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Chapter 1

Introducci ón

El objetivo principal de esta tesis es contribuir al desarrollo de métodos basados en la teorı́a
de conjuntos para el análisis y el diseño de sistemas no lineales e inciertos. Particular
atención será dedicada a los conjuntos invariantes yλ -contractivos, muy importantes en
el contexto del diseño del control y del análisis de sistemas no lineales e inciertos.

Este capı́tulo describe la motivación y los objetivos de latesis, presenta el problema
tratado e introduce la estructura de la tesis y el trabajo desarrollado. Primero se introducirán
algunos conceptos relacionados con la teorı́a de conjuntosen el ámbito del control y del
análisis de sistemas dinámicos, haciendo particular hincapié en el concepto de invariancia.
Se darán las definiciones básicas y se describirán algunas propiedades de los conjuntos in-
variantes. Se ilustrarán aspectos que hacen evidente la importancia de la invariancia y de los
métodos basados en la teorı́a de conjuntos para el control.

Se proporcionará un resumen de las principales contribuciones, presentes en la literatura,
que han llevado a los más recientes resultados en el campo deinvestigación tratado, seguido
por una introducción al estado del arte sobre la invariancia y los métodos basados en la teorı́a
de conjuntos.

Luego se proporcionará una introducción al concepto de convexidad, tanto para conjun-
tos como para funciones. La convexidad merece especial interés, siendo un ingrediente clave
para muchos de los resultados presentados en la tesis. Las propiedades de los conjuntos con-
vexos y de las funciones convexas serán extensivamente usadas a lo largo de la tesis, debido
al hecho de que, dado un conjunto, su convexidad permite formular propiedades generales
basadas en condiciones que implican solamente un subconjunto, posiblemente finito, de di-
cho conjunto.

Finalmente la motivación, los objetivos y las contribuciones del trabajo de investigación

1



2 1.1. Teorı́a de conjuntos en el ámbito del control

serán ilustrados y la estructura de la tesis presentada.

1.1 Teoŕıa de conjuntos en eĺambito del control

Generalmente, con métodos basados en la teorı́a de conjuntos nos referimos a aquellas
técnicas que conciernen propiedades compartidas por todos los elementos de unos conjun-
tos del espacio de estados. Dos importantes ejemplos, en el campo del análisis de sistemas
dinámicos y del diseño de control, que implican la utilización de métodos basados en la teorı́a
de conjuntos, son la invariancia y el enfoque “worst-case” (del caso peor) para el análisis y
el diseño.

Además, los metodos basados en la teorı́a de conjuntos resultan muy útiles para el análisis
y el diseño de control para sistemas inciertos, con incertidumbre desconocida pero acotada.

1.1.1 Enfoque worst-case para el ańalisis y el disẽno

El enfoque clásico para tratar los problemas de análisis ycontrol para sistemas inciertos
estaba basado, hasta el final de los años sesenta, en hipótesis estocásticas sobre la natu-
raleza de la incertidumbre. El objetivo del control óptimoen este contesto es, en general,
la determinación de la ley de control que minimiza el valor de una función de coste, bajo
la suposición de una incertidumbre caracterizada por una distribución de probabilidad dada.
Análogamente, asumiendo por ejemplo que el sistema es lineal y que la condición inicial,
las medidas y los ruidos que afectan el sistema son modeladospor procesos blancos Gaus-
sianos, el problema de estimación es solucionado por el filtro de Kalman, que proporciona
la solución óptima que minimiza el valor esperado del error de estimación.

Una manera paralela, y en cierto sentido dual, de tratar los problemas de análisis y control
para sistemas inciertos es a través del enfoque worst-case(o garantista). Este enfoque está
basado en hipótesis diferentes sobre la incertidumbre queafecta al sistema. En este escenario
la incertidumbre es asumida desconocida, pero acotada en unconjunto. Tal enfoque está
basado en las siguientes consideraciones:

• la asunción del conocimiento exacto de la función de distribución de probabilidad
de los ruidos y de las perturbaciones puede ser demasiado restrictiva, mientras la su-
posición de presencia de cotas conocidas para la incertidumbre puede ser más realista
en muchos casos. De hecho, el enfoque worst-case es justificado a menudo por el
hecho de que ninguna suposición probabilı́stica sobre lasincertidumbres puede ser
hecha, mientras que las cotas sobre los errores de modelos pueden ser establecidas en
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muchos casos. Se consideren sistemas con dinámica dependiente de parámetros, cuyos
valores posibles están restringidos por cotas debidas a limitaciones fı́sicas conocidas.
En este caso el enfoque worst-case resulta más realista queel estocástico.

• Cuando el sistema presenta restricciones duras, el enfoqueworst-case presenta algunas
ventajas. Si consideramos el enfoque estocástico, ninguna garantı́a de cumplimiento
de las restricciones puede ser asegurada, mientras los resultados proporcionados por el
enfoque worst-case pueden asegurar la satisfacción de lasrestricciones, siempre que
las hipótesis sobre la incertidumbre se cumplan.

• La asunción de presencia de incertidumbre en el sistema puede ser usada para tratar
no linealidades. Por ejemplo, supóngase que las dinámicas no lineales del sistema
sean conocidas. En este caso, un sistema lineal con incertidumbre acotada puede ser
empleado, asumiendo que la incertidumbre modela la discrepancia con el sistema no
lineal. Este procedimiento de aproximación, si bien introduce algún conservadurismo,
permite aplicar resultados basados en la linealidad a sistemas no lineales. Los sistemas
de inclusión de diferencias lineales (LDI) y los sistemas lineales con incertidumbre
aditiva son modelos clásicos en este contexto, véase (Gurvits, 1995; Boyd, El Ghaoui,
Feron and Balakrishnan, 1994).

Los métodos basados en la teorı́a de conjuntos se presentancomo posibles alternativas a
los estocásticos, para los problemas del análisis de estabilidad, de diseño de control robusto y
de estimación de estado para sistemas afectados por incertidumbres. La suposición de mode-
lar la incertidumbre como desconocida pero acotada, en vez de como proceso estocástico, fue
presentada en los trabajos pioneros de Witsenhausen (1968b), Schweppe (1968), Bertsekas
y Rhodes (1971).

Vale la pena notar que el objetivo del enfoque worst-case es obtener conjuntos de elemen-
tos que satisfacen las especificaciones requeridas, más que el particular elemento óptimo con
respecto a un criterio de evaluación. Por ejemplo, las regiones del espacio de estado cuyos
puntos aseguran la satisfacción de restricciones para el control son el análogo del control
LQG estocástico, mientras la estimación garantizada es el análogo worst-case del filtro de
Kalman.

1.1.2 Invariancia

El concepto de invariancia ha llegado a ser fundamental parael análisis de sistemas y el
diseño de control. Aunque muchos esfuerzos de investigación hayan sido dirigidos a este
tema a lo largo de la segunda mitad del siglo pasado, el campo se hizo particularmente activo
en los ultimos años. La importancia de los conjuntos invariantes en control es debida a las
propiedades de estabilidad implı́citas en estas regiones del espacio de estados.
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Un conjunto invariante para un sistema dinámico es una región del espacio de estados tal
que la trayectoria generada por el sistema queda contenida en el conjunto, si la condición
inicial está dentro de él, (Blanchini and Miani, 2008). Definiciones más formales de inva-
riancia se proporcionan en el Apéndice A, una caracterización conceptual de invariancia es
suficiente aquı́ para mostrar como la invariancia puede ser usada en el ámbito del control y
sus principales propiedades.

Particularmente relevante es la propiedad de invariancia robusta (de control) para un con-
junto, ya que ésta puede ser usada en los contextos del análisis de estabilidad y de la satis-
facción de restricciones para sistemas dinámicos en presencia de incertidumbres desconoci-
das pero acotadas. También el problema de la convergencia de estrategias de control está
fuertemente relacionado con el concepto de invariancia robusta de control. El esquema en la
Figura 1.1 representa las relaciones entre invariancia,λ -contractividad y algunos de los más
importantes conceptos implicados en la teorı́a del control.

Estabilidad

Invariancia

Satisfacción
de restricciones

MPC

Convergencia

Funciones 
de Lyapunov

λ -contractividad

Figure 1.1: Invariancia en control.

1.1.2.1 Invariancia y satisfaccíon de restricciones duras

Se considera la definición estándar de invariancia para sistemas determinı́sticos autónomos
tiempo discreto, véase (Blanchini and Miani, 2008). Más definiciones y propiedades rela-
cionadas con la invariancia (por ejemplo, para sistemas inciertos, para sistemas no autónomos,
conjuntosλ -contractivos, etc.) se presentan en el Apéndice A.
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Considérese el sistema autónomo tiempo discreto

x+ = f (x), (1.1)

dondex∈Rn es el estado,x+ ∈Rn es el estado sucesor yf : D→ Rn es una función definida
en el conjuntoD ⊆ Rn.

Un subconjunto del espacio de estados,Ω ⊆ D, es un conjunto invariante positivo si cada
trayectoria dada porxk, conk ∈ N, generada por (1.1) y conx0 ∈ Ω, es tal quexk ∈ Ω para
todok∈ N. En la práctica,Ω es un conjunto invariante positivo si cada trayectoria generada
por el sistema dinámico con condición inicialx0 enΩ, permanece en el conjuntoΩ.

Aunque la invariancia de un conjunto sea una propiedad que concierne a todas las trayec-
torias generadas por el sistema dinámico con condición inicial enΩ, puede ser enunciada a
través de una definición alternativa, que no implica expl´ıcitamente las trayectorias. De he-
cho, un conjuntoΩ ⊆ D es un invariante positivo para el sistema autónomo tiempo discreto
(1.1) si f (x) ∈ Ω, para todox∈ Ω.

Se puede demostrar que cualquier elemento de un conjunto invarianteΩ es mapeado por
la función dinámica dentro deΩ si y sólo si la trayectoria entera generada por el sistema,
con el estado inicial enΩ, permanece contenida en el conjunto invariante. En la práctica,
si x0 ∈ Ω entonces, por definición de invariancia, tenemos quex1 = f (x0) ∈ Ω, que implica
x2 = f (x1) ∈ Ω etcétera. Entoncesxk ∈ Ω, para todok∈ N.

Nótese que se ha empleado el término invariantepositivo, para distinguirlo del concepto
de invariancia simple. Históricamente, el término invariante denota un conjunto de condi-
ciones iniciales cuyas trayectorias hacia atrás y adelante en el tiempo son contenidas en el
mismo conjunto, mientras que para un invariante positivo s´olo la parte futura de las trayecto-
rias tiene que pertenecer al conjunto. Cómo en esta tesis estamos interesados exclusivamente
en los conjuntos invariantes positivos, nos referiremos a ellos simplemente como conjuntos
invariantes.

La invariancia también puede ser expresada en términos dela imagen deΩ a través de la
función f (·). De hecho, un conjuntoΩ ⊆ D es un conjunto invariante si

f (Ω) ⊆ Ω.

Se pueden dar definiciones análogas para sistemas no autónomos, es decir en presencia
de una entrada de control. Un conjunto invariante de controles una regiónΩ del espacio de
estados tal que, para cualquiera de sus elementosx∈ Ω, existe una entrada de controlu(x)
que mantiene el estado sucesor dentro deΩ. Esto conlleva que, considerando un conjunto
invariante de control, existe al menos una ley de controlu(x) definida enΩ tal que el conjunto
es invariante para el sistema en bucle cerrado conu(x).
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Es evidente la relación entre satisfacción de restricciones duras e invariancia, para un
sistema genérico. Supongamos que se requiere que el estadodel sistema sea mantenido
dentro de una región del espacio de estados, es decir, en el conjuntoX ⊆ Rn. La existencia
de un conjunto invarianteΩ contenido enX asegura que, si el estado actual del sistema está
contenido enΩ, entonces ninguna violación de restricciones ocurrirá nunca, para todok∈N.

De hecho, cualquier conjunto invarianteΩ ⊆ X, por definición de invariancia, satisface

f (Ω) ⊆ Ω ⊆ X,

que significa quexk ∈ X para todok∈ N, dondexk+1 = f (xk), con condición inicialx0 ∈ Ω.
Esto implica que cualquier elemento de la trayectoria no deja el conjuntoΩ, de ahı́ que
ninguna violación de restricción ocurrirá en la futura evolución del sistema. Una vez más,
vale la pena notar que, aunque la invariancia es una condici´on que concierne al compor-
tamiento del sistema en cualquier instante de tiempo futuro, desde el presente hasta el in-
finito, puede ser caracterizada por una simple condición geométrica.

1.1.2.2 Máximo conjunto invariante y operador a un paso

La fuerte relación entre satisfacción de restricciones duras e invariancia justifica el interés por
el máximo conjunto invariante contenido en una región delespacio de estado, ver referencias
(Gutman and Cwikel, 1986; Gutman and Cwikel, 1987; Gilbert and Tan, 1991; Blanchini,
1999) y (Kolmanovsky and Gilbert, 1998).

Considerando una regiónX del espacio de estados, muchos conjuntos invariantes pueden
estar contenidos en ella. Por ejemplo, es evidente que cualquier punto de equilibrio con-
tenido enX es un conjunto invariante. El máximo conjunto invariante es un conjunto que es
invariante para el sistema y contiene cualquier otro conjunto invariante. Es fácil demostrar
que el máximo conjunto invariante, cuando existe y es no vacı́o, está formado por todos los
elementos deX tales que sus evoluciones nunca abandonaránX. Esto significa que un punto
x pertenece al máximo conjunto invariante si y sólo si la trayectoria generada por el sistema
con condición inicialx0 = x nunca viola la restricción, es decirxk ∈ X para todok∈ N. Por
otra parte, si un punto no pertenece al máximo conjunto invariante, entonces seguramente
habrá un instante del tiempo futuro en el cual una violación de restricción ocurrirá. En la
práctica, el máximo conjunto invariante contenido enX puede ser considerado como el con-
junto de puntos ”seguros” enX, en el sentido de que ninguna violación de restricción ocurrirá
en el futuro.

Aunque se hayan propuesto muchos procedimientos algorı́tmicos para calcular el máximo
conjunto invariante, hay una idea básica común a todos ellos. Los procedimientos iterativos
están basados en el empleo del operador a un pasoQ(·). Considerando un conjuntoΩ ⊆ X
en el espacio de estados y un sistema dinámico, el conjunto aun pasoQ(Ω) viene dado por
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el conjunto de puntos enX cuya evolución a través de la función dinámica está contenida
en Ω. Es decir, considerandoΩ ⊆ X, un puntox pertenece al conjunto a un pasoQ(Ω) si
x ∈ X y f (x) ∈ Ω. De ahı́,X1 = Q(X) es el conjunto de puntos deX que permanecen en
X al menos en el primer instante. Está claro que el uso iterativo genera una secuencia de
conjuntosXk+1 = Q(Xk)∩Xk tales que un puntox pertenece aXk si y sólo si la trayectoria
generada con condición inicialx0 = x queda enX al menos durante los primerosk pasos,
para todok∈ N. Deberı́a ser también evidente que el máximo conjunto invariante puede ser
obtenido iterando el procedimiento para un número infinitode pasos.

El resultado no serı́a muy útil en la práctica si el máximoconjunto invariante no pudiera
ser obtenido después de un número finito de iteraciones. Eneste caso el máximo conjunto
invariante se dice finitamente determinado y el número finito de pasos que lo genera se denota
ı́ndice de determinación. Existen importantes contribuciones en la literatura, principalmente
para sistemas lineales, que permiten establecer condiciones para que el máximo conjunto
invariante sea finitamente determinado.

Otra importante propiedad del operador a un paso es el hecho de que la aplicación del
operador a un conjunto que es invariante genera otro conjunto invariante que contiene el an-
terior. Ası́, el uso iterativo del operador a un paso, con un conjunto invariante dado como
elemento inicial, produce una secuencia creciente de conjuntos invariantes. Nótese que el
mismo proceso iterativo conX0 = X como elemento inicial, genera una secuencia de conjun-
tos no necesariamente invariantes, lo que implica que la invariancia del conjunto a un paso
k∈ N no está garantizada, hasta que el ı́ndice de determinación sea alcanzado (si finito).

En algunos casos, se puede demostrar que las iteraciones inicializadas con un conjunto
invariante convergen al dominio de atracción de un punto deequilibrio, es decir al conjunto
de los estados cuyos elementos convergen al equilibrio. Claramente, se requieren asunciones
sobre la estabilidad del sistema en este caso.

1.1.2.3 Conjuntos alcanzables y ḿınimo conjunto invariante

En esta sección se introducen dos importantes conceptos dela teorı́a de conjuntos como los
conjuntos alcanzables y el mı́nimo conjunto invariante para sistemas dinámicos afectados por
incertidumbre aditiva. Los dos conceptos están fuertemente relacionados, ya que el mı́nimo
conjunto invariante puede ser visto como el conjunto lı́mite de la secuencia de conjuntos
alcanzables.

Considérese un sistema lineal asintóticamente estable afectado por incertidumbre aditiva,
es decir

x+ = Ax+w,

dondew es la incertidumbre yw ∈ W, conW subconjunto acotado del espacio de estados



8 1.1. Teorı́a de conjuntos en el ámbito del control

con 0∈ W. Nótese que, debido a la presencia de incertidumbre aditiva, el sucesor de un
estado depende de la realización de la incertidumbre y todos los posibles sucesores de un
estado forman un conjunto. Es decir, dado un estadox, el conjunto de sucesores está dado
por (Ax⊕W) ⊆ Rn.

En este contexto, es útil introducir el concepto de conjuntos alcanzables. El conjunto
alcanzable enk ∈ N es el conjunto de los estados que pueden pertenecer en el instantek
a una trayectoria, para condiciones iniciales dadas y para una realización admisible de la
incertidumbre. Entonces, dado un conjunto inicialR0 ⊆ Rn, el conjunto alcanzable, para
cada instantek∈ N, puede ser obtenido recursivamente como

Rk+1 = ARk⊕W = Ak+1R0⊕
k
⊕

i=0

AiW.

El conjuntoRk se denomina conjunto alcanzable en el instantek∈ N, la secuencia deRk

es denominada tubo alcanzable, alcanzable desdeR0. La secuencia de conjuntos alcanzables
es interesante ya que contiene la información sobre todas las trayectorias posibles generadas
por un sistema incierto con condición inicial contenida enR0. Los conjuntos alcanzables
para un sistema lineal incierto pueden ser usados para calcular acotaciones de la evolución
real de un sistema no lineal, mientras que la discrepancia entre los dos modelos esté acotada
por W. Además, el tubo alcanzable puede ser visto como el resultado de la estimación de
estado en ausencia de medidas. La computación de conjuntosalcanzables es usada también
en el enfoque worst-case para la estimación de estado, integrándolo con la información pro-
porcionada por una medida.

Dignos de particular interés, son los conjuntos (y el tubo)alcanzables para los sistemas
lineales inciertos con el origen como condición inicial, dados por

Rk+1 = ARk⊕W =
k
⊕

i=0

AiW,

conR0 = {0}.

En presencia de restricciones duras para sistemas lineales, los conjuntos alcanzables
pueden ser usados para plantear una condición suficiente para la exclusión de cualquier vio-
lación de restricciones a lo largo de todas las trayectorias posibles. De hecho, si los conjuntos
alcanzables están contenidos en la región admisible del espacio de estados, entonces ninguna
violación de restricciones es posible.

Esta idea puede ser utilizada para diseñar leyes de controlque garantizan la satisfacción
de restricciones duras, ver (Chisci, Rossiter and Zappa, 2001). Aquellas leyes de control ro-
bustas basadas en la información proporcionada por los conjuntos alcanzables se denominan
estrategias de control basadas en tubos. Los enfoques basados en tubos, presentados primero
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en (Witsenhausen, 1968a; Bertsekas and Rhodes, 1971a; Glover and Schweppe, 1971), pro-
porcionan una solución para el problema del control robusto en presencia de incertidumbre
desconocida pero acotada.

Más recientemente, este enfoque ha sido extendido a las estrategias de control predic-
tivo basado en modelo (model predictive control, MPC), véase (Mayne, Rawlings, Rao and
Scokaert, 2000; Chisci et al., 2001; Camacho and Bordóns, 2004; Limón,Álamo and Ca-
macho, 2005; Bravo,́Alamo and Camacho, 2006), y (Langson, Chryssochoos, Raković and
Mayne, 2004; Magni, De Nicolao, Magnani and Scattolini, 2001), estrategias de control
robusto muy apropiadas en presencia de restricciones duras. Es evidente cuanto útil puede
resultar, de hecho, el concepto de los conjuntos alcanzables en el contexto del control predic-
tivo basado en modelo para sistemas afectados por incertidumbre aditiva, donde se requiere
una predicción del estado.

Cómo ya se ha mencionado, un conjunto invariante particularmente interesante es el
mı́nimo. El mı́nimo conjunto invariante para un sistema es el conjunto invariante contenido
en cada otro conjunto invariante. Se puede demostrar que el mı́nimo conjunto invariante
es el conjunto de puntos en el espacio de estados que puede seralcanzado desde el origen.
Conceptualmente, es el conjunto de todos los estados que pueden pertenecer a todas las
trayectorias posibles generadas por el sistema, con el origen como condición inicial. También
puede ser demostrado que el mı́nimo conjunto invariante para un sistema incierto lineal es
dado por

R∞ =
∞
⊕

i=0

AiW,

que es el conjunto alcanzableRk, desde el origen, cuandok tiende a infinito. Es evidente
por definición que el mı́nimo conjunto invariante exacto nopuede ser obtenido, en general.
Los métodos para calcular aproximaciones del mı́nimo conjunto invariante son el objetivo de
recientes trabajos de investigación, véase (Raković, Kerrigan, Kouramas and Mayne, 2005;
Ong and Gilbert, 2006).

A diferencia del máximo conjunto invariante, interesantetanto para sistemas determi-
nı́stico como inciertos (lineal o no lineal), el mı́nimo conjunto invariante es significativo
sólo en presencia de incertidumbre aditiva. Además, hay que notar que el mı́nimo conjunto
invariante ha sido estudiado principalmente para sistemaslineales.

El interés en la computación del mı́nimo conjunto invariante y sus propiedades ha surgido
más recientemente. Los motivos que hacen al mı́nimo conjunto invariante interesante en el
ámbito del control son menos intuitivos que aquellos del m´aximo conjunto invariante. El
mı́nimo conjunto invariante es útil en los siguientes contextos:

• Importantes condiciones para la existencia y la determinación finita del máximo con-
junto invariante para un sistema lineal incierto están basadas en el mı́nimo conjunto
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invariante. Nótese que, si el mı́nimo conjunto invariante, calculado en ausencia de
restricciones, no está contenido en la región admisibleX, entonces ningún conjunto
invariante robusto puede ser obtenido. Esto quiere decir que si el mı́nimo conjunto
invariante no está contenido en el conjuntoX, entonces existe una secuencia de re-
alizaciones de la incertidumbre que conduce al estado a violar las restricciones, para
cualquier condición inicial enX.

• El concepto clásico de estabilidad asintótica de un puntode equilibrio para un sis-
tema no es aplicable en caso de presencia de incertidumbre aditiva. Recordamos aquı́,
sólo conceptualmente, que un sistema es asintóticamenteestable si las trayectorias son
acotadas (por lo menos aquellas que empiezan en una vecindaddel equilibrio) y la
distancia entre el estado y el equilibrio converge a cero. Está claro que, a no ser que
se asuma que la incertidumbre desaparece cuando el sistema se acerca al equilibrio
(considérese por ejemplo el caso de incertidumbre modelada como una función del
estado), el sistema no puede ser mantenido en el origen. De hecho, ningún equilibrio
es admitido. Un concepto análogo a la estabilidad asintótica puede ser formulado para
el caso de presencia de incertidumbre aditiva, substituyendo el punto de equilibrio con
un conjunto del espacio de estados y la distancia desde el equilibrio con la distancia
desde dicho conjunto. Este concepto se denomina acotaciónterminal (ultimate bound-
edness). Se puede demostrar que el conjunto al que el sistemaconverge es el mı́nimo
conjunto invariante. Entonces, el mı́nimo conjunto invariante puede ser visto como el
análogo para los sistemas inciertos del concepto de punto de equilibrio para sistemas
determinı́sticos.

• Recientemente, un nuevo enfoque basado en tubos está ganando cada vez más pop-
ularidad en el campo del control robusto de sistemas lineales en presencia de incer-
tidumbre aditiva, ver (Raković and Mayne, 2005; Limón, Alvarado,Álamo and Ca-
macho, 2008). En la práctica, tales técnicas de control basadas en tubos proponen
dividir la acción de control en una parte local y una parte nominal. El control local es
diseñado para mantener el verdadero estado en una vecindaddel estado nominal, mien-
tras que la evolución nominal se hace converger al equilibrio. La evolución nominal
es obtenida por la dinámica del sistema en ausencia de incertidumbre.

A condición de que la vecindad del estado nominal sea un conjunto invariante para el
sistema incierto en bucle cerrado con la ley de control local, se puede demostrar que el
tubo compuesto por el conjunto invariante ”centrado” en losestados de la trayectoria
nominal contiene la trayectoria real, para cualquier realización de la incertidumbre.
Entonces el objetivo se reduce a controlar la trayectoria nominal de manera que el
tubo se mantenga dentro de la región admisibleX. Está claro que, en general, cuanto
más pequeño es el conjunto invariante que determina la forma del tubo, más grande es
el tubo admisible en el cual la trayectoria nominal tiene queser mantenida. Una vez
que la ley de control local es determinada, el uso del mı́nimoconjunto invariante como
vecindad del estado nominal proporciona un control menos conservador.
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1.1.2.4 Conjuntosλ -contractivos y funciones de Lyapunov inducidas

Ha sido mostrado que la invariancia de una región del espacio de estados es una propiedad
que implı́citamente caracteriza todas las posibles trayectorias generadas por sus elementos,
concerniendo tanto el comportamiento transitorio del sistema como el estado en régimen
permanente, es decir su comportamiento lı́mite. Esto hace que los conjuntos invariantes sean
un instrumento muy útil para ambos objetivos: garantizar la satisfacción de restricciones
duras y la estabilidad. También la convergencia a un punto de equilibrio (o a un conjunto)
puede ser relacionada con regiones del espacio de estados introduciendo el concepto deλ -
contractividad.

Conceptualmente, un conjunto convexo, compactoΩ y que contiene el origen en su in-
terior es un conjuntoλ -contractivo para un sistema dinámico si cada estado inicial enΩ se
mapea en el conjunto escalado,λΩ, con un factor de escalaλ positivo y menor que uno.
Esto conlleva que la imagen deΩ a través de la función dinámica que caracteriza el sistema
está contenida en el interior deΩ. Claramente, siλ = 1, entonces la definición de invariancia
es recuperada. Además, es evidente queλ -contractividad implica invariancia.

Consideraciones análogas son válidas también para los conjuntos invariantes de control.
Es decir, también en presencia de una entrada de control, puede ser interesante determinar
una regiónΩ del espacio de estado tal que existe una ley de control, definida enΩ, que per-
mita mapearΩ enλΩ. Nótese que, si se elimina la condición de convexidad deΩ, entonces
λ -contractividad no implica invariancia, ya queλΩ no necesariamente está contenido enΩ
en este caso.

El concepto deλ -contractividad de un conjunto para un sistema dinámico dado puede
inducir una función de Lyapunov, y entonces estabilidad asintótica o acotación terminal. La
relación entre conjuntosλ -contractivos y funciones de Lyapunov puede ser ilustrada medi-
ante el concepto de función de Minkowski. Considerado un conjunto compacto y convexoΩ
(con el origen contenido en su interior), su función de Minkowski es una función del estado
x∈ Rn definida como el mı́nimoα tal quex está contenido enαΩ y se denota conΨΩ(x).

En caso de sistemas lineales afectados tanto por la incertidumbre paramétrica como por
la aditiva, considerando un conjuntoλ -contractivoΩ, cualquier conjuntoµΩ, con µ ≥ 1,
esλ -contractivo, véase la propiedad P1 en (Blanchini, 1994).También se puede demostrar
que si no hay ningún término aditivo de la incertidumbre, entoncesµΩ esλ -contractivo para
todo µ positivo. En ausencia de incertidumbres aditivas y asumiendo queΩ es convexo,
compactoλ -contractivo y contiene el origen en su interior, su función de Minkowski es una
función de Lyapunov. De hecho, si la función de Minkowski en un puntox esΨΩ(x) = α, su
valor en su sucesorx+ es menor o igual aαλ , es decirΨΩ(x+) ≤ αλ . Ésto conlleva que la
función de Minkowski decrece a lo largo de las trayectoriasdel sistema, siλ < 1 y el estado
no es el origen.Ésto, y el hecho que la función de Minkowski es una función del estado
definida positiva, aseguran que es una función de Lyapunov.
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Es importante notar que el hecho de queΩ esλ -contractivo implique que tambiénαΩ
esλ -contractivo (conα positivo), no se cumple para sistemas no lineales. Entoncesfun-
ciones de Lyapunov inducidas no pueden ser determinadas en general. Una contribución
importante de esta tesis concierne a este aspecto. De hecho,se proponen modelos dinámicos
que permiten asegurar la estabilidad asintótica (exponencial) para una amplia clase de sis-
temas no lineales, determinando funciones de Lyapunov inducidas para aproximaciones de
los sistemas no lineales. Una vez más, esa importante propiedad se basa en la convexidad.

Estas consideraciones permiten tener en cuenta funciones de Lyapunov cuyos conjuntos
de nivel no son elipsoidales, cómo los que caracterizan lasclásicas funciones de Lyapunov
cuadráticas. Esto quiere decir que la caracterización deconjuntos genéricosλ -contractivos
implica un análisis implı́cito de propiedades de estabilidad para una más amplia clase de
potenciales funciones de Lyapunov. El empleo de funciones de Lyapunov poliédricas, in-
ducidas por conjuntos politópicosλ -contractivos, adquirió particular interés en las décadas
pasadas, ver (Blanchini, 1994; Blanchini, 1995; Blanchiniand Miani, 2008). Los polı́topos
son, de hecho, muy versátiles y permiten aproximar cada conjunto convexo.

1.1.2.5 Control predictivo basado en modelo y conjuntos invariantes

Los conjuntos invariantes son extensamente empleados parael diseño de reguladores estabi-
lizantes y, en particular, para la aplicación de estrategias de control con horizonte deslizante.
De hecho, muchas formulaciones del control predictivo basado en modelo (MPC) necesi-
tan una región terminal dentro de la cual la convergencia (asintótica) puede ser asegurada
implı́citamente por una simple, a menudo lineal, ley de control, ver (Mayne et al., 2000; Be-
mporad, Morari, Dua and Pistikopoulos, 2002; Camacho and Bordóns, 2004).

Se resumen brevemente las importantes caracterı́sticas del MPC, para mostrar la impor-
tancia de la invariancia para esta técnica de control muy popular. Aunque han sido formu-
ladas muchas variaciones de reguladores predictivos, proporcionamos aquı́ los ingredientes
que caracterizan al MPC estándar:

• Predicción basada en modelo. El control está basado en la predicción de la evolución
del sistema. Un modelo dinámico, lineal o no lineal, del sistema real es supuesto
conocido. Debido a que las computaciones se ejecutan en linea para cada paso, en
general el modelo considerado se asume en tiempo-discreto einvariante en el tiempo.
En cada instante, el estado real es medido y una predicción de la evolución del sistema
es obtenida como función de las entradas, dentro de un intervalo de tiempoNp lla-
mado horizonte de predicción. El número de los elementos de la secuencia de futuras
entradasNc, denominado horizonte de control, puede ser diferente del horizonte de
predicción. El modelo permite prevenir la violación de restricciones que puede ocurrir
en el futuro, dentro del horizonte de predicción.



Chapter 1. Introducción 13

• Restricciones. La razón principal de la creciente popularidad del MPC es su capacidad
de manejar restricciones duras. Debido a la presencia de unapredicción basada en
modelo, el control desecha implı́citamente aquellas secuencias que llevan el sistema
a la violación de las restricciones. Restricciones en el estado y en la entrada pueden
ser consideradas en el problema de optimización resuelto en lı́nea. El resultado es que
sólo un subconjunto de todas las posibles secuencias de entrada se asume factible. Tal
conjunto, la región de factibilidad del problema de optimización, es el subconjunto del
espacio de secuencias de entrada (obtenido como producto cartesiano del espacio de
entrada) formado por sólo aquellas secuencias que evitan la violación de restricciones.
Ası́, a cualquier elemento de la región de factibilidad se le asocia una trayectoria ad-
misible potencial.

• Función de coste. El problema de optimización es resueltopara obtener la trayectoria,
entre todas las admisibles, que minimiza una función de coste. La función de coste
por lo general está formada por una parte que penaliza una medida de la distancia
entre la trayectoria predicha y la deseada y otra parte que penaliza el esfuerzo de
control. Intuitivamente, el objetivo es calcular la secuencia de control y la trayectoria
asociada que consigue un alto rendimiento con un bajo esfuerzo de control. Diferentes
funciones de coste pueden ser consideradas. Un rasgo importante de la función de
coste es que deberı́a ser una función definida positiva de los estados predichos y de la
secuencia de entradas de control. Esto puede ser usado para demostrar que tal función
de coste decrece a lo largo de la trayectoria real del sistemacontrolado por MPC,
siendo entonces una función de Lyapunov y garantizando estabilidad asintótica.

• Horizonte deslizante. El problema de optimización es solucionado en lı́nea en cada
paso. Una vez que la secuencia óptima de entradas de controlha sido calculada,
sólo la primera acción de control se aplica. De este modo, las discrepancias entre
el comportamiento del sistema real y la trayectoria predicha por el modelo pueden ser
compensadas.

Las propiedades de convergencia del MPC son aseguradas a menudo a través de la
definición de una región terminal y una ley de control localque garantiza la estabilidad
y, posiblemente, la convergencia asintótica, ver (Mayne et al., 2000; Camacho and Bordóns,
2004; Limón et al., 2005;́Alamo, Ramı́rez, Muñoz de la Peña and Camacho, 2007). Es aquı́
dónde la invariancia es fundamental para el control MPC.

De hecho, un modo muy común para garantizar la estabilidad asintótica del sistema con-
trolado por MPC es imponiendo que el estado final de la secuencia predicha esté contenido
en un conjunto invariante en el que una ley de control local y una función de Lyapunov son
definidas.

Intuitivamente, se asuma que existe una ley de control en realimentación y una región
invariante para el sistema en el bucle cerrado. Una vez que elsistema alcanza tal conjunto
invariante, que contiene al origen, se puede asumir en la predicción que el MPC es ”apagado”
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y la ley de control local es aplicada. Esto garantiza que ninguna violación de restricción ocur-
rirı́a en el futuro. Si también una función de Lyapunov es definida, entonces la convergencia
asintótica puede ser asegurada. De ahı́ que, la concatenación de las primerasNu acciones
de control, solución del problema de optimización, con elresto de la secuencia de control
obtenida mediante la ley en realimentación, determina unasecuencia infinita de acciones de
control y una trayectoria admisible en cualquier instante futuro y convergente al origen.

Resumiendo, la introducción de una restricción terminalque impone que el último estado
de la secuencia predicha pertenece a un conjunto invariante, proporciona un instrumento útil
para asegurar propiedades fundamentales, como la estabilidad asintótica y la satisfacción de
restricción duras para la trayectoria completa.

Aunque la definición de una función de Lyapunov dentro de laregión terminal de MPC
no sea necesaria para asegurar la estabilidad (véase, por ejemplo, (Bravo et al., 2006)), mu-
chos resultados sobre MPC para sistemas no lineales e inciertos están basados en esto. Por
otro lado, no hay muchos resultados sobre como obtener ese importante ingrediente para
el MPC que son los conjuntos invariantes para sistemas no lineales. Particular atención es
dedicada en esta tesis a este problema central, de hecho una contribución clave de nuestra in-
vestigación consiste en la propuesta de métodos para obtener conjuntos convexos invariantes
para sistemas no lineales.

También los conjuntos invariantes de control pueden ser usados para el diseño de leyes
de control en presencia de restricciones duras, como el MPC.Asúmase que un conjunto in-
variante de control para el sistema es conocido. Una restricción adicional, con la cual se
impone que el estado pertenezca al conjunto invariante de control en el instante sucesivo,
garantiza, por definición de invariancia, la existencia deuna acción de control apropiada
que asegura que ninguna violación de restricción ocurrirá. Nótese que esta única restricción
puede sustituir a todas las restricciones sobre el estado. Si, además, el conjunto invariante
esλ -contractivo, entonces la convergencia puede ser asegurada en algunos casos. De hecho,
supóngase que se conoce un conjunto invariante de controlΩ que garantizaλ -contractividad
deαΩ para el sistema, para todoα ∈ [0, 1] y para una ley de control apropiada. A menudo
hay que imponer la ausencia de incertidumbre aditiva para que αΩ seaλ -contractivo para
cualquierα positivo. Entonces, intuitivamente, considerando el estado actualx y su función
de MinkowskiΨΩ(x), cualquier acción de control tal que la función de Minkowski en x+

es menor queλΨΩ(x) hace que el conjunto seaλ -contractivo en bucle cerrado. Como, por
construcción, existe al menos una acción de control que satisface tal condición, el problema
de calcular unu(x) tal queΨΩ(x+) ≤ λΨΩ(x) y sea óptima con respecto a alguna medida
de las prestaciones, es siempre factible y asegura la convergencia exponencial al origen. La
computación de conjuntosλ -contractivos para sistemas no lineales sujetos a una ley decon-
trol apropiada, que conlleva la sı́ntesis de un control que asegure la convergencia asintótica
en bucle cerrado, no es una tarea simple. Una solución para tal problema de diseño, para
particulares sistemas no lineales, representa otra importante contribución de esta tesis.



Chapter 1. Introducción 15

También para el caso del MPC robusto, la definición de un conjunto invariante robusto
(de control) como región terminal es generalmente requerida para que el sistema incierto
controlado cumpla la acotación terminal. El dominio de atracción de las estrategias MPC es
por lo general fuertemente dependiente del tamaño de tal región terminal.

1.2 Estado del arte sobre los ḿetodos basados en la teorı́a
de conjuntos

En los años pasados han sido obtenidos muchos resultados para aplicar el enfoque worst-case
y para caracterizar los conjuntos invariantes. En esta sección se proporcionan algunas im-
portantes contribuciones y resultados presentados en literatura que tratan estos temas, tanto
para los sistemas lineales como para los no lineales.

1.2.1 Trasfondo hist́orico

Trabajos pioneros aparecieron al final de los años sesenta,ver (Schweppe, 1968; Witsen-
hausen, 1968b), y al principio de los años setenta, (Bertsekas and Rhodes, 1971b). La es-
timación de estado garantista para sistemas afectados porincertidumbres aditivas trata el
problema de determinar una secuencia de conjuntos tales queel estado del sistema dinámico
en el instantek∈N está seguramente contenido en elk-esimo elemento de la secuencia. Esto
se consigue integrando la información de la medida con la actualización dinámica, obtenida
esta ultima a través del conjunto alcanzable a un paso. Nótese que, en ausencia de medida,
el concepto de tubo alcanzable es recuperado.

Motivado por el problema del seguimiento de un objetivo evasivo, en (Schweppe, 1968)
el autor trata el problema de estimar en cada instante el conjunto del espacio de estados que
contiene el estado real de un sistema lineal afectado por perturbaciones sobre el estado y so-
bre la salida. Las condiciones iniciales y las perturbaciones son desconocidas pero acotadas
por elipsoides.

También Witsenhausen trata en (Witsenhausen, 1968b) el problema del cómputo de con-
juntos en el espacio de estados que sean compatibles con las observaciones y con las condi-
ciones iniciales. El sistema se supone afectado por perturbaciones sobre el estado y sobre
la salida, asumidas acotadas por conjuntos compactos y convexos. Se proponen aproxima-
ciones poliédricas, que llevan a problemas de programaci´on lineal.

El trabajo (Bertsekas and Rhodes, 1971b) trata el mismo problema de estimación consi-
derado por Schweppe pero es ampliado al análisis de los casos de “smoothing“ y predicción.
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Además, la adaptación a sistemas en tiempo-discreto es explı́citamente expuesta.

La primera contribución sobre invariancia en el campo de sistemas dinámicos ha sido
probablemente (Bertsekas, 1972). Este trabajo trata el problema del cómputo y la carac-
terización del máximo conjunto invariante robusto. En este trabajo fundamental, el autor
considera sistemas tiempo discreto no autónomos y no lineales, afectados por incertidum-
bre, es decir sistemas de la forma

xk+1 = f (xk,uk,wk),

con restricciones sobre el estadoxk ∈ X y sobre la entradauk ∈U(xk), que pueden depender
del estado. Las restricciones sobre la incertidumbre también pueden ser dependientes del
estado y de la entrada, es decirwk ∈W(xk,uk). Primero, una condición necesaria y suficiente
para la invariancia de control de un conjunto es presentada,luego se da una caracterización
del máximo invariante de control. Considerando el conjunto X, el operador a un paso ha sido
empleado para definir la secuencia de conjuntos, denotadosSk(X), cuyos elementos pueden
ser mantenidosk veces enX, parak ∈ N, mediante una apropiada secuencia de acciones de
control. Ha sido demostrado un resultado muy interesante y no intuitivo, es decir, el hecho de
que la intersección de tal secuencia de conjuntos no es igual, en general, al máximo conjunto
invariante de control. Una condición para que esta igualdad se dé está basada en que los
conjuntos implicados deben ser compactos. Un caso particularmente interesante para el que
tal condición se satisface, es que el sistema sea afı́n enwk, es decir

xk+1 = f (xk,uk)+wk,

conU y W no dependientes dex y (x,u), respectivamente, que los conjuntosX y W sean
compactos y quef (·) sea continua. En este caso la intersección de los conjuntosSk(X), para
todok∈ N, es igual al máximo conjunto invariante de control.

Los aspectos computacionales para el máximo conjunto invariante han sido considerados
en dos trabajos publicados en 1991, que son (Gilbert and Tan,1991) y (Blanchini, 1994)
(aunque la segunda referencia sea relativa a un artı́culo publicado en 1994, una primera
versión del trabajo fue presentada en 1991, en (Blanchini,1991)).

En (Gilbert and Tan, 1991), el problema de la caracterizaci´on y de la computación del
máximo conjunto invariante con salida admisible para un sistema lineal determinı́stico es
considerado, es decir parax+ = Axcony = Cx. En particular, las restricciones son definidas
en el espacio de la salida, es decir, en la formay∈Y. Esto no conlleva grandes diferencias
con el caso de restricciones sobre el espacio de estados. El resultado principal se refiere
a la condición de determinación finita del máximo conjunto invariante. Se demuestra que,
si el sistema es asintóticamente estable, la parejaC,A es observable, el conjunto de salidas
admisibleY es acotado y el origen está contenido en su interior, entonces el máximo conjunto
invariante con salida admisible es finitamente determinado.

