability to cope
with hard constraints satisfaction and convergence, algrasence of additive uncertainty
and nonlinearity. It is also worth pointing out that many le¢ teneficial results ensured by
MPC are based on the assumption of availability of an inmasat or a control invariant set
to be used as terminal region. Moreover, a control law andapuyiov function are often
required to prove stability and convergence of the preddatontrol law. Furthermore, in the
case of presence of additive uncertainty, many modern MElhtgues, called tube-based,
use the concept of reachable sets to guarantee constraiisfection and convergence, at
least to a bounded set.

Hence, if on one hand invariancescontractiveness and set-theory in general are greatly
useful for MPC design, as well as for the design of many rolamst nonlinear control
schemes, on the other, few general results regarding tbeses tfor nonlinear and uncer-
tain systems have been provided. The main conceptual ainurofesearch efforts is to
contribute to the reduction of this gap.
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We noticed that many of the classical approaches to thegmobf invariant sets compu-
tation, and related issues, have been developed for thethsear systems, also in presence
of additive uncertainty, but many of these results are lyagdtendable to the case of non-
linear systems. This is due to the fact that many properteserning invariance are based
on linearity, which permits often to infer features invelgian uncountable set of points by
means of the analysis of a finite subset of them. This doesamtdn, in general, when a
nonlinearity is present in the system. Furthermore, theprdational tools useful to deal
with linear systems related topics are often far less coxmatal more efficient than those
which are required to be used when the system is nonlineetn, a&sinonlinear optimization
problems.

It has been shown that the key concept which can permit totdisk@arity based tech-
niques to nonlinear systems, what we called the “missingfadient, is convexity. Conve-
xity of sets and functions allows us to cast many importasitite, well established for linear
systems, to the case of invariant sets computation for neationes. The price is an affor-
dable increase of the computational complexity, and someeawatism in certain cases, but
the results are general and can be applied to a very widealasslinear systems.

The main contributions of the thesis are:

¢ Unifying modelling frameworkWe introduced a novel modelling framework, repre-
sented by the CDI systems. The elements of such class ohsystee deeply cha-
racterized by convexity, as the set valued map determimagystems dynamics, are
defined through a set of convex functions. It has been shoainGBI systems are
very powerful in order to approximate nonlinear systems. aAwatter of fact, the
elements of many classes of common nonlinear and uncesaiamss admit a CDI
representation or, at least, can be easily approximated@ylasystem. We proved
that CDI systems are able to represent or approximate Lystess, generalized sat-
urated systems, DC systems, linear parametric uncertamcénfor LDI and LPV)
systems. Moreover, with such framework, the analysis isredeéd to a family of sys-
tems, as all the systems whose dynamic function is overtexibg a CDI one share
some important properties, invariance for instance.

e Procedures to obtain CDI representations for nonlineartsys We have provided
particular classes of nonlinear and uncertain systems ffiiclwa CDI representation
or an approximation can be determined. The first family ofeys are the CCDI one,
which are particular CDI systems whose dynamic functioedatermined by a finite
number of convex and concave functions. This makes such ofasystems suitable
in order to bound many nonlinear systems. Then the casesrad And generalized
saturated systems have been considered, providing a meettoddain directly a CDI
overbounding system for any element of these classes. Ibéas shown that many
common nonlinearities affecting real systems lead to Lorgeneralized saturated
systems. Another important class of systems related to @e$ @re the called DC
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systems. It has been proved that DC systems can be easilgxappted by CDI
ones and are highly expressive in the nonlinear contextadty any nonlinear sys-
tem whose dynamic function is twice differentiable has a B@esentation and those
whose dynamics are given by a continuous one admit an arlyitcéose DC appro-
ximation. Also linear parametric uncertain systems (amhthPV and LDI systems)
are particular cases of CDI systems. Summarizing, many cammonlinear systems,
either deterministic or uncertain, can be cast in CDI forrhe@approximated by a CDI
system.

e Theoretical results on invariance for CDI systeriige employed the convexity based
characteristics of the elements of this unifying framewtrlextend some well esta-
blished and powerful results, valid for linear systems, @ Gnes. One of the main
contributions, whose particular adaptations have beed tiseughout the thesis, is
the necessary and sufficient condition for invariance Arabntractiveness of a con-
vex, compact set, for deterministic and uncertain CDI systelt has to be stressed
that such conditions are boundary type ones, as for linesdes)ys. Their satisfaction
can be tested by means of the analysis of a subset, possiidy 6helements of the
potential invariant and -contractive set. It has been proved that any convex, com-
pactA -contractive set containing the origin in its interior irds a Lyapunov function
for a CDI system. Also this property does not hold for gen@oalinear systems.
Another important tool as the one-step operator, on whichynséandard procedures
for computing invariant and -contractive sets are based, has been analyzed. It has
also been proved that its iterative application generasegsjaence of convex, compact
nested invariant sets converging to the domain of attractfahe origin for a CDI sys-
tem. Finally, some considerations on how to apply the pregdiseoretical results has
been presented, leading to an algorithmic procedure fariamt andA -contractive
sets computation.

e Application of theoretical results to autonomous nonlinsgstems The theoretical
results developed for the CDI framework have been appliegfactical purposes,
to particular classes of common nonlinear autonomous gst8ufficient conditions
for a polytope to be invariant aml-contractive for a DC system, also in presence of
additive uncertainty, have been proposed. Such condigarare generality, entailed
by the expressive power of DC functions in the nonlinear exttand computational
efficiency, being boundary type ones, as for linear systé&basnputational issues are
considered and an algorithm for obtaining a polytopic iraatrandA -contractive set
for nonlinear systems is given. It is proved that the al¢onic procedure ensures to
provide aA-contractive set for the case of DC systems with no additiveettainty.
The problem of convex invariant sets computation for a paldr class of Lur'e sys-
tems, enclosing many nonlinear systems, is considered.dArma method to obtain
a sequence of nested convex invariant sets converging toex@approximation of
the domain of attraction is presented. It has also been grihat the use of LDI ap-
proximation of the systems, commonly employed in this ckeseals to an invariant set
contained in the approximation of the domain of attractiéxplicit relations with the
CDI methods are illustrated.
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e Application of theoretical results to non-autonomous imwedr systemsFinally, the
theoretical results exposed for CDI framework have beenl@ed for dealing with
the problem of convex control invariant sets ahdtontractive sets computation for
non-autonomous DC systems, and for the related controld@tesmination. It has to
be recalled the importance of such structures for the agupdic of MPC for nonlinear
systems. Sufficient conditions for (robust) control ingage and\ -contractiveness
for non-autonomous DC systems have been provided, foqussincomputational
purposes. Particular attention have been directed to theopic case. It has been
proved that such conditions induce the implicit computat (robust) control laws
determined by means of a finite number of convex optimizapiablems. Also the
characterization of the one-step operator for non-autausnDC systems has been
addressed. Computational issues on the algorithmic gemeaf (robust) control in-
variant sets and the related (robust) control laws for naioreomous DC systems have
been analyzed.

Summarizing, the main objective of the thesis has been taigirdheoretical results as
well as computational tools useful for dealing with setettyein general, and invariance re-
lated topics in particular, in the context of nonlinear andertain systems. For that purpose,
the key unifying CDI framework has been introduced. It hasibghown that the properties
based on convexity characterizing CDI systems permit terektechniques and methods,
proper of the linear case, to the nonlinear one. Based ondbimsputational procedures to
obtain in practice polytopic invariant ardcontractive sets for nonlinear systems have been
proposed and applied to classes of common nonlinear systems

Finally, we provide a list of possible developments of theuits exposed and directions
of future research:

e Application of CDI framework to the problem of robust modeggictive control for
nonlinear uncertain systems, robust NMPC. It has been slibatrmany nonlinear
systems can be overbounded by CDI systems. Hence, givemtwsetain nonlinear
system, the CDI one overbounding it can be used to computerattapproximations
of the reachable sets and the nonlinear MPC can be solvedingpthat the resulting
reachable tube satisfies the hard constraints.

e Synthesis oH, controller for uncertain nonlinear system. It has been @dahat a
A-contractive sef for a CDI system can induce, in a region of the space, a Lyapuno
function whose level sets are given o2, for a in a certain interval. Considering the
Minkowski function ofQ as a sort of norm to be minimized, it can be determined an
H. control law ensuring ultimate boundedness and performance

e Numerical algorithms to obtain CDI representations forlmmar systems. The objec-
tive is to extend the applicability of the presented resualts wider class of nonlinear
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systems as well as to obtain tighter overbounding CDI apprations, reducing the
conservatism for the elements of particular families oteyss.

e Application of the CDI framework to obtain solutions to LMased problems. Conve-
xity characterizing CDI systems can be used to obtain swmistof classical problems
of control theory that can be posed in LMI form.

e Set-membership identification for nonlinear systems. €mgs of CDI systems can
be used to bound the region of the parameter vector consugittrnthe measurements
and the model. Preliminary results in this direction areadly available for the DC
framework.

e Numerical solution of nonlinear programming problemsngsfrom NMPC through
the use of CDI framework.
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Appendix A

Definitions and properties of invariance

Here we provide standard definitions related to invariameedfscrete-time systems, see
(Blanchini and Miani, 2008).