En (Blanchini, 1994), se consideran sistemas no autónomoslineales con incertidumbre
paramétrica y aditiva. Se presenta el concepto de conjuntoλ -contractivo y se proporciona
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un procedimiento iterativo para calcular el máximo conjunto λ -contractivo, para un dado
λ ∈ [0,1]. Un resultado importante demostrado en el articulo es el hecho de que el máximo
conjuntoλ -contractivo es dado por la intersección de la secuencia deconjuntos calculados
mediante una especie de operador a un paso, siempre que el conjunto inicial sea convexo,
compacto y contenga el origen en su interior. El resultado esanálogo al presentado por
Bertsekas, pero para conjuntosλ -contractivos. Funciones de Lyapunov inducidas y el diseño
del control también son analizados.

Un primer importante articulo survey sobre invariancia es (Blanchini, 1999), que resume
los principales resultados sobre el tema. Se consideran sistemas en tiempo-continuo y en
tiempo-discreto, se presentan las condiciones de invariancia para sistemas lineales y no line-
ales. Además, funciones de Lyapunov inducidas, ası́ como problemas de diseño de control
basados en invariancia, son analizados. También los aspectos computacionales son consid-
erados, en particular para conjuntos invariantes politópicos y elipsoidales.

Otro trabajo muy importante y básico sobre el tema es (Kolmanovsky and Gilbert, 1998).
El artı́culo trata el problema de la caracterización del m´aximo conjunto invariante con sal-
ida admisible para sistemas en tiempo-discreto lineales afectados por incertidumbre aditiva.
Los resultados están fuertemente basados en instrumentosmatemáticos, como las funciones
suporte y la diferencia de Pontryagin (o de Minkowski), que son extensamente empleados
en esta tesis. Se presentan condiciones necesarias y suficientes para la invariancia, se carac-
terizan conjuntos invariantes mı́nimos y máximos y se propone un procedimiento iterativo
para calcular el máximo conjunto invariante. Resultados muy importantes presentados en
(Kolmanovsky and Gilbert, 1998) son las condiciones necesarias y suficientes para la exis-
tencia del máximo conjunto invariante y para su determinación finita. El máximo conjunto
invariante es no vacı́o si y sólo si el mı́nimo conjunto invariante está contenido en la región
admisible, además es finitamente determinado si está contenido en el interior de dicha región.

Contribuciones más recientes que tratan el problema de la caracterización del mı́nimo
conjunto invariante para sistemas lineales afectados por incertidumbre aditiva son (Raković
et al., 2005; Ong and Gilbert, 2006). Ya que el mı́nimo conjunto invariante es la suma de
Minkowski de infinitos términos, no puede ser calculado en general, y la atención de los
autores se dirige al cómputo de aproximaciones del mı́nimoconjunto invariante.

1.2.2 Estado del arte para sistemas no lineales

Aquı́ se proporciona una breve visión general de los resultados presentados en los años pasa-
dos sobre cuestiones relacionadas con los métodos basadosen la teorı́a de conjuntos y sobre
invariancia para sistemas no lineales.

Uno de los principales problemas inherentes al uso de métodos basados en la teorı́a de
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conjuntos y al cómputo de conjuntos invariantes es el hechode que, en general, la no lineali-
dad del sistema o del controlador conlleva conjuntos no convexos y no poliédricos. Esto com-
porta una gran, a menudo no manejable, complejidad computacional. Entonces, en general,
se emplean aproximaciones y se debe alcanzar una compensación entre el conservadurismo
inducido y la complejidad computacional.

En primer lugar, se presenta una descripción de metodos de aproximación de los conjun-
tos alcanzables y de estimación garantista para sistemas no lineales. El problema planteado
es el cómputo de la secuencia de conjuntos en el espacio de estados que proporciona la
garantı́a de contener el estado del sistema. Nótese que sistemas no lineales y sistemas li-
neales inciertos están relacionados, ya que a menudo los m´etodos para calcular conjuntos
alcanzables y de estimación para sistemas no lineales est´an basados en aproximaciones line-
ales.

El problema del cómputo de conjuntos alcanzables para sistemas no lineales es conside-
rado en (Kühn, 1999) usando una técnica basada en el teorema del valor medio para acotar
la evolución real del sistema no lineal. Es decir, considerado un sistema no lineal y un con-
junto, una aproximación del conjunto alcanzable a un paso puede ser obtenida acotando la
función dinámica no lineal con una función lineal con incertidumbre aditiva. La secuencia
de conjuntos alcanzables, entonces, se obtiene a través deun mapeo lineal y de una suma de
Minkowski, en cada paso.́Esto conlleva, en general, un excesivo aumento de la compleji-
dad de los conjuntos. El problema de la complejidad es solucionado empleando zonotopes,
que permiten controlar la complejidad computacional y de representación de los conjuntos,
al precio de algún conservadurismo. En (Girard, LeGuernicand Maler, 2006) se han pro-
puesto más desarrollos en esta dirección, usando zonotopes y cajas para acotar la evolución
admisible del sistema.

Ha de recordarse que un modo para tratar el problema del cómputo de los conjuntos
alcanzables para un sistema no lineal es aproximandolo con un sistema lineal incierto. Un
nuevo enfoque que garantiza la convergencia de la secuenciade conjuntos alcanzables aprox-
imados es presentado en (Raković and Fiacchini, 2008), en el que las propiedades de inva-
riancia son empleadas para determinar una forma básica para acotar los conjuntos alcanza-
bles exactos. Un método basado en la homotecia conduce a la determinación de un proce-
dimiento computacional que combina el bajo esfuerzo computacional con la convergencia a
cero del error de aproximación.

Análogamente, el problema de la estimación de estado garantista para sistemas no linea-
les ha sido tratada mediante enfoques basados en la teorı́a de conjuntos. El trabajo (́Alamo,
Bravo and Camacho, 2005) presenta un nuevo enfoque para la estimación garantista para sis-
temas en tiempo-discreto no lineales con perturbaciones acotadas afectando al estado y a la
salida. Se proporciona un algoritmo para calcular un conjunto que contiene los estados com-
patibles con la salida medida y con el modelo del sistema. Este conjunto es representado por
un zonotope. El tamaño del zonotope es minimizado en cada paso a través de una expresión
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analı́tica o solucionando un problema de optimización convexo. La aritmética intervalar se
usa para calcular una secuencia garantista de conjuntos en el espacio de estados.

En (Álamo, Bravo, Redondo and Camacho, 2007) se presenta un método para la esti-
mación de estado garantista para sistemas en tiempo discreto no lineales con perturbaciones
acotadas. Los conjuntos de estados que son compatibles con la evolución del sistema, las
salidas medidas y las perturbaciones acotadas son representados por zonotopes. La principal
novedad es el uso de funciones DC para calcular la secuencia de conjuntos de aproximación.
Las funciones DC resultan muy útiles para calcular acotaciones de las soluciones óptimas de
problemas de programación no convexa, y también son usadas en esta tesis.

No es trivial adaptar al caso no lineal aquellos instrumentos matemáticos estándar, como
el operador a un paso y los conjuntos alcanzables, extensamente empleados para el análisis
de invariancia para sistemas lineales. Considérese por ejemplo el hecho que el conjunto a
un pasoQ(Ω) no es necesariamente convexo para sistemas no lineales, tampoco siΩ es
convexo. Ası́, su uso puede conducir a la generación de secuencias de conjuntos sumamente
complejos.

Uno de los problemas principales, pasando de los sistemas lineales a los no lineales, es
que algunas propiedades útiles relacionadas con la linealidad pierden validez. Un ejemplo
muy interesante es ilustrado en las consideraciones siguientes, sobre la condición de in-
variancia, véase (Blanchini and Miani, 2008). En este trabajo, primero se considera el caso
tiempo-continuo. Un resultado fundamental sobre invariancia es representado por el teorema
de Nagumo, que proporciona una condición necesaria y suficiente para la invariancia para
un subconjunto cerrado del espacio de estados, para sistemas en tiempo-continuo. Concep-
tualmente, tal teorema afirma que un conjunto es un invariante positivo si y sólo si el vector
velocidad es dirigido hacia el interior (o tangente a la frontera) del conjunto en cualquier
punto de la frontera. Intuitivamente, si el vector velocidad se dirige hacia el interior del
conjunto, esto implica que las trayectorias en la frontera entran en el conjunto, entonces no
puede haber trayectorias que empiezan dentro del conjunto ylo abandonan. Esto implica
claramente invariancia.

Entonces, la atención en (Blanchini and Miani, 2008) pasa al caso tiempo-discreto

x+ = f (x),

para el cual la invariancia de un conjuntoSno puede ser asegurada a través de una condición
de frontera.

Los autores expresamente declaran que:

”... Como se puede entender fácilmente, no hay ninguna extensión evidente de la condición
de Nagumo ”de tipo frontera” para sistemas en tiempo-discreto. Intuitivamente, el hoḿologo



20 1.2. Estado del arte sobre los métodos basados en la teorı́ade conjuntos

natural de la condicíon de Nagumo... serı́a

f (x) ∈ S, ∀x∈ ∂S,

que quiere decir, aproximadamente, el estado en la frontera”salta dentro”. Sin embargo,
esta condicíon no es suficiente para asegurar f(x) ∈ S para todo x∈ S. De hecho, es fácil
proporcionar ejemplos tiempo discreto para los cuales la susodicha condicíon de frontera
puede estar satisfecha, pero el conjunto no es un invariantepositivo. Por lo tanto láunica
razonable ”extensíon tiempo-discreto” del teorema de Nagumo es la tautologı́a: S es positi-
vamente invariante si y sólo si

f (S) ⊆ S.

Afortunadamente, la situación es completamente diferente si restringimos nuestra atención
a la clase de sistemas homogéneos (incluyendo los lineales) ... ”

Esto quiere decir que, considerando genericos sistemas no lineales el análisis de invarian-
cia tiene que implicar al conjunto entero, mientras que parasistemas lineales (y homogéneos)
una condición de invariancia de tipo frontera puede ser formulada. Una de las principales
contribuciones conceptuales de esta tesis es mostrar que una condición de invariancia de tipo
frontera puede ser enunciada también para sistemas no lineales. El ingrediente que permite
deducir propiedades que afectan al conjunto entero a través del análisis en la frontera es la
convexidad.

1.2.2.1 Contribuciones sobre la computación de conjuntos invariantes para sistemas
no lineales

En primer lugar, merece la pena mencionar el trabajo (Kerrigan and Maciejowski, 2000) que
proporciona una revisión sobre invariancia para sistemasno lineales hasta el momento. El
artı́culo se enfoca principalmente en la caracterizaciónteórica de la invariancia y su empleo
en el control, más que en las cuestiones computacionales.

El problema del diseño de un MPC para sistemas no lineales setrata en (Cannon, Desh-
mukh and Kouvaritakis, 2003). Con ese propósito, se considera el problema de cómo calcu-
lar un conjunto invariante para ser usado como conjunto terminal. En particular, un conjunto
invariante politópico es calculado para un sistema LDI, v´alido dentro de una región. El pro-
blema es expresado como problema de programación lineal, cuyo objetivo es maximizar el
volumen del polı́topo, cuya complejidad geométrica estáacotada. En particular, se consid-
era la transformación lineal de una bola en norma infinito, es decir, un parallelotope, cuyos
vértices son las variables de optimización.

El problema de sistemas lineales con particulares realimentaciones no lineales estáticas,
como las afines a trozos y la saturación, ha sido consideradoen el trabajo (Hu and Lin, 2004),
donde se proporcionan condiciones de invariancia para un elipsoide.
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El trabajo (Bravo, Limón,Álamo and Camacho, 2005) trata el problema del cómputo
de conjuntos invariantes de control para sistemas no lineales con restricciones. El enfoque
propuesto está basado en la computación de una aproximación interior del operador a un
paso. Basado en este procedimiento, conjuntos invariantesde control pueden ser calculados
por recursión. En este trabajo, la aritmética intervalarse emplea para calcular el conjunto a
un paso.

Particular atención ha sido dedicada a una no linealidad muy común en los sistemas
dinámicos reales, la saturación. El articulo (da Silva and Tarbouriech, 1999) trata el problema
del análisis y la computación de conjuntos invariantes yλ -contractivos para sistemas en
tiempo-discreto en presencia de saturación. En particular, los autores proponen particionar
el espacio en las regiones donde los valores superiores o inferiores de la saturación son
alcanzados y donde ninguna saturación ocurre. Ası́, el sistema es asumido lineal y perturbado
por una perturbación constante dentro de cada región. La condición necesaria y suficiente
para la contractividad de conjuntos poliédricos es enunciada.

En (Álamo, Cepeda, Limón and Camacho, 2006b), un método para estimar el dominio
de atracción para sistemas saturados en tiempo-discreto es presentado. Se introduce una
nueva noción de invariancia, denominada invariancia-SNS. Se proporciona un algoritmo
para generar una secuencia de conjuntos invariantes anidados y se demuestra que la secuen-
cia converge al conjunto invariante-SNS más grande para esta clase de sistemas. También
se demuestra que los conjuntos invariantes-SNS generados por este algoritmo iterativo son
conjuntos poliédricos convexos y que constituyen una estimación del dominio de atracción
del sistema no lineal. Los autores han abordado el mismo problema también en (́Alamo,
Cepeda, Limón and Camacho, 2006a).

1.3 Convexidad e invariancia

Una de las claves de la tesis, el concepto de convexidad de conjuntos y funciones, es ilustrada
brevemente en esta sección. Muchos esfuerzos han sido dirigidos al análisis de la con-
vexidad, véase por ejemplo (Boyd and Vandenberghe, 2004; Rockafellar, 1970; Schnei-
der, 1993; Ben-Tal and Nemirovski, 2001).

Hay muchas razones por las que se considera importante la convexidad para temas rela-
cionados con la invariancia y la teorı́a de conjuntos en control. La primera razón es la alta
complejidad de representación y computacional inducida por los conjuntos no convexos. Por
ejemplo, desde un punto de vista práctico, los procedimientos algorı́tmicos estándar, por lo
general, generan secuencias de conjuntos cuya complejidadexplota después de pocos pasos,
cuando se tratan con conjuntos no convexos. De hecho, las familias de conjuntos consider-
ados en la literatura para problemas prácticos relacionadas con la invariancia comparten la
propiedad de convexidad, por ejemplo elipsoides, polı́topos, zonotopes y cajas.
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De otra parte, la convexidad de las funciones permite deducir propiedades satisfechas por
cualquier elemento de un conjunto mediante condiciones queimplican sólo un subconjunto
finito de puntos. Esta consideración conduce también a problemas de optimización convexos,
que son computacionalmente manejables, y a algoritmos caracterizados por una complejidad
asequible. Ası́ que vale la pena recordar aquı́ algunas definiciones básicas y propiedades
relacionadas con la convexidad de conjuntos y funciones.

Un conjuntoS⊆Rn es convexo si, para cada pareja de elementos deS, es decir para cada
x,y∈ S, el segmento entero entre los dos puntos está contenido enS.

Una propiedad importante de los conjuntos convexos, véase(Rockafellar, 1970), es que
un conjuntoS⊆Rn es convexo si y sólo si contiene todas las combinaciones convexas de sus
elementos. Esto quiere decir que, siSes convexo, cualquier punto que puede ser expresado
como una combinación convexa de los elementos deSpertenece aS. Además, si cualquier
punto que se puede expresar como combinación convexa de loselementos deSpertenece a
S, entonces el conjunto es convexo.

Hay varios modos diferentes para definir la convexidad de unafunción. Una manera está
basada en el concepto de conjunto convexo y proporciona un significado geométrico de las
funciones convexas.

Considerando una funciónf : Rn → R, se define su grafo como{(x, f (x)) ∈ Rn+1 : x∈
dom f} y su epı́grafe como el conjunto de puntos enRn+1 que están por encima del grafo.
Una función es convexa si su epı́grafe es un subconjunto convexo deRn+1. Es evidente
lo profundamente relacionados que están los conceptos de conjuntos convexos y funciones
convexas.

Una caracterı́stica importante de la convexidad, ya mencionada, es el hecho de que una
propiedad que implica sólo algunos elementos de un conjunto puede ser extendida a un con-
junto posiblemente incontable de puntos, cuando se usan conjuntos convexos y funciones
convexas. Se verá que el hecho de que propiedades generalespueden ser deducidas a través
de condiciones que implican sólo algunos elementos de un conjunto, permitirá formular
procedimientos algorı́tmicos para el cómputo de conjuntos invariantes, algoritmos caracteri-
zados por una complejidad asequible.

Como ejemplo, introducimos brevemente la programación convexa, que juega un papel
clave tratando problemas de programación matemática. Los problemas de programación
convexa son caracterizadas por la minimización de una función de coste convexa sobre un
conjunto factible convexo, o problemas equivalentes, ver (Boyd and Vandenberghe, 2004).

La importancia de problemas de programación convexa es debida al hecho de que estos
son caracterizados por resolubilidad eficiente, es decir, pueden ser solucionados en tiempo
polinomial. Los problemas generales de programación no lineal suelen ser mucho más exi-
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gentes computacionalmente, ver (Ben-Tal and Nemirovski, 2001).

Esto puede ser entendido intuitivamente recordando que un mı́nimo local para un pro-
blema convexo es también un mı́nimo global, a diferencia del caso de problemas no con-
vexos. En el contexto de problemas convexos, algoritmos iterativos, basados en el gradiente
de la función de coste por ejemplo, pueden ser diseñados, ver (Bazaraa and Shetty, 1979).
Ası́, a través de las iteraciones del algoritmo, la disminución del valor de la función de
coste en cada paso asegura la convergencia al óptimo. Si, alcontrario, óptimos locales no
son también globales, como es para problemas no convexos, los algoritmos que explotan
el gradiente de la función de coste no garantizan, en general, la convergencia a un mı́nimo
global. Ası́ que, en el contexto de la programación matemática, la disponibilidad de una
representación en forma de programación convexa para un problema es crucial.

1.4 Motivación y objetivos de la tesis

Como se ha ilustrado, la invariancia y los métodos basados en la teorı́a de conjuntos son
unas técnicas muy importantes para el análisis de sistemas no lineales e inciertos. Además,
es evidente lo útil que es el uso de la invariancia y de las estructuras relacionadas con la teorı́a
de conjuntos para la determinación de estrategias de control robustas, el diseño de leyes de
control en presencia de restricciones duras, el control basado en predicciones etc., es decir,
para la sı́ntesis de control en general, para sistemas no lineales e inciertos.

A pesar de tal fundamental posición ganada por la invariancia y la teorı́a de conjuntos
para el análisis de sistemas y el control, sobre todo en las ultimas décadas, sólo muy pocos
resultados han sido proporcionados para sistemas no lineales. Los resultados presentados
en la literatura han sido enunciados para casos particulares de sistemas no lineales (como
sistemas saturados, sistemas bilineales, etc.) y a menudo no pueden ser aplicados a genéricos
sistemas no lineales. Es decir, a pesar de la importancia de tales estructuras, su uso es
restringido a casos particulares.

Considérese la importancia mencionada de los conjuntos invariantes para el control pre-
dictivo basado en modelo para sistemas no lineales. En este contexto, la disponibilidad de
un conjunto invariante es usada a menudo para demostrar propiedades deseadas para el sis-
tema controlado, como la estabilidad, la convergencia y la satisfacción de restricciones. De
otra parte, no es trivial, en la práctica, obtener un conjunto invariante para un sistema no li-
neal, generalmente requerido para ser usado como la regiónterminal en el MPC. Es decir, en
muchas contribuciones sobre el control predictivo no lineal la disponibilidad de un conjunto
invariante, que conlleva resultados generales, es asumida, pero no se aborda el problema
computacional de como obtener tal importante ingrediente.Este hecho podrı́a contribuir a
una cierta pérdida de generalidad para tales resultados enla práctica.
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Existe claramente un vacı́o entre la importancia de la invariancia y de la teorı́a de con-
juntos para objetivos teóricos y la aplicabilidad práctica de los resultados obtenidos, princi-
palmente para el caso de sistemas no lineales. Hay que notar que este vacı́o es menor para
el caso de sistemas lineales inciertos, para los cuales muchos métodos computacionales bien
establecidos están presentes en la literatura. El objetivo de esta tesis es contribuir en rellenar
este vacı́o. De hecho, se dedicará una atención particular a los sistemas no lineales.

El principal problema conceptual relativo a los métodos analı́ticos y computacionales
para sistemas lineales, es el hecho de que muchas propiedades y caracterı́sticas que son
intrı́nsecas a la linealidad no pueden ser exportadas a los sistemas no lineales. El teorema de
Nagumo es un claro ejemplo de condición que no es aplicable en caso de no linealidad.

La idea subyacente, común a muchos de los resultados presentados en la tesis, es la de
adaptar aquellos métodos y propiedades que caracterizan el análisis y el diseño de control
para sistemas lineales, a los no lineales. Se mostrará que en muchos casos la convexidad
es el ingrediente ”que falta” para la formulación de métodos e instrumentos análogos, que
garanticen las propiedades deseadas en presencia de no linealidades.

Primero introduciremos el principal marco de modelado, losllamados sistemas de in-
clusión de diferencias convexas (CDI). Esta clase de sistemas dinámicos es profundamente
caracterizada por la convexidad, siendo su dinámica definida mediante un conjunto de fun-
ciones convexas.́Esto implica que la evolución dinámica de tales sistemas se caracteriza
por restricciones convexas, y el uso de muchos instrumentospropios del análisis de sistemas
lineales conduce a problemas de programación convexa, polinomialmente complejos. Es
decir, intuitivamente, substituyendo la linealidad por laconvexidad, algunos resultados para
sistemas lineales son conservados para sistemas CDI, al precio de un leve aumento de la
complejidad computacional.

Muchos resultados importantes, análogos a aquellos bien establecidos para sistemas line-
ales, son expuestos y demostrados. Por ejemplo, el cómputodel operador exacto a un paso,
las condiciones necesarias y suficientes para invariancia yλ -contractividad, los algoritmos
para generar secuencias de conjuntos que convergen al dominio de atracción, rigurosamente
desarrollados para sistemas lineales, se proporcionan para sistemas CDI.

La importancia de ese marco de modelado es evidente considerando que los elementos de
una muy amplia clase de sistemas no lineales pueden ser aproximados por sistemas CDI. Es
decir, considerando un sistema no lineal, si por un lado el análisis de la aproximación CDI
del sistema induce cierto conservadurismo, por el otro, algunas propiedades beneficiosas,
válidas para sistemas lineales, son conservadas para sistemas CDI.Ésto lleva a resultados
generales y fuertes para el sistema no lineal aproximado.

Otro aspecto del enfoque CDI es que muchas propiedades satisfechas por un conjunto
para el sistema CDI (la invariancia por ejemplo), se cumplentambién para cualquier sistema
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no lineal aproximado por el sistema CDI. Esto implica que considerar un sistema CDI es la
base del análisis de una familia entera de sistemas no lineales, es decir todos los sistemas
cuya función dinámica es acotada por la función que caracteriza el sistema CDI.

A pesar de que los resultados proporcionados para sistemas CDI son fuertes, las suposi-
ciones que caracterizan tal marco de modelado no son demasiado restrictivas. Se mostrará
que muchas clases comunes de sistemas son particulares sistemas CDI o, por lo menos,
admiten aproximaciones CDI. Entonces, un importante problema práctico, relacionado con
la teorı́a desarrollada, es cómo generar el sistema CDI queaproxima a un sistema no li-
neal dado. En este contexto introduciremos algunos aspectos computacionales sobre cómo
obtener una representación CDI o una aproximación CDI para los elementos de algunas
clases comunes de sistemas no lineales.

Los sistemas de inclusión de diferencias convexas y cóncavas (CCDI) son la primera
clase de sistemas incluidos en el marco CDI. Tales sistemas son particulares sistemas CDI,
caracterizados por un número finito de funciones que determinan su dinámica. Muchos
sistemas no lineales pueden ser aproximados por un sistema CCDI, de manera que sólo un
número finito de funciones de acotación tienen que ser calculadas.

La segunda clase de sistemas no lineales para los cuales una representación CDI es un
instrumento muy útil, son los sistemas Lur’e. Estos sistemas estan formados por un sistema
lineal en bucle cerrado con particulares leyes de realimentación con ganancia estática y son
conocidos en el contexto de la teorı́a del control, principalmente en tiempo continuo. En la
tesis se considerarán sistemas Lur’e en tiempo-discreto.

La clase más importante de sistemas para los cuales una aproximación CDI se obtiene
facilmente son los sistemas llamados DC. Tales sistemas soncaracterizados por funciones
dinámicas que pueden ser expresadas como la diferencia de funciones convexas (DC). La
importancia de las funciones DC se debe al hecho de que es fácil determinar funciones cota
superior e inferior convexas para cualquiera de ellas. Estollevará a la determinación implı́cita
de un sistema CDI que aproxima al original DC no lineal. Adem´as, una muy amplia clase de
funciones no lineales puede ser representada por una DC.

Otra subclase de sistemas CDI son los sistemas lineales con incertidumbre paramétrica.
Este marco de modelado, para el cual algunos resultados est´an disponibles en la literatura,
permite aplicar técnicas propias de análisis y sı́ntesisde sistemas lineales a la aproximación
de un sistema no lineal. De hecho, por ejemplo, un sistema no lineal definido en una región
acotada puede ser aproximado por un sistema lineal con incertidumbre paramétrica acotando
el gradiente de la función no lineal en tal región.

La presencia de incertidumbre aditiva puede ser considerada para cualquiera de los mar-
cos de modelado mencionados. La asunción de presencia de incertidumbre aditiva descono-
cida pero acotada hace el modelo más realista en muchos casos, pudiendo ser la suposición
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de conocimiento perfecto de la dinámica del sistema demasiado restrictiva.

Finalmente, presentamos la estructura de la tesis, junto con las contribuciones sobre los
diferentes aspectos de invariancia y métodos basados en lateorı́a de conjuntos.

• El segundo capı́tulo trata el problema del modelado. Se recordarán definiciones y
caracterizaciones generales de sistemas dinámicos no lineales, introduciendo los con-
ceptos de incertidumbre y de de mapas con conjuntos cómo valor, extensamente em-
pleadas en la tesis. Luego los nuevos modelos propuestos, como el marco de modelado
CDI, serán presentados.

• Aspectos computacionales que relacionan los sistemas CDI con las comunes clases
de sistemas no lineales e inciertos son desarrollados en el capı́tulo tres. Se presen-
tan sistemas CCDI y sistemas Lur’e cómo subclases de sistemas CDI orientados a la
práctica. Sus doble relación, con los sistemas CDI por un lado y con comunes sistemas
no lineales por el otro, se enfatiza para demostrar que muchos sistemas reales estan in-
cluidos en estas clases de modelos. Los sistemas DC son ilustrados posteriormente.
Se proporcionan definiciones, propiedades y ejemplos para enfatizar las principales
caracterı́sticas de esto modelos, particularmente ricos yexpresivos. Se proporciona
una breve descripción de las funciones DC para aclarar los motivos que nos conducen
a considerar esta clase particular de funciones no lineales. Finalmente, sistemas li-
neales con incertidumbre paramétrica son definidos. Dos subclases de sistemas li-
neales con incertidumbre paramétrica, como los lineales dependientes de parámetro
variante (LPV) y los sistemas de inclusiones de diferenciaslineales (LDI), también
son ilustradas.

• En el capı́tulo cuatro se considerará la invariancia y temas relacionados para sistemas
CDI. Importantes resultados, establecidos para sistemas lineales, son enunciados para
esta clase de sistemas. Se proporcionarán condiciones necesarias y suficientes para que
un conjunto convexo en el espacio de estados sea invariante yλ -contractivo, también
en presencia de incertidumbre aditiva. Se demostrará que,en caso de ausencia de
incertidumbre aditiva, la relación entre conjuntos convexos λ -contractivos para sis-
temas CDI y funciones de Lyapunov, propia de los sistemas lineales, es conservada
para sistemas CDI. El operador a un paso es determinado y caracterizado, y un al-
goritmo para generar secuencias de conjuntos que convergenal dominio de atracción
es propuesto. Finalmente, problemas computacionales sobre cómo obtener conjuntos
invariantes convexos yλ -contractivos para sistemas CDI son abordados.

• El quinto capı́tulo trata el problema del cálculo de conjuntos invariantes convexos y
conjuntosλ -contractivos para particulares sistemas no lineales aut´onomos. En parti-
cular, se considerarán clases de sistemas no lineales orientados a la práctica, ilustrados
precedentemente, como los sistemas DC y Lur’e. Se darán condiciones suficientes
para la invariancia y laλ -contractividad para sistemas DC. También se tratará el caso
de sistemas DC en presencia de incertidumbre aditiva. Se abordará el problema de la
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computación práctica de un conjunto invariante convexo,que llevará a la definición
de un procedimiento algorı́tmico para obtener un conjunto no vacı́o, convexo e invari-
ante en ausencia de incertidumbre. Se propone un método ad-hoc para obtener una
secuencia de conjuntos invariantes anidados para sistemasLur’e. También se mostrará
que tal secuencia de conjuntos converge a una aproximaciónconvexa del dominio de
atracción.

• El capı́tulo seis presenta resultados relacionados con el problema de la sı́ntesis de con-
trol. La computación de leyes de control y de conjuntos invariantes de control para
sistemas CDI no autónomos es el tema principal del capı́tulo. La primera parte se
dedica a ilustrar las propiedades de los conjuntos invariantes de control convexos y
λ -contractivos para sistemas DC. Se proporcionará una condición suficiente para la
invariancia de control y laλ -contractividad de un conjunto convexo. En particular,
en el caso de conjuntos politópicos, se demuestra que el cálculo de una acción de
control en los vértices del polı́topo que satisfaga una condición convexa, permite la
determinación de una acción de control, definida sobre todo el conjunto y tal que la
estabilidad asintótica (exponencial) es garantizada para el sistema no lineal. El op-
erador a un paso, útil para obtener una secuencia de conjuntos invariantes de control
anidados y una aproximación del máximo conjunto estabilizable, es analizado para
sistemas DC. También cuestiones computacionales son consideradas, definiendo algo-
ritmos para determinar la ley de control estabilizante.

• En el capı́tulo final se resumen las contribuciones y los resultados ilustrados en la tesis
y las direcciones para la investigación futura.
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Figure 1.2: Estructura de la tesis.



Chapter 1

Introduction

The main objective of this thesis is to contribute to the development of set-theoretic methods
for the analysis and design of nonlinear and uncertain systems. Particular attention will
be devoted to invariance andλ -contractiveness, very important concepts in the context of
modern control design and analysis for nonlinear and uncertain systems.

This chapter describes the motivation and objectives of this thesis, presents the problem
we are dealing with and introduces the structure of the thesis and the work developed. We
first introduce concepts related to set theory in control anddynamic systems analysis, fo-
cusing in particular on invariance. Basic definitions and generic description of properties of
invariant sets will be given. Some aspects which make evident the importance of invariance
and set-theoretic methods in modern control theory will be illustrated.

First an overview of the historical background which paved the way to main results in
the field is presented and then an introduction to the state ofthe art on invariance and set
theoretic methods follows.

An introduction to the concept of convexity, for both sets and functions, is then presented.
Convexity deserves special interest being a keystone for many results presented in this thesis.
Indeed, properties of convex sets and convex functions are widely exploited, since, given a
set, convexity allows the formulation of general properties based on conditions involving a
subset, possibly finite, of the set.

Finally the motivation, the objectives and the contributions of our research are illustrated
and the thesis structure presented.

29
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1.1 Set-theoretic methods in control

Generically, with set-theoretic methods we refer to those techniques concerning properties
shared by all the elements of sets of the state space. Two important examples in the field
of dynamic systems and control design involving set-theoretic methods are represented by
invariance and the worst-case approach to the problems of analysis and design.

Set-theoretic approach is useful in the framework of analysis and control design for un-
certain systems in presence of unknown but bounded uncertainty.

1.1.1 Worst-case approach to analysis and design

The classical approach to deal with the standard analysis and control problems for uncertain
systems, up to the end of the sixties, was based on stochasticassumptions on the nature of the
uncertainty. The objective of optimal control in this framework is usually the determination
of the input action minimizing the expectation of a cost function, under the assumption of
an uncertainty characterized by a given probability distribution. Analogously, assuming for
instance that the system is linear, the initial conditions and the measurements and system
noises are modelled by white Gaussian processes, the estimation problem is solved by the
use of a Kalman filter, which provides the optimal solution minimizing the expected value
of the estimation error.

A parallel, and in a certain sense dual, way of proceeding is through the so-called worst-
case (or guaranteed) approach. This approach is based on different assumptions on the un-
certainty affecting the system. Indeed, in this scenario the uncertainty is assumed to be
unknown but bounded inside a set. Such approach is based on the following considerations:

• The assumption of full knowledge of the probability distribution of noises and dis-
turbances can be too restrictive, while the assumption of presence of bounds on un-
certainty can be more realistic in many cases. Indeed, worst-case approach is often
justified by the fact that no probabilistic assumption on theuncertainties can be made,
while bounds on the model errors can be established in many ofthe cases. Consider
for example systems with dynamics depending on parameters whose value presents
bounds due to known physical limitations. In this case the worst-case approach can be
more realistic than the stochastic one.

• When the system presents hard constraints, the worst-case approach has some advan-
tages. If we consider the stochastic approach, no guaranteeof constraints satisfaction
can be assured, while the results obtained using the worst-case approach ensure con-
straints satisfaction, provided that the assumptions on the uncertainty hold.
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• Nonlinearities can be handled by assuming uncertainties. If the dynamic system is
known to be nonlinear, a linear system with bounded uncertainty can be used, sup-
posing that the uncertainty models the mismatch with the nonlinear system. This ap-
proximation procedure, although introducing some conservativeness, permits to apply
linear based results to nonlinear systems. Linear difference inclusion (LDI) systems
and linear systems with additive bounded uncertainty are classical modelling frame-
works raised in this context, see (Gurvits, 1995; Boyd et al., 1994).

The set-theoretic methods appear as sort of counterpart of the stochastic methods for
problems of stability analysis, robust control design and state estimation for systems affected
by unknown but bounded uncertainties. The assumption of modelling the uncertainty as
unknown but bounded, rather than a stochastic process, was first introduced in the pioneering
works by Witsenhausen (1968b), Schweppe (1968), Bertsekas and Rhodes (1971).

It is worth noticing that the objective of worst-case approach techniques is to obtain sets
of elements satisfying the desired features, rather than the particular element optimal with
respect to an evaluation criterion. For instance, regions of the state space whose points ensure
constraints satisfaction for control is the counterpart ofstochastic LQG, while the guaranteed
set-membership estimation is the worst-case counterpart of Kalman filter.

1.1.2 Invariance

The concept of invariance has become fundamental for the analysis and design of control
systems. Although many research efforts have been directedto related themes throughout
the whole second half of the last century, the field became particularly active in the last years.
The importance of invariant sets in control is due to the implicit stability properties of these
regions of the state space.

An invariant set for a given dynamic system is a region of the state space such that the
trajectory generated by the system remains confined in the set if the initial condition lies
within it, (Blanchini and Miani, 2008). More formal definitions for invariance are provided
in Appendix A, a conceptual characterization of invarianceis sufficient here for showing
how invariance can be used in control and its main properties.

Particularly relevant is the property of robust (control) invariance of a set, since it can be
used in the context of stability and constraints satisfaction for dynamic systems in presence
of unknown but bounded uncertainties. Also the issue of convergence of model predictive
control strategies is strongly related to the concept of robust control invariance. The diagram
in Figure 1.1 represents the relations between invariance,λ -contractiveness and the main
topics involved in control theory.
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Figure 1.1: Invariance in control.

1.1.2.1 Invariance and hard constraints satisfaction

We consider the standard definition of invariance for discrete-time deterministic autonomous
systems, see (Blanchini and Miani, 2008). More definitions and properties related to invari-
ance (for instance, for uncertain systems, for non-autonomous systems,λ -contractive sets,
etc.) are presented in the Appendix A.

Consider the autonomous discrete-time system

x+ = f (x), (1.1)

wherex∈ Rn is the state,x+ ∈ Rn is the successor state andf : D → Rn is a function defined
on the setD ⊆ Rn.

A subset of the state space,Ω ⊆ D, is a positive invariant set if every trajectory given by
xk, with k∈N, generated by (1.1) and withx0 ∈ Ω, is such thatxk ∈ Ω for all k∈N. Roughly
speaking,Ω is a positive invariant set if every trajectory generated bythe dynamic system
with initial conditionx0 in Ω, remains confined in the setΩ.

Although invariance of a set is a property which concerns allthe trajectories generated
by the dynamic system with initial condition inΩ, it can be stated through an alternative
definition, which does not explicitly involve the trajectories. In fact, a setΩ ⊆ D is a positive
invariant set for the discrete-time autonomous system (1.1) if f (x) ∈ Ω, for all x∈ Ω.

It can be proved that any element of an invariant setΩ is mapped through the dynamic



Chapter 1. Introduction 33

function insideΩ if and only if the whole trajectory generated by the system, with initial
state inΩ, remains contained in the invariant set. Indeed, ifx0 ∈ Ω then, by definition of
invariance, we have thatx1 = f (x0) ∈ Ω, which impliesx2 = f (x1) ∈ Ω and so on. Then
xk ∈ Ω, for all k∈ N.

Notice that we employed the termpositiveinvariant set, to distinguish the concept from
simple invariance. Historically, the term invariant set denotes a set of initial conditions whose
trajectory backward and forward in time is confined in the set, while for a positive invariant
set only the future part of trajectories are required to belong to the set. Since in this thesis we
are interested exclusively in positive invariant sets, we will refer to them simply as invariant
sets.

Positive invariance can also be expressed in terms of image of Ω through functionf (·).
In fact a setΩ ⊆ D is a positive invariant set if

f (Ω) ⊆ Ω.

Analogous definitions can be given for non-autonomous systems, that is, in presence of
control input. A control invariant set is a regionΩ of the state space such that, for any of its
elementsx∈ Ω, there exists a control inputu(x) that maintains the successor state insideΩ.
It follows that, given a control invariant set, there existsat least a control lawu(x) defined on
Ω such that the set is an invariant set for the system in closed-loop withu(x).

The relation between hard constraints satisfaction for a generic system and invariance is
evident. Suppose that the state of the system is required to be maintained inside a region
of the state space, say the setX ⊆ Rn. The existence of an invariant setΩ contained inX
ensures that, if the current state of the system is containedin Ω, then no constraints violation
will occur, at any time stepk∈ N.

In fact, for any invariant setΩ ⊆ X we have that, by definition of invariance,

f (Ω) ⊆ Ω ⊆ X,

which meansxk ∈ X for all k ∈ N, wherexk+1 = f (xk), with initial conditionx0 ∈ Ω. This
entails that any element of the trajectory does not leave thesetΩ, hence no constraint viola-
tion will occur in the whole future evolution of the system. Once more, it is worth pointing
out that, although invariance is a condition which involvesthe behavior of the system at any
time instant, from present to infinite, it can be given by a simple geometric set condition.

1.1.2.2 Maximal invariant set and one-step operator

The strong relation between hard constraints satisfactionand invariance justifies the interest
in the maximal invariant set contained in a region of the state space, see references (Gutman
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and Cwikel, 1986; Gutman and Cwikel, 1987; Gilbert and Tan, 1991; Blanchini, 1999) and
(Kolmanovsky and Gilbert, 1998).

Given a regionX of the state space, many invariant sets can be contained in it. For in-
stance, it is evident that any equilibrium point contained inX is an invariant set. The maximal
invariant set is a set which is invariant for the system and contains any other invariant set. It
is easy to prove that the maximal invariant set, when exists and is non-empty, is given by all
the elements ofX such that their evolutions will never abandonX. That means that a point
x belongs to the maximal invariant set if and only if the trajectory generated by the system
with initial conditionx0 = x never violates the constraint, i.e.xk ∈ X for all k∈ Rn. On the
other hand, if a point does not belong to the maximal invariant set, then there will certainly
be a time step at which a constraint violation will occur. Roughly speaking, the maximal
invariant set contained inX can be seen as the set of “safe” points inX, in the sense that no
constraints violation will occur in the future.

Although many algorithmic procedures for computing the maximal invariant set have
been proposed, there is a basic idea common to all of them. Theiterative procedures are
based on the use of the one-step operatorQ(·). Given a setΩ ⊆ X in the state space and a
dynamic system, the one-step setQ(Ω) relatesΩ to the set of points inX whose evolution
through the dynamic function is contained inΩ. That is, givenΩ ⊆ X, a pointx belongs to
the one-step setQ(Ω) if x ∈ X and f (x) ∈ Ω. Hence,X1 = Q(X) is the set of points inX
which remain inX at least at the first instant. It is clear that iterative application generates
a sequence of setsXk+1 = Q(Xk)∩Xk, such that a pointx belongs toXk if and only if the
trajectory generated with initial conditionx0 = x remains inX at least during the firstk steps,
for all k∈N. It should be also evident that the maximal invariant set canbe obtained iterating
the procedure for an infinite number of steps.

The result would be not very useful unless the maximal invariant set can be obtained after
a finite number of iterations. In this case the invariant set is said to be finitely determined
and the number of iterations is denoted as determination index. Important contributions have
been provided in literature, mainly for linear systems, which permit to establish conditions
under which the maximal invariant set is finitely determined.

Another important property of the one-step operator is the fact that applying the operator
to a set which is invariant, generates another invariant setwhich contains the previous one.
Thus, the iterative application of the one-step operator, with a given invariant set as initial
element, produces a growing sequences of invariant sets. Notice that the same iterative
process withX0 = X as initial element, generates a sequence of sets not necessarily invariant,
which entails that invariance of the current set is not guaranteed until the determination index
is reached (if finite).

In some cases, it can be proved that iterations initialized with an invariant set converge to
the domain of attraction of an equilibrium point, that is, tothe set of points which converge
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to the equilibrium. Clearly, assumptions on stability of the system are required in this case.

1.1.2.3 Reachable sets and minimal invariant set

In this section we introduce two important set-theoretic concepts such as the reachable sets
and the minimal invariant set for dynamic systems affected by additive uncertainty. Those
two concepts are strongly related, since the minimal invariant set can be viewed as the limit
set of the sequence of reachable sets, as illustrated below.

Consider a linear asymptotically stable system in presenceof additive uncertainty, that is

x+ = Ax+w,

wherew is the uncertainty andw∈W, with W bounded subset of the state space with 0∈W.
Note that, due to the presence of additive uncertainty, the successor of a state depends on the
realization of the uncertainty and all the possible successors of a state form a set. That is,
given a statex the successor set is given by the set(Ax⊕W) ⊆ Rn.

In this context, it is useful to introduce the concept of reachable sets. The reachable set at
k∈ N is the set of states that can belong at timek to a trajectory for given initial conditions,
for a proper admissible uncertainty realization. We have that, given an initial setR0 ⊆ Rn,
the reachable set, at any time instantk∈ N, can be obtained recursively as

Rk+1 = ARk⊕W = Ak+1R0⊕
k
⊕

i=0

AiW.