Consider an autonomous discrete-time system
xt = f(x), (A.1)

wherex € R" is the statex™ € R" is the successor state ahdD — R" is defined on the set
D C R".

We say that a se&@ C D is a positive invariant set if every trajectofyk ke generated
by (A.1) and withxg € Q, is such thaky € Q for all k € N. The formal definition follows.

Definition A.1 A set inQ C R" is a positive invariant set for the the discrete-time au-
tonomous system (A.1) C D and f(x) € Q for all x € Q.

An alternative definition of positive invariance for distrdime autonomous systems can
be stated in terms of the image of functibf). A setQ C D is a positive invariant set if

f(Q)CQ. (A.2)

Remark A.2 The expressiopositive invariant seis employed in literature to differentiate
the concept illustrated in Definition A.1 from the callewariance seta setQ C D is an
invariant set if x € Q for all k € Z, for any % € Q. This means that also the elements
of trajectory at negative instants must be containe®ito be an invariant set. Since the
concept of invariant set is not employed in the thesis, ver tefpositive invariant sets simply
as invariant sets.
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In the case of presence of uncertainties affecting the dymaystem, the condition of
robust invariance has to be introduced. Consider a distirageuncertain autonomous sys-
tem

X = f(x,w), (A.3)

wherex ¢ R"is the statex™ € R" is the successor statg c RP is the uncertainty, i.eow €¢ W
with W C RP, andf : D x W — R" is a function defined on the sBtx W C R""P.

Definition A.3 A setQ C R" is a robust positive invariant set for the uncertain autorous
system (A.3) i C D and f(x,w) € Qforallx € Q and all we W.

Thatis, robust invariance means that any trajectory of tleertain system starting inside
the setQ, remains confined in it for every possible realization of tineertaintyw € W, at
every time instant.

In terms of set relation, and by definition of Minkowski sumsgits, we have that set
Q C D is arobust invariant set for system (A.3) if it is such that

f(Q,W) C Q. (A.4)

In the case that the uncertainty is additive, i.e., if theesyshas the fornxt = f(x) +w,
with f(-) defined inD C R", thenQ C D is a robust invariant set if

f(QaWCQ, (A.5)
by definition of Minkowski summation, or, equivalently, if

f(Q) CQeWw. (A.6)

Analogous definitions can be given for non-autonomous eyst¢hat is, in presence of
a manipulable input. Consider the non-autonomous system

Xt = f(x,u), (A7)
wherex € D is the statex™ € R" is the successor stata,c E is the control input and

f : D x E — R"is a function defined on the sbtx E C R™™M.

A setQ C D is a control invariant set if there exists a control law- u(x) € E, defined
for everyx € Q, such that every trajector }ken generated by (A.7), in closed-loop with
u(x) and withxg € Q, is such thak, € Q for all k € N.

Definition A.4 A setQ C D is a control invariant set for the discrete-time systeni/jAf
there exists a control law & u(x) € E such thaQ C D and f(x,u(x)) € Q for all x € Q.
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Clearly, a sef is a control invariant set for a dynamic system if there exastadmissible
control lawu = u(x) defined oM such that is an invariant set for the system in closed-loop
with u(x).

For the case of presence of uncertainty, the concept of tabuasrol invariance has to be
introduced. Robust control invariance deals with the uagenon-autonomous system

X = f(X,u,w), (A.8)

wherex € R" is the statex™ € R" is the successor state,c E is the control inputw &
W, with W C RP is uncertainty and : D x E x W — R" is a function defined on the set
D x E xW C R"MP,

Definition A.5 A setQ C R" is a robust control invariant set for the uncertain discrtime
system (A.8) if there exists a control law=w(x) € E such thad C D and f(x,u(x),w) € Q
forallx e Qand allwe W.

A concept strongly related with invariance, thadisontractiveness, is introduced. Con-
ceptually, if invariance is the property of a set whose elasi@re mapped inside the set
itself, A -contractiveness entails that the elements are mappeteiasicontraction” of such
set. In the following the definition of -contractive set is given.

Definition A.6 A convex, compact s&C R" with the origin in its interior is aA -contractive
set for the discrete-time system (A.1) if there eXists[0, 1] such thatQ C D and f(x) € AQ
forall x € Q. A is called the contracting factor d®.

In terms of set relation, s€ C D is aA-contractive set for system (A.1) if it is such that

f(Q)CAQ. (A.9)

Analogous definitions of -contractive set for non-autonomous and uncertain systems
can be given. Note that, definition #fcontractive set for contracting factar= 1 is equiv-
alent to the definition of invariant set and thatcontractiveness implies invariance. We
provide also the definition of robust control invariant set.

Definition A.7 A convex, compact s&C R" with the origin in its interior is aA -contractive
set for the discrete-time uncertain non-autonomous syétem) if there exisf € [0,1] and
a control law u= u(x) € E such thatQ C D and f(x,u(x),w) € AQ for all x € Q and all
w e W . A is called the contracting factor dd.
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It is worth providing two important results on the existeréenvariant sets, for linear
autonomous systems, see (Gilbert and Tan, 1991) and (Kolsay and Gilbert, 1998).

First we recall that, for an (uncertain) autonomous lingestesm with state constraint
x € X, the maximal (robust) invariant s&t, is given by all the points irX such that the
related trajectories do not leaXe at any time step. It is easy to prove that every invariant
set contained iX is contained inX,,. Computationally, the maximal (robust) invariant set
can be obtained iteratively. If the number of iterationsuiegd to compute the maximal
(robust) invariant set is finite, it is called finitely deteaned and such number is referred to
as the determination index. A result for deterministic ineystems, provided in (Gilbert
and Tan, 1991), is recalled here.

Property A.8 For a given linear asymptotically stable system=x Ax, subject to constraint
x € X, with X bounded anf € int(X), the maximal invariant set is finitely determined.

The minimal invariant se®, for an uncertain autonomous linear system
X" = Ax+w,

with w € W andW compact and containing the origin, is given by those poihth® state
space that can belong to an admissible trajectory startitigeaorigin. It can be proved that
such set is contained in every invariant set for the systetre @xplicit expression of the
minimal robust invariant set is

which means that, in general, it is obtained by means of a sitimam infinite number
of terms. Important results for uncertain linear systemes@nted in (Kolmanovsky and
Gilbert, 1998), are summarized in the following property.

Property A.9 Consider a linear uncertain system x Ax-+w, subject to constraint g X
and we W, with X and W compact and containing the origin. The maxnotalst invariant
set % is non-empty if and only if RC X and it is finitely determined if RC int(X).

Standard iterative algorithms to determine a (robust)riavé set for uncertain linear
systems have been proposed in literature, see the citaemeés.

Kolmanovsky and Gilbert’s algorithm (adapted to the systeith no output and con-
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straints on state) is recalled here. Such algorithm is basehe following sets:

RO - {0}7
R =A"WopA~"2Wa... AWOW,

Y, =Xo(A"WaoA W ... AWBW) =
=XoOA" WO A2Wo .. . ANCW) =
© © © ow) (A.10)
:X9Rt7
O ={xeR": AxcY, VieN}=
= {XcR": AXe XOR, Vie Nt} =
={xeR": AX®R CX, Vi e Nt}

An iterative procedure to compute recursively such setsgted in (Kolmanovsky and
Gilbert, 1998), is adapted to the case of absence of outplglkatched here.

e Initialization:
Yo=X, Og=X; (A.11)

e lteration:
Yo=Y O AW,

A.12
O1=0N{xeR": Atlxec Y1}, ( )
+

andQO, is the maximal robust invariant set.

An alternative way to compute the maximal robust invariantf Based on the procedure
well presented in (Blanchini and Miani, 2008), is given bg thllowing steps.

e Initialization:
Qo =X, (A.13)

e lteration:
Q1 =N (A (Qew)) =
= N{xeR": Ax+we Q, YweW} = (A.14)
=QiN{xeR": Ax&W C O},
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with Q. maximal robust invariant set.

Here we demonstrate that the two methods are essentialbathe proving thad; = Q;

forallt € N.