The setRk is called reachable set, at timek ∈ N, the sequence ofRk is the reachable
tube, reachable fromR0. The sequence of reachable sets is interesting since it holds the
information about all the possible trajectories generatedby an uncertain system with initial
condition contained inR0. The reachable sets for a linear uncertain system can be usedto
compute bounds on the real evolution of a nonlinear system, provided that the mismatch
between the two models is bounded inW. Moreover, the reachable tube can be viewed as
the result of state estimation in absence of measurement. Reachable sets computation is used
also in the worst-case approach to the problem of state estimation, when integrated with the
information given by a measurement.

Particularly interesting are the reachable sets (and tube)for a linear uncertain system with
the origin as initial condition, given by

Rk+1 = ARk⊕W =
k
⊕

i=0

AiW,
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with R0 = {0}.

In presence of hard constraints for linear systems, reachable sets can be used to pose a
sufficient condition for excluding any constraints violation along all the possible trajectories.
In fact, if the reachable sets are contained in the admissible region of the state space then no
constraint violation is possible.

This idea can be exploited to design control laws guaranteeing hard constraints satisfac-
tion, see (Chisci et al., 2001). Those robust control laws based on the information provided
by the reachable sets are referred to as tube based control strategies. The reachable tube ap-
proaches presented first in (Witsenhausen, 1968a; Bertsekas and Rhodes, 1971a; Glover and
Schweppe, 1971) provides a solution for robust control in presence of unknown but bounded
uncertainty.

More recently, the approach has been extended to model predictive control based strate-
gies, see (Mayne et al., 2000; Chisci et al., 2001; Camacho and Bordóns, 2004; Limón
et al., 2005; Bravo et al., 2006), and (Langson et al., 2004; Magni et al., 2001), which has
been revealed to be one of the most appropriate robust control strategies in presence of hard
constraints. It is evident how useful can result, in fact, the concept of reachable sets in
the context of model predictive control of systems affectedby additive uncertainty, where a
prediction of the state is required.

As claimed above, a particularly interesting invariant setis the minimal one. The minimal
invariant set for a system is the invariant set contained in every other invariant set. It can be
proved that the minimal invariant set is the set of points in the state space that can be reached
from the origin. Conceptually, it is the set of all possible states that can belong to all the
possible trajectories generated by the system, with the origin as initial condition. It can also
be proved that the minimial invariant set for the uncertain linear system is given by

R∞ =
∞
⊕

i=0

AiW,

which is the reachable setRk, from the origin, whenk tends to infinity. It is evident by
definition that, in general, the exact minimal invariant setcan not be obtained. Methods
to compute approximations of the minimal invariant set are the objective of recent research
efforts, see (Raković et al., 2005; Ong and Gilbert, 2006).

Unlike the maximal invariant set which is interesting to be computed and analyzed for
both deterministic and uncertain systems (linear or nonlinear), minimal invariant set is mean-
ingful only in presence of additive uncertainty. Moreover,it has to be pointed out that mini-
mal invariant set has been studied mainly for linear systems.

The interest in the computation of the minimal invariant setand its properties is more
recent. The reasons that make the minimal invariant set interesting to the control community
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are less intuitive than those of the maximal invariant set. The minimal invariant set is useful
in the following contexts:

• Important conditions on the existence and the finite determination of the maximal in-
variant set for linear uncertain systems are based on the minimal invariant set. Notice
that, if the minimal invariant set computed in absence of constraints is not contained in
the admissible regionX, then no robust invariant set can be obtained. This means that
if the minimal invariant set is not contained in the setX then there exists a sequence of
uncertainty realizations which leads the state to violate the constraints, for any initial
condition inX.

• The classical concept of asymptotic stability to an equilibrium point for a system is
not applicable in case of presence of additive uncertainty.We recall here, only con-
ceptually, that a system is asymptotically stable if the trajectories stay bounded (at least
those starting in a neighborhood of the equilibrium) and thedistance from the state and
the equilibrium converges to zero. It is clear that, unless the uncertainty is assumed
to vanish as the system approaches the equilibrium (consider for instance the case of
uncertainty modelled as function of the state), the system can not be maintained at the
origin. In fact, no equilibrium is admitted. A concept analogous to asymptotic stability
can be formulated, for the case of presence of additive uncertainty, by replacing the
equilibrium point with a set in the state space and the distance from the equilibrium
with the distance of a state from a set. This concept is referred to as ultimate bounded-
ness. The set to which the system can be proved to converge is the minimal invariant
set. Then, the minimal invariant set can be viewed as the analogous for uncertain
systems of the equilibrium point for deterministic systems.

• Recently, a new approach based on tubes gained more and more popularity in the field
of robust control for linear systems in presence of additiveuncertainty, see (Raković
and Mayne, 2005; Limón et al., 2008). Roughly speaking, such tube-based control
techniques propose to split the control action in a local anda nominal part. First, the
local control is designed to maintain the real state in a neighborhood of a nominal state,
then the nominal evolution can be steered to the equilibrium. The nominal evolution
is obtained by the system dynamics in absence of uncertainty.

Provided that the neighborhood of the nominal state is an invariant set for the uncer-
tain system in closed-loop with the local control law, it canbe proved that the tube
composed by the invariant set “centered” at nominal states contains the real trajectory,
regardless on the uncertainty realization. The objective is then reduced to control the
nominal trajectory maintaining the tube inside the admissible regionX. It is clear that,
in general, the smaller is the invariant set determining thetube shape, the greater is the
feasibility tube in which the nominal trajectory has to be confined. Once the local con-
trol law is determined, using the minimal invariant set provides the less conservative
reachable tube ensuring to contain the real evolution of thesystem.
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1.1.2.4 λ -contractive sets and induced Lyapunov functions

It has been shown that invariance of a region of the state space is a property which implicitly
characterizes all the possible trajectories generated by its elements, involving the transient
behavior of the system as well as the steady state, that is, its behavior at the limit. This makes
invariant sets a very useful tool for both purposes: guaranteeing hard constraints satisfaction
and ensuring stability. Convergence to an equilibrium (or to a set) can also be related to
regions of the state space introducing the concept ofλ -contractiveness.

Conceptually, a convex, compact setΩ containing the origin in the interior is aλ -
contractive set for a dynamic system if every initial state in Ω evolves into the scaled set,
λΩ, with a positive scaling factorλ smaller than one. It follows that the image ofΩ through
the dynamic function characterizing the system is contained in the interior ofΩ. Clearly,
if λ = 1, then the definition of invariance is recovered. Furthermore, it is evident thatλ -
contractiveness implies invariance.

Analogous considerations are also valid for control invariant sets. That is, also in pres-
ence of a control action it can be of interest to determine a region Ω of the state space such
that there exists a control law mappingΩ into λΩ. Notice that, if the condition of convexity
of Ω drops, then theλ -contractiveness does not imply invariance, sinceλΩ is not necessarily
contained inΩ in this case.

The concept ofλ -contractiveness of a set for a given dynamic system, can induce a
Lyapunov function, and then asymptotic stability or ultimate boundedness. The relation be-
tweenλ -contractive sets and Lyapunov functions can be illustrated by means of the concept
of Minkowski function. Given a compact, convex setΩ (containing the origin in the inte-
rior), its Minkowski function is a function of the statex∈ Rn defined as the minimalα such
thatx is contained inαΩ and it is denoted asΨΩ(x).

In case of linear systems affected by both parametric and additive uncertainty, given a
λ -contractive setΩ, any setµΩ, with µ ≥ 1, isλ -contractive, see property P1 in (Blanchini,
1994). It can also be easily proved that if there is no additive term of the uncertainty, thenµΩ
is λ -contractive for all positiveµ. In the absence of additive uncertainties and assuming that
Ω is a convex, compactλ -contractive set containing the origin in its interior, itsMinkowski
function is a Lyapunov function. In fact, if the Minkowski function at a pointx is ΨΩ(x) = α,
its value at its successorx+ is smaller than or equal toαλ , i.e. ΨΩ(x+) ≤ αλ . It follows
that the Minkowski function decreases along the system trajectories, ifλ < 1 and the state is
not the origin. This, and the fact that the Minkowski function is a definite positive function
of the state, ensures that it is a Lyapunov function.

It is important to point out that the fact thatΩ is λ -contractive implies that alsoαΩ is
λ -contractive (for positiveα), is not valid for nonlinear systems. Then induced Lyapunov
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functions cannot be determined in general. An important contribution of this thesis concerns
this aspect. In fact, we propose modelling frameworks whichpermit to ensure asymptotic
(exponential) stability for a wide class of nonlinear systems, determining induced Lyapunov
functions for systems bounding the nonlinear ones. Once more, such important property
relies on convexity.

These considerations permit to take into account Lyapunov functions whose level sets
are not the ellipsoidal sets obtained with classical quadratic Lyapunov functions. This means
that the characterization of genericλ -contractive sets entails an implicit analysis of stability
properties through a wider class of potential Lyapunov functions. The use of polyhedral
Lyapunov functions, induced by polytopicλ -contractive sets, gained particular interest in the
last decades, see (Blanchini, 1994; Blanchini, 1995; Blanchini and Miani, 2008). Polytopes
are in fact very versatile and permit to approximate every convex set.

1.1.2.5 Model predictive control and invariant sets

Invariant sets are widely employed to design stabilizing controllers and, in particular, for
applying receding horizon control strategies. In fact, many formulations of the model pre-
dictive control (MPC) need a terminal region within which (asymptotic) convergence can be
implicitly assured by a simple, often linear, control law, see (Mayne et al., 2000; Bemporad
et al., 2002; Camacho and Bordóns, 2004).

We shortly recall the key features of MPC, to show the importance of invariance for
this very popular control technique. Although many variations of predictive controllers have
been formulated, we provide here the ingredients characterizing standard MPC:

• Model based prediction. The control is based on the prediction of the evolution of the
system. A dynamic model, linear or nonlinear, of the real system is assumed to be
known. Since on-line computations are required to be performed at every time step,
usually the model considered is discrete-time and assumed time-invariant. At any
instant, the real state is measured and a prediction of the system evolution is obtained
as a function of the input, within a time range called prediction horizonNp. The
numberNc of elements of the sequence of future inputs, called controlhorizon, can
be different from the prediction horizon. The model permitsto prevent constraints
violation that can occur in the future, within the prediction horizon.

• Constraints. The main reason for the increasing popularityof MPC is its capability
to cope with hard constraints. Due to the presence of a model based prediction, the
control input sequences leading the system to constraints violation are implicitly dis-
carded from the set of all the possible ones. State and input constraints can be posed
in the optimization problem solved on-line. The result is that only a subset of all pos-
sible input sequences are assumed feasible. Such set, the feasibility region for the
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optimization problem, is the subset of the space of input sequences (obtained through
the Cartesian product of the input space) composed by only those sequences that avoid
constraints violation. Thus, to any element of the feasibility region is associated a
potential admissible trajectory.

• Cost function. The optimization problem is solved to obtainthe trajectory, among all
the admissible ones, minimizing a cost function. The cost function usually encom-
passes a part penalizing a measure of the distance between the predicted trajectory and
the desired one and another part penalizing the control effort. Intuitively, the objec-
tive is to compute the control sequence and the associated trajectory providing high
performance with low control effort. Different cost functions can be considered. An
important feature of the cost function is that it should be a positive definite function of
the predicted states and the control input in the sequence. This can be used to prove that
such cost function decreases along the real trajectory of the system controlled through
the MPC strategy, resulting then in a Lyapunov function and guaranteeing asymptotic
stability.

• Receding horizon. The optimization problem is solved on-line at each time step. Once
the optimal control input sequence has been computed, only the first control action
is applied. In that way, mismatches between the real behavior of the system and the
trajectory predicted through the model can be compensated.

Convergence properties of MPC are often ensured through thedefinition of a terminal
region and a local control law which guarantees stability and, possibly, asymptotic conver-
gence, see (Mayne et al., 2000; Camacho and Bordóns, 2004; Limón et al., 2005;́Alamo,
Ramı́rez, Muñoz de la Peña and Camacho, 2007). It is here where invariance is fundamental
for MPC control.

In fact, a very common way to ensure asymptotic stability of the system controlled by
MPC is imposing that the final state of the predicted sequenceis contained in an invariant
set, where a local control law and a Lyapunov function are defined.

Intuitively, assume that there is a feedback control law anda region invariant for the
system in closed-loop. Then, once the system reaches such invariant set, it can be assumed
in the prediction that the MPC is “switched off” and the localcontrol law is applied. This
guarantees that no constraints violation would occur in future. If also a Lyapunov function
is defined, then asymptotic convergence can be assured. Hence, the concatenation of the
first Nu control actions, solution of the optimization problem, with the rest of the control
sequence obtained by means of the feedback control law, determines an infinite sequence of
control actions and a trajectory admissible at any time instant and converging to the origin.

Summarizing, the introduction of a terminal constraint to impose that the last state of the
predicted sequence belongs to an invariant set, provides a useful tool to ensure fundamen-
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tal properties, such as asymptotic stability and hard constraints satisfaction for the whole
trajectory.

Although the definition of a Lyapunov function within the terminal region of MPC is not
necessary for assuring stability (see, for example, (Bravoet al., 2006)), many results on MPC
for nonlinear and uncertain systems are based on this. On theother hand, only few results on
how to obtain such important ingredient for MPC like the invariant set for nonlinear systems
have been proposed. Particular attention is devoted in thisthesis to this central problem, in
fact a key contribution of our research consists in the proposed methods for obtaining convex
invariant sets for nonlinear systems.

Also control invariant sets can be used in the design of control laws in presence of hard
constraints, such as MPC. Assume that a control invariant set for the system is available. An
additional constraint, with which the state is imposed to belong to the control invariant set
at next time step, guarantees, by definition of invariance, the existence of a proper control
action ensuring no constraints violation. Notice that thisunique constraint can replace all
the constraints on the state. If, moreover, the invariant set is λ -contractive, then convergence
can be ensured, in some cases. Indeed, suppose that it is available a control invariant set
Ω ensuringλ -contractiveness ofαΩ for the system, forα ∈ [0, 1] and for a proper control
law. Absence of additive uncertainty is often required to have contractiveness ofαΩ for any
positiveα. Then, intuitively, given the current statex and its Minkowski functionΨΩ(x),
any control action such that the Minkowski function atx+ is smaller thanλΨΩ(x) makes the
setλ -contractive in closed-loop. Since, by construction, there exists at least a control action
satisfying such condition, the problem of computing au(x) such thatΨΩ(x+) ≤ λΨΩ(x)
and it is optimal with respect to some performance measure isalways feasible and ensures
exponential convergence to the origin. The computation ofλ -contractive sets for nonlinear
systems under a proper control law, leading to the synthesisof a control ensuring asymptotic
convergence in closed-loop, is not a simple task. A solutionfor such design problem, for
particular nonlinear systems, represents another important contribution of this thesis.

Also in case of robust MPC, the definition of a robust (control) invariant set as terminal
region is usually required to ensure ultimate boundedness of the controlled uncertain system.
The domain of attraction of the MPC strategies is usually strongly dependent on the size of
such terminal region.

1.2 State of the art on set-theoretic methods

Many results have been obtained in the last years for dealingwith the worst-case approach
and for characterizing invariant sets. In this section we provide some important contributions
and results present in literature dealing with these themes, for both linear and nonlinear
systems.
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1.2.1 Historical background

The pioneering works on this field appeared at the end of the sixties, see (Schweppe, 1968;
Witsenhausen, 1968b), and the beginning of the seventies, (Bertsekas and Rhodes, 1971b).
The problem of set-membership estimation for systems affected by additive uncertainties
concerns the issue of determining a sequence of sets such that the state of the dynamic
system at timek ∈ N is ensured to be contained in thek-th element of the sequence. This
is achieved by integrating the measurement information with the dynamic update, given in
practice by the computation of the reachable set for one timestep ahead. Notice that, in
absence of measurement, the reachable tube concept is recovered.

Motivated by the problem of the tracking of an evasive target, in (Schweppe, 1968) the
author addresses the problem of estimating the regions of the state space set containing the
true state of a linear system affected by disturbances on thestate and on the output. The
system is assumed time-invariant and continuous-time, while the observations are made at
discrete instants. Initial conditions and output disturbance are unknown but bounded by two
ellipsoids, while two kinds of bounds for the state disturbance are considered: an ellipsoidal
set and an energy type bound (i.e. a bound on the integral). Ellipsoidal approximations are
proposed.

Also Witsenhausen deals in (Witsenhausen, 1968b) with the problem of computation of
sets in the state space which are compatible with the observations and the initial conditions.
In particular, a linear discrete-time time-varying systemis considered. The system is sup-
posed to be affected by disturbances on the state and on the output, assumed bounded by
compact and convex sets. The issues of complexity and approximation are mentioned and
the ellipsoidal framework provided by Schweppe is referredto. The alternative proposal is
to use polyhedra, which yield to linear programming problems.

The work (Bertsekas and Rhodes, 1971b) is concerned with the same estimation problem
considered by Schweppe but it is extended to the analysis of the cases of smoothing and
prediction. Moreover, the adaptation to discrete-time systems is explicitly exposed. The
main advantages of the methods proposed here with respect tothe Schweppe’s approach are
the pre-computability of the matrix defining the predictionellipsoid and the convergence, for
time-invariant systems, to a steady-state solution as timetends to infinity.

More recently, in (Maksarov and Norton, 1996), the issue of estimation of the feasible
sets (the set of state consistent with the model, the bounds and the measurements) for a
discrete-time time-varying linear system with state and observation noises, with ellipsoidal
bounds, is considered. The noises are assumed to be unknown but bounded by ellipsoids, as
well as the initial condition. The estimation process is given by alternating the time-update
step with the observation update. Each step requires an ellipsoidal approximation to be per-
formed. The minimal-volume ellipsoidal approximations ofthe sum and of the intersection
of two ellipsoids are employed. Three algorithms, based on different approximation proce-
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dures, are provided and compared.

In (Chernousko, 2002), the problem of estimation of the state feasible set for a continuous-
time time-varying linear (affine) system is considered. Theaim is to determine an optimal
ellipsoidal outer approximation of the attainable set. Theinitial set and disturbance bounds
are two ellipsoids and different criteria of optimality areconsidered, among them the volume
and the sum of squared axes.

The first contribution on invariance in the field of dynamic systems has been probably
(Bertsekas, 1972). This work dealt with the problem of computation and characterization
of maximal robust control invariant set. In this seminal work, the author considers non-
autonomous discrete-time nonlinear systems affected by uncertainty, that is, systems of the
form

xk+1 = f (xk,uk,wk),

with bounds on the statexk ∈ X and on the inputuk ∈ U(xk) which may depend on the
state. Bounds on the uncertainty also can be dependent on thestate and the input, i.e.
wk ∈W(xk,uk). First a necessary and sufficient condition for control invariance is presented,
then a characterization of the maximal control invariant isgiven. Given the setX, the one-
step operator has been employed to define the sequence of sets, denote themSk(X), whose
elements can be maintainedk times inX, for k∈ N, by means of a proper sequence of con-
trol actions. It has been proved a very interesting non-intuitive result, that is the fact that the
intersection of such sequence of sets is not equal, in general, to the maximal control invariant
set. A condition for this equality to hold is based on compactness of the involved sets. A
particularly interesting case for which such condition is satisfied, is given by systems affine
with respect towk, that is

xk+1 = f (xk,uk)+wk,

with U andW not dependent onx and(x,u), respectively, setsX andW compact andf (·)
continuous. In this case the intersection of setsSk(X), for k ∈ N, converges to the maximal
control invariant set.

The computational aspects for the maximal invariant set have been addressed in two
works published in 1991, that is in (Gilbert and Tan, 1991) and (Blanchini, 1994) (although
the second reference is relative to a paper published in 1994, a preliminary version of the
work was presented in 1991, in (Blanchini, 1991)).

In (Gilbert and Tan, 1991), the problem of characterizationand computation of the ma-
ximal output admissible invariant set for a linear deterministic system is studied, that is, for
x+ = Ax with y = Cx. In particular, the constraints are assumed to be defined in the space
of the output, i.e. in the formy∈Y. This does not entail major differences with the case of
bounds on the state space. The main result concerns the condition of finite determination of
the maximal invariant set. It is proved that, if the system isasymptotically stable, the pair
C,A is observable, the admissible output setY is bounded and the origin is contained in its
interior, then the maximal output admissible set is finitelydetermined.
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In (Blanchini, 1994), the non-autonomous systems taken into account are linear with
parametric and additive uncertainty. The concept ofλ -contractive set is introduced and an
iterative procedure to compute the maximalλ -contractive set for a givenλ ∈ [0,1] is pro-
vided. An important result proved in the paper is the fact that the maximalλ -contractive
set is the intersection of the sequence of sets computed by means of a sort of one-step ope-
rator, provided that the initial set is convex, compact and contains the origin in its interior.
The result is analogous to that presented by Bertsekas, but for λ -contractive sets. Lyapunov
induced functions and control design are also analyzed.

A first important survey paper on invariance is (Blanchini, 1999) summarizing the main
results on the field. Continuous-time and discrete-time systems are considered, condition
for invariance for linear and nonlinear systems are given. Moreover, induced Lyapunov
functions as well as control design problems based on invariance are analyzed. Also the
computational aspects are considered, in particular for polytopic and ellipsoidal invariant
sets.

Another very important and basic work on the field is (Kolmanovsky and Gilbert, 1998).
The paper deals with the problem of characterization of the maximal output admissible in-
variant set for discrete-time linear systems affected by additive uncertainty. The results
are strongly based on mathematical tools, such as support functions and Pontryagin (or
Minkowski) difference, which are widely employed in this thesis. Necessary and sufficient
conditions for invariance are given, minimal and maximal invariant sets are characterized
and an iterative procedure to compute the maximal invariantset is proposed. Very impor-
tant results presented in (Kolmanovsky and Gilbert, 1998) are the necessary and sufficient
conditions for the existence of the maximal invariant set and for its finite determination. The
maximal invariant set is non-empty if and only if the minimalinvariant set is contained in the
admissible region, it is finitely determined if it is contained in the interior of the admissible
region.

More recent papers dealing with the problem of characterization of the minimal inva-
riant set for linear systems affected by additive uncertainty are, see (Ong and Gilbert, 2006;
Raković et al., 2005). Since the minimal invariant set is the Minkowski summation of infinite
terms, it cannot be computed in general, and the attention ofthe authors is focused on the
computation of approximations of the minimal invariant set.

1.2.2 State of the art for nonlinear systems

Here we provide a short review on the results presented in thelast years on issues related to
set-theoretic methods and on invariance for nonlinear systems.

One of the main problems inherent to set-theoretic methods application and invariant set
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computation is the fact that, in general, nonlinearity of the system or the controller leads to
non-convex and non-polyhedral sets. This yields to a great,often unaffordable, computa-
tional complexity. Then approximations are usually employed and a trade-off between the
induced conservativeness and the computational complexity has to be reached.

First, an overview on reachability approximations and set-membership identification for
nonlinear systems is recalled. The problem is the computation of the sequence of sets in the
state space providing the guarantee of containing the stateof the system. Notice that nonli-
near systems and linear uncertain systems are related, since often the methods for computing
reachable sets and estimation sets for nonlinear systems are based on linear approximations.

The problem of reachable sets computation for nonlinear systems is addressed in (Kühn,
1999) using mean value theorem related techniques to approximate the nonlinear evolution.
That is, given a nonlinear system and a set, its reachable setcan be obtained by approxi-
mating the nonlinear dynamic function with a linear function with additive uncertainty. The
sequence of reachable sets is, then, obtained through a linear mapping and a Minkowski
summation, at every step. This yields, in general, to an unaffordable growth of the complex-
ity of the sets. The problem of complexity is solved by employing zonotopes, which allows
to control the representation and computational complexity, at the price of some conserva-
tiveness. Further developments on this direction have beenproposed by (Girard et al., 2006)
which uses zonotopes and boxes to bound the system admissible evolution.

We recall that a way to deal with the problem of reachable setscomputation for a non-
linear system is by approximating it with a linear uncertainsystem. A novel approach
guaranteeing convergence of the sequence of approximated reachable sets is presented in
(Raković and Fiacchini, 2008), where properties of invariance are employed to determine a
basic shape for bounding the exact reachable sets. A procedure based on homothety leads
to the determination of a computational procedure which combines low computational effort
and convergence of the approximation error to zero.

Analogously, the problem of set-membership state estimation for nonlinear systems has
been addressed by means of set-theoretic approaches. The work (Álamo et al., 2005) presents
a new approach to guaranteed state estimation for nonlineardiscrete-time systems with
bounded disturbances on the state and on the output. An algorithm to compute a set that
contains the states consistent with the measured output andthe system model is provided.
This set is represented by a zonotope. The size of the zonotope is minimized at each time step
by an analytic expression or by solving a convex optimization problem. Interval arithmetic
is used to calculate a guaranteed sequence of sets in the state space.

In (Álamo, Bravo, Redondo and Camacho, 2007) a method for guaranteed state estima-
tion for nonlinear discrete-time systems with bounded disturbances is presented. The sets of
states that are consistent with the evolution of the system,the measured outputs and bounded
disturbances are represented by zonotopes. The main novelty is the usage of DC functions
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to compute the approximating sequence of sets. DC functionsresult very useful in order
to compute bounds on the optimal solutions of non-convex programming problems, and are
also used in this thesis.

It is not trivial to adapt to the nonlinear case those standard mathematical tools, such
as the one-step operator and reachable sets, widely employed for analysis of invariance for
linear systems. Consider for instance the fact that the one-step setQ(Ω) is not necessarily
convex for nonlinear systems, neither forΩ convex. Then its application can lead to the
generation of sequences of highly complex sets.

One of the major problems when moving from linear to nonlinear systems comes from
the fact that some useful properties related to linearity are lost. A very interesting and clear
example is illustrated in the following considerations on the condition for invariance, cited
from (Blanchini and Miani, 2008). In this work, first the continuous-time case is considered.
A fundamental result on invariance is represented by the Nagumo theorem, which provides
a necessary and sufficient condition for invariance for a closed subset of the state space, for
continuous-time systems.1 Such theorem claims that a set is positively invariant if andonly
if the velocity vector is directed towards the interior (or tangent to the boundary) of the set
at any point of the boundary. Intuitively, if the velocity vector heads inside the set, it implies
that the trajectories on the boundary enter the set, then there cannot be any trajectory starting
inside and leaving the set. This entails clearly invariance.

Then the attention, in (Blanchini and Miani, 2008), moves tothe discrete-time case

x+ = f (x),

for which invariance of a setScannot be ensured by a boundary condition.

The authors expressly state that:

“... As it can be easily understood, there is no evident extension of Nagumo’s “boundary-
type” condition for discrete-time systems. Intuitively, the natural counterpart of the Nagumo’s
condition,... would be

f (x) ∈ S, ∀x∈ ∂S,

which means, roughly, the state on the boundary “jumps inside”. However, this condition
is not sufficient to assure f(x) ∈ S for all x∈ S. Indeed, it is easy to provide discrete-time
examples in which the above boundary condition can be satisfied, yet the set is not positively
invariant. Therefore the only reasonable “discrete-time extension” of Nagumo’s theorem is
the tautology: S is positively invariant if and only if

f (S) ⊆ S.

Luckily enough, the situation is completely different if werestrict our attention to the class
of homogeneous systems (including the linear ones) ...“

1The Nagumo theorem is not given formally here, only its geometrical meaning is described.
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This means that focussing on general nonlinear systems the analysis of invariance has to
involve the whole set, while for linear (and homogeneous) systems a boundary-type condi-
tion for invariance can be given. One of the main conceptual contribution of this thesis is to
show that boundary-type condition can be stated also for nonlinear systems. The ingredient
which permits to infer properties of the whole set from boundary-based analysis is convexity.

1.2.2.1 Contributions on invariant sets computation for nonlinear systems

First it is worth mentioning the work (Kerrigan and Maciejowski, 2000) which provides a
survey on invariance for nonlinear systems up to the moment.The paper focuses mainly on
theoretical characterization of invariance and its use in control, rather than on the computa-
tional issues.

The problem of designing an MPC control for nonlinear systems is addressed in (Cannon
et al., 2003). For that purpose, the issue of computing an invariant set to be used as target
set is considered. In particular, a polytopic invariant setis computed for an LDI system valid
within a region. The problem is posed as a linear programmingproblem whose objective is
to maximize the volume of the polytope, with bounded geometric complexity. In particular,
the linear image of an infinity-norm ball is considered, i.e., a parallelotope, whose vertices
are the optimization variables.

The problem of linear system with particular static nonlinear feedbacks, such as piece-
wise affine and saturation, has been addressed in the work (Huand Lin, 2004), where condi-
tions for invariance for an ellipsoid are provided.

The work (Bravo et al., 2005) deals with the problem of computation of control invariant
sets for constrained nonlinear systems. The proposed approach is based on the computation
of an inner approximation of the one-step operator, that is,the set of states that can be
steered to a given target set by an admissible control action. Based on this procedure, control
invariant sets can be computed by recursion. In this work, interval arithmetic is employed to
compute the one-step set.

Particular attention has been devoted to a common nonlinearity present in real dynamic
system, the saturation. The paper (da Silva and Tarbouriech, 1999) addresses the problem
of analysis and computation of invariant andλ -contractive sets for discrete-time systems in
presence of saturation. In particular, the authors dividedthe space in regions where the upper
or lower value of saturation is attained or where no saturation occurs. Then, the system is
assumed linear and perturbed by constant perturbations within any region. Necessary and
sufficient condition for contractiveness of polyhedral sets is given.

In (Álamo, Cepeda, Limón and Camacho, 2006b) a method to estimate the domain of at-
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traction for discrete-time saturated systems is presented. A new notion of invariance, denoted
SNS-invariance, is introduced. An algorithm to generate a sequence of nested invariant sets
is provided and it is proved that the sequence converges to the largest SNS-invariant set for
this class of systems. It is also proved that the SNS-invariant sets generated by this iterative
algorithm are polyhedral convex sets and constitute an estimation of the domain of attraction
of the non-linear system. The same problem has been tackled by the authors also in (́Alamo,
Cepeda, Limón and Camacho, 2006a).

1.3 Convexity and invariance

One of the keystones of the thesis, the concept of convexity of sets and functions, is briefly
illustrated in this section. Many efforts have been directed to the analysis of convexity, see
for instance (Boyd and Vandenberghe, 2004; Rockafellar, 1970; Schneider, 1993; Ben-Tal
and Nemirovski, 2001).

The importance of convexity for topics related to invariance and set-theory in control is
manifold. The first reason is the high complexity of representation and computation induced
by non-convex sets. For example, from the practical point ofview, the standard algorithmic
procedures usually generate sequence of sets whose complexity explodes after few steps
when dealing with non-convex sets. As a matter of fact, the families of sets considered in
literature for practical issues related to invariance share the property of convexity, for instance
ellipsoids, polytopes, zonotopes and boxes.

On the other hand, convexity of functions permits to infer properties which are satisfied
by any element of a set by means of conditions involving only afinite subset of points.
This consideration leads also to convex optimization problems, which are computationally
tractable, and then to algorithms characterized by affordable complexity. Hence, it is worth
recalling here some basic definitions and properties related to convexity of sets and functions.

A set S⊆ Rn is said to be convex if, for every pair of elements ofS, that is for every
x,y∈ S, we have that the whole segment between the two points is contained inS.

An important property of convex sets, see (Rockafellar, 1970), is the fact that a setS⊆Rn

is convex if and only if it contains all the convex combinations of its elements. This means
that, if S is convex, any point that can be expressed as a convex combination of elements of
Sbelongs toS. Conversely, if any point expressable as a convex combination of elements of
Sbelongs toS, then convexity holds.

There are several different ways to define convexity of a function. One way is based on
the concept of convex set and provides a geometrical meaningof convex functions.
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Given a functionf : Rn → R define its graph as{(x, f (x)) ∈ Rn+1 : x∈ dom f} and its
epigraph the set of points inRn+1 lying above the graph. A function is convex if its epigraph
is a convex subset ofRn+1. It is evident how deeply related are the concepts of convex sets
and convex functions, as the latter can be defined in terms of the former.

An important feature of convexity is the fact that a propertyinvolving only some ele-
ments of a set can be extended to a possibly uncountable set ofpoints, when dealing with
convex sets and convex functions. We will see that the fact that general properties can be
inferred from conditions involving few elements of a set will permit to formulate algorithmic
procedures for invariant set computation, algorithms characterized by affordable complexity.

As an example, we shortly introduce convex programming, which plays a key role when
dealing with mathematical programming problems. Convex programming problems are cha-
racterized by the minimization of a convex cost function over a convex feasible set, or equiv-
alent problems, see (Boyd and Vandenberghe, 2004).

The importance of convex programming problems is due to the fact that they are cha-
racterized by efficient resolvability, that is, they can be solved in polynomial time. The
general nonlinear programming problems are often much morecomputationally demanding,
see (Ben-Tal and Nemirovski, 2001).

This can be intuitively understood recalling that a local minimum for a convex problem
is also a global minimum, unlike the case of non-convex problem. In the context of convex
problems, iterative algorithms, based on the gradient of the cost function for instance, can
be designed, see (Bazaraa and Shetty, 1979). Thus, through the algorithm iterations, the cost
function value decreases at every step and then convergenceto the optimum is ensured. If,
on the contrary, local optima are not also global, as for non-convex problems, the algorithms
exploiting the gradient of the cost function does not guarantee, in general, convergence to a
global minimum. Hence, in the context of mathematical programming, the availability of a
convex programming representation for a problem is crucial.

1.4 Motivation and objectives of the thesis

As illustrated above, invariance and set-theoretic methods are very important for the analysis
of nonlinear and uncertain systems. Moreover, it is evidenthow useful is the application of
invariance and set-theory related structures for the determination of robust control strategies,
the design of control laws in presence of hard constraints, prediction based control etc, hence
for control synthesis in general, for nonlinear and uncertain systems.

Despite such fundamental position gained by invariance andset-theory in systems ana-
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lysis and control, mainly in the last decades, only very few results have been provided for
nonlinear systems. Results presented in literature have been derived for particular cases of
nonlinear systems (such as saturated systems, bilinear systems, etc) and they often cannot be
applied to general nonlinear systems. That is, despite of the importance of such structures,
their application are restricted to particular cases.

Consider the mentioned importance of invariant sets in model predictive control for non-
linear systems. In this context, the availability of an invariant set is often used to prove the
desired properties for the controlled system, such as stability, convergence and constraints
satisfaction. On the other hand, it is not trivial in practice to obtain an invariant set for a
nonlinear system, usually required to be used as terminal region in MPC. Roughly speak-
ing, in many contributions on nonlinear predictive controlthe availability of an invariant set
leading to general results is assumed, but the computational problem of how to obtain such
important ingredient is not tackled. This fact might contribute to lose some of the generality
of such results, in practice.

There is a clear gap between the importance of invariance andset-theory for theoretical
purposes and the practical applicability of the obtained results, especially for nonlinear sys-
tems case. It has to be pointed out that this gap is less wide for the case of linear uncertain
systems, for which many well established computational methods are given in literature. The
objective of this thesis is to contribute in filling this gap.Particular attention is in fact devoted
to nonlinear systems.

The main conceptual problem when moving from analytical andcomputational methods
for linear systems, is the fact that many properties and features which are intrinsic to linearity
cannot be exported to nonlinear systems. The Nagumo theoremis a clear example of a
condition based on local analysis that is not applicable in case of nonlinearity.

The underlying idea, common to many of the results presentedin the thesis, is to adapt
those methods and properties characterizing analysis and control design for linear systems
to nonlinear ones, exploiting convexity. It will be showed,that in many cases convexity
is the ”missing” ingredient which allows the formulation ofanalogous methods and tools,
preserving the desired properties in presence of nonlinearity.

First we will introduce the main systems modelling framework, called convex difference
inclusion (CDI) systems. This class of dynamic systems are deeply characterized by conve-
xity, as their dynamics are defined by means of a set of convex functions. This implies that
the dynamic evolution of such systems is characterized by convex constraints, and the appli-
cation of many tools proper to the analysis of linear systemsleads to convex programming
problems, polynomially complex. That is, intuitively, replacing linearity by convexity, some
results for linear systems are preserved for CDI systems, atthe price of a slight increase of
the computational complexity.
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Many important results, analogous to those well established for linear systems, are ex-
posed and proved. For instance, computation of the exact one-step operator, necessary and
sufficient conditions for invariance andλ -contractiveness, algorithms to generate sequences
of sets converging to the domain of attraction, rigorously developed for linear systems, are
provided for CDI systems.

The importance of such framework is evident considering that any element of a very
wide class of nonlinear systems can be approximated by a CDI system. That is, given a
nonlinear system, if on one hand the analysis of the approximating CDI system leads to
some conservativeness, on the other, some beneficial properties valid for linear systems are
preserved for CDI systems. This yields to general and strongresults for the approximated
nonlinear system.

Another aspect of the CDI approach is that many properties satisfied by a set for the CDI
system (invariance for instance), is fulfilled for any nonlinear system approximated by the
CDI system. This implies that considering a CDI system underlies the analysis of a whole
family of nonlinear systems, that is, all the systems whose dynamic function is bounded by
the function characterizing the CDI system.

Although the results provided for CDI systems are strong, the assumptions characteri-
zing such framework are not too restrictive. It will be shownthat many common classes of
systems are particular CDI systems or, at least, admit tightCDI approximations. Then, an
important practical issue related to the theory developed is how to generate the approximat-
ing CDI system, given a nonlinear one. In this context we willintroduce some computational
aspects on how to obtain a CDI representation or a CDI approximation for the elements of
some common classes of nonlinear systems.

The first class of systems enclosed in the CDI framework is given by the convex-concave
difference inclusion (CCDI) systems. Such systems are particular CDI systems, characteri-
zed by a finite number of functions that determine their dynamics. Many nonlinear systems
can be approximated by a CCDI system, since only a finite number of bounding functions
are required to be computed.

The second class of nonlinear systems, for which a CDI representation is a powerful
tool, are the Lur’e systems. Those systems are formed by a linear system in closed-loop
with particular static gain feedback laws and are well knownin the context of control theory,
mainly in the continuous-time. Discrete-time Lur’e systems will be considered in the thesis.

An important class of systems for which a CDI approximation is easily obtained is given
by the called DC systems. Such systems are characterized by dynamic functions that can be
expressed as the difference of convex (DC) functions. The importance of DC functions is due
to the fact that it is straightforward to determine convex lower and upper bounding functions
for any of them. This will lead to the implicit determinationof a CDI system approximating
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the original nonlinear DC one. Moreover, a very wide class ofnonlinear functions can be
represented by a DC one.

Another subclass of CDI systems is given by linear parametric uncertain systems. This
modelling framework, for which some results are available in literature, permits to apply
techniques proper to linear systems analysis and synthesisto the approximation of a nonli-
near system. In fact, for instance, a nonlinear system defined on a bounded region can be
approximated by a linear parametric uncertain system determined by bounding the gradient
of the nonlinear function over such region.

The presence of additive uncertainty can be considered for any of the mentioned mo-
delling frameworks. Assuming the presence of additive unknown but bounded uncertainty
makes the model more realistic in some cases, since supposing the perfect knowledge of the
system dynamics can be too restrictive.

Finally, we provide the thesis structure, along with the contributions on the different
aspects of invariance and set-theoretic methods.

• The second chapter deals with the modelling problem. We recall general definitions
and characterizations of nonlinear dynamic systems, introducing the concepts of un-
certainty and the concept of set valued map, widely employedin the thesis. Then the
proposed novel models, the CDI framework, will be presented.

• Computational aspects relating CDI systems to classes of common nonlinear and un-
certain systems are developed in chapter three. CCDI systems and Lur’e systems are
introduced as practice-oriented subclasses of CDI systems, and their twofold relation,
with CDI systems on one hand and with common nonlinear systems on the other, is
stressed to point out that many real systems are enclosed in this classes of models. DC
systems are then illustrated. Definitions, properties and examples are provided to stress
the main features of this particularly rich and expressive models. A short overview on
DC functions is provided to make clear some reasons which lead us to consider this
particular class of nonlinear functions. Finally, linear parametric uncertain systems are
defined. Two subclasses of linear parametric uncertain systems, as the linear parame-
ter varying (LPV) systems and the linear difference inclusions (LDI) systems, are also
illustrated.

• In chapter four invariance and related topics for CDI systems are considered. Impor-
tant results, well known for linear systems, are stated for this class of systems. Ne-
cessary and sufficient conditions for a convex set in the state space to be invariant and
λ -contractive, also in presence of additive uncertainty, are provided. It is proved that,
in case of absence of additive uncertainty, the relation between convexλ -contractive
sets for CDI systems and Lyapunov functions, characterizing linear systems, are pre-
served for CDI systems. The one-step operator is determinedand characterized, and
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a sketch of the algorithm for generating sequences of sets converging to the domain
of attraction is given. Finally, computational issues on how to obtain convex invariant
andλ -contractive sets for CDI systems is illustrated.

• The fifth chapter deals with the problem of computing convex invariant sets andλ -
contractive sets for particular classes of autonomous nonlinear systems. In particular,
practice-oriented classes of nonlinear systems previously illustrated, such as DC and
Lur’e ones, are considered. Sufficient conditions for invariance andλ -contractiveness
for DC systems are given. Also the case of DC systems in presence of additive un-
certainty is treated. Practical issues on computing a convex invariant set are tackled,
yielding to the algorithmic procedure ensuring to provide anon-empty convex inva-
riant set in the absence of uncertainty. An ad-hoc method to obtain a sequence of
nested invariant sets is provided for Lur’e systems. It is also shown that such sequence
of sets converges to a convex approximation of the domain of attraction.

• Chapter six presents results concerning the problem of control synthesis. Computation
of control laws and control invariant sets for non-autonomous CDI systems is the main
topic of the chapter. The first part is devoted to illustrate properties of convex control
invariant andλ -contractive sets for DC systems. A sufficient condition forcontrol
invariance andλ -contractiveness of a convex set is provided. In particular, in case of
polytopic sets, it is proved that the computation of a control action at the vertices of the
polytope satisfying a local (convex) condition, allows thedetermination of a control
action defined over the set such that asymptotic (exponential) stability is guaranteed
for the nonlinear system. The one-step operator, useful to obtain a sequence of nested
control invariant sets and an approximation of the maximal stabilizable set, is analyzed
for DC systems. Also computational issues are considered, defining algorithms to
determine the stabilizing control law.

• In the final chapter we summarize the contributions and results illustrated in thesis and
the directions for future research.
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Chapter 2

CDI framework for nonlinear systems

The thesis deals with nonlinear and uncertain systems. In this chapter, the main modelling
framework of dynamic systems employed will be illustrated.

First, a basic classification of dynamic systems will be given, starting with generic char-
acterizations of nonlinear systems and following with the description of uncertainty. The
concept of set valued map will be introduced: intuitively, it is a function relating a set to any
point of the space. Many systems considered in the thesis arecharacterized by set valued
maps as dynamic functions, for instance parametric and additive uncertain systems.

Then, the main modelling framework used in the thesis, i.e.,Convex Difference Inclu-
sions (CDI) systems, will be described and their propertieswill be given. CDI systems are
characterized by particular set valued maps. Convexity properties are assumed for the set va-
lued maps, such that beneficial invariance related featurescharacterizing linear systems are
valid also for CDI systems. These properties will enable us to state necessary and sufficient
conditions for invariance andλ -contractiveness for CDI systems, in particular boundary con-
ditions.