Qo ={x:
Q ={x:
Q ={x:
= {x:
={x:
= {x:
= {x:
={x:

XeX, Ax+we X, YweW} = {x: xe X, AxeW C X},
X€ Qq; AX+we Qp, YWwWeW} =

XeX; Ax+we X, Ywe W,

Ax+w e X, YweW; A(AX+w1) +Wsp € X, Ywy,wo e W} =
xe X, AXOW C X, APXOAWPW C X} =

XX, AXCXOW, A2 C XS (AWBW)} =

xe X, AXCXORy, APXCXORy) =

AXC XOR, Vi € Njgg} = Oy,

D XEQ, AX+wWe Q, YWWeW} =

: AXEXOR;, Vi € Npy; A(Ax+W) € XOR, YWWEW, Vi € Ny} =
: AXEXOR; Vi € Npy; Atlx+ Awe XOR, YWweW,} =

: AXEXOR; Vi €Ny ATxe XOR;1} = Oty

(A.15)



Appendix B

Convex sets and convex functions

Many of the following definition and property are based onwueks (Rockafellar, 1970;
Schneider, 1993; Boyd and Vandenberghe, 2004; Ben-Tal anufdvski, 2001), the aim of
which is the deep analysis of convexity of sets and functions

Definition B.1 A set SC R" is said to be convex if, for everyxS and ye S, we have that
(1-A)x+AyeS (B.1)
forall A €0, 1].

Geometrically, this means that, if two points are elemehts convex seSC R", then
the whole segment between them is containef] Bnd viceversa.

Definition B.2 Given a set of pointixe R", with j € Ny, the element
m -
x=Y Ajx,
A

is said to be a convex combination of points ke Ny, if parametersAj > 0, for all j € Ny,
andyL Aj =1

Convexity of a set and the concept of convex combination aftpare strictly related,
as shown in the following theorem, see (Rockafellar, 1970).

Theorem B.3 A set SC R" is convex if and only if it contains all the convex combinasio
of its elements.
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Figure B.1: Convex sets.

Definition B.4 For any set SC R", the convex hull of S, denoted(&)p is the set of all the
convex combinations of elements of S.

Alternatively, the convex hull of a s C R" can be defined as the intersection of all
convex sets containing

It is convenient to shortly recall some properties of consets.

e The intersection of an arbitrary collection of convex setsanvex.
e If C andD are two convex sets, th&xp D is convex.

e Given a linear ma@ from R" to R™, the image of every convex set Ri' is convex
and the preimage of every convex selRift is convex.

We provide here the definition of convexity for functionspeling the strong relation
with the concept of convex set.

Given a functionf : R" — R, denote with donh the effective domain of, i.e. the set of
pointsx € R" such thatf (x) < 4+, and define its graph &gx, f(x)) € R™1: xc domf}
and its epigraph, meaning “above the graph®, as

epi(f) = {(x,u) e R"™1: xe D, u > f(x)}, (B.2)

whereD C R" is the domain off, see (Boyd and Vandenberghe, 2004). Now, simply, a
function is convex if its epigraph is a convex subseR8f?.

Definition B.5 A function f: D — R is convex if its epigraph is a convex subseR8f1. A
function f(-) is concave if-f(-) is convex.
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201 epigraph 200

xof

Figure B.2: Two dimensional and three dimensional graphs of convegtions.

Remark B.6 The effective domain of a convex function is a convex sulhsgt.oHence,
given a convex function, we can consider it defined on itetefeedomain or consider its
extension tR", by defining {x) = +oo for all x ¢ domf, since the effective domain and the
epigraph are the same in both cases. The convex functionbe@ssumed to be defined
on the whole spacR", implicitly considering the extension of f if it is not definfr all

xe R

An alternative definition of convex function, commonly emyed, is presented here as a
theorem, see (Rockafellar, 1970).

Theorem B.7 A function f: R" — R is convex if domf is a convex set®f and for all
X,y € domf we have that

f((1—0)x+0y) < (1—0)F(x) +0f(y), VOe[o,1]. (B.3)

Since we are interested, in many cases, in dynamic functidtisvalues onR", we
extend the definition of convexity to multivalued functions

Definition B.8 A function f: R" — R™is convex if f : R" — R is convex, for all je Np.

Remark B.9 Since in the thesis we deal also with non-autonomous sysieansx" =
f(x,u), we show here the meaning of convexity for a functio®t x R™ — R".
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A function g R" x R™ — R is convex if its epigraph is convex. Alternatively, we say th
it is convex if, for every xyy € R" and u ve R™ we have

g((l_ 6)()(7 U) + 6(y7V>) < (1_ 9)9()(7 U) + Qg(y,V), NS [07 1] (B4)

Notice that, if a function @,-) is convex orR" x R™, then for every x€ R", g(Xo,-) is
convex orR™ and for every y € R™, g(-, Up) is convex oR".