The fact that CDI systems represent a tool to approximate a very wide class of nonli-
near and uncertain systems, provides generality to this framework in order to characterize
invariance and design computational procedures for nonlinear systems.

CDI systems provide the more general modelling framework employed in this thesis.
Other models, more practice-oriented, presented in the following chapter can be approxi-
mated by CDI systems or they are particular cases of CDI systems.

59
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2.1 Nonlinear systems

In this thesis we consider and analyze discrete-time systems in state space representation, that
is, systems determined by difference equations, rather than differential equations. Hence, we
implicitly assume in what follows that time variablek is an element of natural numbers,
k ∈ N, and the state vectorx∈ Rn, at timek, is a function of the state and, possibly, of the
control input and uncertainty, at the previous instant.

To define and characterize nonlinear systems, it can be helpful to recall the definition of
linear system and the main property of these systems, the superposition principle.

Consider a discrete-time autonomous system

x+ = f (x),

wherex∈ Rn is the current state andx+ ∈ Rn is the successor, or a non-autonomous system

x+ = f (x,u),

with u∈ Rm control input.

The system is linear if functionf : Rn → Rn is linear, that is, if it is such that

• f (x+y) = f (x)+ f (y), ∀x, y∈ Rn,

• f (αx) = α f (x), ∀x∈ Rn, ∀α ∈ R.

Hence, it is easy to see that a linear system has the formx+ = Ax, for the autonomous
case, andx+ = Ax+Bu, for the non-autonomous one.

Intuitively the superposition principle says that, if the “cause”a leads, through the dy-
namic system, to the “effect”b, then 2a leads to 2b. Moreover, ifc leads tod, thena+c leads
to b+d. This entails that the analysis of particular pairs cause-effect permits to completely
characterize the whole relation cause-effect representedby the system, or, equivalently, that
the complete behavior of the systems can be inferred independently from the particular con-
tingency.

In fact, linear systems are completely characterized by thesquare state-transition matrix
A∈ Rn×n and, possibly, byB∈ Rn×m, and their analysis can be treated with linear algebra.

Nonlinear systems are systems for which the superposition principle does not hold. This
is the key reason for which it is far more complex to deal with nonlinearity. The relation
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between any “cause” and its “effect” should be taken into account independently, no general
characteristic can be inferred by the analysis of a particular occurrence. In the nonlinear
framework, local results are often pursued, in contrast with the globality and generality of
properties usually ensured for linear systems.

Another aspect to be underlined is the fact that frequency based methods for analysis
and design, widely exploited in the context of linear systems, are not applicable for general
nonlinear systems. This is because the output of a nonlinearsystem excited by a sinusoidal
input is not another sinusoid with same frequency, propertyfulfilled by stable linear systems
(after the transient). Hence, many classical methods for analysis and control design for linear
systems are not valid when dealing with nonlinear systems.

On the other hand, nonlinear systems permit to model a much wider class of dynamic
systems, see (Vidyasagar, 1993; Khalil, 2002). Nonlinear systems provide a far richer frame-
work, it could be claimed that no real system is linear, actually. Many interesting phenomena
of dynamic systems are due to nonlinearity, for instance, see (Khalil, 2002), multiple isolated
equilibria, limit cycles, chaos, etc.

Then, if on one hand nonlinear systems provide a very powerful tool to model the reality,
on the other, the complexity involved can be often an insurmountable obstacle to generality
of properties and results.

2.1.1 Uncertain nonlinear systems

The concept of uncertainty in systems analysis and control design is fundamental. Many
research efforts have been directed to the problem of robustness. In practice, the assumption
of full and complete knowledge of a dynamic system is not realistic. This lack of knowledge
of the dynamics of a system is modelled as uncertainties on the dynamic functions. Consi-
dering uncertain models is natural, in fact, since in general either an exact model of reality is
not available, because we are unable to recover the whole dynamic richness of a system, or
because a too complex model would not be suitable for the analysis and control objective.

Then, it is reasonable to assume that the model used to represent a reality, a dynamic
system, is not perfectly known, that there is a certain mismatch between the ideal behavior
and the real evolution of the system. The mismatches betweenthe real system and the model,
denoted in general as uncertainties, can have several origins and different representations. A
first discrimination between uncertain models can be due to assumptions on the nature of
uncertainty. In the stochastic scenario, uncertainty is supposed to be characterized by a
probability distribution.

In this thesis we consider unknown but bounded uncertainties. That is, the effects of un-
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certainty are assumed to be dependent on a signal or a parameter, usually varying with time,
unknown but bounded in a region of the space in which it lies. It is worth noticing that also
state and input dependent uncertainties are taken into account in this framework, provided
that bounds on their effects are assumed. This assumption leads to the so-called worst-case
approach, whose objective is usually to ensure that properties are preserved no matter the
realization of the uncertainty, provided the uncertainty bounds are not violated. Then, the
analysis is directed to guarantee properties and/or performance assuming that the uncertainty
is the worst possible, supposing that the uncertainty playsan active role contrasting the con-
trol aims.

It is clear, then, why an important role on the robust analysis and robust control design is
played by game theory, see (Basar and Olsden, 1999). Game theory is applied to problems,
among all, in which two players act pursuing opposite objectives, which is what we have
when considering the uncertainty as an active agent whose aim is to prevent the achievement
of the control objective, see (Bertsekas and Rhodes, 1971a; Glover and Schweppe, 1971).

2.1.1.1 Set valued maps

We introduce here the concept of set valued maps, which will allow to define a class of
dynamic systems that encloses many of the models consideredin the thesis. Suppose that
the system dynamics is not given by a function with values on the state space, but by a
set valued map, that is, by a function defined on the state space (possibly on the Cartesian
product of the state space and the input space) with subsets of the state space as values. We
first define some particular sets of subsets ofD ⊆ Rn, useful in the following.

Definition 2.1 Given any D⊆ Rn, we denote withS (D) the set of subsets of D, withK (D)
the set of convex, compact subsets of D and withK 0(D) the set of convex, compact subsets
of D containing the origin in their interior.

By definition, we have the following relation:K 0(D)⊆K (D)⊆S (D) for all D ⊆ Rn.

A set valued mapF(·) is a function defined onRn and whose values are elements of
S (Rn), that isF : Rn → S (Rn). Therefore, for anyx∈ Rn, we have thatF(x) is a subset
of Rn. Particular interest will be devoted in this thesis to set valued maps whose values are
elements ofK (Rn).

We consider the autonomous discrete-time systems

x+ ∈ F(x), (2.1)
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wherex ∈ Rn is the state,x+ is the successor state, and functionF(·) is a set valued map,
i.e.,F : Rn → S (Rn).

For this kind of dynamic systems, the trajectories generated are sequences of subsets in
the state space rather than sequences of points. We define themapMF(·) associated to the
dynamic function of system (2.1) and the set valued mapF(·), as

MF(D) =
⋃

x∈D

F(x), (2.2)

whereD ⊆ Rn.

Property 2.2 For any set valued map F(·), mapMF : S (Rn) → S (Rn) defined in (2.2) is
monotone, that is, for every D, C∈ S (Rn) with D⊆C it follows that

MF(D) ⊆ MF(C).

Given an initial set of points in the state spaceX0 ⊆ Rn, the sequence of sets ensuring to
contain the state generated in time by the dynamic system (2.1) with initial conditionx0 ∈X0,
are obtained through the following iteration

Xk+1 = MF(Xk),

with initial setX0 and where the mapMF(·) is defined in (2.2). The setXk is the reachable
set at timek, for k∈ N, mentioned in the introduction.

It can be proved that the set of points reachable at timek ∈ N from X0 by the dynamic
system (2.1) is given by

Xk(X0) = {x∈ Rn : there existx0, . . . ,xk ∈ Rn such that:

xi ∈ F(xi−1),∀i ∈ Nk, x0 ∈ X0, x = xk}.
(2.3)

In the thesis, both autonomous and non-autonomous systems are taken into account. A
discrete-time non-autonomous system characterized by a set valued map is given by

x+ ∈ F(x,u), (2.4)

wherex∈Rn is the state andu∈Rm is the control input. FunctionF(·, ·) is a set valued map,
i.e., F : Rn×Rm → S (Rn) and thenF(x,u) ⊆ Rn for all x∈ Rn andu∈ Rm. Analogously
to the case of autonomous system, given a sequence of inputsu(k) ∈ Rm and an initial set
X0 ⊆ Rn, the trajectory of the uncertain system is a sequence of setsin the state space.
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2.1.1.2 Parametric uncertainty

A particular case of systems whose dynamic function is a set valued map are the parametric
uncertain ones, that is, systems whose dynamic function depends on a parameter. Given a
setR⊆ Rnr , consider the autonomous discrete-time system

x+ ∈ F(x) = {p(x, r) : r ∈ R},

wherex ∈ Rn is the state,x+ is the successor state, vectorr ∈ Rnr is the parameter and
p : Rn×Rnr → Rn is a function defined for everyr ∈ R.

A discrete-time non-autonomous system affected by parametric uncertainty is given by

x+ ∈ F(x,u) = {p(x,u, r) : r ∈ R},

wherex ∈ Rn is the state,u ∈ Rm is the control input, vectorr ∈ Rnr is the parameter and
p : Rn×Rm×Rnr → Rn is a function defined for everyr ∈ R.

Different assumptions on the knowledge of the parameterr lead to different frameworks.
Supposing that only the setR is known, all the possible successor states forx∈ Rn, i.e., the
whole setF(x) ⊆ Rn, have to be taken into account for state estimation, controldesign, etc.

In case that set valued function determining the dynamics ofthe uncertain system is
implicitly defined through linear functions, we have the called Linear Difference Inclusion
(LDI) system, see (Boyd et al., 1994; Gurvits, 1995) or the Linear Parameter Varying (LPV)
system, see (Shamma and Athans, 1991; Shamma and Xiong, 1999), depending on the as-
sumed knowledge of the dynamics, as illustrated in Section 3.5. Autonomous linear para-
metric uncertain systems are given by (2.1) with the set valued map given by

F(x) = {Ax : A∈ A }, (2.5)

whereA ⊆ Rn×n, while non-autonomous linear parametric uncertain systems have the form
(2.4) with

F(x,u) = {Ax+Bu : [A,B] ∈ M }, (2.6)

whereM ⊆ Rn×(n+m) and[A,B] denotes here the matrix obtained concatenating matricesA
andB.

A very effective tool to deal with parametric uncertainty related problems for linear sys-
tems are the LMI-based (Linear Matrix Inequality) optimization solvers, which permit to
efficiently solve robust analysis and control design problems as convex programming prob-
lems, see (Boyd et al., 1994; Ben-Tal and Nemirovski, 2001;Álamo, Normey-Rico, Arahal,
Limón and Camacho, 2006; Kothare, Balakrishnan and Morari, 1996).
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2.1.1.3 Additive uncertainty

Another possibility is considering the uncertainty as a signal which is added to the dynamic
function. The common assumption in the worst case approach is that it is unknown but
bounded inside a set. Recall that also state (and input) dependent uncertainty are conside-
red with this approach, through properly determined bounds. It is worth noticing that also
additive uncertain systems are characterized by a set valued map.

Additive uncertainty can be considered affecting linear and nonlinear systems, as well as
systems affected also by parametric uncertainty. For instance, consider the linear discrete-
time system

x+ = Ax+w,

where now the state-transition matrixA∈ Rn is assumed to be constant and known while the
signalw∈Rn is supposed to be an element of the setW ⊆Rn, subset of the state space in this
case, that isw∈W. Usually the bounding setW is supposed to be compact. In fact we pose
the following assumption, used throughout the thesis when dealing with systems affected by
additive uncertainty.

Assumption 2.3 We assume that W⊆ Rn is a compact set in the state space with0 ∈
int (co (W)).

Notice that the uncertainty termw could be a function of the statex (and, possibly, of
the inputu) and other terms representing noises and exogenous disturbances, as assumed in
some works in the literature related to robust control.

As an example of problems related to dynamic systems affected by additive uncertainty,
consider the problem of robust fulfillment of hard constraints. If it is ensured that the system
evolution is maintained inside the admissible set for any sequence ofw(k), k ∈ N, then
the system real trajectory does not violate the constraints, no matter the realization of the
uncertainty. Particular importance is devoted, in problems of hard constraints satisfaction, to
the sequence of uncertainty which opposes more effectivelyto such aim. Ensuring that the
system satisfies the constraints under the worst possible uncertainty realization, excludes any
constraint violation. For this reason, this way of dealing with uncertainty is often denoted as
worst-case approach.

Additive uncertainty is commonly employed with linear systems, as the uncertainty can
be read as the effect of the nonlinearity. Roughly speaking,the behavior of a nonlinear
system can be approximated by a linear one and the effects of the mismatch between the two
systems can be modelled by the additive uncertainty component.
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Remark 2.4 The effect of uncertainty is often considered affecting thelinear systems addi-
tively or parametrically, it is not usual to take into account both uncertainty structures.

A reason is that, in many cases, the selection of the uncertainty framework stems from
assumptions made on the system and from the nature of the system itself. For instance, when
uncertainty reflects the dependence of the real system dynamics on endogenous or exoge-
nous signals or physical parameters, the parametric uncertainty framework might fit better,
while when uncertainty models the effect of noises and disturbances, additive unknown but
bounded uncertainty is more appropriate.

Nevertheless, we can assume that the system is affected by the two uncertainty contribu-
tions, for the analysis and control design process.

Finally, it is worth noticing that it is not common, in the field of dynamic systems ana-
lysis and control design, to deal with both nonlinearity anduncertainty. This is due to the
fact that the uncertainty is often employed to model the effects of nonlinearity, allowing to
apply analysis and robust control techniques proper to linear systems. That is, deterministic
nonlinear systems are often treated as linear uncertain system, while in this thesis we direct
our attention also to nonlinear uncertain systems.

2.2 Convex difference inclusions: CDI systems

We introduce here the modelling framework used in the thesisto determine the behavior
of families of nonlinear and uncertain systems. The systemstaken into account are named
Convex Difference Inclusions (CDI) systems and are characterized by a particular class of
set valued maps as dynamic functions. Recall that for this kind of systems, a sequence of
sets can be generated, the reachable sets. In particular, wewill see that the set valued map
determining a CDI system is such that, given a point in the state space, its image through the
map is a convex and compact set. That is, denoting withF (·) the set valued map determining
the dynamics of the CDI system, thenF : Rn →K (Rn), which means thatF (x) ∈K (Rn)
for every statex ∈ Rn. This assumption will assure that the reachable sets generated are
convex and compact. Furthermore, we will see that the one-step operator for CDI systems,
applied to convex, compact sets provides convex, closed sets.

Moreover, we require a further convexity condition to be satisfied by the set valued map.
Given a statex, the support function of its successor, i.e., of the setF (x), with respect to a
given directionη ∈ Rn is the maximum ofηTz for all z∈F (x), by definition, see Appendix
C. Now, if we fix the directionη ∈ Rn, the value of the support function of the setF (x)
depends, clearly, onx. The required condition is that such dependence satisfies a convexity
property.
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Such structure will allow us to determine necessary and sufficient conditions for invari-
ance andλ -contractiveness of sets, for the CDI systems. Moreover, such conditions are
boundary conditions, that is, they involve only the elements on the boundary, just a finite
number of points (the vertices) in case of polytopic sets. Recalling here that such very desi-
rable properties are lost when moving from linear to nonlinear systems, we see that convexity
conditions on the dynamic set valued functions are the missing ingredient for generic nonli-
near systems.

Similar considerations will lead us to the definition of design methods for determining
control laws which ensure exponential convergence for CDI systems, in absence of additive
uncertainty.

Finally, it is important to stress that many nonlinear systems admit CDI representations
or can be approximated by CDI systems. This means that the results valid for CDI systems
can be used to obtain invariant sets,λ -contractive sets, control invariant sets, approximated
reachable sets, for a very wide class of nonlinear systems.

As a matter of fact, the analysis of a CDI system can be considered as the analysis of
families of systems, since any nonlinear system bounded by aCDI one (we will clarify
below the meaning of bounding systems) share important invariance related properties with
the CDI system.

Formal definition of a CDI systems follows. Let the system be

x+ ∈ F (x), (2.7)

wherex∈ Rn is the state,x+ is the successor andF (·) is a set valued map onRn, that is a
function which relates a set to every pointx∈ Rn.

Particular importance in the following is devoted to set valued dynamic functions, such
thatF (x)∈K (Rn) for anyx∈Rn, and the graph ofF (·) is determined by a set of functions
convex with respect tox, as stated below.

Assumption 2.5 Assume that the set valued mapF : Rn → K (Rn) determining the system
dynamics (2.7) is such that, for everyη ∈ Rn, function f̌η : Rn → R defined as

f̌η(x) = sup
z∈F (x)

ηTz, (2.8)

is convex onRn, and f̌η(0) = 0.

In what follows, we will refer to dynamic systems (2.7) for which Assumption 2.5 holds,
as Convex Difference Inclusions (CDI) systems and to functions f̌η(·) as convex bounding
functions.
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Notice that, under Assumption 2.5 and for anyx∈ Rn, functions f̌η(·) can be considered
as support function atη ∈ Rn, determining the setF (x) (see Appendix C for the definition
and properties of support function). That is, givenx∈ Rn and by convexity and compactness
of F (x), we have that

F (x) = {z∈ Rn : ηTz≤ f̌η(x), ∀η ∈ Rn}, (2.9)

with
f̌η(x) = sup

z∈F (x)
ηTz= φF (x)(η), (2.10)

for everyη ∈ Rn, whereφF (x)(η) is the support function of setF (x) evaluated atη ∈ Rn,
see Appendix C. The only, important, requirement of this setof support functions (depending
on x) is that f̌η(·) has to be convex with respect tox in Rn.

Remark 2.6 It is also important to note that for everyη ∈ Rn and every x∈ Rn, there exists
a point z(x,η) ∈ F (x) such that

ηTz(x,η) = f̌η(x),

which means that the plane{z∈ Rn : ηTz= f̌η(x)} is a support hyperplane ofF (x).

Remark 2.7 In the following, with a slight abuse of notation, we say thata set valued map
F : Rn → S (Rn) is overbounded by the set valued mapF : Rn → K (Rn) if

F(x) ⊆ F (x), ∀x∈ Rn, (2.11)

and we denote such condition as F⊆ F .We recall here that, from (2.9), we have that

F (x) = {z∈ Rn : ηTz≤ f̌η(x), ∀η ∈ Rn},
and then F⊆ F means

ηTz≤ f̌η(x), ∀η ∈ Rn, ∀z∈ F(x),

for all x ∈ Rn.

Clearly, for functions with values onRn, i.e., f : Rn → Rn, we say that f(·) is over-
bounded byF (·) if, defining

SF = { f : f (x) ∈ F (x), ∀x∈ Rn}, (2.12)

we have that f∈ SF , which means

ηT f (x) ≤ f̌η(x), ∀η ∈ Rn,

for all x ∈ Rn.

Analogously, we say that a dynamic system is overbounded by aCDI system if the dy-
namic function of the former is overbounded by the set valuedmap of the latter.
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We present here an example of how useful the CDI framework canresult to deal with
nonlinear systems. In fact, we will show that for any nonlinear system whose dynamic func-
tion is twice differentiable, its Taylor series expansion determines a CDI bounding system
valid in a given region.

Example 2.8 Consider a generic discrete-time nonlinear system

x+ = f (x),

where x∈ Rn is the state and f: Rn → Rn is a nonlinear function assumed twice differentia-
ble in a set D⊆ Rn. This implies that for every fj(·), with j ∈ Nn, the gradient∇ f j(·) and
the Hessian, denoted H( f j)(·) = H j(·), exist at every x∈ D.

Then, exploiting the Taylor series expansion and, in particular the Lagrange form of
Remainders, which is based on the Mean value theorem, we havethat given a x0 ∈ D, for
every x∈ D there exists ãx(x) = x̃∈ D such that the following equality holds

f j(x) = f j(x0)+(x−x0)
T∇ f j(x0)+

1
2!

(x−x0)
TH j(x̃)(x−x0),

for every j∈ Nn. Define the convex bounding functions as in the following

f̌η(x) =
n
∑
j=1

{

η j( f j(x0)+(x−x0)
T∇ f j(x0))+ρ j |η j |(x−x0)

T(x−x0)
}

,

for everyη ∈ Rn, with ρ ∈ Rn such that

∣

∣

∣

∣

1
2!

(x−x0)
TH j(x̃)(x−x0)

∣

∣

∣

∣

≤ ρ j(x−x0)
T(x−x0),

for all x ∈ D andx̃∈ D, with j ∈ Nn. A possible choice forρ j is the maximal absolute value
of the eigenvalues of0.5H j(x̃), that is its spectral norm, for all̃x∈ D.

The related CDI system overbounds the nonlinear one, in fact, for all x∈ D, we have that

ηT f (x) =
n
∑
j=1

η j( f j(x0)+(x−x0)
T∇ f j(x0)+ 1

2!(x−x0)
TH j(x̃ j)(x−x0)) ≤

≤
n
∑
j=1

η j( f j(x0)+(x−x0)
T∇ f j(x0))+ |η j |

∣

∣

1
2!(x−x0)

TH j(x̃ j)(x−x0)
∣

∣≤

≤
n
∑
j=1

η j( f j(x0)+(x−x0)
T∇ f j(x0))+ρ j |η j |(x−x0)

T(x−x0)) = f̌η(x),

for everyη ∈ Rn, which means that f∈ SF , see Remark 2.7, whereF (·) is the set valued
map defined by functionšfη(·).
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We give now a one-dimensional and a two-dimensional examples of CDI systems. The
main interest of these particular examples lies in the geometrical interpretations of set va-
lued maps and convex bounding functions, as we provide graphical representations of these
structures.

Example 2.9 Consider the system (2.7) with set valued functionF : R → K (R) given by

F (x) = {y∈ R : −|x| ≤ y≤ |x|}. (2.13)

This means that, for instance, we have

F (2) = F (−2) = {y∈ R : −2≤ y≤ 2}.

The graph of functionF (·) is depicted in Figure 2.1.
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Figure 2.1: Left: functionF (·). Right: functions f̌1(·) and f̌−1(·).

It is also straightforward to determine convex bounding functions forη = 1 andη =−1,
in fact we have that

f̌1(x) = |x|, f̌−1(x) = |x|,

also represented in Figure 2.1, are convex functions of x∈ R satisfying Assumption 2.5.

Example 2.10 We consider here a two-dimensional CDI system, that is, the state is x∈ R2.
The dynamic system is given by (2.7) with set valued mapF : R2 → K (R2) defined as

F (x) = {z∈ R2 : zTPz≤ xTx} = {z∈ R2 : zTPz≤ ‖x‖2
2}. (2.14)
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where P∈ R2×2 is a positive definite matrix: P= PT > 0. For instance, take

P =

[

1 0.5

0.5 2

]

,

whose eigenvalues are0.7929and2.2071.
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Figure 2.2: Image setsF (x1), F (x2) andF (x3), with F (·) defined 2.14.

We list below the expressions of the images of three values ofthe state vector, x1 = [1, 1]T ,
x2 = [−2, 2]T and x3 = [−3, −4]T , through the set valued mapF (·), that is the sets related
to the three elements of the state space are given by:

F (x1) = {z∈ R2 : zTPz≤ 2},
F (x2) = {z∈ R2 : zTPz≤ 8},
F (x3) = {z∈ R2 : zTPz≤ 25}.

The sets are depicted in Figure 2.2.

Clearly F (x1) is the image throughF (·) of any point x in the state space such that
xTx = 2, which is a circle in the state space. Analogously the sets ofthe state space for
whichF (x) = F (x2) andF (x) = F (x3) are circles with radius

√
8 and5, respectively.
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It is not easy to represent properly the graph of the set valued mapF (·) for the two
dimensional CDI system, since it lies in the four dimensional spaceR4. If we fix the value
of x2, assume for instance x2 = 0, the graph of the set valued map as a function of x1 can be
depicted, just for sake of geometrical insight, see Figure 2.3.
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Figure 2.3: Graph of set valued mapF (·), defined in the (2.14), projected onx2 = 0.

Also the convex bounding functions can be computed. Given aη ∈ R2 and a x∈ R2, we
have that

f̌η(x) = sup
z∈R2

{ηTz : zTPz≤ xTx} = sup
z∈R2

{ηTz : zT
(

1
‖x‖2

2
P
)

z≤ 1} =

=
√

ηTP−1η‖x‖2
2 =

√

ηTP−1η ‖x‖2

(2.15)

convex with respect to x∈ R2 for everyη ∈ R2, since the triangular inequality‖a+b‖2 ≤
‖a‖2+‖b‖2 is satisfied for all a,b∈Rn. Functionf̌η(·) for particular value ofη = [−2, 0.7]T

is depicted in Figure 2.4.
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Figure 2.4: Convex bounding functioňfη(·) for η = [−2, 0.7]T andF (·), defined in (2.15).

Since the triangular inequality is satisfied by every norm (by definition of norm, in fact),
any set valued map defined as

F (x) = {z∈ R2 : zTPz≤ ‖x‖2
p}. (2.16)

determines a CDI system, for every p∈ R such that p≥ 1. In fact a derivation analogous to
(2.14) leads to

f̌η(x) =
√

ηTP−1η ‖x‖p,

convex with respect to x.

In Figure 2.5 convex bounding function forη = [−2, 0.7] and p= 1 and p= 4 are
represented.

Remark 2.11 CDI systems enclose a large class of nonlinear and uncertainsystems and can
be used to approximate many others, see Example 2.8, for instance. We will see, in the next
chapter, other modelling frameworks, more practice-oriented, which are particular cases of
CDI systems or can be easily approximated by them. Hence for more practical examples of
CDI systems, for instance saturated and Lur’e systems, we refer to those presented in the
following chapter.
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Figure 2.5: Convex bounding functionšfη(·) for η = [−2, 0.7]T andF (·), defined in (2.16), for
p = 1 (left) andp = 4 (right).

Assuming the existence of a convex bounding functionf̌η(·) for every directionη ∈ Rn

can appear a quite restrictive condition, at least from the practical point of view. Looking
at the CDI system as a bounding system of a, more common, nonlinear system, we have to
be able to determine such uncountably many (one for anyη ∈ Rn) bounding functions to
construct the CDI system, and this can result a hard task in general. Nevertheless, it can
be sufficient to definěfη(·) only for a finite number of directionη ∈ Rn, provided they are
convex inx ∈ Rn and the sets bounded by suchf̌η(·) are compact (and convex) for every
x ∈ Rn. From those finite number of̌fη(·), the convex bounding functions can be inferred
for any otherη ∈ Rn , as shown in the following.

Remark 2.12 First, notice that the set ofη ∈ Rn under analysis can be restricted to the
boundary of the unitary sphere, i.e., toη ∈ ∂Bn

2 where

∂Bn
2 = {η ∈ Rn : ‖η‖2 = 1}. (2.17)

In fact, the support function is positively homogeneous of order one with respect toη, see
Appendix C, that is, for anyΩ ⊆ Rn

φΩ(αη) = sup
z∈Ω

(αη)Tz= α sup
z∈Ω

ηTz= αφΩ(η),

for any α > 0. The case ofη = 0, that isα = 0, can be obtained fixinǧf0(x) = 0. Then
assumingf̌η(·) defined for all elements of∂Bn

2, we have that functions

f̌η(x) = φF (x)(η) = ‖η‖2φF (x)

(

1
‖η‖2

η
)

= ‖η‖2 f̌( 1
‖η‖2

η
)(x), (2.18)

for all x ∈Rn, where, clearly
(

1
‖η‖2

η
)

∈ ∂Bn
2, are the convex bounding functions defined for

all η ∈ Rn.
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The consequence is that, in many cases, the analysis can be restricted to theη such that
‖η‖2 = 1, i.e., toη ∈ ∂Bn

2. On the other hand it has to be pointed out that elements of∂Bn
2

are still uncountable many.

In the following we show that a finite number of convex bounding functions can be suf-
ficient to determine the CDI system. First we prove that convex bounding functions defined
for η ∈ E with E ⊆ ∂Bn

2 are sufficient to determine a CDI system, provided that the related
set valued mapF (·) has compact values. Clearly such subset of directionsE can be finite.

Property 2.13 Consider the set valued map defined by

F (x) = {z∈ Rn : ηTz≤ f̌η(x), ∀η ∈ E} (2.19)

where f̌η : Rn → R, for all η ∈ E ⊆ ∂Bn
2, are functions convex onRn, with f̌η(0) = 0, such

that F (x) ∈ K (Rn) for every x∈ Rn and condition (2.8) is satisfied for allη ∈ E and all
x∈ Rn.

Then Assumption 2.5 holds forF (·).

Proof: We have to prove that, given the convex bounding functionsf̌η(·) for η ∈ Rn in
a subsetE ⊆ ∂Bn

2, bounding functions can be defined also for everyη ∈ Rn such thatF (·)
satisfies Assumption 2.5. We prove such condition for allη ∈ ∂Bn

2, from Remark 2.12 this
determines bounding functions on the whole spaceRn.

The proof is constructive: we provide a method to determinef̌η(·) for anyη ∈ ∂Bn
2, from

functions f̌η(·) defined forη ∈ E. We proceed defining functions̃fη̃(·) for anyη̃ ∈ ∂Bn
2 and

proving that such functions satisfy (2.8) and are convex with respect tox. This entails that
proposed functions̃fη̃(·) are bounding functions of Assumption 2.5.

Givenη̃ ∈ ∂Bn
2 and ax∈ Rn, define

f̃η̃(x) = sup
z∈Rn

{η̃Tz : ηTz≤ f̌η(x), ∀η ∈ E}, (2.20)

that is, the maximal value of̃ηTz taken by an element ofF (x), determined byf̌η(x) for
η ∈ E.

Condition (2.8) follows from definition of̃fη̃(·) and (2.19), in fact

f̃η̃(x) = sup
z∈Rn

{η̃Tz : ηTz≤ f̌η(x), ∀η ∈ E} = sup
z∈F (x)

η̃Tz.

for everyη̃ ∈ ∂Bn
2.
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We have to prove that̃fη̃(·) are convex inx for any η̃ ∈ ∂Bn
2. Givenx1, x2 ∈ Rn and

λ ∈ [0, 1], setsλF (x1) and(1−λ )F (x2) are given by

λF (x1) = {λz∈ Rn : z∈ F (x1)} =

= {λz∈ Rn : ηTz≤ f̌η(x1), ∀η ∈ E} =

= {y = λz∈ Rn : ηT 1
λ y≤ f̌η(x1), ∀η ∈ E} =

= {y∈ Rn : ηTy≤ λ f̌η(x1), ∀η ∈ E} =

= {z∈ Rn : ηTz≤ λ f̌η(x1), ∀η ∈ E}

and
(1−λ )F (x2) = {(1−λ )z∈ Rn : z∈ F (x2)} =

= {z∈ Rn : ηTz≤ (1−λ ) f̌η(x2), ∀η ∈ E}.

The support functions at vectorη ∈ E are given by

φλF (x1)(η) = λ f̌η(x1),

φ(1−λ )F (x2)(η) = (1−λ ) f̌η(x2),
(2.21)

for all η ∈ E.

Now we can prove convexity of̃fη̃(·). We have that, by convexity of̌fη(·) for all η ∈ E,

f̃η̃(λx1 +(1−λ )x2) = supz∈Rn{η̃Tz : ηTz≤ f̌η(λx1 +(1−λ )x2), ∀η ∈ E} ≤
≤ sup

z∈Rn
{η̃Tz : ηTz≤ λ f̌η(x1)+(1−λ ) f̌η(x2), ∀η ∈ E} =

= sup
z∈Rn

{η̃Tz : ηTz≤ φλF (x1)(η)+φ(1−λ )F (x2)(η), ∀η ∈ E},
(2.22)

where the last equality follows from (2.21). Since for all convexΩ1, Ω2 ⊆ Rn we have that
φΩ1⊕Ω2(η) = φΩ1(η)+φΩ2(η), see Appendix C, then

φλF (x1)⊕(1−λ )F (x2)(η) = φλF (x1)(η)+φ(1−λ )F (x2)(η), ∀η ∈ E.

From this and (2.22), it follows that

f̃η̃(λx1+(1−λ )x2) ≤ sup
z∈Rn

{η̃Tz : ηTz≤ φλF (x1)⊕(1−λ )F (x2)(η), ∀η ∈ E}. (2.23)

Now, since setλF (x1)⊕(1−λ )F (x2) is compact and convex, thenz∈ λF (x1)⊕(1−
λ )F (x2) if and only if ηTz≤ φλF (x1)⊕(1−λ )F (x2)(η), for all η ∈ E. This is equivalent to
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say that there existz1 ∈ λF (x1) andz2 ∈ (1−λ )F (x2) such thatz= z1 +z2 if and only if
ηTz≤ φλF (x1)⊕(1−λ )F (x2)(η), for all η ∈ E. Then from (2.23) we have

f̃η̃(λx1+(1−λ )x2) ≤ sup
z1,z2∈Rn

{η̃T(z1+z2) : z1 ∈ λF (x1), z2 ∈ (1−λ )F (x2)} =

= sup
z1∈Rn

{η̃Tz1 : z1 ∈ λF (x1)}+ sup
z2∈Rn

{η̃Tz2 : z2 ∈ (1−λ )F (x2)} =

= sup
z1∈Rn

{η̃Tz1 : ηTz1 ≤ λ f̌η(x1), ∀η ∈ E}+

+ sup
z2∈Rn

{η̃Tz2 : ηTz2 ≤ (1−λ ) f̌η(x2), ∀η ∈ E} =

= λ f̃η̃(x1)+(1−λ ) f̃η̃(x2),

that is

f̃η̃(λx1+(1−λ )x2) ≤ λ f̃η̃(x1)+(1−λ ) f̃η̃(x2), (2.24)

which means convexity of̃fη̃(·) on x, for all η̃ ∈ ∂Bn
2. ThenF (·) satisfies Assumption 2.5,

with convex bounding functioňfη(x) = f̃η(x) for all η ∈ Rn andx∈ Rn.

Since functionsf̌η(·) determine the hyperplanes defining any setF (x), for all x∈ Rn, if
the set valued map is characterized by a finite number of convex bounding functions, then
F (x) are polytopes.

In the case of non-autonomous systems with set valued map as dynamic function, an
analogous definition of CDI system can be given, recalling that a functionf (x,u) is said to
be convex if its epigraph is convex, see Remark B.9. In the case of presence of control input,
the discrete-time non-autonomous system is given by

x+ ∈ F (x,u), (2.25)

wherex ∈ Rn is the state,u ∈ Rm is the control input andF : Rn×Rm → K (Rn) is a set
valued map.

A set valued map, for which the following assumption holds, determine the CDI non-
autonomous system.

Assumption 2.14 Assume that the set valued mapF : Rn×Rm → K (Rn) determining the
system dynamics (2.25) is such that, for everyη ∈ Rn, function f̌η : Rn×Rm→ R defined as

f̌η(x,u) = sup
z∈F (x,u)

ηTz, (2.26)

is convex onRn×Rm and f̌η(0,0) = 0.
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Considerations similar to those related to autonomous CDI systems could be stated, with
proper adaptations, in the case of presence of input. A non-autonomous CDI systems is such
that, for anyx∈ Rn andu∈ Rm, and for everyη ∈ Rn we have

F (x,u) = {z∈ Rn : ηTz≤ f̌η(x,u), ∀η ∈ Rn},

with
f̌η(x,u) = sup

z∈F (x,u)

ηTz= φF (x,u)(η),

convex, in(x,u) ∈ Rn×m. As for the autonomous CDI systems, convex bounding functions
f̌η(·, ·) can be viewed as support functions of setsF (x,u), depending on state and input.
Furthermore, also in this case, a finite number of bounding functions can be employed to
determine a non-autonomous CDI system, the set valued dynamic function of which has
polytopic values.

The fact that Assumption 2.5 (Assumption 2.14 for non-autonomous systems) holds for
the dynamic function of a system allows us to exploit features inherited by properties of
convex functions and convex sets. Some useful properties are listed below.

• Set relations, such as set inclusion, involving the image ofa statex through the set
valued map, i.e.,F (x), for anyx ∈ Rn, can often be posed as a set of convex con-
straints. The condition of set inclusion of the successor ofthe state is often required
to be checked in order to ensure invariance and set-theory related properties. It will be
made clearer in the following that, then, for systems as in (2.7) and under Assumption
2.5, condition of inclusion of the successor state can be imposed through a set of con-
vex constraints, which can yield to convex problems, efficiently solvable, see (Ben-Tal
and Nemirovski, 2001; Boyd and Vandenberghe, 2004).

• Convexity related properties of the dynamic set valued function, in particular convexity
of the directional bounding functionšfη(·), for all η ∈ Rn, permits to infer features
shared by all the elements of a set by means of conditions involving only a subset of
elements, possibly finite.

• Assuming that the effect of the parametric uncertainty is bounded by convex functions
is not very restrictive, therefore the family of dynamic systems under analysis encloses
a large class of functions. Many methods to approximate nonlinear systems lead to
systems with a structure that can be reduced to CDI systems, as defined in (2.7), see
Example 2.8 for instance.

This means that, although a generic system defined by either adeterministic function
f (·) or a set valued functionF(·), is not in form of CDI systems, it is often possible to
determine a CDI system with dynamic functionF (·) for which Assumption 2.5 holds
and such that

F(x) ⊆ F (x), or f (x) ∈ F (x),
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for all x ∈ Rn or more shortly, such thatF(·) or f (·) are overbounded byF (·), as
defined in Remark 2.7. Therefore, any invariant set for the approximating CDI system
is also an invariant set for the original system. More precisely, once an invariant set
Ω⊆Rn is obtained for a CDI system, it is also an invariant for any discrete-time system
whose dynamic function satisfies conditionF ⊆ F or f ∈ SF , see Remark 2.7.

Intuitively, then, the analysis of CDI systems should be thought to as the study of cha-
racteristics and properties of a family of dynamic systems,nonlinear and/or affected
by parametric uncertainty.

• In the case that the system presents a form of CDI systems as in(2.7), with Assumption
2.5, the results presented are quite strong: the maximal invariant set, for instance, can
be well approximated. It is worth recalling that computation of the maximal (robust)
invariant set can be an hard task also for linear systems, fornonlinear systems very few
results have been provided in literature. Similar considerations are valid, evidently, for
non-autonomous CDI systems (2.25) supposing that Assumption 2.14 holds.

2.2.1 Uncertain CDI systems

Definitions and assumptions in the context of CDI systems have been given for the determi-
nistic case, or, if we regard the set valued dynamic map as a way of representing the effect
of uncertainty, for the parametric uncertainty framework.No additive uncertainty have been
considered so far. It is, anyway, direct to extend the considerations on CDI system to the
case of additive uncertainty.

Consider the following discrete-time autonomous system affected by additive uncertainty

x+ ∈ F (x)⊕W, (2.27)

wherex∈ Rn is the state,x+ is the successor,W is the additive uncertainty bounding set and
F (·) is a set valued map onRn.

If Assumption 2.5 holds forF (·), then the system is denoted as an uncertain CDI system.

Remark 2.15 Although the fact that functionF (·) is set valued rather than single valued
can be viewed as the representation of parametric uncertainty, we will refer to CDI systems
(2.27) as uncertain CDI systems, to distinguish them from CDI systems of the form (2.7).

Analogously, the discrete-time non-autonomous system affected by additive uncertainty

x+ ∈ F (x,u)⊕W, (2.28)

whereu∈ Rm is the input, is denoted as uncertain non-autonomous CDI system if Assump-
tion 2.14 holds for the set valued mapF (·, ·).
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2.3 Conclusions

In this chapter the key modelling framework, i.e., CDI systems, used in the following has
been presented. CDI systems are systems whose dynamic function is a set valued map rather
than a function from the state space to the state space. The set valued map is, hence, defined
on the state space, but its values are convex, compact subsets of the space and are determined
by convex bounding functions. The assumption of convexity of bounding functions will be
useful in next chapters to determine, for a given set, general properties based on boundary
type conditions.



Chapter 3

Computation of CDI systems

As claimed in the previous chapter, CDI systems represent the basic framework which will
permit to develop the main results of this work. We prove in this chapter that mild assump-
tions are required to be fulfilled by a dynamic system to be a CDI one and that in many
common cases it is easy to obtain a CDI approximation of a nonlinear system.

In this chapter some methods to obtain a CDI representation,as well as to compute a
CDI approximation, of a nonlinear and/or uncertain system are presented. The classes of
nonlinear and uncertain systems treated in this chapter arelisted below.

• Concave-Convex Difference Inclusions (CCDI) systems. This class of systems is com-
posed by particular cases of CDI systems. CCDI systems are characterized by set
valued maps determined by a finite number of bounding functions, in particular byn
pairs of concave and convex functions.

• Lur’e systems. They are particular nonlinear systems, widely studied in classical lit-
erature, mainly in continuous-time. They are linear systems in closed-loop with static
nonlinear feedbacks which satisfy a sector condition. Here, we consider a particular
case of discrete-time Lur’e systems. We show that, for this class of nonlinear systems,
a CDI approximation is available.

• Generalized saturated systems. They are systems composed by a linear system in
closed-loop with particular nonlinear functions, the so-called generalized saturated
functions. Generalized saturated functions are characterized by convex and concave
bounding functions and it will be showed that a CDI system overbounding a general
saturated one can be determined directly from such boundingfunctions.

• Difference-of-convex (DC) systems. They are characterized by dynamic functions
which can be expressed as the difference of two convex functions. DC systems permit

81
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to model a very wide class of nonlinear systems, since modestassumptions on the dy-
namic function guarantee the existence of a DC representation or at least an arbitrarily
close approximation. The fact that DC functions are easily upper and lower bounded
by concave and convex functions makes direct the computation of a CDI system over-
bounding the DC one.

• Linear parametric uncertain systems. They are characterized by a dynamic function
which belongs, in some sense, to a family of linear (or affine)functions. Depending
on the assumptions on the knowledge of the current realization of the dynamic func-
tion, different frameworks raise. It will be shown that such, very popular, modelling
framework is composed by a subclass of CDI systems, in particular those systems
whose convex bounding functions are linear or affine (hence convex).

3.1 Concave-Convex Difference Inclusions: CCDI systems

An interesting subclass of CDI dynamic systems is the familyof systems of the form

x+ ∈ F (x), (3.1)

and with mapF (·) elementwise bounded by functions which are concave and convex with
respect to the statex. We consider in what follows systems characterized by set valued
maps such that, for anyj ∈ Nn, the projection of setF (x) over the j-th axis is bounded by
functions f̌ j(·) and f̂ j(·), convex and concave respectively, andf̌ j(0) = f̂ j(0) = 0.

Assumption 3.1 Assume that the set valued mapF : Rn → K (Rn) determining the system
dynamics (3.1) is given by

F (x) = {z∈ Rn : f̂ j(x) ≤ zj ≤ f̌ j(x), ∀ j ∈ Nn}, (3.2)

where functionsf̌ j : Rn → R and f̂ j : Rn → R are convex and concave onRn, respectively,
and f̂ j(0) = f̌ j(0) = 0, for every j∈ Nn.

We will refer to Concave-Convex Difference Inclusions (CCDI) systems, when treating
systems with dynamic function satisfying Assumption 3.1. ACCDI system is then characte-
rized by convex and concave bounding functions, a pair for any dimension of the state space,
then setsF (x) ⊆ Rn are parallelograms.

In terms of CDI representation for CCDI systems, the bounding functions ofF (·) are
defined only for a finite subset ofη ∈ Rn, that is for vectorsej and−ej , with j ∈ Nn, where
ej is the vector with all zeros but a 1 as thej-th entry. A CDI representation can be obtained
for any CCDI system, see Properties 3.3 and 3.5 below.
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The set valued functionsF (·) with values inRn satisfying Assumption 3.1 form a subset
of those set valued functions fulfilling Assumption 2.5. Therefore, since this means that
a CCDI system is also a CDI one, theory developed for CDI systems is also valid in this
framework.

The following example shows that many generic convex and concave functions can be
employed to define the bounding functions for a CCDI system, for instance exponential,
absolute value, quadratic functions.

Example 3.2 Consider the two dimensional CCDI system given by (3.1) withdynamic set
valued map given by (3.2) with

f̌1(x) = x1−1+ex2, f̂1(x) = x1+x2;

f̌2(x) = 10(x2
1+ |x2|), f̂2(x) = 1−ex2

1+x2
2.

(3.3)

The convex and concave bounding functions for j= 1 and j= 2 are depicted in Figure 3.1.
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Figure 3.1: Convex and concave bounding functionsf̌1(·) and f̂1(·) (left) and f̌2(·) and f̂2(·) (right),
defined in (3.3).

For any x∈ R2 the image through set valued mapF (·) is a box, whose maximal and
minimal values with respect to both directions are determined by (3.3). A projection of the
graph ofF (·) onR3 is represented in Figure 3.2 (recall that the graph of the setvalued map
lies onR4).
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Figure 3.2: Graph of set valued mapF (·), defined by (3.3), projected onx1 = 0.

It is proved below that CCDI systems are also CDI systems, that is, that it is possible to
obtain convex bounding functions fulfilling Assumption 2.5from a CCDI representation, by
imposing a proper convex constraint for everyη ∈ Rn.

Property 3.3 For any set valued mapF (·) defined onRn for which Assumption 3.1 holds,
also Assumption 2.5 holds with convex bounding functions given by

f̌η(x) = ∑
j∈k+

η j f̌ j(x)+ ∑
j∈k−

η j f̂ j(x), (3.4)

for all x ∈Rn and where k+ = k+(η) = { j ∈Nn : η j ≥ 0} and k− = k−(η) = { j ∈Nn : η j <
0}.

Proof: Although the result is direct consequence of Property 2.13,a constructive proof
is given below.

Consider the set valued mapF (·) for which Assumption 3.1 is valid. First, notice that
the convex bounding functionšfη(·) for η = ej ∈ Rn, andη = −ej ∈ Rn, for all j ∈ Nn, are
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given by

f̌ej (x) = f̌ j(x),

f̌−ej (x) = − f̂ j(x),
(3.5)

for all x ∈ Rn. Clearly f̌ej (·) and f̌−ej (·) in (3.5) are convex, for everyj ∈ Nn. For these
particularη ∈ Rn, condition

f̌η(x) = sup
z∈F (x)

ηTz,

characterizingF (x), is satisfied, in factz∈ F (x) implieszj ≤ f̌ j(x), with j ∈ Nn, and for
η = ej we have

ηTz= (ej)Tz= zj ≤ f̌ j(x) = f̌ej (x).

Similarly, zj ≥ f̂ j(x), for every j ∈ Nn, and then forη = −ej we have

ηTz= (−ej)Tz= −zj ≤− f̂ j(x) = f̌−ej (x),

for all j ∈ Nn.

Hence, so far we have proved that convex and concave functions assumed in Assumption
3.1 determine bounding functioňfη(·) as in Assumption 2.5 for particular vectorsη. We
have to demonstrate that bounding functionsf̌η(·) can be defined for allη ∈ Rn in such a
way that Assumption 2.5 holds.

For all η ∈ Rn we have that the bounding convex functions are obtained as

f̌η(x) =
n

∑
j=1

|η j | f̌{sgn(η j )ej}(x), (3.6)

where sgn(·) is the sign operator. Convexity of̌fη(·) stems from convexity of functions
f̌ej (·) and f̌−ej (·) defined in (3.5), forj ∈ Nn, and the fact that the sum of convex functions
is still convex (notice that, trivially,|η j | ≥ 0 for all j ∈ Nn). Inequality characterizingF (x)
as in (2.8) is satisfied for everyη ∈ Rn, in fact

ηTz=
n
∑
j=1

η jzj =
n
∑
j=1

|η j |sgn(η j)zj =

=
n
∑
j=1

|η j |(sgn(η j)ej)Tz≤
n
∑
j=1

|η j | f̌{sgn(η j)ej}(x) = f̌η(x),

for all x∈ Rn and everyz∈ F (x).

Now, we prove the equivalence between definitions (3.4) and (3.6). In fact, recalling that
f̌ j(x) = f̌ej (x) and f̂ j(x) = − f̌−ej (x), for j ∈ Nn, it follows that

|η j | f̌{sgn(η j )ej}(x) =

{

η j f̌ej (x) = η j f̌ j(x), i f η j ≥ 0,

−η j f̌−ej (x) = η j f̂ j(x), otherwise,
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for every j ∈ Nn and everyη ∈ Rn, which means that the terms of the summatories defining
f̌η(x) in (3.4) and (3.6) are the same.

Thus, we proved that for everyx∈ Rn, if z∈ F (x) thenηTz≤ f̌η(x), for everyη ∈ Rn,
with f̌η(·) defined in (3.4). This geometrically means that the setF (x) is contained in the
set determined through convex bounding functions (3.4), for all x∈Rn. It can be proved that
such sets are the same, simply considering that the constraints relative to convex and concave
functions for the CCDI systems are also present in the CDI representation, from (3.5).

It remains to be proved that the convex bounding functionsf̌η(·) are tight. In other words,
we have to prove that, for everyη ∈ Rn and everyx∈ Rn, there exists a point ˜z(η,x) = z̃∈
F (x) such thatηT z̃= f̌η(x). Givenx∈ Rn andη ∈ Rn, the point defined by

z̃j =

{

f̌ j(x) i f η j ≥ 0,

f̂ j(x) otherwise,

for j ∈ Nn, is an element ofF (x) and such thatηT z̃= f̌η(x), from (3.4).

Hence, the link between a CCDI system and the related CDI representation is direct. For
any given CCDI system, the convex bounding functions determining the CDI representation
are explicitly expressed in (3.4).

As for CDI systems, the definition of CCDI function can be extended to non-autonomous
systems. In presence of an input control, in practice, the bounding functions depend on both
the statex∈ Rn and the inputu∈ Rm and are convex and concave in the Cartesian product
of the spaces ofx andu, as stated below.

Assumption 3.4 Assume that the set valued mapF : Rn×Rm → K (Rn) determining the
system dynamics

x+ ∈ F (x,u), (3.7)

is given by
F (x,u) = {z∈ Rn : f̂ j(x,u) ≤ zj ≤ f̌ j(x,u), ∀ j ∈ Nn}, (3.8)

where functionšf j : Rn×Rm→R and f̂ j : Rn×Rm→R are convex and concave onRn×Rm,
respectively, and̂f j(0,0) = f̌ j(0,0) = 0, for every j∈ Nn.

Also for the case of a non-autonomous CCDI system, the relation with its CDI represen-
tation can be expressed defining the convex bounding functions.

Property 3.5 For any set valued mapF (·, ·) defined onRn×Rm for which Assumption 3.4
holds, also Assumption 2.14 holds with convex bounding functions given by

f̌η(x,u) = ∑
j∈k+

η j f̌ j(x,u)+ ∑
j∈k−

η j f̂ j(x,u), (3.9)
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for all (x,u) ∈Rn×Rm and where k+ = k+(η) = { j ∈ Nn : η j ≥ 0} and k− = k−(η) = { j ∈
Nn : η j < 0}.

Similarly to the case of CDI systems, also CCDI systems can admit the presence of
additive uncertainty. Uncertain CCDI systems are given by dynamics (2.27) with the set
valued mapsF (·) fulfilling Assumption 3.1, for the autonomous case, and by dynamics
(2.28) with functionF (·, ·) satisfying Assumption 3.4 for the non-autonomous one.

3.1.1 CCDI subsystems

Now, suppose that the dynamic function defining a CCDI systemis given by a linear part
and the linear combination of a function, denote itϕ : Rn → K (Rm), with m < n, such
that Assumption 3.1 is satisfied byϕ(·). In some cases it can be beneficial to determine a
proper linear mapping that permits to confine the nonlinearity effects in a subspace of lower
dimension than the dimension of the whole state space. This allows one to consider, in the
mapped space, the subspace relative to the linear dynamics and the subspace relative to the
nonlinear dynamics. The procedure will be illustrated below with an example, and it can be
applied also to CDI subsystems.

Suppose that the nonlinear system is a discrete-time systemof the form

x+ ∈ Ax⊕Bϕ(x), (3.10)

wherex ∈ Rn is the state andA ∈ Rn×n andB ∈ Rn×m, with m< n. Assume also that the
columns ofB are linearly independent. Functionϕ : Rn → K (Rm) is a set valued map such
that Assumption 3.1 is satisfied byϕ(·). Recall that, from Property 3.3, such set valued map
satisfies also Assumption 2.5, then the system is a CDI systemtoo.

By assumption, there existšϕ : Rn →Rm convex onRn andϕ̂ : Rn →Rm concave onRn,
with ϕ̌(0) = ϕ̂(0) = 0 and such that, for everyx∈ Rn we have that

ϕ̂ j(x) ≤ zj ≤ ϕ̌ j(x), ∀ j ∈ Nm, (3.11)

for all z∈ ϕ(x).

Define asB⊥ the matrix inRn×(n−m) whosen−m columns are linearly independent and
normal to the subspace generated by columns ofB. Then,B⊥ is such that

BT
⊥B = 0n−m,m.

Define, moreover the left-side inverse of matrixB, that is

B̂ = (BTB)−1BT ,
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that exists since, from assumption of linearly independence of columns ofB, matrixBTB is
nonsingular, hence invertible. ClearlŷB∈ Rm×n is such that

B̂ B= (BTB)−1BTB = Im.

Notice that the subspace spanned by columns ofB is the same subspace spanned by those
of B̂T , being the latter a linear transformation ofB. Therefore, also the columns ofB̂T are
linearly independent and orthogonal to those ofB⊥ and then matrix defined

T =

[

B̂

BT
⊥

]

∈ Rn×n,

is invertible and such that

TB=

[

B̂ B

BT
⊥B

]

=

[

Im

0n−m,m

]

. (3.12)

Thus, matrixT is a square nonsingular matrix and it determines the linear transformation
lT : Rn→Rn defined aslT(x) = Txand its inversel−1

T (y) = T−1y. Define the state variable in
the mapped spacey = Tx, thenx = T−1y, which leads to the dynamic system in the mapped
space

y+ = Tx+ ∈ TAx+TBϕ(x) = TAT−1y+TBϕ(T−1y) =

= TAT−1y+

[

Im,m

0n−m,m

]

ϕ(T−1y) =

[

B̂AT−1y+ϕ(T−1y)

BT
⊥AT−1y

]

,

from (3.12). Therefore, the obtained system is

y+ ∈ ζ (y) = TAT−1y+

























ϕ1(T−1y)

. . .

ϕm(T−1y)

0

. . .

0

























. (3.13)

The set valued functionζ (·) is such that Assumption 3.1 holds and the concave and con-
vex bounding functions can be recovered from the concave andconvex functions bounding
ϕ(·), i.e., fromϕ̌ j(·) andϕ̂ j(·), for j ∈ Nn. In fact, for everyj ∈ Nn and everyy∈ Rn,

ζ̂ j(y) ≤ zj ≤ ζ̌ j(y), ∀z∈ ζ (y), (3.14)



Chapter 3. Computation of CDI systems 89

where, for j ∈ Nm (i.e., the firstmelements of functionsζ (·)), we have

ζ̌ j(y) = TjAT−1y+ ϕ̌ j(T−1y),

ζ̂ j(y) = TjAT−1y+ ϕ̂ j(T−1y),
(3.15)

while, for j ∈ N[m+1,n], we have

ζ̌ j(y) = ζ̂ j(y) = TjAT−1y, (3.16)

which means that, for the lastn−m components, functionζ (·) is linear.

Example 3.6 Consider the following nonlinear system

x+ =

[

0.9 0.1

−0.2 0.8

]

x+

[

1

1

]

ψ(x)

whereψ : R2 → R is a nonlinear function defined onR2 as

ψ(x) = (x2
1 +x2

2)sin(x1+x2), (3.17)

depicted in Figure 3.3.
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−5

0
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−40
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ψ
(x

)

Figure 3.3: Functionψ(·) defined in (3.17).
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The set valued mapϕ(·) defined through the convex and concave functions

ϕ̌(x) = (x2
1+x2

2), ϕ̂(x) = −(x2
1 +x2

2),

satisfies Assumption 3.1 and overbounds functionψ(·), that is ψ ∈ Sϕ , see (2.12). Then
system (3.10) withϕ(·) defined above overbounds the nonlinear system. Altough the nonli-
nearity affects both states of the systems, it can be confinedin a subspace of dimension one.
Defining

B⊥ =

[

−1

1

]

, T =

[

0.5 0.5

−1 1

]

, T−1 =

[

1 −0.5

1 0.5

]

, T−1y =

[

y1−0.5y2

y1 +0.5y2

]

,

it follows that

ψ(T−1y) ≥ ϕ̂(T−1y) = −(y1−0.5y2)
2− (y1+0.5y2)

2 = −2y2
1−0.5y2

2,

ψ(T−1y) ≤ ϕ̌(T−1y) = (y1−0.5y2)
2+(y1 +0.5y2)

2 = 2y2
1+0.5y2

2.

We have a CCDI system in the mapped state variable y= Tx of the form (3.13), given by

y+
1 ∈ ζ1(y) = 0.8y1+0.05y2+ϕ(T−1y),

y+
2 = ζ2(y) = −0.4y1+0.9y2.

The graphs of concave and convex bounding functionsζ̂1(·) andζ̂1(·) and of linear func-
tion ζ2(·) are represented in Figure 3.4.
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Figure 3.4: Graphs of functionŝζ1(·) andζ̌1(·) (left) andζ2(·) (right).
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3.2 Lur’e systems

Lur’e problem, mainly in the continuous-time case, is a classical problem in control theory
and nonlinear systems theory, see (Vidyasagar, 1993). The Lur’e problem, whose name is
due to Russian scientist A.I. Lur’e, involves a class of nonlinear systems composed by a
linear system in closed-loop with static nonlinearities.

The importance of Lur’e systems in the context of control theory stems from the fact
that different control schemes appearing in practical applications can be formulated using
the Lur’e systems structure (Wada, Ikeda, Ohta and Siljak, 1998; Slotine and Li, 1991; Chu,
Huang and Wang, 2001). The particular case of saturation nonlinearity is widely treated in
literature, see for example (da Silva and Tarbouriech, 2001).

The stability analysis of Lur’e systems can be performed, for example, by means of
Popov and circle criteria, see (Weissenberger, 1968; Vidyasagar, 1993; Khalil, 2002). Parti-
cular approaches are available for Lur’e systems with piecewise affine nonlinearities. In this
case, the domain of attraction can be estimated by means of a piecewise quadratic Lyapunov
function (Johansson and Rantzer, 1998). Also, a novel result to deal with this class of Lur’e
systems can be found in (Hu, Huang and Lin, 2004), where a procedure to compute invariant
ellipsoids is presented.

In particular, assume that the continuous-time system
{

ẋ(t) = Ax(t)+Bu(t),

y(t) = Cx(t),

is controlled in closed-loop through a static nonlinear function of the output

u(t) = −ϕ(y(t)),

with x ∈ Rn andu, y∈ Rm with m< n. The only assumption on the nonlinear function is
thatϕ(0) = 0 and its values aty∈ Rm lie in a sector determined by two scalarsa,b∈ R with
a < b as in the following

[ϕ(y)−ay]T [by−ϕ(y)] ≥ 0, ∀y∈ Rm. (3.18)

For the case ofϕ : R → R, condition (3.18) is satisfied if
{

ay≤ ϕ(y) ≤ by if y≥ 0,

by≤ ϕ(y) ≤ ay otherwise,

with a≤ b, for everyy∈ R.

The classical Lur’e problem concerns the conditions under which the system is globally
uniformly asymptotically convergent to the origin, the absolute stability problem.
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Thus, for the classical approach to Lur’e problem (i.e., considering condition (3.18)) we
might consider nonlinear functions whose graph is contained in a sector bounded by linear
functions. In our case, sectors determined by convex functions will be considered and it will
be shown that, in many case, this will permit to reduce the conservativeness.

Remark 3.7 The study of Lur’e system, as defined above, involves implicitly the analysis
of a family of dynamic systems characterized by a common overbounding system. Once the
sector on the spaceR2 containingϕ(y) for all y ∈ R is defined, a minimal overbounding
system is determined. Every Lur’e system whose nonlinear feedback function is contained in
the sector, shares the stability results and any invariant set for the overbounding system is
invariant also for any system of the family.

In this thesis we consider the discrete-time Lur’e system
{

xk+1 = Axk−Bϕ(yk)

yk = Fxk,
(3.19)

wherexk ∈ Rn represents the state vector andyk = Fxk ∈ R the output of the system and the
nonlinear feedback functionϕ(·) satisfies the following conditions.

Assumption 3.8 Assume that the nonlinear functionϕ : R → R determining the system dy-
namics (3.19) is such that, for every y∈ R, the following conditions hold:

(i) ϕ(y) is piecewise affine.

(ii) ϕ(y) is a continuous odd function.

(iii) ϕ(y) is concave inR+.

Since the functionϕ(·) is odd, we have thatϕ(−y) = −ϕ(y) and then it is convex if
restricted toR−. The following property characterizes all the functionsϕ(·) that satisfy
Assumption 3.8.

Property 3.9 (Hu et al., 2004) The piecewise affine functionϕ(y) is concave inR+ if and
only if it can be expressed as

ϕ(y) =



























k0y if y∈ [0,b1)

k1y+c1 if y ∈ [b1,b2)
...

kNy+cN if y ∈ [bN,∞)

, ∀y≥ 0, (3.20)
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where the scalars ki , for i ∈ N[0, N], bi , for i ∈ NN and ci , for i ∈ NN satisfy

0 < b1 < b2 < .. . < bN,

k0 > k1 > k2 > .. . > kN,

ci =

{

(k0−k1)b1, if i = 1,

ci−1+(ki−1−ki)bi, if 2≤ i ≤ N.

c1

c2

c3

b1 b2 b3
y

ϕ(y)

k0y k1y+c1

k2y+c2

k3y+c3

Figure 3.5: An example of a piecewise affine functionϕ(·) concave inR+.

See Figure 3.5 for an example of piecewise affine concave function in R+ (N = 3). It is
easy to determine the convex bounding functions defined onR for a functionϕ(·) satisfying
Assumption 3.8. First we define

ϕ̌(y) = max{k0y,ϕ(y)} =

{

k0y, if y≥−b1,

ϕ(y), otherwise,
(3.21)

which is, then, linear on the sety∈ [−b1,∞) and convex ony∈ (−∞. −b1), then convex on
R. Define also

ϕ̂(y) = min{k0y,ϕ(y)} =

{

k0y, if y≤ b1,

ϕ(y), otherwise,
(3.22)
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concave onR, for analogy. From this we have that

ϕ̂(y) ≤ ϕ(y) ≤ ϕ̌(y),

for everyy∈ R.

Hence, in the Lur’e problem under analysis, we consider nonlinearities for which the
sector is determined by concave and convex functions, rather than only by linear ones as
for the classical approach. In some common cases, this permits to reduce the conservatism
introduced by the overbounding process, as shown in the following example.

Example 3.10 Consider a Lur’e system whose static nonlinearity is given by (3.20) with
N = 2, k0 = 2, k1 = 1, k2 = 0.5, c1 = 1, c2 = 2, b1 = 1 and b2 = 2. It can be seen, by
geometric inspection, that considering the classical Lur’e approach, the sector containing
ϕ(·) is delimited by functions2y and0.5y, while, for our approach, the sector is determined
by2y andϕ(y), as shown in Figure 3.6.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

y

ϕ(y)

0.5y

2y

Figure 3.6: Bonding sectors for functionϕ(·).

An immediate way of determining the CDI system bounding the discrete-time Lur’e
system (3.19), that is, the set valued mapF (·) such thatAx−Bϕ(Fx)⊆F (x) for all x∈Rn,
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is by defining

f̌η(x) =

{

ηTAx−ηTBϕ̌(Fx), if ηTB≤ 0,

ηTAx−ηTBϕ̂(Fx), if ηTB > 0,
(3.23)

for all η ∈ Rn. Functions f̌η(·) defined above are convex onRn and the CDI system cha-
racterized by the set valued mapF (·) for which Assumption 2.5 holds witȟfη(·) given by
(3.23), overbounds the Lur’e system. In fact we have thatηTAx−ηTBϕ(Fx)≤ f̌η(x) for all
η ∈ Rn andx∈ Rn.

Moreover, the nonlinearity can be confined in a subspace of dimension one through a
proper linear transformation, as illustrated in Section 3.1.1, and the system in the mapped
space can be bounded by a CCDI system, for which only the first dynamic function is a set
valued map.

Remark 3.11 Note the analogies between classical Lur’e systems and CDI systems. Con-
sider in fact the minimal CDI system overbounding a Lur’e system, that is system (3.1) with
F (·) satisfying Assumption 2.5 and bounding functions (3.23). While the bounding func-
tions determining the sector for the classical Lur’e problem are linear, for CDI systems the
region is defined through convex functions. Conceptually, in CDI systems we exploit pro-
perties of convex functions and convex sets, rather than features of linearity, as for classical
Lur’e systems.

Note that the results presented can be extended to systems ofthe form

xk+1 = Āxk− B̄ϕ̄(yk),

whereϕ̄(·) is an odd piecewise affine function convex inR+ (it suffices to defineϕ(·) =
−ϕ̄(·), A = Ā andB = −B̄).

3.3 Generalized saturated systems

We present here a family of nonlinear systems enclosing a wide range of common static non-
linearities, such as saturation, dead-zone, hysteresis, etc. Any generalized saturated system
is easily overbounded by a CDI system, as illustrated below.

First the definition of generalized saturated functions is introduced. The dynamic systems
composed by one of these functions in closed-loop with a linear system are referred to as
generalized saturated systems and determine a class of nonlinear systems which encloses
many common and popular nonlinear models.
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Figure 3.7: Example of generalized saturated function.

We recall here the definition of generalized saturated functions, introduced in (Tarbouriech,
Queinnec,Álamo, Fiacchini and Camacho, 2009).

Definition 3.12 The scalar functionϕ : R×R → R is said to be a generalized saturated
function with saturation level y0 ∈ R, y0 > 0, dead-zoneσ ∈ Rn , σ ≥ 0, and linear slope
µ ∈ R, µ > 0, if

−Γ(−y) ≤ ϕ(y,k) ≤ Γ(y), ∀y∈ R, ∀k∈ N, (3.24)

whereΓ(y) = max{µ(y+σ), −y0} and k∈ N is the discrete-time instant.

Notice that a generalized saturated function can be time-varying, while functionΓ(·) is
assumed time-invariant. We provided here the definition forthe scalar case of generalized
saturated functions. The vectorial definition can also be stated, see (Tarbouriech et al., 2009).
We considered that the scalar case is expressive enough to introduce an example related to
practical control problems.

In Figure 3.7, the geometrical concept of generalized saturated function is illustrated. A
generalized saturated function is a function ofy ∈ R, and possibly of timek ∈ N, whose
graph is contained in the region ofR2 enclosed between the graph ofΓ(y) and−Γ(−y).
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Some examples of common static nonlinear functions which can be represented as gene-
ralized saturated functions are saturation plus dead-zoneand hysteresis, depicted in Figure
3.8. It is clear that also saturation, one of the most common nonlinearity affecting real sys-
tems, is a particular case of generalized saturated functions.
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Figure 3.8: Examples: saturation plus dead-zone (left) and hysteresis (right).

Hence, given the generalized saturated functionϕ(·, ·), a dynamic system of the form

xk+1 = Axk +Bϕ(Fxk,k), (3.25)

whereF ∈ R1×n, is called generalized saturated system.

Analogously to the case of Lur’e systems, a CDI system overbounding a generalized
saturated one can be determined. In fact, notice that from

Γ(y) = max{µ(y+σ), −y0} = max{µy+ µσ , −y0−µσ + µσ} =

= max{µy, −y0−µσ}+ µσ ,

we have that (3.24) is equivalent to

−Γ0(−y)−µσ ≤ ϕ(y,k) ≤ Γ0(y)+ µσ ,

with
Γ0(y) = max{µy, −y0−µσ}.

For everyη ∈ Rn and everyx∈ Rn, we can define the following convex functions

fη(x) =

{

ηTAx+ηTBΓ(Fx) = ηTAx+ηTBΓ0(Fx)+ηTBµσ , if ηTB≥ 0,

ηTAx−ηTBΓ(−Fx) = ηTAx−ηTBΓ0(−Fx)−ηTBµσ , if ηTB < 0,
(3.26)
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which are such thatηTAx+ ηTBϕ(Fx,k) ≤ fη(x) for all η ∈ Rn andx ∈ Rn, but do not
satisfy conditionfη(0) = 0. Then they do not fulfill Assumption 2.5. As a matter of fact,we
have to define an uncertain CDI system, rather than a CDI system, to bound the generalized
saturated one.

Define the convex bounding functions as

f̌η(x) =

{

ηTAx+ηTBΓ0(Fx), if ηTB≥ 0,

ηTAx−ηTBΓ0(−Fx), if ηTB < 0,
(3.27)

for all η ∈ Rn and allx ∈ Rn. The set valued mapF (·) with convex bounding functions
given by (3.27) satisfies Assumption 2.5. We prove that the uncertain CDI system whose set
valued map isF (·)⊕W with convex bounding functions (3.27) and

W = {w = Bv : −µσ ≤ v≤ µσ},
overbounds the generalized saturated system. In fact, for everyη ∈ Rn, we have

φW(η) = sup
w∈W

ηTw = sup
−µσ≤v≤µσ

ηTBv=

{

ηTBµσ , if ηTB≥ 0,

−ηTBµσ , if ηTB < 0,

and then, for everyη ∈ Rn andx∈ Rn we have

φF (x)⊕W(η) = sup
z∈F (x)⊕W

ηTz= sup
z∈F (x)

ηTz+ sup
w∈W

ηTw = f̌η(x)+ sup
w∈W

ηTw = fη(x),

where fη(·) are defined in (3.26) anďfη(·) in (3.27). Thus, the uncertain CDI system over-
bounds the generalized saturated one.

3.4 Difference-of-convex (DC) systems

In the previous section we considered as a possible modelling framework for nonlinear and/or
uncertain systems a class of systems characterized by set valued maps bounded by convex
functions. The particular structure of CDI systems permitsto exploit properties of convexity.

We introduce here the concept of DC functions, which allows us to model a very wide
family of nonlinear functions and then can be employed to model many nonlinear systems.
A function is DC if it can be expressed as the difference of twoconvex functions, the formal
definition of DC function follows, see (Adjiman and Floudas,1996; Horst and Thoai, 1999;
Carrizosa, 2001).

Definition 3.13 A functionα : Rp → R defined on a convex set D⊆ Rp is a DC function if
there exist two convex functionsβ ,γ : Rp→R defined on D and such thatα(x) = β (x)−γ(x)
for all x ∈ D.
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From continuity of convex functions on any open convex set contained in its effective
domain, see Theorem (B.10), it follows that, given functions β (·) andγ(·) such thatα(x) =
β (x)− γ(x), with α(·) DC function defined onD, open, convex and such thatD ⊆ domβ ∩
domγ, thenα(·) is continuous onD.

Remark 3.14 Note that, unlike the case of convex functions which can be assumed defined
on the whole spaceRp considering its extension, see Remark B.6, it is not trivialto determine
an extension for DC functions.

In fact, assume for example that both functionsβ (·) andγ(·) definingα(·), as in Defini-
tion 3.13, are such that domβ = domγ = D. The extension of any convex function outside of
its effective domain is+∞ and, if in this case we employed the same criterion to extendβ (·)
andγ(·), functionα(·) would not be defined outside D.

For this reason, when dealing with DC functions we expresslystate that they are defined
on a convex set D, no extension is considered.

In the following we refer to a functionα : Rp → Rq as a DC function ifα j(·) is a DC
function for all j ∈ Nq. Recall that, similarly, a functionβ : Rp → Rq is denominated convex
if β j(·) is convex for all j ∈ Nq. Moreover, we claim that a functionα : Rpx ×Rpu → R
is a DC function with respect to variablesx ∈ D ⊆ Rpx and u ∈ E ⊆ Rpu, meaning that
α(x,u) = β (x,u)−γ(x,u) whereα(·, ·) andβ (·, ·) are convex with respect to(x,u) ∈ D×E.

3.4.1 Brief overview on DC functions

We provide here some important properties of DC functions. First, it is worth mentioning
that the set of DC functions defined on a compact convex set ofRn is dense in the set of con-
tinuous functions of this set. Therefore, every function defined on a compact convex set can
be approximated by a DC function with any desired precision.Moreover, given a twice diffe-
rentiable function, i.e., aC 2-function, it is always possible to obtain a DC representation. In
effect, suppose thatfDC : D→ R satisfies∂ 2

∂x2 fDC(x)≥−2aI, for all x∈ D with a> 0. Recall

now that aC 2-function is convex inD if and only if ∂ 2

∂x2 fDC(x) ≥ 0, for all x∈ D. Bearing
this in mind, it is easy to see thatfDC(x) = gc(x)−hc(x), with gc(x) = fDC(x)+ axTx and
hc(x) = axTx constitutes a DC representation offDC(x). A systematic method to obtain (by
means of interval arithmetic) an appropriate value ofa for a givenC 2-function can be found
in (Adjiman and Floudas, 1996).

The following example illustrates this idea. Consider the function fDC(x) = x3 +x2 +1
in the domainx∈ [−1,1]. Since ∂ 2

∂x2 fDC(x) = 6x+2, it results that∂
2

∂x2 fDC(x) ≥ −4, for all
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x∈ [−1,1]. Thus, fDC(x)+2x2 satisfies∂ 2

∂x2( fDC(x)+2x2) ≥ 0 for all x∈ [−1,1]. Defining
gc(x) = fDC(x)+ 2x2 andhc(x) = 2x2, the equivalent functionfDC(x) = gc(x)−hc(x) is a
DC function inx∈ [−1,1].

Some properties of DC functions, formally presented and proved in (Horst and Thoai,
1999), are listed below.

Property 3.15 DC functions satisfy the following properties:

(i) Every function f: Rn → R whose second partial derivatives are continuous every-
where is DC.

(ii) Let D be a compact convex subset ofRn. Then, every continuous function on D is
the limit of a sequence of DC functions which converges uniformly on D; i.e., for any
continuous function c: D→ R and for anyε > 0, there exists a DC function f: D→R
such that|c(x)− f (x)| ≤ ε, for all x ∈ D.

(iii) Let f : Rn → R be a DC function and let g: R → R be convex. Then, the composite
function(g◦ f )(x) = g( f (x)) is DC.

Operations between functions that preserve the DC nature, presented in (Horst and Thoai,
1999), are summarized in the following property. Proofs of the property (except for part (ii)
that is proved in (Horst and Thoai, 1999)) are given here. We have to point out that notation
f j(·) in the following property denotes thej-th element of an ordered set of functions, rather
than the power of such function. We employ, in this property,notation( f (x)) j to express
j-th power of valuef (x).

Property 3.16 Let f : D → R and f j : D → R, for j ∈ Nm, be DC functions defined on
D ⊆ Rn convex. Then the following functions are also DC:

(i) Any affine combination of DC functions, i.e. for anyλ ∈ Rm, function
m
∑
j=1

λ j f j(x).

(ii) The pointwise maximum and minimum of DC functions,maxj∈Nm{ f j(x)} andminj∈Nm{ f j(x)}.

(iii) The absolute value| f (x)|, functionsmax{0, f (x)} andmin{0, f (x)}.

(iv) The product of DC functions,
m
∏
j=1

f j(x).

Proof:
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(i) Recall that, ifg(·) is convex, then functionαg(·) is convex forα ≥ 0 and concave
for α < 0 and the fact that the sum of convex functions is convex whilethe sum of
concave functions is concave. For anyλ ∈ Rm, denote withk− = k−(λ ) the set of
indexesj ∈ Nm such thatλ j < 0 and withk+ = k+(λ ) the set of indexesj ∈ Nm such
thatλ j ≥ 0. That isk−(λ ) = { j ∈Nm : λ j < 0} andk+(λ ) = { j ∈Nm : λ j ≥ 0}. Then,
denoting withg j(·) andh j(·) the convex functions such thatf j(x) = g j(x)−h j(x), for
j ∈ Nm, we have

m
∑
j=1

λ j f j(x) =
m
∑
j=1

λ jg j(x)−
m
∑
j=1

λ jh j(x) =

=

(

∑
j∈k+

λ jg j(x)− ∑
j∈k−

λ jh j(x)

)

−
(

∑
j∈k+

λ jh j(x)− ∑
j∈k−

λ jg j(x)

)

,

which is the difference of two convex functions, since the terms in brackets are both
convex.

(ii) This proof can be found in (Horst and Thoai, 1999).

(iii) Functions in case (iii) are subcases of (ii). In fact,| f (x)| = max{ f (x), − f (x)}, then a
DC function. Denotingf 0(x) = 0, which is trivially a DC function, max{0, f (x)} =
max{ f 0(x), f (x)} is the pointwise maximum of two DC functions and min{0, f (x)} =
min{ f 0(x), f (x)} is the pointwise minimum of two DC functions.

(iv) The proof is based on last point of Property 3.15. We prove it for m= 2, generalization
to any positivem follows. Consider two DC functionsf 1(x) and f 2(x) defined onD.

For everya, b∈ R we have that(a+b)2−a2−b2 = 2ab and thenab=
(a+b)2−a2−b2

2 .
This means that,

f 1(x) f 2(x) =
( f 1(x)+ f 2(x))2− ( f 1(x))2− ( f 2(x))2

2
.

Then if we prove that( f (x))2 is a DC function for everyf (·) DC, we have also that
the product of two DC function is DC, beingf 1(x) f 2(x) expressible as the sum of DC
functions in that case. This is a straightforward application of point (iii) of Property
3.15, posingg : R → R given byg(y) = y2, clearly convex onR.

Finally, note that there exist infinitely many DC representations for every DC function
fDC(x). In fact, given the DC functionfDC(x) and convex functionsgc(x) andhc(x) such that
fDC(x) = gc(x)−hc(x), also functions ˜gc(x) = gc(x)+ k(x) andh̃c(x) = hc(x)+ k(x), with
k(x) convex, are convex functions andfDC(x) = g̃c(x)− h̃c(x).

Examples of applications of DC functions in the field of system analysis can be found
in (Álamo, Bravo, Redondo and Camacho, 2007), where DC functions are employed to
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determine a set-membership estimation algorithm, and in (Bravo,Álamo, Fiacchini and Ca-
macho, 2007), in which the authors proposes a system identification method based on DC
functions properties.

3.4.2 DC systems and DCDI systems

Consider the nonlinear discrete-time autonomous system

x+ = f (x), (3.28)

wherex∈ D ⊆Rn is the current state,x+ ∈Rn is the successor state and functionf : D →Rn

is nonlinear. The system is said to be a DC system if the dynamic function f (·) is a DC
function, that is, if the following assumption holds.

Assumption 3.17 Assume that f: D → Rn in (3.28) is a DC function defined on D⊆ Rn

convex with0 ∈ int(D) and differentiable at the origin. Denote g(·) and h(·) the convex
functions such that f(x) = g(x)−h(x), for all x∈ D and assume that g(0) = 0 and h(0) = 0.

Hence, considering the autonomous discrete-time system (3.28), the DC system has the
following form

x+ = f (x) = g(x)−h(x) =









g1(x)−h1(x)

· · ·
gn(x)−hn(x)









, (3.29)

wheregi(·) andhi(·) are convex functions inRn, for all i ∈ Nn.

DC systems are a very wide class of nonlinear systems, since,as shown in Section 3.4.1,
many nonlinear functions admit a DC representation.

Similarly to the case of Example 2.8, every DC system admits an overbounding CDI
system. Remarkably useful is the fact that the CDI system overbounding the DC one is
implicitly defined by the linearization of functionsh j(·) andg j(·), for j ∈ Nn at the origin,
as illustrated below. This implies that the overbounding CDI system has not to be explicitly
calculated and that it can be employed in simple computational procedures. The following
property provides the convex bounding functions determining a CDI system overbounding a
DC system.

Property 3.18 Given the DC function f: D → Rn as in (3.28) such that Assumption 3.17
holds and aη ∈ Rn, consider the set valued mapF (·) defined by the following convex
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bounding functions

f̌η(x) = ∑
j∈k+

η j
(

g j(x)−hL
j (x)
)

+ ∑
j∈k−

η j
(

gL
j (x)−h j(x)

)

, (3.30)

where gLj (x) = ∇T
x g j(0)x and hLj (x) = ∇T

x h j(0)x, for j ∈ Nn and k+ = k+(η) = { j ∈ Nn :
η j ≥ 0} and k− = k−(η) = { j ∈ Nn : η j < 0}.

Then, Assumption 2.5 holds forF (·) and f ∈ SF .

Proof: Proving thatF (·) satisfies Assumption 2.5 is analogous to the proof of Property
3.3. We have to prove that the induced CDI system overbounds the DC one.

By definition, a CDI system overbounds the DC system, that isf ∈ SF , see Remark 2.7,
if

ηT f (x) ≤ f̌η(x), ∀x∈ D, ∀η ∈ Rn, (3.31)

whereF (·) is defined by (3.30).

SincegL
j (·) and hL

j (·) are, by definition, the linearizations at the origin of the convex
functionsg j(·) andh j(·) respectively, forj ∈ Nn, it follows

gL
j (x) ≤ g j(x), ∀ j ∈ Nn, ∀x∈ D,

hL
j (x) ≤ h j(x), ∀ j ∈ Nn, ∀x∈ D,

(3.32)

from convexity of functionsg j(·) andh j(·) on D. Thus,

η j

(

hL
j (x)−h j(x)

)

≤ 0 ∀ j ∈ k+, ∀x∈ D,

η j

(

g j(x)−gL
j (x)
)

≤ 0 ∀ j ∈ k−, ∀x∈ D.
(3.33)

for everyη ∈ Rn.

Hence, from this and (3.30),

ηT f (x)− f̌η(x) =
n
∑
j=1

η j
(

g j(x)−h j(x)
)

− ∑
j∈k+

η j(g j(x)−hL
j (x))−

− ∑
j∈k−

η j(gL
j (x)−h j(x)) = ∑

j∈k+

η j(hL
j (x)−h j(x))+ ∑

j∈k−
η j(g j(x)−gL

j (x)) ≤ 0.

for all η ∈ Rn and for anyx∈ D.

Analogous considerations can be given for non-autonomous systems. Consider the non-
linear discrete-time time-invariant dynamic system

x+ = f (x,u), (3.34)
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wherex ∈ D ⊆ Rn is the current state,x+ ∈ Rn is the successor state,u ∈ E ⊆ Rm is the
control action and functionf : D×E → Rn is nonlinear. If the dynamic function is DC then
the system is a non-autonomous DC system.

Assumption 3.19 Assume that f: D×E →Rn in (3.34) is a DC function defined on D×E ⊆
Rn+m, with D⊆ Rn and E⊆ Rm convex with(0,0) ∈ int (D×E), and differentiable at the
origin. Denote g(·, ·) and h(·, ·) the convex functions such that f(x,u) = g(x,u)−h(x,u), for
all (x,u) ∈ D×E and assume that g(0,0) = 0 and h(0,0) = 0.

Hence, a non-autonomous system is DC if there exist two functions g(·, ·) and h(·, ·)
convex onD×E, such thatf (x,u) = g(x,u)− h(x,u), for all x ∈ D and u ∈ E, and the
system has the following form

x+ = f (x,u) = g(x,u)−h(x,u) =









g1(x,u)−h1(x,u)

· · ·
gn(x,u)−hn(x,u)









. (3.35)

Note that in both cases of autonomous and non-autonomous DC systems, we assumed
that the nonlinear function is differentiable at the origin. This allows to obtain lower bound-
ing functions of convex terms of the DC functions, through a proper linearization at the
origin. This assumption can be removed. In fact, since the origin belongs to the interior of
the domain of the DC function, the subdifferential of any convex term of the DC function at
the origin is not empty and then a linear lower bounding function can be obtained also for
any function which is not differentiable at origin.

Also a CDI system overbounding the DC system, for non-autonomous case, can be ea-
sily obtained, as illustrated below. No proof have been included since analogous to that of
Property 3.18.

Property 3.20 Given the DC function f: D×E → Rn as in (3.34) such that Assumption
3.19 holds and aη ∈Rn, consider the set valued mapF (·, ·) defined by the following convex
bounding functions

f̌η(x,u) = ∑
j∈k+

η j

(

g j(x,u)−hL
j (x,u)

)

+ ∑
j∈k−

η j

(

gL
j (x,u)−h j(x,u)

)

, (3.36)

where gLj (x,u) = ∇xg j(0,0)x+∇ug j(0,0)u and hLj (x,u) = ∇xh j(0,0)x+∇uh j(0,0)u, for j ∈
Nn and k+ = k+(η) = { j ∈ Nn : η j ≥ 0} and k− = k−(η) = { j ∈ Nn : η j < 0}.

Then, Assumption 2.14 holds forF (·, ·) and f ∈ SF .
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3.4.3 Difference-of-Convex Difference Inclusion: DCDI systems

We define here also a class of systems whose dynamics are givenby set valued maps rather
than real valued functions, analogously to the case of CDI system. This framework is useful
for those cases in which the uncertainty is parametric, thatis, when the system’s dynamic
function depends on a parameter.

Consider the discrete-time autonomous nonlinear system given by

x+ ∈ co ( f j(x) : j ∈ Nn j ), (3.37)

wherex ∈ D is the state,x+ is the successor state and functionsf j(·), for j ∈ Nn j with
n j ≥ 1, are DC functions. System (3.37) is referred to with the term Difference-of-Convex
Difference Inclusion (DCDI) system if every functionf j(·) is a DC function defined over a
common domainD ⊆ Rn, for j ∈ Nn j , as formally stated in the following.

Assumption 3.21 Assume that for every function fj : D→Rn determining the system (3.37),
Assumption 3.17 holds, with D⊆ Rn common convex domain for every fj(·), for all j ∈ Nn j .
Denote with gj(·) and hj(·) the convex functions such that fj(x) = g j(x)− h j(x), for all
x∈ D.