A function f: R" x R™ — R", as that one characterizing a non-autonomous system, is
convex if f(-,-) is convex for every ¢ N,

Finally we report Thorem 10.1 from (Rockafellar, 1970) whatated a key relation be-
tween convexity (and then concavity) and continuity of action.

Theorem B.10 A convex function (f) on R" is continuous relative to any relatively open
convex set C in its effective domain, in particular relatioei(domf).

With ri(D) (and analogously with relatively open) we denote the netdtiterior ofD C
R", that is, geometrically, it is the interior of the set once mgstrict the analysis to the
smaller affine space containing the set. To avoid formal defim we give here an example:
suppose that the effective domain of functibf) is a segment ifiR%. No non-trivial open
set is contained in the set. But restricting the analysihline containing the segment
as a (possibly translated) subspace of dimension 1, thefidlagive) interior off(-) is the
greatest open segment contained in the segment dom
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Support function

We provide here some properties related to support func8ach tool has been extensively
developed and analyzed in (Rockafellar, 1970; Schneid®3)land has been applied to
control, see (Kolmanovsky and Gilbert, 1998). We first pdevihe definition of support
function.

Definition C.1 Given a sef2 C R", the support function d® evaluated at) € R" is defined
as

@(n) =supnTx.

xeQ

A geometrical meaning of the support function of a Qe¢valuated at) is the signed
“distance” of the point of2 (or its closure) further from the origin, along the directig.

If Q is bounded then its support function is defined for gng R". If 0 € co(Q) then
@(n) >0 for all n € R", if 0 € int(co(Q)) thengn(n) > 0 for all n € R", with n #
0. Moreover, the support function of a non-empty convex set positively homogeneous
function, which is the meaning of the following property.

Property C.2 Suppos&€ C R" is convex. Then

(An) =Ag(n), (C.1)
foralln e R"and allA > 0.

If setQ is convex and closed, then it is determined by its suppoudtfan. That is a point
belongs to the sex € Q, if and only if

n'x<@(n), vneR"
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then we have that the s@tcan be defined through its support function.

Property C.3 If Q is closed and convex, then

Q={xeR": nTx<@m(n), vn e R"}. (C.2)

If Qis a polytope, i.eQ = {x e R": Hx < b}, withH € R™*" andb € R then
XEQ & Hx<b=@mH"), VieN,. (C.3)
A particularly interesting class of sets for which the vabdfesupport function can be

easily evaluated at any € R" are the ellipsoids. In fact, given an ellipsef@P) = {x € R":
XTPx < 1}, centered at the origin, we have that

Psp)(N) =+/NnTP1n,

for everyn € R". From the fact that, givery € R" and a sef2 C R", the following relation
holds:
Boza =N X0+ @(n), VN R,

the support function can be computed directly for everypsdbid.

Support functions can be also employed to express the comait set inclusion.

Property C.4 Suppos&€ C R"is closed and conveX. C Q if and only if

@(n) <@(n), vneR" (C.4)

Other properties of support functions are summarized helow

Property C.5 Suppos&€ C R" is convex. Then

®a(n)=a@(n), vneR" (C.5)

for everya > 0.

Proof: By definition of support function, we have

@aa(n) = supn'x=supnTax=ag(n), vneR"

xeaQ xXeQ
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Property C.6 Suppos&, ' C R" are convex sets. Then

Gaor(N) =@@(n)+@(n), VYneR" (C.6)

Moreover, for any se@ C R" we have that

®(N) = @o@)(n), VneR"

From positive homogeneity of support function, a conditiequiring to be checked for
everyn € R" can be, in fact, restricted to the unitary ball, th@orm ballBj for instance,
centered around the origin. For examples & R" is such that

n'x<@n(n), vneBy, (C.7)
then

n'x< @(n), vneRr" (C.8)
which is equivalent to say thatis an element of the convex, closed S€etsee Property C.3.

In fact, every elementy € R" can be written a$) = a(n)
a(n) >0 (itis sufficientto poser(n) =||n|pandn(n) = mn
C.2, if condition (C.7) is fulfilled then for ang € R"

n(n) with n(n) € B} and
). Therefore, from Property

—T —

n"x=a(n)n"(n)x< a(ne(n(n))=@n),

and then condition (C.8) follows.
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