In case that the dynamic function of the system is given by a single DC function, i.e. case
in which n j = 1, the DCDI system is a DC system. The family of DC systems is a subclass
of DCDI systems.

The definition can be extended to controlled systems, that is, considering the following
discrete-time non-autonomous system

x+ ∈ co ( f j(x,u) : j ∈ Nn j ), (3.38)

wherex∈ D is the state,u∈ Rm is the control input and functionsf j(·, ·) for j ∈ Nn j with
n j ≥ 1, are nonlinear functions, which satisfy the following assumption.

Assumption 3.22 Assume that for every nonlinear function fj : D×E → Rn determining
the system (3.38), Assumption 3.19 holds, with D×E ⊆ Rn+m common convex domain of
f j(·, ·), for every j∈ Nn j . Denote with gj(·, ·) and hj(·, ·) the convex functions such that
f j(x,u) = g j(x,u)−h j(x,u), for all (x,u) ∈ D×E.

As for the case of autonomous DCDI systems, if we haven j = 1, the non-autonomous
DC system is recovered.
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3.4.3.1 Uncertain DCDI systems

A first modelling framework considering the uncertainty is aDC system with additive uncer-
tainty. That is, the uncertain autonomous DC system is givenby

x+ = f (x)+w, (3.39)

wherex ∈ Rn, w ∈ Rn is the bounded additive uncertaintyw ∈ W and f : D → Rn fulfills
the Assumption 3.17. For the non-autonomous case we have that the DC system has the
following dynamics

x+ = f (x,u)+w, (3.40)

where nowf : D×E → Rn fulfills the Assumption 3.19.

A more general framework is given by the uncertain discrete-time autonomous DC sys-
tem given by

x+ ∈ co ( f j(x,w) : j ∈ Nn j ), (3.41)

wherex∈D is the state andw∈W is the unknown but bounded uncertainty and the following
assumption holds for functionsf j(·, ·).

Assumption 3.23 Assume that functions fj : D×W → Rn in (3.41) are such that:

• f j(·,w) satisfies Assumption 3.17, for every w∈W,

• f j(x, ·) is affine in w, for every x∈ D,

for every j∈ Nn j with nj ≥ 1.

Similarly, uncertain non-autonomous DCDI systems are defined as

x+ ∈ co ( f j(x,u,w) : j ∈ Nn j ), (3.42)

wherex∈ Rn is the state,u∈ E is the control input andw∈W is the unknown but bounded
uncertainty and functionsf j(·, ·, ·) satisfy the following assumption.

Assumption 3.24 Assume that functions fj : D×E×W → Rn in (3.42) are such that:

• f j(·, ·,w) satisfies Assumption 3.19, for every w∈W,

• f j(x,u, ·) is affine in w, for every(x,u) ∈ D×E,
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for every j∈ Nn j with nj ≥ 1.

The case of DCDI systems where the uncertainty appears as an additive term, is included
in the class of systems (3.41) or (3.42).

3.5 Linear parametric uncertain systems

Another framework which permits to analyze discrete-time nonlinear systems as well as un-
certain systems is given by linear systems with parametric uncertainty, mentioned in Section
2.1.1.2. This is the case in which the system is assumed linear with state-transition matrix
A ∈ Rn depending on a parameter. The parameter can evolve in time, for instance in case
that the dynamics depends on external signals, or can be unknown but bounded. Different
scenarios raise, depending on the assumptions on the parameter nature and on the degree of
knowledge of such parameter.

It will be shown that this framework entails a subclass of CDIsystems, in particular those
CDI systems whose convex bounding functions are linear. Hence, computing a linear para-
metric uncertain system approximating a nonlinear system is one of the way of generating
an overbounding CDI system.

In the general case, we consider the dynamic system given by

x(k+1) = A(k)x(k), (3.43)

wherex(k) ∈ Rn is state andA(k) ∈ Rn×n is an element of a set of the spaceRn×n, for every
k ∈ N. Denoting such setA ⊆ Rn×n, the set valued map (2.5) determines bounds on the
system evolution, that is

x(k+1) = A(k)x(k) ∈ {Ax(k) : A∈ A }. (3.44)

Analogously, in case of non-autonomous linear parametric uncertain systems, we have
that dynamics is given by

x(k+1) = A(k)x(k)+B(k)u(k)∈ {Ax(k)+Bu(k) : [A, B] ∈ M }, (3.45)

wherex(k) ∈Rn is the current state,u(k)∈Rm is the control input and matrix[A(k), B(k)]∈
M ⊆ Rn×(n+m).

In both cases, the uncertainties affecting the systems are parametric. Also additive un-
certainty can be considered and the systems take the form

x(k+1) = A(k)x(k)+w(k) ∈ {Ax(k)+w : A∈ A , w∈W}, (3.46)
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for autonomous systems, and

x(k+1) = A(k)x(k)+B(k)u(k)+w(k)∈ {Ax(k)+Bu(k)+w : [A, B] ∈ M , w∈W},
(3.47)

for the non-autonomous case, wherew∈W andM ⊆ Rn×(n+m).

Different assumptions on the knowledge of the dynamic matrices, yield to different
frameworks. The following two scenarios are of interest:

• A(k) (and possiblyB(k)) is unknown for anyk∈ N, only the bounding setA ⊆ Rn×n

(or M ⊆ Rn×(n+m)) is known. In the analysis and synthesis it must be taken into
account any element ofA (or M ): Linear Difference Inclusions (LDI) systems.

• matrix A(k) (andB(k), eventually) is known at any time instantk∈ N. Matrix can be
assumed dependent on a parameterγ, that can be function of the statex, inputu and/or
an external signalr. The system is called, in that case, a Linear Parameter Varying
(LPV) system.

Particularly relevant are the linear parametric uncertainsystems for which the setA
is polytopic subset of the spaceRn×n. A linear parametric uncertain system is said to be
polytopic if the following assumption holds for the set valued map determining its dynamics.

Assumption 3.25 Assume that, for a givenA ⊆ Rn×n, there exists a set of na elements
A j ∈ Rn×n such that

A = co (A j ∈ Rn×n : j ∈ Nna). (3.48)

MatricesA j , for j ∈ Nna are the vertices of polytopeA .

Remark 3.26 GivenA ⊆ Rn×n for a linear parametric uncertain system, the set valued
map determining the dynamics is

A (x) = {Ax∈ Rn : A∈ A }, (3.49)

then, in case of polytopic linear uncertain system we have that

A (x) = co (A jx∈ Rn : j ∈ Nna). (3.50)

Notice that the set valued mapA (·) satisfies the Assumption 2.5 beingA (x) ∈ K (Rn)
for all x ∈ Rn, and the convex bounding functions linear, hence convex. This means that, any
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polytopic linear parametric uncertain system is a CDI system. In fact, for everyη ∈ Rn, the
function of x given byηTAx is a linear function of x∈ Rn, hence convex in x, for any A∈A .
Therefore, function

f̌η(x) = max
A∈A

ηTAx (3.51)

is the pointwise maximum of a family of convex functions, then convex, see (Boyd and Van-
denberghe, 2004), and defines the CDI representation of the system whose set valued map is
A (·).

Analogous considerations are valid for linear parametric uncertain systems that are non-
autonomous and/or affected by additive uncertainty, also leading to CDI systems since the
related set valued maps satisfy Assumptions 2.14.

In many cases, if we are able to ensure a property for every linear dynamic system given
by A j , with j ∈Nna, the property holds also for the LDI system, no matter the real realization
of A(k).

3.5.1 Linear difference inclusions: LDI systems

A classical way of representing the effect of lack of knowledge on the systems, as parametric
uncertainty approach, is through Linear Difference Inclusion, see Section 2.1.1.

LDI systems are of the form (3.43), for which the state-transition matrix A(k) ∈ Rn×n is
assumed to be an unknown element ofA ⊆Rn×n. WhenA is a polytope in the spaceRn×n,
the system is called polytopic LDI.

Such framework finds its justification in the fact that nonlinear functions can be approxi-
mated on a bounded set of the space by a linear function, exploiting the Taylor expansion and,
in particular the Lagrange form of Remainders, which is based on the Mean value theorem.

Conceptually, these theorems state that any real valued function, f : R→R, differentiable
at x∈ [a, b], can be written as a constant term plus a linear one as in the following:

f (x) = f (x0)+
d f(c)

dx
(x−x0) (3.52)

for a properc∈ [x0, x], for everyx0 ∈ [a, b].

This means that, under the assumptions of differentiability of f (·) on a segment (which
can be often relaxed to simple convexity) the value of a generic nonlinear functionf (·) at
x∈ [a, b] can be expressed as a linear function whose parameters are given by the value of
f (·) at x0 ∈ [a, b] and the derivative off (·) at a pointc∈ [a, b].
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The practical problem is that, in general, once fixedx0, the pointc depends on the evalu-
ation pointx, i.e. c = c(x), and such relation is unknown. On the other hand equation (3.52)
permits to determine an overbounding function off (·), that is, a set valued function such
that its image of any pointx∈ [a, b] contains the valuef (x).

In fact, given a nonlinear functionf : [a, b] → R and a pointx0 ∈ [a, b] we have, from
(3.52), that

f (x0)+ min
c∈[a,b]

d f(c)
dx

(x−x0) ≤ f (x) ≤ f (x0)+ max
c∈[a,b]

d f(c)
dx

(x−x0), (3.53)

for all x∈ [a, b] if x≥ x0 and

f (x0)+ max
c∈[a,b]

d f(c)
dx

(x−x0) ≤ f (x) ≤ f (x0)+ min
c∈[a,b]

d f(c)
dx

(x−x0), (3.54)

for all x∈ [a, b] if x < x0. Then, denoting

dm = min
c∈[a,b]

d f(c)
dx

, dM = max
c∈[a,b]

d f(c)
dx

,

the set valued function

F (x) = {( f (x0)−dx0)+dx : d ∈ [dm, dM]}, (3.55)

is such thatf (x) ∈ F (x), for all x∈ [a, b]. Note that, the set valued functionF (·) defined
as in (3.55), is given by a set of linear functions whose slopes are those lying in the segment
[dm, dM].

Methods based on interval arithmetic allow to compute guaranteed boundsdm anddM,
and then the LDI system overbounding the nonlinear one, see (Bravo et al., 2005).

For instance, for nonlinear system (3.28) withf : D → Rn andD ⊆ Rn convex and com-
pact, an overbounding LDI system can be determined knowing the bounds on the gradient of
every componentfi(·) of the dynamic function, i.e.,∇ fi(·), at any point inx∈ D. Assuming
that the origin is an equilibrium for the nonlinear dynamic system (3.28), i.e.,f (0) = 0, and
f (·) is differentiable on the compact, convex setD ⊂ Rn, with 0∈ D, the LDI system (3.44)
with matrixA(k) ∈ A , whereA ⊆ Rn×n is defined as

A =

{

A∈ Rn×n : min
x∈D

∂ fi(x)
∂x j

≤ Ai, j ≤ max
x∈D

∂ fi(x)
∂x j

, ∀i, j ∈ Nn

}

, (3.56)

is such thatf (x) ∈ A (x), with A (x) defined in (3.49). This means that the LDI system with
A(k) ∈ A is an overbounding system of (3.28).

Remark 3.27 The setA is a polytope onRn×n if D is compact onRn. Hence, it can be
determined by a finite set of vertices, that is, by a finite set of matrices inRn×n. Such matrices
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are given by all the possible combinations of maximal and minimal values of the elements of
A , any other element can be expressed as convex combination ofsuch vertices. The vertices
of A are, at most,2n2

.

Also in this case the CDI representation is given by convex bounding functions (3.51).
From the practical point of view, computing such maximum canbe reduced to checking the
values for the vertices ofA , whose number can be very high.

Nevertheless, in our case, knowingη andx, it is straightforward to compute the maxi-
mum in (3.51). In fact, for any givenη ∈ Rn andx∈ Rn we have that

f̌η(x) = max
A∈A

ηTAx=
n

∑
i=1

n

∑
j=1

ηiÃi, jx j ,

where

Ãi, j =







max
x∈D

∂ fi(x)
∂x j

, if ηix j ≥ 0,

min
x∈D

∂ fi(x)
∂x j

, if ηix j < 0,

for everyi ∈ Nn and j ∈ Nn.

3.5.2 Linear parameter varying systems: LPV systems

A discrete-time autonomous LPV system has the following form

x(k+1) = A(k)x(k) = Aγ(k)x(k), (3.57)

wherex(k)∈Rn is the current state, fork∈N, the time-varying state-transition matrixA(k)=
Aγ(k) ∈ Rn×n depends on the parameterγ = γ(k) ∈ Γ ⊆ Rp, henceAγ : Rp → Rn×n.

Assumption 3.28 Assume that matrix Aγ ∈ Rn×n depends affinely on the parameterγ ∈ Γ,
that is, there exist p marticeŝA j ∈ Rn×n, for j ∈ Np, andÂ0 ∈ Rn×n such that

Aγ = Â0+
p

∑
j=1

Â jγ j ,

andΓ ⊆ Rp is a polytope.

Remark 3.29 Under Assumption 3.28 it can be proved that the set

A (Γ) = {Aγ ∈ Rn×n,∀γ ∈ Γ}, (3.58)

is polytopic.
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It can be proved that, under Assumption 3.28, any vertex ofA (Γ) is determined by an
extremal realization ofΓ. Roughly speaking, we have thatAγ is a vertex ofA (Γ) if and only
if there existsγ̄ vertex ofΓ such thatAγ̄ = Aγ ,

Analogous definition is given for discrete-time non-autonomous LPV system

x+ = A(k)x(k)+B(k)u(k) = Aγ(k)x(k)+Bγ(k)u(k), (3.59)

wherex(k) ∈ Rn is the current state,u(k) ∈ Rm is the input, fork ∈ N, and both the time-
varying dynamic matricesA(k) = Aγ(k) ∈ Rn×n andB(k) = Bγ(k) ∈ Rn×m depend on the pa-
rameterγ = γ(k) ∈ Γ ⊆ Rp, thenAγ : Rp →Rn×n andBγ : Rp →Rn×m. Additive uncertainty
can be also considered for LPV.

3.6 Conclusions

In this chapter, modelling frameworks related to CDI systems have been presented. Since
many important results will be provided in what follows for CDI systems, it is necessary to
point out that such analytical scenario is quite general andstrongly related to many common
nonlinear and uncertain systems. Methods to obtain a CDI representation of a system and to
compute a CDI approximation have been exposed.

First, presenting CCDI systems, it has been shown that, given a nonlinear system, it can
be sufficient to determine a finite number of bounding functions to obtain a CDI system and
that the CCDI framework encloses common nonlinear and uncertain systems.

Then, classical nonlinear systems, such as Lur’e ones, havebeen presented in discrete-
time. It has been provided a direct method to recover the CDI representation for particular
Lur’e systems. This makes Lur’e systems a particular subsetof CDI systems.

Another class of nonlinear systems related to CDI ones are the generalized saturated
systems. They are systems whose dynamic function is given bya linear system in closed-
loop with a generalized saturated function. It has been shown that an overbounding CDI
system can be easily obtained.

Then, DC systems have been introduced. Their dynamic functions are related to DC
functions, i.e., functions expressible as the difference of convex functions. Also in this case,
convexity is the central ingredient that relates DC systemswith the overbounding CDI sys-
tems.

Finally, linear systems affected by parametric uncertainty have been illustrated. LDI and
LPV systems, particularization of linear parametric uncertain systems, have been presented.
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This framework, well known in the field of systems theory and control design, is considered
here being another particular subclass of CDI systems.
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Chapter 4

Set-theory and invariance for CDI
systems

In what follows we present the results related to set-theory, especially focused on invariance,
for CDI systems. First we provide a necessary and sufficient condition for a convex set to be
an invariant set or aλ -contractive set for generic CDI systems, together with thecharacteri-
zation of other aspects involved in invariance. It is worth recalling that an invariant set for a
CDI system turns out to be an invariant set also for any systemoverbounded by the CDI one.
This justifies the interest devoted to the analysis of CDI systems, providing a deep insight
on a wide class of systems. Another important concept strongly related to invariance, as the
one-step operator for CDI systems, is considered in this chapter.

Computational issues on how to obtain an invariant and aλ -contractive set for a CDI
system are dealt with in the last section of the chapter. In the case of polytopic potential
invariant sets, the necessary and sufficient condition for invariance reduces to checking the
satisfaction of a finite number of convex constraints at the vertices of the polytope. Then,
the computational burden required is affordable and the condition can be used to design an
efficient algorithmic procedure.

The results presented in this chapter are based on the characteristics of particular func-
tions related to any CDI system and denoted asF̌(·, ·) and F̂(·, ·). We will refer to F̌(·, ·)
andF̂(·, ·) as directional upper and lower bounding functions, respectively. The results pre-
sented, such as necessary and sufficient conditions for invariance andλ -contractiveness of
convex sets for CDI systems, as well as other useful properties, will be posed in terms of
such functions.

115
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4.1 Convex invariant sets for CDI systems

We consider here a generic discrete-time autonomous CDI system, that is a system the dy-
namics of which is given by (2.7), i.e.,

x+ ∈ F (x), (4.1)

under Assumption 2.5. Recall that this means that the dynamic function is a set valued map
F (·) defined by particular convex bounding functionsf̌η(·), one for everyη ∈ Rn.

Remark 4.1 The results presented in what follows are valid for CDI and CCDI systems. We
will refer to Assumption 2.5 defining CDI systems. For what concerns CCDI systems, we
recall that the convex bounding functions for the CCDI framework are derived in Property
3.3.

It could be also useful to remind that we refer tof̌η(·) as convexbounding functions,
for all η ∈ Rn, whileF̌(·, ·) andF̂(·, ·) are calleddirectionalbounding functions, upper and
lower respectively.

Remark 4.2 The definitions of directional bounding functionsF̌(·, ·) andF̂(·, ·) have been
introduced to make explicit their dependence onη ∈ Rn as well as their condition of convex
upper bound and concave lower bound, respectively, although all the results presented could
have been posed in terms off̌η(·).

First we define the directional upper bounding functions forCDI systems. The fact that
it is an upper bounding function ofηTz for all z∈ F (x) and for all x ∈ Rn, is a direct
consequence of Assumption 2.5 and Assumption 3.1.

Definition 4.3 Let Assumption 2.5 hold for a given mapF (·). Define the directional upper
bounding functionF̌ : Rn×Rn → R as

F̌(x,η) = f̌η(x), (4.2)

where functionšfη(·), for everyη ∈ Rn, determineF (·).

It is straightforward to prove thaťF(·,η) provides an upper bounding function ofηT f (·),
for anyη ∈ Rn, and any functionf ∈ SF , whereSF = { f : f (x) ∈ F (x), ∀x∈ Rn}.

Directional bounding functionšF(·, ·) for CDI systems, defined in Definition 4.3, are
convex with respect tox and provide upper bounds onηTz, for everyz∈F (x) and everyx∈
Rn. The property follows directly from the characteristics ofthe convex bounding functions
f̌η(·).
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Property 4.4 Let Assumption 2.5 hold for a given mapF (·). FunctionF̌(·, ·) as in Defini-
tion 4.3, is a convex function inRn for anyη ∈ Rn, such that

max
z∈F (x)

ηTz= F̌(x,η), (4.3)

for every x∈ Rn andF̌(0,η) = 0, for all η ∈ Rn.

Proof: If Assumption 2.5 holds anďF(·, ·) is defined in Definition 4.3, convexity and
satisfaction of (4.3) are implied directly by definition. Infact Assumption 2.5 ensures that
f̌η(·) is convex and satisfies (4.3), where the supremum can be replaced with maximum since
F (x) is supposed compact, i.e.,

F̌(x,η) = f̌η(x) = sup
z∈F (x)

ηTz= max
z∈F (x)

ηTz.

From (4.3) and the fact thaťfη(0) = 0 for all η ∈ Rn, we haveF̌(0,η) = 0.

Similarly, the directional lower bounding functions can bedefined such that, given a
vectorη ∈ Rn, a lower bound onηTzwith z∈ F (x) is easily obtained.

Definition 4.5 Let Assumption 2.5 hold for a given mapF (·). Define the directional lower
bounding functionF̂ : Rn×Rn → R as

F̂(x,η) = − f̌−η(x). (4.4)

Properties analogous to those of directional upper bounding functionsF̌(·, ·) can be given
for directional lower bounding functionŝF(·, ·), simply applying a sort of duality process,
where convexity is replaced by concavity, upper bounding bylower bounding, maximum by
minimum, and so on.

We provide the dual of Property 4.4, whose proof is avoided here, since it follows the
same lines as that of Property 4.4, recalling that

min
z∈F (x)

ηTz= − max
z∈F (x)

−ηTz= − f̌−η(x).

Property 4.6 Let Assumption 2.5 hold for a given mapF (·). FunctionF̂(·, ·) as in Defini-
tion 4.5, is a concave function inRn for anyη ∈ Rn, and such that

min
z∈F (x)

ηTz= F̂(x,η), (4.5)

for every x∈ Rn andF̂(0,η) = 0 for all η ∈ Rn.
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From the Properties 4.4 and 4.6, the following corollary, whose proof is avoided because
straightforward, stems directly. The corollary ensures that the directional lower and upper
bounding functionšF(·, ·) andF̂(·, ·) provide guaranteed bounds on the image of any func-
tion f : Rn → Rn overbounded by the set valuedF (·). This permits to use directional upper
and lower bounding functions of the CDI system as bounds for generic nonlinear, possibly
noncontinuous, dynamic systems.

Corollary 4.7 Let Assumption 2.5 hold for a given mapF (·). FunctionF̌(·, ·) as in Defini-
tion 4.3, and function̂F(·, ·) as in Definition 4.5 are such that

F̂(x,η) ≤ ηT f (x) ≤ F̌(x,η), (4.6)

for every x∈ X andη ∈ Rn and every f∈ SF .

Continuity of directional bounding functionšF(·,η) andF̂(·,η), for everyη ∈ Rn, on
open subsets of their effective domains stems directly fromcontinuity of convex functions
on (relatively) open subsets of the domain, see Theorem B.10.

Remark 4.8 Note that, given the vectorη ∈ Rn, the directional upper and lower overboun-
ding functionsF̌(·,η) and F̂(·,η) are continuous on the relative interior of their effective
domain, ri(domF̌(·,η)) and ri(domF̂(·,η)), since, from Assumption 2.5, any elementf̌η(·)
for CDI systems is convex onRn. It is worth recalling that the effective domain of convex
function is given by those points of the space at which the function takes values different from
+∞.

4.1.1 Necessary and sufficient condition for invariance forCDI systems

As illustrated in the previous section, directional lower and upper bounding functions,̂F(·, ·)
andF̌(·, ·), share the properties of convexity and concavity, respectively, continuity, etc. All
the assumptions concerning a CDI system are summarized in the following assumption, to
which we will refer when dealing with one of those dynamic systems, for sake of simplicity.

Assumption 4.9 Let Assumption 2.5 hold for the set valued mapF : Rn → K (Rn) deter-
mining the system dynamics (4.1), and beF̌ : Rn×Rn → R and F̂ : Rn ×Rn → R as in
Definition 4.3 and Definition 4.5, respectively.

We consider at first a generic convex, compact setΩ ⊆ X with 0∈ int(Ω), recalling that
x∈ Ω if and only if

ηTx≤ φΩ(η), (4.7)

for all η ∈ Rn, see Appendix C.
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Remark 4.10 Since invariance and set-theoretic methods find one of theirmain justifica-
tions for control in their capability to deal with hard constraints satisfaction, we introduce
in what follows state constraints x∈ X ⊆ Rn, and input constraints u∈ U ⊆ Rm for non-
autonomous systems. Clearly the case of unconstrained system is enclosed, simply given by
X = Rn and U= Rm.

Constraints on the state, represented by the subset of the state spaceX ⊆ Rn, will be
considered in many cases. The following assumption on the set X ⊆ Rn will be referred to
when constraints on the state are taken into account.

Assumption 4.11 Assume that the constraint set on the state X⊆ Rn, is closed, convex and
with 0∈ int(X).

In (Kolmanovsky and Gilbert, 1998) a characterization of invariance for linear systems
in terms of support functions is given, as well as some properties of the support functions.

The necessary and sufficient condition for invariance for anautonomous linear uncertain
system, presented in (Kolmanovsky and Gilbert, 1998), is adapted below to formulate the
condition forλ -contractiveness and invariance of a set for system (4.1), when Assumption
4.9 holds, that is, when the system is a CDI system.

First, we present a property characterizingλ -contractive sets and invariant sets for generic
systems whose dynamic function is a set valued map, as in (2.1), although we enunciate
the property here for CDI systems (4.1). Recall that, given the set valued mapF (·), map
MF : S (Rn) → S (Rn) is defined as

MF (Ω) =
⋃

x∈Ω
F (x). (4.8)

for all Ω ∈ S (Rn), see (2.2).

Property 4.12 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determining
the system dynamics (4.1) and the state constraint set X. Given λ ∈ [0,1], a convex, com-
pact setΩ ∈ K 0(X) is a λ -contractive set (an invariant set ifλ = 1) for system (4.1) and
constraints x∈ X if and only if

ηTz≤ λφΩ(η), ∀z∈ F (x), ∀x∈ Ω, ∀η ∈ Rn. (4.9)

Proof: Recall that a convex, compact setΩ ⊆ Rn with 0 ∈ int (Ω) is a λ -contractive
set for a dynamic system if the image of any pointx∈ Ω through the dynamic function is a
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subset ofλΩ. In particular, for a system (4.1) condition for invarianceis

MF (Ω) =
⋃

x∈Ω
F (x) ⊆ λΩ, (4.10)

whereMF (·) is the set map defined in (4.8), related toF (·). Condition (4.10) is equivalent
to

F (x) ⊆ λΩ, ∀x∈ Ω,

and, from convexity ofΩ and by Property C.4, it can be expressed in terms of support
function as

φF (x)(η) ≤ φλΩ(η), ∀x∈ Ω, ∀η ∈ Rn,

which, from Property C.5, is equivalent to

φF (x)(η) ≤ λφΩ(η), ∀x∈ Ω, ∀η ∈ Rn. (4.11)

By definition of support function we have that invariance condition can be rewritten as
condition

sup
z∈F (x)

ηTz≤ λφΩ(η), ∀x∈ Ω, ∀η ∈ Rn,

which is equivalent to condition (4.9), then the property isproved.

Notice that the condition forλ -contractiveness and invariance (4.9) involves any point
x ∈ Ω. Necessary and sufficient condition for invariance can be restricted to the boundary
of the setΩ and can be posed as a set of convex constraints, through the employment of the
directional upper bounding functioňF(·, ·), defined in the previous section for CDI systems.

Theorem 4.13 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determining
the system dynamics (4.1) and the state constraint set X. Givenλ ∈ [0,1], a convex, compact
setΩ ∈ K 0(X) is a λ -contractive set for system (4.1) and constraints x∈ X if and only if

F̌(x,η) ≤ λφΩ(η), ∀x∈ ∂Ω, ∀η ∈ Rn. (4.12)

Proof: First we prove that from Property 4.4, we have that condition(4.12) evaluated at
any element ofΩ rather than only on the boundary, that is

F̌(x,η) ≤ λφΩ(η), ∀x∈ Ω, η ∈ Rn, (4.13)

is equivalent to contractiveness condition (4.9). In fact,from (4.13), we have that

ηTz≤ max
z∈F (x)

ηTz= F̌(x,η) ≤ λφΩ(η), ∀z∈ F (x), ∀x∈ Ω, η ∈ Rn,



Chapter 4. Set-theory and invariance for CDI systems 121

meaning that condition (4.13) is sufficient for contractiveness, since it implies (4.9). We
prove necessity by contradiction supposing thatΩ is λ -contractive and that there exist ¯x∈ Ω
andη̄ ∈ Rn such that

F̌(x̄, η̄) > λφΩ(η̄).

This means that, denoting with ¯z the element ofF (x̄) such thatη̄T z̄= maxz∈F (x̄) η̄Tz,
which exists by compactness ofF (x̄), we have that

η̄T z̄= F̌(x̄, η̄) > λφΩ(η̄),

hence condition (4.9) is violated andΩ is notλ -contractive, which is a contradiction.

Then we have to demonstrate that condition (4.12), involving only the boundary ofΩ,
holds if and only if (4.13) is satisfied, concerning every element ofΩ. Necessity is trivial,
since∂Ω⊆Ω. Sufficiency has to be proved. From compactness and convexity of Ω it follows
that given ¯x ∈ Ω there exists a set of points of∂Ω such that ¯x is their convex combination
(see Theorem 18.5 of (Rockafellar, 1970)). That means that there exist a non-empty set of
p pointsx j(x̄) ∈ ∂Ω, with p = p(x̄) ∈ N, and a set ofp real numbersθ j(x̄) ∈ R, for j ∈ Np,
such that ¯x = ∑p

j=1 θ j(x̄) x j(x̄), θ j(x̄) ≥ 0 for all j ∈ Np, and∑p
j=1θ j(x̄) = 1. By convexity

of functionF̌(·,η) on the convex, closed setX and equation (4.12), we have that

F̌(x̄,η) = F̌

(

p
∑
j=1

θ j(x̄) x j(x̄),η

)

≤
p
∑
j=1

θ j(x̄) F̌(x j(x̄),η) ≤

≤
p
∑
j=1

θ j(x̄) λφΩ(η) = λφΩ(η), ∀x̄∈ Ω, ∀η ∈ Rn.

This means that condition (4.12) implies condition (4.13) and then it is an also sufficient
condition forλ -contractiveness ofΩ for system (4.1).

Recalling that anyλ -contractive set for a given dynamic system and constraint set, is also
an invariant set, then the corollary below follows with no need of proof.

Corollary 4.14 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determining
the system dynamics (4.1) and the state constraint set X. A convex, compact setΩ ∈ K 0(X)
is an invariant set for system (4.1) if and only if

F̌(x,η) ≤ φΩ(η), ∀x∈ ∂Ω, η ∈ Rn.

Theorem 4.13 and Corollary 4.14, provide necessary and sufficient conditions forλ -
contractiveness and invariance of a setΩ based on a set of convex constraints.
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It is worth recalling the fact that conditions forλ -contractiveness and invariance for non-
linear discrete-time systems can be restricted to the boundary of the set only for particular
cases, such as linear and positively homogeneous systems, see (Blanchini and Miani, 2008),
usually the analysis has to involve the whole setΩ. However, conditions stated in Theorem
4.13 and Corollary 4.14 concern only the boundary of setΩ.

We show here the strong relation betweenλ -contractive sets and Lyapunov stability the-
ory. The following important property, useful to prove asymptotic convergence for CDI
systems, can be stated.

Property 4.15 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determin-
ing the system dynamics (4.1) and the state constraint set X.For every convex, compact
λ -contractive setΩ ∈ K 0(X) for system (4.1) with contracting factorλ ∈ [0,1], also the
setαΩ ⊆ X, with α ∈ [0,1], is a convex, compactλ -contractive set for system (4.1) with
contracting factorλ .

Proof: Compactness and convexity ofαΩ for all α ∈ [0,1] follows by definition. We
have to prove thatMF (αΩ) ⊆ λ (αΩ) for all α ∈ [0,1].

From Theorem 4.13,λ -contractiveness condition of setΩ can be expressed in terms of
functionF̌(·, ·) as

F̌(x,η) ≤ λφΩ(η), ∀η ∈ Rn, (4.14)

with λ ∈ [0,1] contracting factor for system (4.1), with condition (4.14)to be satisfied for
everyx∈ Ω (which is equivalent to be satisfied only on the boundary, as proved in the proof
of Theorem 4.13).

Recall that, by definition, ¯x ∈ αΩ if and only if there exists ax ∈ Ω such that ¯x = αx.
This means that every element of the setαΩ can be written asαx with x∈ Ω. We consider
the pointαx∈ αΩ and we point out thatαx = αx+(1−α)0. This means that any point of
setαΩ can be expressed as the convex combination of the origin and an elementx of Ω with
(1−α) andα as convex parameters. From convexity of functionF̌(·,η) for everyη ∈ Rn

and sinceF̌(0,η) = 0 by assumption, we have

F̌(αx,η) = F̌(αx+(1−α)0,η) ≤
≤ αF̌(x,η)+(1−α)F̌(0,η) ≤ αλφΩ(η) = λφαΩ(η), ∀η ∈ Rn,

for everyαx∈ αΩ, which proves the property.

We claimed that strong relations link asymptotic stabilityof a system andλ -contractive
sets. In fact, the most common approach employed to ensure asymptotic stability for a
dynamic system is based on Lyapunov functions. It will be shown that aλ -contractive set
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for a CDI system induces a Lyapunov function for the system. Analogous results are known
in the context of linear and particular nonlinear systems, see (Blanchini, 1995; Blanchini and
Miani, 2008).

We first recall that the Minkowski function of setΩ ⊆ Rn convex, compact and with
0∈ int(Ω), is defined as

ΨΩ(x) = min
α≥0

{α : x∈ αΩ}. (4.15)

Based on the concept of Minkowski function (4.15), we introduce functionVΩ(·), which can
be used to define a Lyapunov function for systems characterized by set valued maps. We
recall here that, given the initial setX0 ∈ S (X), the trajectory for a CDI system (4.1) with
dynamic functionF (·) is obtained through iteration

Xk+1 = MF (Xk), (4.16)

where operatorMF (·) is defined in (4.8).

Definition 4.16 GivenΩ ∈ K 0(Rn), define the functionVΩ : S (Rn) → R as

VΩ(D) = max
x∈D

ΨΩ(x) = max
x∈D

min
α≥0

{α : x∈ αΩ} =

= min
α≥0

{α : x∈ αΩ, ∀x∈ D} = min
α≥0

{α : D ⊆ αΩ}.
(4.17)

for all D ∈ S (Rn).

ThusVΩ(·) associates a value to any setD ∈ S (Rn).

Corollary 4.17 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determin-
ing the dynamic system (4.1). Every convex, compactλ -contractive setΩ ∈ K 0(X) with
contracting factorλ ∈ [0,1) induces a local Lyapunov function on the setΩ.

Proof: The functionVΩ(·) defined in (4.17) is a local Lyapunov function inS (Ω). In
fact, from 0∈ int(Ω), function (4.17) is positive definite, i.e.,VΩ(D)≥ 0 for all D ∈S (Rn),
with VΩ(D) = 0 if and only if D = {0} and it decreases along the system trajectories as
shown in what follows.

Notice that, from Definition 4.16, it follows directly that

VΩ(αΩ) = α, (4.18)

for all α ≥ 0 andVΩ(D) ≤ VΩ(C) for all D, C∈ S (Rn) such thatD ⊆C.
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From Property 4.15, monotonicity ofMF (·), see Property 2.2, andλ -contractiveness of
Ω, givenD ∈ S (Ω) such thatVΩ(D) = α with α ∈ (0, 1], we have thatD ⊆ αΩ ⊆ Ω and
then

MF (D) ⊆ MF (αΩ) ⊆ λαΩ,

which implies

VΩ(MF (D)) ≤ VΩ(MF (αΩ)) ≤ VΩ(λαΩ) = λα < α = VΩ(D), (4.19)

with α ∈ (0,1]. Notice that, ifα = 0, thenD = {0} and the inequalities in (4.19) become
equalities. Hence we proved thatVΩ(MF (D)) < VΩ(D), for all D ∈ S (Ω) different from
the set{0}, that is, that the value of functionVΩ(·) decreases along the trajectories of system
(4.1).

A consequence of Corollary 4.17 is thatλ ∈ [0, 1) induces a bound on the decreasing rate
of the Lyapunov function along the trajectories. That is, givenX0 ∈ S (Ω) (with X0 6= {0}),
which impliesX0 ⊆ Ω andVΩ(X0) ≤ 1, we have that

VΩ(Xk+1) ≤ λVΩ(Xk) < VΩ(Xk),

and then

VΩ(Xk) ≤ λ k,

for all k∈ N. Geometrically, it means thatX0 ⊆ Ω implies

Xk ⊆ λ kΩ

for all k ∈ N. Hence given any set inS (Ω) as initial condition, the set valued trajectory
converges to the compact set composed by only the origin and the system is asymptotically
(exponentially, in fact) stable.

Property 4.18 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determin-
ing the dynamic system (4.1). Given two convex, compactλ -contractive setsΩ1 ∈ K 0(X)
and Ω2 ∈ K 0(X) for the system (4.1) and contracting factorsλ1 ∈ [0,1] and λ2 ∈ [0,1],
respectively, their convex hullΩ3 = co (Ω1, Ω2) is a convex, compactλ -contractive set with
contracting factorλ3 = max{λ1, λ2}, for system (4.1) and0∈ int(Ω3).

Proof: Compactness ofΩ3 follows directly from the fact the convex hull of two compact
sets is compact too (see (Rockafellar, 1970) Th. 17.2). Convexity of Ω3 and the fact that
0∈ int(Ω3) follow by definition of convex hull. MoreoverΩ3 ⊆X sinceX is convex,Ω1⊆X
andΩ2 ⊆ X which implies that any convex combination of elements ofΩ1 andΩ2 belongs
to X.
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We prove now thatΩ3 is aλ -contractive set with contracting factorλ3 = max{λ1, λ2}.
Condition ofλ -contractiveness ofΩ1 andΩ2 is equivalent to

F̌(x,η) ≤ λ1φΩ1(η), ∀x∈ Ω1, ∀η ∈ Rn,

F̌(x,η) ≤ λ2φΩ2(η), ∀x∈ Ω2, ∀η ∈ Rn,

from Property 4.13. Considerx3 ∈ Ω3, there existx1 ∈ Ω1, x2 ∈ Ω2 andα ∈ [0,1] such that
x3 = αx1 +(1−α)x2, by definition of convex hull. Notice thatλ3 ≥ λ1 andλ3 ≥ λ2. We
have

F̌(x3,η) = F̌(αx1 +(1−α)x2,η) ≤ αF̌(x1,η)+(1−α)F̌(x2,η) ≤
≤ αλ1φΩ1(η)+(1−α)λ2φΩ2(η) ≤ αλ3φΩ1(η)+(1−α)λ3φΩ2(η) ≤
≤ αλ3φΩ3(η)+(1−α)λ3φΩ3(η) = λ3φΩ3(η),

for all η ∈ Rn, and where we employed the following property of support functions

φU(η) ≤ φV(η), ∀η ∈ Rn,

for all U,V ⊆ Rn, with V closed and convex, such thatU ⊆V, andΩ1 ⊆ Ω3 andΩ2 ⊆ Ω3.
Moreover we used the fact that, given a convex setU , φU(η) > 0 for all η 6= 0 if and only if
0∈ int(U), which leads toλ1φΩ1(η) ≤ λ3φΩ1(η) andλ2φΩ2(η) ≤ λ3φΩ2(η) for all η ∈ Rn.
We obtained that

F̌(x3,η) ≤ λ3φΩ3(η), ∀x3 ∈ Ω3, ∀η ∈ Rn,

hence the property is proved.

In previous properties and results, we often assume convexity of the invariant set under
analysis. It can appear restrictive to consider only convexsubsets of the state space. The
following corollary, direct consequence of Property 4.18,shows that no loss of generality is
due to convexity assumption, since the convex hull of any invariant set, is an invariant set
itself.

Corollary 4.19 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determining
the dynamic system (4.1). Given a compact invariant setΩ ⊆ X with 0 ∈ int (Ω), for the
system (4.1), the set̄Ω = co (Ω) is a convex, compact invariant set.

Proof: Proof of the corollary is simply obtained consideringΩ1 = Ω2 = Ω in Property
4.18 andλ = 1.

A direct consequence of Corollary 4.19, and then of Property4.18, is that the maximal
invariant set contained inX ⊆ Rn is convex. We recall that a setΩM ⊆ X is said to be the
maximal invariant set if, beside of being invariant, is suchthat for any invariant setΩ ⊆ X
we have thatΩ ⊆ ΩM.



126 4.1. Convex invariant sets for CDI systems

Corollary 4.20 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determining
the dynamic system (4.1) and state constraint set X⊆Rn. The maximal invariant setΩM ⊆X
is convex.

Proof: Suppose, by contradiction, that the maximal invariant setΩM ⊆ X is not con-
vex, which means that there exists at least one pointx∈ co (ΩM) such thatx /∈ ΩM. From
Corollary 4.19, we have that ifΩM is an invariant then also its convex hull is an invariant.
Moreover, since, by definition of convex hull, for everyΩM ⊆ Rn we have

ΩM ⊆ co (ΩM), (4.20)

then the set co(ΩM) is convex, invariant and strictly containsΩM, sincex /∈ ΩM but x ∈
co (ΩM). Finally, since by convexity ofX it follows that co(ΩM) ⊆ X, we have thatΩM is
not the maximal invariant set inX, which contradicts the hypothesis of maximality ofΩM.

4.1.2 Robust invariance for uncertain CDI systems

Results presented in the previous section can be extended toCDI systems of the form (2.27),
that is, systems presenting additive uncertainty, see Section 2.2.1. We recall here that, for the
autonomous case, we are considering systems whose dynamicsis given by

x+ ∈ F (x)⊕W, (4.21)

whereF (·) is the set valued map characterizing CDI systems andW ⊆ Rn is the bounding
set of the unknown but bounded uncertainty.

We recall here that we distinguish CDI systems with additiveuncertainty referring to
them as uncertain CDI system. Remind that also CDI system as in (4.1) could have been
considered uncertain, since the set valued nature of dynamic function can be viewed as un-
certainty representation, see Remark 2.15.

Remark 4.21 Notice that, givenF (·) in (4.21), we could have defined the set valued func-
tion

FW(x) = {z∈ Rn : z∈ F (x)⊕W}, (4.22)

leading to a system x+ ∈ FW(x), as in (4.1). Nevertheless, such system would not be a CDI
system, although characterized by a set valued map, since from Assumption 2.5 we must
haveFW(0) = {0} for the system to be a CDI system, and such condition does not hold for
non-trivial cases of W6= {0}.
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First we provide a characterization of robustλ -contractive sets and robust invariant sets
for an uncertain CDI system. This will allow us to provide a necessary and sufficient condi-
tion for λ -contractiveness and invariance in terms of directional bounding functionsF̌(·, ·),
analogously to the case of CDI systems. We recall here that with Assumption 2.3, used be-
low, we suppose that the setW is compact and the origin lies in the interior of its convex
hull.

Property 4.22 Let Assumptions 2.3, 4.9 and 4.11 hold for the set valued mapF (·) and
uncertainty bounding set W determining the uncertain CDI system (4.21) and the state con-
straint set X. Givenλ ∈ [0,1], a convex, compact setΩ ∈ K 0(X) is a robustλ -contractive
set (a robust invariant set ifλ = 1) for system (4.21) and constraints x∈ X if and only if

ηTz≤ λφΩ(η)−φW(η), ∀z∈ F (x), ∀x∈ Ω, ∀η ∈ Rn. (4.23)

Proof: A convex setΩ⊆Rn is a robustλ -contractive set (a robust invariant set ifλ = 1),
for an uncertain CDI system (4.21) if

MFW(Ω) =
⋃

x∈Ω
(F (x)⊕W) ⊆ λΩ, (4.24)

whereMFW : K (Rn) → K (Rn) is the set map defined in (4.8), related toFW(·) in (4.22).

Condition (4.24) is equivalent to

F (x)⊕W ⊆ λΩ, ∀x∈ Ω.

In terms of support function we have thatΩ is a robustλ -contractive set with contracting
factorλ if and only if

φF (x)⊕W(η) ≤ φλΩ(η), ∀x∈ Ω, ∀η ∈ Rn,

and from Property C.6, we have

φF (x)(η) ≤ φλΩ(η)−φW(η), ∀x∈ Ω, ∀η ∈ Rn,

which is equivalent to

φF (x)(η) ≤ λφΩ(η)−φW(η), ∀x∈ Ω, ∀η ∈ Rn.

By definition of support function,λ -contractiveness can be formulated as

sup
z∈F (x)

ηTz≤ λφΩ(η)−φW(η), ∀x∈ Ω, ∀η ∈ Rn,

which is equivalent to condition (4.23). This proves the property.
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Notice that, as for the case of CDI systems with no additive uncertainty, condition for
robustλ -contractiveness and invariance (4.23) involves any element x∈ Ω. We can employ
directional upper bounding functionšF(·, ·) to obtain an equivalent condition concerning
only the elements belonging to the boundary of the candidaterobustλ -contractive set.

Theorem 4.23 Let Assumptions 2.3, 4.9 and 4.11 hold for the set valued mapF (·) and
uncertainty bounding set W determining the uncertain CDI system (4.21) and the state con-
straint set X. Givenλ ∈ [0,1], a convex, compact setΩ ∈ K 0(X) is a robustλ -contractive
set for system (4.21) and constraints x∈ X if and only if

F̌(x,η) ≤ λφΩ(η)−φW(η), ∀x∈ ∂Ω, ∀η ∈ Rn. (4.25)

Proof: The proof is analogous to the proof of Theorem 4.13, that is for necessary and
sufficient condition forλ -contractiveness for CDI systems, in absence of additive uncer-
tainty. The main difference is that the bound for the directional upper bounding function is
now λφΩ(η)−φW(η), for all η ∈ Rn, hence it depends also on the support function ofW
with respect toη ∈ Rn.

The case ofλ = 1 yields, trivially, to a condition for robust invariance ofΩ, which is
stated in the following corollary.

Corollary 4.24 Let Assumptions 2.3, 4.9 and 4.11 hold for the set valued mapF (·) and
uncertainty bounding set W determining the uncertain CDI system (4.21) and the state con-
straint set X. A convex, compact setΩ ∈ K 0(X) is a robust invariant set for system (4.21)
and constraints x∈ X if and only if

F̌(x,η) ≤ φΩ(η)−φW(η), ∀x∈ ∂Ω, ∀η ∈ Rn.

Notice that no assumption on convexity of setW has been required, see Assumption 2.3.

Remark 4.25 It is evident that a necessary condition on a convex, compactsetΩ ⊆ Rn with
0∈ int (Ω) to be a robust invariant set is that

φW(η) ≤ φΩ(η), ∀η ∈ Rn. (4.26)

IndeedF̌(0,η) = 0 for all η ∈ Rn by assumption and hence, if condition (4.25) is vio-
lated, condition (4.23) does not hold.

The geometrical meaning is clear. In fact condition (4.26) is equivalent to the fact that

co (W) ⊆ co (Ω),
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and, from convexity ofΩ ∈ Rn, we have

W ⊆ co (W) ⊆ co (Ω) = Ω,

that is W⊆ Ω. If it is not fulfilled, then we have, for x0 = {0},

x1 ∈ F (0)⊕W = W,

which violates the geometric condition for robust invariance (4.24) withλ = 1.

4.2 One-step operator and domain of attraction

An important operator which is widely employed in iterativecomputation of invariant sets,
is the one-step operator. Consider an autonomous dynamic system and a subsetD of the
state space. The one-step operator associates toD the set of points whose image through the
dynamic function is contained inD. We provide the definition for CDI systems.

Definition 4.26 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determining
the dynamic system (4.1) and the state constraint set X⊆ Rn. The one-step operator is
defined as

Q(Ω) = {x∈ X : F (x) ⊆ Ω}, (4.27)

for all Ω ∈ K (X).

The one-step operator for autonomous CDI systems satisfies the following property.

Property 4.27 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determin-
ing the dynamic system (4.1) and the state constraint set X⊆ Rn. Suppose that X⊆
ri (domF̌(·,η)) for anyη ∈ Rn. We have that the one-step operator is

Q(Ω) =
⋂

η∈Rn

{x∈ X : F̌(x,η) ≤ φΩ(η)}, (4.28)

and is convex and closed for every setΩ ∈ K (X).

Proof: First we prove thatQ(Ω) defined in (4.27) is equal to (4.28). Given a convex
compact setΩ, a pointx∈ X is mapped byF (·) insideΩ if and only if

ηTz≤ φΩ(η), ∀z∈ F (x), ∀η ∈ Rn,
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which is equivalent to
max

z∈F (x)
ηTz≤ φΩ(η), ∀η ∈ Rn,

and therefore, by definition of̌F(·, ·), we have that necessary and sufficient condition for
x∈ X to be mapped insideΩ, is that

F̌(x,η) ≤ φΩ(η), ∀η ∈ Rn. (4.29)

The set of elementsx ∈ X mapped insideΩ by F (·), is composed by those elements
x ∈ X fulfilling condition (4.29). Notice that for anyη ∈ Rn we have an inequality as in
(4.29) determining a set of points fulfilling it. Then, the points mapped insideΩ is the set
given by the intersection of such sets, see (4.28).

We use condition (4.29) to prove convexity of the setQ(Ω) ⊆ X, assumedΩ convex.
Suppose thatx1, x2 ∈ X are mapped inΩ , i.e., F̌(x1,η) ≤ φΩ(η) and F̌(x2,η) ≤ φΩ(η),
for all η ∈ Rn. Then, by convexity of functioňF(·,η) and convexity ofX (see Assumption
4.11), for allη ∈ Rn, for everyα ∈ [0,1], pointx3 = x3(α) = αx1 +(1−α)x2 is such that
x3 ∈ X and

F̌(x3,η) = F̌(αx1+(1−α)x2,η) ≤ αF̌(x1,η)+(1−α)F̌(x2,η) ≤
≤ αφΩ(η)+(1−α)φΩ(η) = φΩ(η), ∀η ∈ Rn.

This means that ifx1, x2 ∈ Q(Ω), then any of their convex combinations is an element of
Q(Ω) too, which is equivalent to convexity ofQ(Ω).

To prove the closure ofQ(Ω), some technicalities are required. Since the intersection
of an arbitrary collection of closed sets is closed, see (Rockafellar, 1970), if we are able to
prove that set{x ∈ X : F̌(x,η) ≤ φΩ(η)} is closed for anyη, closure ofQ(Ω) is proved.
From (Rockafellar, 1970) Th.7.1 and related considerations, it can be proved that a (proper)
convex functionf (·) is closed (i.e., its epigraph is closed), if and only if set

{x∈ X : f (x) ≤ α}, (4.30)

is closed for everyα ∈ R, and that a proper convex functionf (·) agrees with its closure
except perhaps at the boundary of the effective domain, Th.7.4. Since the points of boundary
of the effective domain are not contained inX by hypothesis, then replacinǧF(·,η), convex
by construction, with its closure does not affect the level sets (4.30). This means that level
sets (4.30) are closed and then their intersection is closedtoo, henceQ(Ω) is closed.

In Property 4.27 we proved that the one-step operator for a CDI dynamic system (4.1)
maps compact convex sets, in closed, convex sets. Compactness is not preserved in general
through the one-step operation. This can be pointed out by means of an illustrative example.
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Example 4.28 Recalling that a subset ofRn is compact if it is closed and bounded, we have
to prove that, for a CDI system, Q(Ω) is not bounded for a compactΩ. Consider the one-
dimensional discrete-time linear systems

x+ = 0,

with X = R. The dynamic function can be considered a particular set valued function whose
images are points (the origin in fact), that is

F (x) = {0}, ∀x∈ R.

Also the convex bounding functions, forη ∈ ∂B1
2 = [−1, 1], can be recovered trivially, in

fact they are given by
f̌−1(x) = f̌1(x) = 0.

Evidently Assumption 4.9 is satisfied. Now consideringΩ = {0} and applying the one-
step operator, we have that

Q({0}) = {x∈ R : F (x) = {0} ∈ {0}} = R,

that is the whole spaceR, hence closed and convex but not bounded.

If we add the hypothesis of boundedness of state constraintX, we have that the one-step
operator maps convex, compact subsets into convex, compactsubsets, that isQ : K (X) →
K (X).

Corollary 4.29 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determining
the dynamic system (4.1) and suppose that X is bounded and such that X⊆ ri (domF̌(·,η))
for anyη ∈ Rn. Then, the set Q(Ω) is convex and compact for every setΩ ∈ K (X).

Proof: The result follows from Property 4.27 and since, by definition,Q(Ω) is bounded
for everyΩ, providedX is bounded.

Property and corollary stated above mean that the set of points mapped throughF (·)
inside aΩ ∈ K (X) is a convex, closed set, compact ifX is bounded.

Remark 4.30 We give here a conceptual definition of domain of attraction.

The domain of attraction of an asymptotically stable (to theorigin) system is given by the
set of points of the state space converging to the origin.
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For a CDI system with dynamic functionF (·), the domain of attraction of the origin is
the set of points of the state space such that the Hausdorff distance between the elements of
the trajectory and origin converges to zero. That is, pointsx∈ X such that sets Xk ∈ S (Rn)
generated by

Xk+1 = MF (Xk),

with X0 = {x}, are such that Xk ⊆ X for all k∈ N and

dH(Xk,{0}) → 0,

as k→ ∞, where dH : S (Rn)×S (Rn) → R is the Hausdorff distance defined as

dH(D,C) = max{sup
x∈D

inf
y∈C

d(x,y), sup
x∈C

inf
y∈D

d(x,y)},

for any D,C∈ S (Rn) and d(·, ·) is a distance inRn.

While the domain of attraction of a continuous-time nonlinear system is open, see lemma
below, we have that the domain of attraction for a CDI (discrete-time) system is compact,
besides convex, under assumption of boundedness ofX. This is proved below, and results
useful to approximate the domain of attraction for a CDI system are given.

First we report Lemma 45 of (Vidyasagar, 1993), stating thatthe domain of attraction of
continuous-time nonlinear systems is open.

Lemma 4.31 (L. 45 (Vidyasagar, 1993))Suppose that0 is an attractive equilibrium of a
continuous-time nonlinear system, then the domain of attraction of the origin is open, con-
nected and invariant.

Characterization of the domain of attraction for CDI systems is provided in the following
theorem.

Theorem 4.32 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determining
the dynamic system (4.1) and suppose that X is bounded and such that X⊆ ri (domF̌(·,η))
for anyη ∈ Rn. Given anyλ -contractive setΩ ∈K 0(X) with contracting factorλ ∈ [0, 1),
the sequence of setsΩk obtained withΩ0 = Ω and

Ωk+1 = Q(Ωk), (4.31)

for k∈ N, is such that:

(i) Ωk is invariant for all k∈ N,
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(ii) is a nested sequence, that isΩk ⊆ Ωk+1, for all k ∈ N,

(iii) Ωk is convex, compact and contains the origin in its interior, i.e.,Ωk ∈ K 0(X),

(iv) the sequence converges to the domain of attractionΩ̃,

(v) the domain of attraction is convex, compact and containsthe origin in its interior, i.e.,
Ω̃ ∈ K 0(X).

Proof: First recall that, from Corollary 4.17, anyλ -contractive set induces a Lyapunov
function and then the CDI system is asymptotically (exponentially, in fact) stable.

(i) (ii) We prove both points recursively. Suppose thatΩk ⊆ X is invariant. This means, by
definition, that

x∈ Ωk, ⇒ F (x) ⊆ Ωk ∀x∈ Ωk.

Since, by definition of one-step operator, see (4.27), and iteration (4.31), we have that

Ωk+1 = Q(Ωk) = {x∈ X : F (x) ⊆ Ωk},

and it follows that
x∈ Ωk, ⇒ x∈ Ωk+1,

which means thatΩk ⊆ Ωk+1. From this inclusion it follows that

x∈ Ωk+1, ⇒ F (x) ⊆ Ωk ⊆ Ωk+1,

that is equivalent to
⋃

x∈Ωk+1

F (x) ⊆ Ωk+1

which is the definition of invariance forΩk+1, see (4.10). Then invariance ofΩk im-
pliesΩk ⊆Ωk+1 and invariance ofΩk+1. SinceΩ0 is assumed invariant, the statements
are proved.

(iii) Compactness and convexity ofΩk, for k∈ N, follow directly form Corollary 4.29 and
0∈ int (Ωk) sinceΩ0 ∈ K 0(X), by assumption, andΩk ⊆ Ωk+1.

(iv) Suppose thatx∈ X is an element of the domain of attraction, i.e.,x∈ Ω̃. By definition
of domain of attraction, see Remark 4.30, it means that posing X0 = {x} and iterating
through (4.16), from asymptotic stability, we have that there exists ãk(x) ∈ N such
thatXk̃(x) ⊆ Ω. This is equivalent to say that for anyx in the domain of attractioñΩ,

we havex∈ Ωk̃, for a proper̃k∈ N.
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(v) Convexity of Ω̃ is due to the fact that, given two pointsx1, x2 ∈ Ω̃, there exist two
valuesk1 = k1(x1) ∈ N and k2 = k2(x2) ∈ N such thatx1 ∈ Ωk1 and x2 ∈ Ωk2, see
the proof of the previous point. Hencex1, x2 ∈ Ωk3, with k3 = max{k1,k2} since,
from point (ii), Ωk1 ⊆ Ωk3 and Ωk2 ⊆ Ωk3, and then any convex combination ofx1

andx2 is an element ofΩk3, hence also element of̃Ω. This means that̃Ω is convex.
The origin is contained in the interior of̃Ω since 0∈ int (Ω0) and the sequence is
nested. Finally,Ω̃ is compact because the space of compacts subsets of the compact
X, i.e.,K (X), equipped with Hausdorff distance is a complete metric space and any
converging sequence in a complete space has its limits in thespace itself.

Similar results have been proved for saturated systems and Lur’e systems, in (́Alamo,
Cepeda, Limón and Camacho, 2006b; Álamo, Cepeda, Fiacchini and Camacho, 2009). We
notice here that such cases can be easily overbounded by a CDIsystem.

4.2.1 One-step operator for uncertain CDI systems

Results analogous to the case of CDI systems can be recoveredfor uncertain CDI systems,
that is, in presence of additive uncertainty. In particular, convexity and closure of sets given
by the one-step operator is proved.

Property 4.33 Let Assumptions 2.3, 4.9 and 4.11 hold for the set valued mapF (·) and
uncertainty bounding set W determining the uncertain CDI system (4.21) and the state con-
straint set X and suppose that X⊆ ri (domF̌(·,η)) for anyη ∈Rn. Given a convex, compact
setΩ ∈ K (X), the set

QW(Ω) = {x∈ X : F (x)⊕W ⊆ Ω} = {x∈ X : F (x) ⊆ Ω⊖W} =

=
⋂

η∈Rn
{x∈ X : F̌(x,η) ≤ φΩ(η)−φW(η)}, (4.32)

is convex and closed, and compact if X is bounded.

Proof: The proof of Property 4.33 is a straightforward modificationof the proof of
Property 4.27 and Corollary 4.29. Substantially, the proofcan be recovered considering
the effect of additive uncertainty,W, for instance, replacingφΩ(η) with φΩ(η)−φW(η) in
inequalities of the proof of Property 4.27.

The one-step operator for uncertain CDI systems can be used to design an iterative pro-
cedure to obtain a sequence of nested robust invariant sets converging to the domain of
attraction, as illustrated in Theorem 4.32.
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4.2.2 One-step operator complement

It has been shown in the previous sections that directional bounding functionšF(·, ·) provide
an analytical tool for invariance andλ -contractiveness, particularly suitable due to its conve-
xity. Convexity of the directional bounding functions allows us, in fact, to infer convergence
and stability for an entire set simply posing convex conditions on the boundary.

Moreover, it has been shown that the directional upper bounding function can be used to
characterize the one-step operator, that is the set of pointmapped inside a given setΩ through
the set valued mapF (·), see (4.28). In this section we show that directional lower bounding
functionsF̂(·, ·) can be used to characterize convex regions belonging to the complement of
the one-step operator. First we define the basic geometric concept of halfspace, useful in
what follows.

Definition 4.34 Given a vectorη ∈ Rn with η 6= 0 and d∈ R, we define asH (η,d) the
halfspace containing the elements x∈ Rn such thatηTx≤ d, i.e.,

H (η,d) = {x∈ Rn : ηTx≤ d}. (4.33)

Notice that the scalard is related to the support function of the halfspace, i.e.,

φH (η,d)(η) = d, (4.34)

and that, clearly

H (η,αd) = H ( 1
α η,d), ∀α > 0,

H (η,αd) = H (− 1
α η,−d), ∀α < 0.

(4.35)

Then an halfspace is defined by a directionη ∈ Rn and a scalard ∈ R which can be
interpreted as a sort of distance between the boundary of thehalfspace and the origin.

Property 4.35 Let Assumption 4.9 hold for the set valued mapF (·). Givenη ∈ Rn with
η 6= 0 and d∈ R, we have thatF (x)∩H (η,d) = /0 if and only if

F̂(x,η) > d. (4.36)

Proof: By definition of halfspace, a pointx∈ Rn is such thatx /∈ H (η,d) if and only
if ηTx > d. Then,F (x)∩H (η,d) = /0 if and only if ηTz> d, for all z∈ F (x), which is
equivalent to

min
z∈F (x)

ηTz> d.

From Property 4.6, the claim follows.
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The meaning of Property 4.35 is that, given a pointx∈ Rn the image ofx∈ Rn through
F (·) does not intersect the halfspaceH (η,d), which means thatz /∈ H (η,d) for all z∈
F (x), if and only if condition (4.36) is satisfied.

We prove here that, given a directionη ∈ Rn andd ∈ R, the elements ofRn satisfying
condition (4.36) forms a convex set.

Property 4.36 Let Assumption 4.9 hold for the set valued mapF (·). Givenη ∈ Rn with
η 6= 0 and d∈ R, the set of points x∈ Rn such thatF (x)∩H (η,d) = /0 is convex.

Proof: From Property 4.35, we have to prove that, ifx1 ∈ Rn andx2 ∈ Rn satisfy condi-
tion (4.36), then every pointx3 ∈ co (x1, x2) satisfies condition (4.36).

By assumption we have that−F̂(x1,η) < −d and−F̂(x2,η) < −d and, for everyx3 ∈
co (x1, x2), there exists aθ = θ(x3) ∈ [0,1] such thatx3 = θx1 +(1−θ)x2. From concavity
of functionF̂(·,η), it follows that

−F̂(x3,η) = −F̂(θx1+(1−θ)x2,η) ≤
≤−θ F̂(x1,η)− (1−θ)F̂(x2,η) ≤−θd− (1−θ)d = −d,

which proves the statement.

From Properties 4.35 and 4.36, given the setΩ ∈ K (X), a condition to determine
whether a convex set is contained in the complement of the one-step setQ(Ω) can be given.

We give here a formal definition of the set of pointsx ∈ Rn whose image through the
set valued mapF (·) do not intersect the hyperplaneH (η,d). Note that we employ in the
definition the directional lower bounding function̂F(·, ·), to stress the dependence on the set
valued functionF (·).

Definition 4.37 Let Assumption 4.9 hold for the set valued mapF (·). Givenη ∈ Rn with
η 6= 0 and d∈ Rn, we define the set

C (η,d) = {x∈ Rn : F̂(x,η) > d}. (4.37)

Moreover, given a setΩ ∈ K (Rn), we define

CΩ(η) = C (η,φΩ(η)) = {x∈ Rn : F̂(x,η) > φΩ(η)}, (4.38)

and, finally

CΩ =
⋃

η∈Rn, η 6=0
CΩ(η) =

⋃

η∈Rn, η 6=0
{x∈ Rn : F̂(x,η) > φΩ(η)} =

= {x∈ Rn : ∃η ∈ Rn, η 6= 0 : F̂(x,η) > φΩ(η)}.
(4.39)
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Although trivial, it is worth stressing the fact that the setCΩ(η) is the set of points in the
state space whose image throughF (·) does not intersect the halfspace

H (η,φΩ) = {x∈ Rn : ηTx > φΩ( η)},
from Property 4.35 and by definition ofCΩ(η). Hence, setCΩ is composed by all those
points of the state space whose image through the set valued mapF (·) does not intersect the
setΩ. Conceptually, it can be viewed as a sort of complement of theone-step set ofΩ. As
a matter of fact it is not the complement ofQ(Ω), since, given a setΩ and a pointx∈ Rn,
there are three possibility:

1. F (x) ⊆ Ω,

2. F (x)∩Ω = /0,

3. F (x)∩Ω 6= /0 andF (x) * Ω.

Points for which the first possibility holds belong to the one-step set ofΩ, those for which
either the second or the third option holds form the complement of the one-step set. The
setCΩ is composed by thosex satisfying the second condition, hence it is a subset of the
complement of the one-step operator.

Notice that checking whether a point of the state space belongs toCΩ(η) can be reduced
to a convex constraint to be tested, hence easy to be checked.

Remark 4.38 Givenη ∈ Rn with η 6= 0 we have thatC (η,d) = C (αη,αd), for all α ∈
R with α ≥ 0. Moreover, from homogeneity of order one of support function, i.e., since
φΩ(αη) = αφΩ(η), for all α ≥ 0 and for anyΩ ⊆ Rn, we have thatCΩ(η) = CΩ(αη), for
all α ≥ 0. For this reason it is sufficient to considerCΩ(η) for anyη ∈ ∂Bn

2 to have a full
characterization of setsCΩ(η) for all η ∈ Rn with η 6= 0 and we have that

CΩ =
⋃

η∈∂Bn
2

CΩ(η).

With the following theorem we make apparent the relation between the one-step set of
Ω ∈ K (Rn) and setCΩ(η).

Theorem 4.39 Let Assumption 4.9 hold for the set valued mapF (·) determining the dy-
namic system (4.1). GivenΩ ∈ K (Rn), the setCΩ(η) ⊆ Rn defined as in (4.38) is a convex
set such that

CΩ(η)∩Q(Ω) = /0. (4.40)

for all η ∈ Rn with η 6= 0, where Q(·) is defined in (4.27) and

CΩ ∩Q(Ω) = /0. (4.41)
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Proof: Convexity of the setCΩ(η) = C (η,φΩ(η)) follows from Property 4.36. Given
a compact, convex setΩ ∈K (Rn), condition (4.40) follows directly from Property 4.27 and
definition (4.38). Finally condition (4.41) follows from definition (4.39).

The result presented for a CDI system can be easily adapted tothe case of uncertain CDI
systems, that is in presence of an additive term of the uncertainty, whose dynamics is given
by (4.21). The objective is to determine a condition at any point of the state space,x∈ Rn,
ensuring that its image through the dynamic set valued mapFW(x) = F (x)⊕W has empty
intersection with a given halfspace. Recall that the image of x through the set valued map
FW(·) is the successor ofx for the uncertain CDI system, whereFW(·) is defined explicitly
in (4.22).

Property 4.40 Let Assumptions 2.3 and 4.9 hold for the set valued mapF (·) and uncer-
tainty bounding set W determining the uncertain CDI system (4.21). Givenη ∈ Rn with
η 6= 0 and d∈ R, we have that(F (x)⊕W)∩H (η,d) = /0 if and only if

F̂(x,η) > d+φW(−η). (4.42)

Proof: By definition, a pointx∈ Rn is not an element of a halfspace, i.e.x /∈ H (η,d)
if and only if ηTx > d. Then,(F (x)⊕W)∩H (η,d) = /0 if and only if ηTz> d, for all
z∈ F (x)⊕W, which means

min
z∈F (x)⊕W

ηTz> d.

From Property 4.6, we have that

min
z∈F (x)⊕W

ηTz= min{ηTz : z= y+w, y∈ F (x), w∈W} =

= min{ηTy : y∈ F (x)}+min{ηTw : w∈W} =

= min
y∈F (x)

ηTy+ min
w∈W

ηTw = F̂η(x,η)−max
w∈W

(−η)Tw = F̂(x,η)−φW(−η),

where we use the fact that minx∈D f (x) = −maxx∈D− f (x), for any setD and any function
f (·), and supremum is equal to the maximum onW sinceW is compact. The claim follows.

Also convexity is preserved for the uncertain CDI systems case. Since the proof is ana-
logous to that of Property 4.36 it is not provided here.

Property 4.41 Let Assumptions 2.3 and 4.9 hold for the set valued mapF (·) and uncer-
tainty bounding set W determining the uncertain CDI system (4.21). Givenη ∈ Rn with
η 6= 0 and d∈ R, the set of points x∈ Rn such that(F (x)⊕W)∩H (η,d) = /0 is convex.
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Then, from Properties 4.40 and 4.41, the points of the state space whose image through
the set valued mapF (·)⊕W defining an uncertain CDI system do not intersect a given
halfspace is a convex set characterized by condition (4.42).

Remark 4.42 Alternatively, condition (4.42) can be written as

F̂(x,η) > d+φ−W(η), (4.43)

since
φW(−η) = max

w∈W
(−η)Tw = max

w∈W
ηT(−w) = max

w∈−W
ηTw = φ−W(η). (4.44)

Although, maybe, trivial, it is important to point out the fact thatΩ⊖W andΩ⊕ (−W)
(used below) are not the same set, in general. In fact, given W⊆ Rn, we have

−W = {−v∈ Rn : v∈W} = {v∈ Rn : −v∈W},
which is, geometrically, the mirror image of W with respect to the origin. This means that
Ω⊕(−W) is the set obtained as the Minkowski sum ofΩ and the mirror image of W, usually
not equal to the Minkowski difference ofΩ and W. In fact

Ω⊕ (−W) = {z= x+v : x∈ Ω, −v∈W},
Ω⊖W = {z∈ Rn : z+w∈ Ω, ∀w∈W},

which are equal only if W= {0}.

The relation between the one-step setQW(Ω) and the convex setCΩ⊕(−W)(η) is stated
below. By definition (4.38), we have that

CΩ⊕(−W)(η) = {x∈ Rn : F̂(x,η) > φΩ⊕(−W)(η)} =

= {x∈ Rn : F̂(x,η) > φΩ(η)+φ−W(η)} =

= {x∈ Rn : F̂(x,η) > φΩ(η)+φW(−η)}.
(4.45)

We recall here thatCΩ⊕(−W)(η) is the set of points in the state space whose image through
FW(·), defined in (4.22), does not intersect the halfspaceH (η,φΩ(η)), from Property 4.40
and by definition ofCΩ⊕(−W)(η). We can considerCΩ⊕(−W) as a sort of complement of the
one-step setQW(Ω) for an uncertain CDI system, defined in (4.32).

Theorem 4.43 Let Assumptions 2.3 and 4.9 hold for the set valued mapF (·) and uncer-
tainty bounding set W determining the uncertain CDI system (4.21). GivenΩ ∈ K (Rn), the
setCΩ⊕(−W)(η) ⊆ Rn defined as in (4.38) is a convex set such that

CΩ⊕(−W)(η)∩QW(Ω) = /0. (4.46)

for all η ∈ Rn with η 6= 0, where QW(·) is defined in (4.32) and

CΩ⊕(−W)∩QW(Ω) = /0. (4.47)



140 4.3. Computational issues

Proof: Convexity stems directly from Property 4.41, while condition (4.46) follows
from (4.45) and Property 4.33. In fact ifx∈ CΩ⊕(−W)(η) then

φΩ(η)−φW(η) ≤ φΩ(η)+φW(−η) < F̂(x,η) ≤ F̌(x,η), (4.48)

since, by assumption of 0∈ int (co (W)), thenφW(η) ≥ 0 for all η ∈ Rn. Thenx /∈ QW(Ω).
Condition (4.47) follows from definition (4.39).

The results presented in this section can be used to design analgorithm to compute in-
variant sets for a CDI system. Consider the strategy presented in (Bravo et al., 2005). The
algorithm proposed is a branch and bound procedure. At any step, a set of boxes in the state
space are considered. For every box of the set, it is checked whether its image is contained in
the union of boxes. An approximation method based on interval arithmetic is used to com-
pute a bound of such image. If the image of a box (or, better, its approximation) is contained
in the union of boxes, then such box is maintained in the set ofboxes for the next step. If its
image does not intersect the union, then the box is removed from the set of boxes. Finally if
the image intersects the union of boxes, then such box is split and its parts are added to the
set of boxes for the next steps. Now, the procedure to check whether the image of a box is
contained in a set can be reduced in our case to check condition (4.12) (or (4.25) for the un-
certain case) at its vertices (withλ = 1), while the condition for empty intersection is given
by testing at the vertices if condition (4.36) (or (4.42) in presence of uncertainty) is satisfied.
Recall that in our case, no approximations are needed, sincethe conditions presented are
necessary and sufficient, hence no conservatism is introduced in the process.

4.3 Computational issues

One of the main purposes of this thesis, beside of characterizing theoretically invariance
and set-theory for nonlinear systems, is to provide computational procedures to obtain an
invariant or aλ -contractive set for nonlinear systems. The aim of this section is to illustrate
how the theoretical results concerning CDI systems, presented and proved in this chapter, can
be used to define algorithms for numerical issues. It is worthrecalling, in fact, that a relevant
motivation of our research is to contribute to fill the gap between the great, and increasing,
importance of invariance and set-theoretic methods in control for nonlinear systems and the
practical applicability of the computational techniques presented in literature.

The method for computing invariant andλ -contractive sets for CDI systems that we
propose here is based on the following scheme.

• First, we obtain an ellipsoidal invariant set for an LDI system which locally over-
bounds the CDI one. By means of an LDI approximation, valid ina neighborhood of
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the origin, we are able to determine an ellipsoid which is invariant also for the CDI
system, applying procedures based on powerful and well known computational tools,
like convex programming and LMI. Since in practice it can be often assumed that the
mismatch between the CDI system and the overbounding LDI oneis small, the beha-
vior of the two systems can be expected to be close, at least within the neighborhood.
Then the resulting invariant ellipsoid captures the local behavior of the CDI system
and it is obtained by means of simple linearity-based computational techniques.

• The resulting ellipsoidal invariant set is then employed todetermine a polytopic inva-
riant set for the LDI system, denote itΩL. This is an important computational step,
since, as shown in the next step, the conditions for invariance andλ -contractiveness
for CDI systems, provided in the previous sections, entail low computational burden
when applied to polytopic sets. The procedure to obtain the polytopic invariant set
from the ellipsoidal one is based on an iterative algorithm,finitely determined and
whose determination index is provided below.

• Given the polytopic invariant setΩL for the LDI system, the elements of the family of
sets obtained scalingΩL, that isαΩL for α ≥ 0, are used as potential invariant sets for
the CDI system. Roughly speaking, the shape ofΩL is used to determine a larger setΩ
for which the condition of invariance holds. In fact, necessary and sufficient conditions
for invariance andλ -contractiveness can be employed to determine whether a polytope
in the state space is an invariant set for the CDI system, by means of a finite number
of convex constraints, as proved below. This implies that procedures for checking the
condition for invariance (orλ -contractiveness) of a polytope, characterized by affor-
dable computational effort, can be defined and used to designan algorithm to obtain
an invariant set or aλ -contractive set for a generic CDI system.

• Eventually, further techniques which permit to enlarge a given invariant setΩ, or aλ -
contractive one, are proposed. The main benefit of such techniques, a sketch of which
will be presented here, is that the basic shape of the invariant set can be modified, and
adapted to the particular nonlinear nature of the CDI system.

The steps which lead to the definition of the algorithm for computing a polytopic invariant
or λ -contractive set for a CDI system are detailed below.

4.3.1 LDI system locally overbounding a CDI system

First, it is worth presenting some considerations on the relation between CDI and LDI sys-
tems, to show that the latters provide overbounds of the formers.

Recall that CDI systems, as stated above, find one of their main justification in their
capability to approximate nonlinear systems. Hence, an LDIsystem overbounding a CDI one
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entails a further level of conservatism introduced, when used to bound a nonlinear system.
On the other hand, it has to be noticed that

• the LDI overbounding system will be defined in a neighborhoodof the origin, where
the mismatches with the original CDI system (and also with the possible nonlinear
systems whose bound is the CDI one) are small;

• the LDI system is used to obtain a preliminary invariant set for the CDI system, whose
shape and geometry matter more than its size. Then the size ofthe invariant set is
enlarged by means of the other, subsequent, steps.

Thus, the degree of conservatism introduced by the use of an overbound of the CDI
system is compensated by the computational benefits provided by the linearity properties of
an LDI system.

Here we provide methods for obtaining an overbounding LDI representation of a CDI
system, which justifies the use of such modelling framework to obtain a first invariant set for
generic systems.

4.3.1.1 LDI systems overbounding CDI and CCDI systems

Given a CDI system, it is trivial to obtain an overbounding CCDI system. Recall that a CDI
systems is a dynamic system (4.1) whose dynamics are determined by the set valued map

FCDI(x) = {z∈ Rn : ηTz≤ f̌η(x), ∀η ∈ Rn},

with f̌η(·) convex functions. Consider the system (4.1) given by the setvalued map

FCCDI(x) = {z∈ Rn : f̂ j(x) ≤ zj ≤ f̌ j(x), ∀ j ∈ Nn},

with
f̌ j(x) = f̌ej (x), f̂ j(x) = − f̌−ej (x), ∀ j ∈ Nn,

whereej ∈ Rn is the vector with all entries equal to 0 but thej-th, which is 1. Trivially,
the latter is a CCDI system, see Assumption 3.1, and overbounds the CDI one. In fact, for
everyx∈Rn, the setFCCDI(x) is defined by a subset of those convex constraints determining
FCDI(x).

Hence we can consider the problem of generating an LDI systemoverbounding a CCDI
system. For that purpose the reader is referred to Section 3.5.1, where a method to obtain
an LDI system overbounding a nonlinear one is provided. In particular, consider a nonlinear
system

x+ = f (x),
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with f : Rn → Rn defined on a neighborhood of the originD ⊆ Rn and such thatf (0) = 0.
The LDI system

x(k+1) = A(k)x(k),

with A(k)∈A andA ⊆Rn×n defined in (3.56), overbounds the nonlinear system within the
setD. Clearly the computational procedures presented in this section and based on an LDI
overbounding system, can be directly applied to nonlinear systems, using the approximation
method illustrated in Section 3.5.1.

For a CCDI system, an analogous procedure yields to an overbounding LDI system. In
fact, recall that the dynamic function for a CCDI system is determined by a set of convex
and concave functions. If everyone of those functions,f̌ j(·) and f̂ j(·), are overbounded by an
LDI function, then the related LDI system overbounds the CCDI one. Hence, the polytope
in the spaceA ⊆ Rn×n obtained as

A =
{

A∈ Rn×n : Ai, j ≤ Ai, j ≤ Ai, j , ∀i, j ∈ Nn
}

, (4.49)

with
Ai, j = min

{

minx∈D
∂ f̂i(x)

∂x j
, minx∈D

∂ f̌i(x)
∂x j

}

,

Ai, j = max
{

maxx∈D
∂ f̂i(x)

∂x j
, maxx∈D

∂ f̌i(x)
∂x j

}

,
(4.50)

for all i, j ∈ Nn, provides the LDI system overbounding the CCDI system. Clearly, such LDI
system overbounds also any other system overbounded by the CCDI system.

Assuming that the analytical expression of partial derivatives of functionsf̌ j(·) and f̂ j(·),
with j ∈Nn, are available, the problem of computing their maximal and minimal values, or at
least bounds of them, can be solved by applying interval arithmetic, see (Bravo et al., 2005).

Particular classes of CDI systems whose elements are easilyoverbounded by LDI sys-
tems, at least locally, are Lur’e systems and systems presenting generalized saturated func-
tions. Lur’e systems, in fact, are linear in a neighborhood of the origin, see (3.19). Then, the
linear system given by

{

xk+1 = (A−Bk0F)xk,

yk = Fxk,

is equal to the Lur’e system for anyx∈ Rn such that|Fx| ≤ b1, which is a band in the state
space containing the origin, sinceb1 > 0, see Assumption 3.8 and Property 3.9.

Similarly, for a system presenting a generalized saturatedfunction in feedback, see Def-
inition 3.12, we have that there exists a neighborhood of theorigin within which the system
matches a linear system presenting an additive bounded uncertainty. In fact, the system

xk+1 = (A+BµF)xk +w(k),

wherew(k) ∈ W = {w = Bv∈ Rn : −µσ ≤ v ≤ µσ}, defined in the setD = {x ∈ Rn :
|Fx| ≤ y0

µ +σ} overbounds the generalized saturated system (3.25). Notice that in this case
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asymptotic convergence to the origin can not be proved, the concept of ultimately bounded-
ness should be employed. For sake of simplicity, in the following the case of LDI system in
absence of additive uncertainty is considered, see (Boyd etal., 1994; Gurvits, 1995).

4.3.2 Polytopic local invariant set

In what follows, we suppose to know a polytopic LDI system overbounding the original
CDI one, which is defined by the set valued mapF (·). That is, suppose that there exists a
polytopic setA ⊆ Rn×n for which Assumption 3.25 holds and such thatF ⊆ A . Then the
system (see Section 3.5)

x+ ∈ A (x), (4.51)

overbounds the CDI system. Recall that, from Assumption 3.25, the setA can be expressed
as the convex hull of a finite numberna ∈ N of matricesA j ∈ Rn×n, with j ∈ Nna.

A method for capturing the geometry ofλ -contractive invariant sets with high contracting
factor, for the LDI system, is proposed here. This contractive set is used to enhance the
results of the proposed methodology. Recall that, if a quadratic Lyapunov function is defined
for an LDI system, its level sets areλ -contractive ellipsoids and then invariant sets for the
system.

One of the major benefit of quadratic Lyapunov functions is the fact there are methods and
computational tools to compute them and obtain, among all the possible quadratic function,
the optimal one with respect a to certain criterion. A quadratic functionV(x) = xTPx is a
Lyapunov function for the LDI system (4.51) if matrixP∈ Rn×n is such that

P = PT > 0,

(A j)TPAj −P < 0, ∀ j ∈ Nna.
(4.52)

whereA j ∈ Rn×n are thena matrices whose convex hull defines the LDI system.

Hence, any square matrixP∈Rn×n satisfying (4.52) determines a Lyapunov function for
the LDI system (4.51). This well known result and the fact that the level sets ofV(·) are
λ -contractive sets for the LDI system (4.51) can be proved similarly to Corollary 4.17.

Here we propose as an optimality criterion to select among every possible Lyapunov
function, the minimization of the induced contraction factor of the level sets. Solve the
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following LMI optimization problem:

max
P=PT , γ>0

γ

s.t. P > I ,

P < µI ,

(A j)TPAj −P≤−γP, ∀ j ∈ Nna,

(4.53)

whereA j ∈ Rn×n are the vertices of polytopeA .

The optimization variableγ ∈ R is related to the contraction factor of the level sets. In
fact, condition(A j)TPAj ≤ (1− γ)P is equivalent to

(x+)TP(x+) ≤ max
A∈A

xTATPAx= max
j∈Nna

xT(A j)TP(A j)x≤ (1− γ)xTPx,

wherex+ is given by the LDI system (4.17). Then given the ellipsoidE (P) = {x ∈ Rn :
xTPx≤ 1}, from x ∈ E (P) it follows that x+ ∈ √

1− γE (P), or, in terms of set inclusion,
AE (P) ⊆√

1− γE (P) for everyA∈ A . That is equivalent to say that, for everyx∈ Rn, we
have

xTPx≤ α ⇒ (x+)TP(x+) ≤ (1− γ)α, ∀x+ ∈ A (x), (4.54)

for all α ≥ 0.

The contraction factor of the ellipsoid is minimized (and then the decreasing rate of the
Lyapunov function is maximized) maximizingγ, subject to condition number constraints,
as the inclusion of the constraintsI < P < µI , with µ > 1, guarantees that the condition of
matrixP is bounded byµ.

The following definition and lemma allow the determination of a λ -contractive polytope
ensuring a contracting factor arbitrarily chosen but greater then the contracting factor of the
ellipsoidal invariant set, i.e.

√
1− γ.

Definition 4.44 Given a matrix H∈ Rm×n define the polytope

L (H) = {x∈ Rn : ‖Hx‖∞ ≤ 1} . (4.55)

The proof of the following lemma can be found in (Álamo, Cepeda, Limón and Camacho,
2006a).

Lemma 4.45 Consider the ellipsoidE (P) = {x∈Rn : xTPx≤ 1}, with P= PT > 0. Suppose
thatλi, i = 1, . . . ,n are the eigenvalues of matrix P and pi ∈Rn, i = 1, . . . ,n the corresponding
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orthonormal eigenvectors. Denote

Γ(P) = L

















√
nλ1(p1)T

. . .
√

nλn(pn)T

















. (4.56)

Then
1√
n
E (P) ⊆ Γ(P) ⊆ E (P). (4.57)

ConsiderΩ = Γ(P) as defined in (4.56). In the following it will be shown that, choosing
an appropriate value ofλ , aλ -contractive polytopic set can be iteratively obtained, applying
a finitely determined algorithm similar to those presented in (Gilbert and Tan, 1991; Kol-
manovsky and Gilbert, 1998). Furthermore, an upperbounding value of the determination
index as a function of the contraction factor

√
1− γ of the ellipsoid and the required con-

traction factorλ for the polytope is provided. Such value allows one to compute theλ -
contractive set avoiding the iterative algorithm.

It is useful to recall the concept of reachable sets and in particular to give here the ex-
pression for an LDI system characterized by the polytopeA ⊆ Rn×n. Given the initial set
X0 ⊆ Rn, the reachable sets are given by

Xk+1(X0) = MA (Xk(X0)) =
⋃

x∈Xk(X0)

A (x), k∈ N, (4.58)

where the dependence on the initial condition is expressed explicitly. Clearly X0 can be a
singleton inRn.

Theorem 4.46 Consider P andγ obtained solving the optimization problem (4.53) andΩ =
Γ(P) = {x∈ Rn : Hx≤ 1} defined in (4.56). Given the contraction factor

λ = (
√

1− γ, 1), (4.59)

and the integer i≥ 0, Cλ
i (Ω) is defined as

Cλ
i (Ω) = {x∈ Rn : Xj(x) ⊆ λ jΩ, ∀ j ∈ N[0,i]},

where Xj(x) ⊆ Rn are the reachable sets generated by recursion (4.58) with X0(x) = {x}.

Then Cλ
∞(Ω) is a non-emptyλ -contractive set for the LDI system (4.51). Moreover,

Cλ
i (Ω) = Cλ

∞(Ω) for all i ≥ i∗, where

i∗ =
lnn

ln
(

λ 2

1−γ

) −1. (4.60)
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Proof: Given the functionΦ(x) defined as

Φ(x) = max
i∈Nn

|
√

nλi(pi)Tx|,

we have thatx∈ Ω if and only if Φ(x) ≤ 1, by definition (4.56).

Notice that, givenΩ, the setCλ
i (Ω) is the set of pointsx ∈ Ω such that all thej-th

reachable sets, withj ∈ N[0,i], generated by (4.58) with initial conditionX0 = {x} are subsets
of the elements of the sequence of contracted setsλ jΩ, then

Cλ
i (Ω) = {x∈ Rn : Hx j ≤ λ j1, ∀x j ∈ Xj(x), ∀ j ∈ N[0,i]}.

Thus, we have thatx∈Cλ
i (Ω) if and only ifΦ(x j)≤ λ j , for all x j ∈Xj(x), for all j ∈N[0,i].

Clearlyx∈Cλ
∞(Ω) if and only if Φ(x j) ≤ λ j , for all x j ∈ Xj(x), for all j ∈ N. We provide a

condition on indexi such that, if satisfied, thenx∈Cλ
i (Ω) impliesx∈Cλ

∞(Ω). Note that

xTPx=
n

∑
i=1

λi((pi)Tx)2,

and from
Φ2(x) = max

i∈Nn

nλi((pi)Tx)2,

it follows that
Φ2(x)

n
= max

i∈Nn

λi((pi)Tx)2 ≤ xTPx.

By the definition ofCλ
i (Ω) and (4.57) we have thatx0 ∈Cλ

i (Ω) impliesxT
0 Px0 ≤ 1. Then,

asP is the solution to (4.53) and from (4.54), it follows

Φ2(xi+1) ≤ nxT
i+1Pxi+1 ≤ n(1− γ)xT

i Pxi ≤ n(1− γ)i+1xT
0 Px0 ≤ n(1− γ)i+1,

for all x j ∈ Xj(x0), with j ∈N[0,i], for i ≥ 0. From the former inequality, it follows that, given

x0 ∈Cλ
i (Ω), the condition

Φ(xi+1) ≤ λ i+1, ∀xi+1 ∈ Xi+1(x0), ∀i ≥ i∗,

is fulfilled if n(1− γ)i+1 ≤ λ 2(i+1) for i ≥ i∗. Notice that this yieldsx0 ∈ Cλ
∞(Ω) and hence

Cλ
i (Ω) = Cλ

∞(Ω).

Proving thatn(1−γ)i+1 ≤ λ 2(i+1) for all i ≥ i∗ is equivalent to prove thatn
(

1−γ
λ 2

)i+1
≤ 1

for all i ≥ i∗. A necessary condition for this to be fulfilled is that1−γ
λ 2 ≤ 1, and it is satisfied

by every value ofλ defined in (4.59). Then, we have

n
(

1−γ
λ 2

)i+1
≤ 1 ⇔ lnn+(i +1) ln

(

1−γ
λ 2

)

≤ 0 ⇔ i +1≥ lnn

ln
(

λ2
1−γ

) . (4.61)
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Hence, we obtain that if

i ≥ i∗ =
lnn

ln
(

λ 2

1−γ

) −1,

thenn(1− γ)i+1 ≤ λ 2(i+1).

It is clear that the greater isγ, the smaller is the admissible contracting factor of the
obtainedλ -contractive polytopic set, see (4.59). SetCλ

∞(Ω) is polytopic and it captures the
geometry of the highly contractive ellipsoidal invariant set.

Remark 4.47 Another positive consequence of computing the maximalγ is that the deter-
mination index for computing Cλ∞(Ω) is reduced. In fact, from (4.60), the bigger isγ the
smaller is i∗.

4.3.3 Algorithmic computation of aλ -contractive set for CDI systems

We provide here the algorithm to obtain aλ -contractive set for a CDI system. The procedure
is based on the steps mentioned at the beginning of this section.

The algorithm is based on the necessary and sufficient condition for invariance andλ -
contractiveness of a set for a CDI system, stated in Theorem 4.13. We recall here that, from
convexity of the directional bounding functions determining a CDI system, such necessary
and sufficient condition is a boundary condition.

Computationally, it is not possible to check the condition for generic setsΩ ∈ K (Rn),
since it can involve an infinite number of constraints, one for everyx∈ ∂Ω and for everyη ∈
Rn. On the other hand, for the particular case of polytopic setsΩ, the number of constraints
is equal tonvnh, wherenv andnh are the numbers of vertices and facets ofΩ, as proved in
the following.

Property 4.48 Let Assumptions 4.9 and 4.11 hold for the set valued mapF (·) determining
the system dynamics (4.1) and the state constraint set X. A polytopeΩ = {x∈Rn : Hx≤ 1},
with H ∈ Rnh×n and whose vertices are vj ∈ Rn for j ∈ Nnv, is a λ -contractive set for a
λ ∈ [0,1] and constraints x∈ X if and only ifΩ ⊆ X and

F̌(v j ,HT
i ) ≤ λ , ∀ j ∈ Nnv, ∀i ∈ Nnh. (4.62)

Proof: Since (4.12) is a necessary and sufficient condition for a generic Ω ∈ K (X)
to be aλ -contractive set for a CDI system, then the equivalence between (4.12) and (4.62)
provides the proof of the property.
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We recall that for a polytopeΓ = {x∈ Rn : Hx ≤ b}, with H ∈ Rnh×n andb ∈ Rnh, we
have that

x∈ Γ ⇔ ηTx≤ φΓ(η), ∀η ∈ Rn ⇔ Hix≤ bi = φΓ(HT
i ), ∀i ∈ Nnh,

that is, the condition of set-membership for a pointx and a polytopeΓ in terms of support
function is reduced to a finite number of constraints, concerning only directionsHT

i , for
i ∈ Nnh, see Appendix C. Then from Property 4.12 and Theorem 4.13, wehave that the
necessary and sufficient condition forλ -contractiveness of polytopeΩ is given by

F̌(x,HT
i ) ≤ λ , ∀x∈ ∂Ω, ∀i ∈ Nnh. (4.63)

which involves all the points of the boundary but onlynh directions. We prove in what
follows that (4.62) and (4.63) are equivalent. Notice that (4.63) implies (4.62) since the
vertices are elements of the boundary, i.e.,v j ∈ ∂Ω, for all j ∈ Nnv. We prove the inverse
implication.

Assume that (4.62) holds. Any element ˆx∈ ∂Ω can be expressed as the convex combina-
tion of vertices ofΩ, that is there exist a set ofnv real numbersθ j(x̂) ∈ R, for j ∈ Nnv, such
that x̂ = ∑nv

j=1 θ j(x̂) v j , θ j(x̂) ≥ 0 for all j ∈ Nnv, and∑nv
j=1 θ j(x̂) = 1. Then, from (4.62) we

have that

F̌(x̂,HT
i ) = F̌(

nv

∑
j=1

θ j(x̂) v j ,HT
i ) ≤

nv

∑
j=1

θ j(x̂) F̌(v j ,HT
i ) ≤

nv

∑
j=1

θ j(x̂)λ = λ , ∀x̂∈ ∂Ω,

for all i ∈ Nnh, from convexity of functionsF̌(·,HT
i ). Then condition (4.62) implies (4.63).

Then, Property 4.48 provides a necessary and sufficient condition for a polytope to be a
λ -contractive set, consisting innvnh constraints. The results presented in such property can
be used to check whether a polytopic set is aλ -contractive set, an iterative procedure can be
designed. Given aλ -contractive setΩk at k-th step, a set̂Ω such thatΩk ⊆ Ω̂ is generated
and invariance or contractiveness is checked. If the setΩ̂ fulfils conditions of Property 4.48,
thenΩk+1 is posed equal tôΩ and an enlargedλ -contractive set is obtained.

In what follows we present a result that will permit to generate a pointxk ∈ X such that
xk /∈ Ωk and the related set̂Ω = co (xk∪Ωk) satisfies Property 4.48.

Property 4.49 Let Assumptions 4.9 and 4.11 hold. Consider a polytopeΩ = {x∈Rn : Hx≤
1} ⊆ X, with H∈ Rnh×n, andλ ∈ [0,1], such that hypothesis of Property 4.48 holds forΩ,
and, givenx̂∈ X, define the set̂Ω = co(Ω∪ x̂). If x̂∈ X is such thatF̌(x̂,HT

i ) ≤ λ , for every
i ∈ Nnh, thenΩ̂ is a λ -contractive set (a control invariant set ifλ = 1) for system (4.1) and
constraints x∈ X.
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Proof: Under the hypothesis of the property, we have that, from Property 4.48,

F̌(v j ,HT
i ) ≤ λ , ∀ j ∈ Nnv, ∀i ∈ Nnh, (4.64)

wherev j ∈ Rn, with j ∈ Nnv, are the vertices ofΩ, and

F̌(x̂,HT
i ) ≤ λ , ∀i ∈ Nnh. (4.65)

Recall that any element of a polytope can be expressed as the convex combination of
its vertices and notice that vertices ofΩ̂ are given by a subset of the vertices ofΩ and,
eventually, point ˆx. Moreover, for any elementx∈ Ω̂, there existsθ ∈ Rnh+1 with θ j ≥ 0, for
all j ∈ Nnh+1, such that∑nh+1

j=1 θ j = 1 and

x =
nh

∑
j=1

θ jv
j +θnh+1x̂.

Hence, as in the proof of Property 4.48 and from (4.64) and (4.65), it can be proved that

F̌(x,HT
i ) ≤ λ , ∀i ∈ Nnh, (4.66)

for all x∈ Ω̂. Since, from Theorem 4.13, condition (4.66) is equivalent to

F (x) ⊆ λΩ,

then, for everyx∈ Ω̂ we have thatF (x)⊆ λΩ⊆ λ Ω̂ and this means that̂Ω is aλ -contractive
set for system (4.1).

Now, given a directionηk ∈ Rn (assumed generated randomly in the algorithm) and the
setΩk = {x∈ Rn : Hkx≤ 1} with Hk ∈ Rnk

h×n, we compute the pointxk as the solution of
the following convex programming problem:

max
xk∈X

ηkxk

s.t. F̌(xk,(Hk
i )T) ≤ λ , ∀i ∈ Nnk

h
.

(4.67)

The optimizer of problem (4.67) is such thatxk ∈ X and eitherxk ∈ ∂Ωk or xk /∈ Ωk and
satisfies condition of Property 4.49. Then co(Ωk∪xk) is aλ -contractive set. Hence, it has
to be only checked ifxk lies on the boundary or not.

Finally, we provide the algorithm to compute aλ -contractive polytopic set for a CDI
system.
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Algorithm 1 Computing aλ -contractive set for a CDI system (4.1).
Given the CDI system (4.1) under Assumption 4.9:

(1) Obtain the polytopic LDI system locally overbounding the CDI one. Denote withA j

thena matrices determining the LDI system.

(2) ObtainP andγ from optimization problem (4.53) for the overbounding LDI system.

(3) Choosêλ ∈ (
√

1− γ,1) and obtainΩL = Cλ̂
i (Γ(P)) where

i =









lnn

ln
(

λ̂ 2

1−γ

)









−1.

(4) Chooseλ ∈ (λ̂ , 1] and computeαL, the maximalα > 0 such thatΩ = αΩL fulfils
condition (4.62). PoseΩ0 = αLΩL andk = 0.

(5) Generateηk ∈ Rn and computexk ∈ X as an optimizer of the convex problem (4.67).

(6) If xk /∈ Ωk, thenΩk+1 = co(Ωk∪ xk) = {x∈ Rn : Hk+1x ≤ 1}, with Hk+1 ∈ Rnk+1
h ×n

and a propernk+1
h ∈ N, otherwise go to (5).

(7) Posek = k+1. If k≥ kmax stop, otherwise go to (5).

(8) ReturnΩk, λ -contractive set for system (4.1) with contracting factorλ .

Remark 4.50 In case that the nonlinear system is overbounded by an uncertain CDI system
(for generalized saturated systems, for instance, see Section 3.3), slight modifications of the
algorithm have to be introduced. That is, in case that the CDIsystem bounding the nonlinear
one has the form

x+ ∈ F (x)⊕W,

one possible way to proceed, is to consider the CDI system

x+ ∈ F (x),

for the first three steps of the algorithm. That is, the procedure to generate an LDI system
and to compute first an ellipsoidal invariant set and then a polytopic one for such LDI sys-
tem, might be performed neglecting the additive uncertainty bounded by W. Alternatively,
methods, present in literature, for computing ellipsoidalrobust invariant sets can be applied.

Then, in step (4), the uncertainty can be considered by replacing condition (4.62) with
the following

F̌(v j ,HT
i ) ≤ λ −φW(HT

i ), ∀ j ∈ Nnv, ∀i ∈ Nnh, (4.68)
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which, can be proved to be the necessary and sufficient condition for invariance (λ -contracti-
veness, in fact) for uncertain CDI systems and polytopicΩ.

For what concerns the enlarging procedure, in step (5) the convex optimization problem
(4.67) to be solved to obtain xk, has to be replaced with

max
xk∈X

ηkxk

s.t. F̌(xk,(Hk
i )

T) ≤ λ −φW(HT
i ), ∀i ∈ Nnk

h
,

(4.69)

in which the effect of the additive uncertainty is taken intoaccount. The following steps are
not affected by the presence of the additive uncertainty.

The resulting sequence of sets are polytopicλ -contractive sets for the uncertain CDI
system with contraction factorλ .

4.3.4 Numerical example

We provide here an example of the application of Algorithm 1 for computing an invariant set
for CDI systems.

We consider a generalized saturated system (3.25), see Section 3.3, that is

xk+1 = Axk +Bϕ(Fxk,k),

with matrices

A =

[

1.1 1

0 1.1

]

, B =

[

0.5

1.1

]

, F =
[

−0.5236 −1.1264
]

,

and the generalized saturated function bounded as

−Γ(−y) ≤ ϕ(y,k) ≤ Γ(y), ∀y∈ R, ∀k∈ N,

whereΓ(y) = max{µ(y+σ), −y0} with µ = 1, σ = 0.2 andy0 = 1.8. The bounding sector
characterizing the generalized saturated function is represented in Figure 4.1.

We recall that, as shown in Section 3.3, the generalized saturated function can be over-
bounded by the uncertain CDI system

x+ ∈ F (x)⊕W,
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Figure 4.1: Bounding sector for the generalized saturated function.

where the set valued mapF (·) satisfies Assumption 2.5 with convex bounding functions
given by (3.27), that is

f̌η(x) =

{

ηTAx+ηTBΓ0(Fx), if ηTB≥ 0,

ηTAx−ηTBΓ0(−Fx), if ηTB < 0,

for all η ∈ Rn and allx∈ Rn and with

Γ0(y) = max{µy, −y0−µσ} = max{y, −2},

and the bounds on the additive uncertainty are

W = {w = Bv : −µσ ≤ v≤ µσ} = {w = Bv : −0.2≤ v≤ 0.2}.

The state are assumed to be constrained in the region

X = {x∈ R2 : −15≤ x1 ≤ 15, −6≤ x2 ≤ 6}.

As illustrated in Remark 4.50, we consider first the CDI system, neglecting the contribu-
tion of the additive uncertainty for the first steps of the algorithm. Notice that a local LDI
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Figure 4.2: SetsΩL andλ̂ΩL and evolutions of the vertices ofΩL.

system overbounding the CDI one is given by

xk+1 = (A+BF)xk =

[

0.8382 0.4368

−0.5760 −0.1390

]

xk,

whose eigenvalues are 0.3496±0.1133i, lying in the unitary circle. Notice also that, actually,
the LDI system is a linear one.

As a matter of fact, in the region of the state space given by

D = {x∈ Rn : |Fx| ≤ y0

µ
+σ} = {x∈ Rn : |Fx| ≤ 2},

the CDI system (in absence of additive uncertainty) and the linear one are exactly the same.

Hence, we solve the optimization problem (4.53) which provides the ellipsoidal invariant
set for the linear system. The ellipsoid is defined by matrix

P =

[

9.5583 7.4099

7.4099 7.4183

]

,

with γ = 0.7693, which means a contracting factor
√

1− γ = 0.4803. In step (3) we compute
the polytopicλ -contractive setΩL for the linear system witĥλ = 0.5063, that yields to



Chapter 4. Set-theory and invariance for CDI systems 155

−15 −10 −5 0 5 10 15
−6

−4

−2

0

2

4

6

x1

x 2

Figure 4.3: Sequence of robust invariant setsΩk for the CDI system, fork ∈ N[0,kmax], generated by
the enlarging process.

determination indexi = 7. It is worth pointing out that, since the overbounding system is a
linear one, standard algorithms for computation of polytopic invariant sets could have been
applied in this case. Figure 4.2 shows the polytopic invariant setΩL as well as the polytope
λ̂ΩL. Moreover, in dotted lines, the evolutions of the vertices of ΩL through the linear system
are depicted. It can be notice that every vertex ofΩL is mapped inside the setλ̂ΩL, which is
a graphical confirmation ofλ -contractiveness ofΩL.

Now, since we are interested in a robust invariant set for theuncertain CDI system, we
chooseλ = 1 and apply the following steps of the algorithm. Due to the presence of additive
uncertainty, the modification of the algorithm exposed in Remark 4.50 are applied. In Figure
4.3, the sequence of robust invariant sets generated by the enlarging process are depicted.
The inner set isΩ0 computed at step (4) of the algorithm, obtained by means of a dichotomic
procedure.

Finally, the biggest robust invariant setΩkmax, with kmax= 100, computed through Algo-
rithm 1 is shown in Figure 4.4. Notice that the state constraints are satisfied, as the robust
invariant set is contained in the setX.
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Figure 4.4: Robust invariant setΩkmax for the CDI system, generated through Algorithm 1.

4.4 Conclusions

In this chapter invariance andλ -contractiveness of convex, compact sets for CDI systems
have been characterized. First, directional lower and upper bounding functions, denoted
F̂(·, ·) andF̌(·, ·) respectively, have been introduced and their properties illustrated.

Conditions for invariance andλ -contractiveness are posed as a sets of constraints in-
volving directional upper bounding functions. Thanks to convexity of such constraints, they
can be imposed only at the boundary of the potential invariant (λ -contractive) set, unlike
generic nonlinear systems. This will lead, in next chapters, to define procedures for comput-
ing polytopic invariant sets based on convex constraints satisfaction, hence with affordable
computational requirements, for particular classes of nonlinear systems.

Also the classical tool for iterative computation of invariant sets, the one-step operator,
has been analyzed for CDI systems. It has been proved that theone-step operator for CDI
systems preserves convexity and compactness, under mild assumptions. The related results
can be applied to generate a sequence of invariant sets for the CDI system, converging to
the domain of attraction, provided asymptotic stability ofthe origin. Properties of concave
directional lower bounding functions allow us to determineconvex regions of the state space
contained in the complement of the one-step set, for a given set Ω.
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The chapter ends with a section treating some computationalaspects. In particular, a pro-
cedure to obtain an invariant or aλ -contractive set for a CDI system is illustrated. The proce-
dure is based on the necessary and sufficient condition for invariance andλ -contractiveness
for CDI systems.
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Chapter 5

Convex invariant sets for nonlinear
systems

In this chapter the practical problem of how to obtain an invariant set for a nonlinear system
is addressed. The attention is focused on two particular classes of nonlinear systems, that is,
DC and Lur’e systems, whose dynamics are given by single valued functions rather than set
valued maps. Recall that both frameworks enclose a wide family of nonlinearities frequently
encountered when dealing with real systems. The main objective of this chapter is to pro-
vide algorithmic procedures for obtaining an invariant setor aλ -contractive set for a given
nonlinear system.

Summarizing, in this chapter we particularize the results presented in Chapter 4 to a very
wide class of nonlinear systems. The particular nature of DCsystems and Lur’e systems and
the generality of properties presented in Chapter 4, allow us to provide relevant results valid
for a wide family of nonlinear systems and to define practicalalgorithmic procedures for the
computation ofλ -contractive and invariant sets.

In the first section, a sufficient condition for invariance for constrained DC systems is
given. In particular, exploiting some properties of DC functions, a condition for invariance of
a polytopic set is provided. Both cases of deterministic anduncertain systems are considered.
An algorithm for computing a local invariant set, possibly aλ -contractive set, for a nonlinear
deterministic DC system is presented. It will be shown that,under mild conditions, the
algorithm always provide a non-empty invariant set.

Similarly, a condition for robust invariance for the uncertain nonlinear DC systems is
proposed. A relation between the contraction factor of theλ -contractive set for the nominal
nonlinear system and a measure of the maximal uncertainty that can be tolerated before the
set loses invariance in case of uncertainty is provided.

159
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In the second section, an analysis method to estimate the domain of attraction of a class
of discrete-time Lur’e systems is presented. A new notion ofinvariance, denotedLNL-
invariance is introduced. This new concept generalizes thenotion ofSNS-invariance intro-
duced in (́Alamo, Cepeda, Limón and Camacho, 2006b) for saturated systems. Although a
discrete-time Lur’e system can be considered as a particular case of CDI system, as shown
in Chapter 3, we present a specific method to address the particular problem. Then we will
show that the problem can be solved also from the point of viewof CDI systems. In fact,
we will see that the definition of a CDI system overbounding the Lur’e one and the applica-
tion of properties of CDI systems, will lead to the same results obtained through thead hoc
method for Lur’e systems.

5.1 Convex invariant sets for DC systems

An autonomous DC system is a nonlinear system whose dynamic function fulfills Assump-
tion 3.17. We recall here that with Assumption 3.17 we suppose that f (·) is a DC function
defined on the convex setD ⊆ Rn with 0∈ int(D), it is differentiable at the origin, and the
convex functionsg(·) andh(·), such thatf (x) = g(x)−h(x), satisfyg(0) = 0 andh(0) = 0.

Summarizing, we consider the autonomous nonlinear discrete-time system

x+ = f (x), (5.1)

wherex∈ Rn and f : D → Rn is a DC function satisfying Assumption 3.17.

Assumption 3.17 implies that the origin is a root of the DC function, that is f (0) = 0.
Note that if f (0) = 0, then conditiong(0) = 0 andh(0) = 0 yields no loss of generality.
In fact, if g(0) = r andh(0) = s, thenr = s from f (0) = 0. Denoting ˆg(x) = g(x)− r and
ĥ(x) = h(x)− r, we have thatf (·) admits a different DC representation asf (x) = ĝ(x)− ĥ(x)
with ĝ(0) = 0 andĥ(0) = 0. Furthermore, in what follows, we will assume that function f (·)
is twice differentiable, see Assumption 5.1.

It is worth recalling that any convex function defined on an open setD is continuous on
any (relatively) open subsetX ⊆ D. Since a DC function is representable as the difference of
two convex functions, Assumption 3.17 implies local continuity of f (·), see Theorem B.10.

Assumption 5.1 Assume that a given DC function f: D → Rn is twice differentiable at the
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origin and the eigenvalues of the Jacobian of f(·) at the origin,

Jx(0) =













∇T
x f1(0)

∇T
x f2(0)

· · ·
∇T

x fn(0)













,

lie in the interior of the unitary circle.

Assumption 5.1 implies that the origin is an exponentially stable equilibrium for the
linearized system

x+ = Jx(0)x. (5.2)

From classic stability theory for nonlinear systems, see for instance the center mani-
fold theory, it follows that there existsε > 0 such that for any initial conditionx0 ∈ εBn

2 =
{x∈ Rn : ‖x‖2 ≤ ε}⊆D the corresponding trajectory converges to the origin, thatis lim

k→∞
xk =

0, wherexk+1 = f (xk).

Moreover, twice differentiability of the dynamic DC function is useful to prove that
the proposed procedure guarantees the computation of a non-empty invariant set. In fact,
as shown in what follows, if the dynamic DC function is twice differentiable, then aλ -
contractive set, hence invariant, for the linearized system is also invariant for the DC system,
if appropriately scaled.

Remark 5.2 With Assumption 5.1, function f(·) is supposed to be twice differentiable at the
origin. Then, under this assumption, there exist two constants ρ > 0 and σ > 0 such that
σBn

2 ⊆ D and

‖ f (x)−Jx(0)x‖∞ ≤ ρxTx, ∀x∈ σBn
2,

where, by definition,Bn
2 = {x∈ Rn : ‖x‖2 ≤ 1}.

In fact, from the Lagrange form of the Remainders, we have that the Taylor expansion of
fi(·), for every i∈ Nn, is defined inσBn

2 as

fi(x) = ∇T
x fi(0)x+xTH fi(c

i(x))x

for a ci(x) ∈ σBn
2 and a properσ > 0, where Hfi(·) is the Hessian of function fi(·), defined

in a neighborhood of the origin, for all i∈ Nn. Then a finite bound on the linearization error
can be found, yielding to an overbounding CDI system, see Example 2.8.
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5.1.1 Contractiveness and invariance condition for DC systems

The theorems presented in this section provide sufficient conditions for checking whether a
set is an invariant set, or aλ -contractive set, for a DC dynamic system. The main feature
of these conditions is the affordable computational burdenrequired, for the polytopic case.
This allows one to employ them to design a simple algorithm for computing a convexλ -
contractive invariant set for the DC system.

Property 5.3 Given a DC function f: D → Rn, functionηT f (·) is a DC function defined on
D ⊆ Rn, for everyη ∈ Rn.

Proof: The claim follows directly from the fact that DC functions are closed under the
sum operator and since

ηT f (x) =
n

∑
i=1

ηi fi(x),

for all x∈ D andη ∈ Rn.

In the following, the functionF̌(·,η) related to a generic vectorη ∈ Rn is defined for the
CDI system overbounding the DC system, see Definition 4.3. Wehave already proved, see
Proposition 3.18, that for any DC system there exists an overbounding CDI system directly
determined by the convex bounding functionsf̌η(·), for η ∈ Rn, defined as

f̌η(x) = ∑
j∈k+

η j

(

g j(x)−hL
j (x)
)

+ ∑
j∈k−

η j

(

gL
j (x)−h j(x)

)

, (5.3)

for everyx ∈ Rn and everyη ∈ Rn, wheregL
j (x) = ∇T

x g j(0)x andhL
j (x) = ∇T

x h j(0)x, for
j ∈ Nn andk+ = k+(η) = { j ∈ Nn : η j ≥ 0} andk− = k−(η) = { j ∈ Nn : η j < 0}. Notice
thatk+(η) is the set of indexes of non-negative elements of vectorη, andk−(η) the set of
indexes of negative elements ofη.

Definition 5.4 Given the DC function f: D → Rn as in (5.1) such that Assumption 3.17
holds and aη ∈ Rn, define the directional upper bounding functionF̌ : Rn×Rn → R as

F̌(x,η) = f̌η(x), (5.4)

where functionšfη(·), for everyη ∈ Rn, are given by (5.3).

Convexity of directional bounding functionšF(·,η), for all η ∈ Rn, stems directly from
convexity of functionsf̌η(·).
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Property 5.5 Given the DC function f: D→Rn as in (5.1) such that Assumption 3.17 holds,
for everyη ∈ Rn, functionF̌(·,η) defined in (5.4) is convex with respect to x∈ D.

Proof: Although it is a direct consequence of (5.4), a sketch of the proof is recalled
here. By Definition 5.4, functioňF(·,η) is the sum of elements composed by the sum of a
convex term and a linear one. In fact, ifj ∈ k+ thenη j ≥ 0, η jg j(x) is convex and−η jhL

j (x)

is linear; for j ∈ k−, sinceη j < 0 and−h j(x) is concave,−η jh j(x) is convex andη jgL
j (x)

is linear. From the fact that a linear function is convex (andconcave), and since the sum of
two convex functions is a convex function, thenF̌(·,η) is convex with respect tox∈ D, for
all η ∈ Rn.

The following theorem states that the approximation error|ηT f (x)− F̌(x,η)|, due to the
overbounding process, vanishes quadratically asx tends to the origin. This property will be
used in the following for proving that the proposed algorithm always provides an invariant
set for the deterministic DC system.

Theorem 5.6 Let Assumptions 3.17 and 5.1 hold. There existδ > 0 andρ > 0 such that

|ηT f (x)− F̌(x,η)| ≤ ‖η‖∞ρxTx,

for all η ∈ Rn and x∈ δBn
2, where functionF̌(·, ·) is defined in (5.4).

Proof: By Assumption 5.1,g(·) andh(·) are twice differentiable at the origin. Then,
there exists aδ > 0 such thatg(·), andh(·) are twice differentiable inδBn

2. From twice
differentiability of g(·) andh(·), it follows that there areρg, j > 0 andρh, j > 0, j ∈ Nn, such
that

|g j(x)−gL
j (x)| ≤ ρg, jxTx,

|hL
j (x)−h j(x)| ≤ ρh, jxTx,

(5.5)

for all j ∈ Nn and for allx∈ δBn
2, see Remark 5.2. From (5.5) and by definition of function

F̌(·, ·) we have that

|ηT f (x)− F̌(x,η)| = | ∑
j∈k+

η j(hL
j (x)−h j(x))+ ∑

j∈k−
η j(g j(x)−gL

j (x))| ≤

≤ ∑
j∈k+

|η j | |hL
j (x)−h j(x)|+ ∑

j∈k−
|η j | |g j(x)−gL

j (x)| ≤

≤ ‖η‖∞

(

∑
j∈k+

|hL
j (x)−h j(x)|+ ∑

j∈k−
|g j(x)−gL

j (x)|
)

≤ ‖η‖∞
n
∑
j=1

(

ρg, j +ρh, j
)

xTx,

for everyη ∈ Rn andx∈ δBn
2. Makingρ =

n
∑
j=1

(

ρg, j +ρh, j
)

, the theorem is proved.
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Note that the constantρ does not depend on the vectorη.

In the following it is proved that, given a vectorη ∈ Rn, the functionF̌(·,η) provides an
upper bound of the DC functionηT f (·).

Property 5.7 Given the DC function f: D→Rn as in (5.1) such that Assumption 3.17 holds,
for everyη ∈ Rn we have

ηT f (x) ≤ F̌(x,η), ∀x∈ D, (5.6)

whereF̌(·,η) is defined in (5.4).

Proof: The theorem follows directly from Property 3.18 and Definition 5.4. In fact,
the convex bounding functionšfη(·), for η ∈ Rn, defined in Property 3.18 determine an
overbounding CDI system, which means

ηT f (x) ≤ f̌η(x) = F̌(x,η), ∀x∈ D

for all η ∈ Rn, where the equality is given by Definition 5.4.

We now address the analysis ofλ -contractiveness and invariance for nonlinear systems,
particularizing the results of Chapter 4 to the case of DC systems. In (Kolmanovsky and
Gilbert, 1998) a characterization of invariance for linearsystems in terms of support func-
tions is given, as well as some properties of the support functions.

The necessary and sufficient condition for invariance for anautonomous linear uncer-
tain system, presented in (Kolmanovsky and Gilbert, 1998),is adapted below to formulate
the condition forλ -contractiveness and invariance of a set for any nonlinear system (5.1).
State constraints,x∈ X, are considered. We recall that with Assumption 4.11, used in what
follows, we suppose that the constraint set on the stateX ⊆ Rn, is closed, convex and with
0∈ int(X).

Property 5.8 Let Assumption 4.11 hold for constraints x∈ X. Givenλ ∈ [0,1], a convex,
compact setΩ ∈ K 0(D) is a λ -contractive set (an invariant set ifλ = 1) for the nonlinear
system (5.1) and constraints x∈ X if and only if

ηT f (x) ≤ λφΩ(η), ∀x∈ Ω, ∀η ∈ Rn. (5.7)

Proof: Recall that a setΩ ∈ K 0(X) is a λ -contractive set for system (5.1) ifΩ ⊆ X
and f (Ω) ⊆ λΩ, see (A.9), and, from convexity of setΩ and Property C.4, we have thatΩ
is λ -contractive if and only if

φ f (Ω)(η) ≤ φλΩ(η), ∀η ∈ Rn, (5.8)
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which, from Property C.5, is equivalent to

φ f (Ω)(η) ≤ λφΩ(η), ∀η ∈ Rn.

SinceΩ is a compact set then, for anyη ∈ Rn, and by definition of support function we
have

φ f (Ω)(η) = max
z∈ f (Ω)

ηTz= max
x∈Ω

ηT f (x).

and therefore conditions (5.7) and (5.8) are equivalent andthe claim follows.

The meaning of Property 5.8 is that the image of any elementx∈ Ω through the nonli-
near functionf (·) has to be contained inside the setλΩ ⊆X, definition ofλ -contractiveness.
Hence the necessary and sufficient condition for a setΩ to beλ -contractive (5.7) is a condi-
tion involving any element of the setΩ and any directionη ∈ Rn. Such condition is given,
then, by an infinite number of non-convex constraints, one for everyx∈ Ω and everyη ∈Rn.

First we present a convex relaxation of condition forλ -contractiveness, in order to obtain
an only sufficient condition but composed by convex constraints involving only the elements
on the boundary of the convex setΩ ⊆ D.

Theorem 5.9 Let Assumptions 3.17 and 4.11 hold for the system dynamics (5.1) and the
state constraint set X. A compact, convex setΩ ∈ K 0(X) such that

F̌(x,η) ≤ λφΩ(η), ∀x∈ ∂Ω, ∀η ∈ Rn (5.9)

where functionF̌(·, ·) is defined in (5.4) andλ ∈ [0,1], is a λ -contractive set (an invariant
set ifλ = 1) for system (5.1) and constraints x∈ X with contraction factorλ .

Proof: From Property 5.7, it follows that

F̌(x,η) ≤ λφΩ(η), ∀x∈ Ω, ∀η ∈ Rn, (5.10)

implies satisfaction of condition (5.7), and thenλ -contractiveness ofΩ. Since the inverse is
not true in general, asf ∈ SF with F (·) set valued map of the overbounding CDI system,
the condition is only sufficient. To finish the proof, we have to show that (5.9) is satisfied if
and only if condition (5.10) is fulfilled. We refer to the proof of Theorem 4.13, in which an
analogous property is proved for CDI systems.

Theorem 5.9 provides a sufficient condition forλ -contractiveness of a setΩ based on a
set of convex constraints. Remind that the condition for invariance for nonlinear discrete-
time systems can be restricted to the boundary of the set onlyfor particular cases, such
as linear and positively homogeneous systems, see (Blanchini and Miani, 2008), while in-
equalities (5.9) provide a condition forλ -contractiveness and invariance involving only the
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boundary ofΩ. Furthermore, in the particular case in whichΩ is a polytope, the condition
will be given by a finite number of convex constraints.

Before that, results regarding the case of nonlinear uncertain systems, with additive un-
certainty, are presented.

5.1.1.1 Robust invariant set for DC systems

In the previous section the necessary and sufficient condition ofλ -contractiveness for a com-
pact setΩ for a nonlinear deterministic DC system is given in Property5.8. A convex
relaxation yielding to a sufficient condition forλ -contractiveness and invariance has been
provided in Theorem 5.9. Analogous conditions for uncertain nonlinear systems will be pro-
vided in this section, in particular, the results presentedin the previous section can be directly
extended to DC systems presenting additive uncertainties.

Consider the uncertain autonomous nonlinear system

x+ = f (x)+w, (5.11)

wherex∈ Rn, w∈ Rn is the bounded additive uncertaintyw∈W and f : D → Rn fulfills the
Assumption 3.17.

First we provide the necessary and sufficient condition for acompact, convex setΩ ∈
K 0(X) to be a robustλ -contractive set and a robust invariant set for the uncertain nonlinear
system (5.11). We recall here that with Assumption 2.3 we suppose thatW⊆Rn is a compact
set in the state space with 0∈ int (co (W)).

Property 5.10 Let Assumptions 2.3 and 4.11 hold. Givenλ ∈ [0,1], a convex, compact set
Ω ∈ K 0(X) is a λ -contractive set (a robust invariant set ifλ = 1) for system (5.11) and
constraints x∈ X if and only if

ηT f (x) ≤ λφΩ(η)−φW(η), ∀x∈ Ω, ∀η ∈ Rn. (5.12)

Proof: By definition of Minkowski summation, the image of setΩ through dynamic
function of system (5.11) is given byf (Ω)⊕W. As proved for Property 5.8, condition of
λ -contractiveness ofΩ (invariance ifλ = 1) in terms of set inclusion is that the image ofΩ
through the dynamic function is contained in the setλΩ ∈ K 0(X), which meansf (Ω)⊕
W ⊆ λΩ. In terms of support function, we have thatΩ is aλ -contractive set with contraction
factorλ if and only if

φ f (Ω)⊕W(η) ≤ φλΩ(η), ∀η ∈ Rn, (5.13)
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and from Property C.6, it follows that this is equivalent to

φ f (Ω)(η) ≤ φλΩ(η)−φW(η), ∀η ∈ Rn,

and therefore, equivalence betweenλ -contractiveness and condition (5.12) follows.

Notice that no assumption on convexity of setW has been required. As for the case of
deterministic DC system, condition is given by a constraint, nonconvex in principle, that has
to be proved for every pointx∈ Ω and every vectorη ∈ Rn. Analogously, exploiting con-
vexity of functionF̌(·, ·) defined in Definition 5.4, a sufficient condition can be formulated
such that its fulfillment at the points of the boundary ofΩ impliesλ -contractiveness for the
uncertain nonlinear system (5.11).

We recall here the meaning of the assumptions involved in thefollowing theorem, charac-
terizing aλ -contractive set for a DC dynamic systems in presence of additive uncertainties
and state constraints. Assumption 3.17 concerns the DC nature of the dynamic function
f (·), Assumption 4.11 the hypothesis on the state constraintsX and Assumption 2.3 the
uncertainty bounding setW.

Theorem 5.11 Let Assumptions 2.3, 3.17 and 4.11 hold. A compact, convex set Ω∈K 0(X),
such that

F̌(x,η) ≤ λwφΩ(η)−φW(η), ∀x∈ ∂Ω, ∀η ∈ Rn, (5.14)

where functionF̌(·, ·) is defined in (5.4) andλw ∈ [0,1], is a λ -contractive set (an invariant
set ifλ = 1) for system (5.11) and constraints x∈ X with contraction factorλw.

Proof: From Properties 5.7 and 5.10, it follows that if condition

F̌(x,η) ≤ λwφΩ(η)−φW(η), ∀x∈ Ω, ∀η ∈ Rn, (5.15)

is fulfilled, thenΩ is a λ -contractive set for the uncertain autonomous DC system (5.11).
Thus, the condition is only sufficient, as the converse is nottrue in the general case. As for
the proof of Theorem 5.9, we have to prove that condition (5.15) involving every element of
Ω is satisfied if and only if condition on the boundary (5.14) isfulfilled. As in the case of
proofs of Theorems 4.23 and 5.9, the result can be proved following the line of the proof of
Theorem 4.13.

Notice that, as for the case of deterministic nonlinear DC system, the condition forλ -
contractiveness and robust invariance in presence of additive uncertainty (5.15) involves only
points on the boundary of the setΩ.

Given aλ -contractive setΩ with contraction factorλn for the deterministic system (5.1),
consider the uncertain system (5.11) with same DC functionf (·). An explicit relation
between the contraction factorλn and the uncertainty bounding setW such thatΩ is λ -
contractive also for the uncertain system (5.11) can be inferred.
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Property 5.12 Let Assumptions 2.3, 3.17 and 4.11 hold, where f(·) in (5.1) and (5.11) is
the same. Suppose that the convex, compact setΩ ∈ K 0(X) satisfies condition (5.9) with
λ = λn, for a λn ∈ [0,1]. If there exists aλw ∈ [0,1] such that

φW(η) ≤ (λw−λn)φΩ(η), ∀η ∈ Rn, (5.16)

thenΩ is a λ -contractive set with contraction factorλw (a robust control invariant set if
λw = 1) for the uncertain system (5.1) and constraints x∈ X.

Proof: From condition (5.9), supposed fulfilled, and (5.16), it follows immediately

F̌(x,η) ≤ λnφΩ(η) ≤ λwφΩ(η)−φW(η), ∀x∈ ∂Ω, ∀η ∈ Rn,

and then, from Theorem 5.11,Ω is aλ -contractive set with contraction factorλw (a robust
invariant set ifλw = 1) for the uncertain DC system (5.11).

The relation between the contraction factor of a compact invariant setΩ for the determi-
nistic system (5.1) and the setW bounding the uncertainty in (5.11), provided in Property
5.12, can be employed to design a robust invariant set for theuncertain system.

In the following section we focus on computational issues related to the deterministic
system, the result can be extended to the uncertain case considering the sufficient condition
for robust invariance (5.14) and using the relation (5.16).

5.1.2 Polytopicλ -contractive and invariant set

Previous sections provide sufficient condition forλ -contractiveness and invariance of com-
pact setΩ for deterministic DC systems, condition (5.10), and forλ -contractiveness and
robust invariance for uncertain nonlinear systems, (5.15). Both conditions are given by a set
of convex constraints involving only the elements of boundary of Ω, for all η ∈ Rn.

In the case that the setΩ is a polytope,λ -contractiveness and invariance conditions are
represented by a finite set of convex constraints to be checked only at the vertices ofΩ. As
shown in the following, this allows one to design an algorithm to check whether a polytope
is aλ -contractive set for the deterministic DC system, algorithm which ensures to obtain a
non-emptyλ -contractive set or an invariant set, under mild assumptions.

We consider here the deterministic DC system (5.1), and we assume that the candidate
setΩ is a polytope containing the origin in its interior, i.e.,Ω ∈K 0(X). It is worth recalling
that, given a polytopeΩ = {x ∈ Rn : Hx≤ p} with H ∈ Rnh×n and p ∈ Rnh, we have that
φΩ(HT

i ) = pi for all i ∈ Nnh and then

Ω = {x∈ Rn : Hix≤ φΩ(HT
i ), ∀i ∈ Nnh},
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see Property C.3. For every polytopeΩ with 0∈ int(Ω), there exist a finite integernh and a
matrixH ∈ Rnh×n such that

Ω = {x∈ Rn : Hx≤ 1}.

The sufficient condition for polytopeΩ ⊆ D to be aλ -contractive set with contraction
factorλ for DC system (5.1) follows.

Theorem 5.13 Let Assumptions 3.17 and 4.11 hold. Given aλn ∈ [0,1], a polytopic set
Ω = {x∈Rn : Hx≤ 1} ⊆ D, with H∈Rnh×n, whose nv vertices are denoted vj with j ∈Nnv,
with nv ∈ N, such that

F̌(v j ,HT
i ) ≤ λn, ∀ j ∈ Nnv, ∀i ∈ Nnh, (5.17)

where functionF̌(·, ·) is defined in (5.4), is aλ -contractive set with contraction factorλn (an
invariant set ifλn = 1) for the nonlinear DC system (5.1) and constraints x∈ X.

Moreover, if x∈ Ω, then xk obtained through (5.1), for k∈ N, with x0 = x, satisfies
xk ∈ λ k

nΩ, for all k ∈ N.

Proof: By definition, Ω is a λ -contractive set if and only iff (Ω) ⊆ λnΩ, and then,
from considerations analogous to those of proof of Theorem 5.9, it is sufficient to prove that
(5.17) is necessary and sufficient condition for fulfillmentof condition (5.10). This implies
the claim ofλ -contractiveness of the polytopeΩ. For that, it is sufficient to recall that any
element of a polytope is the convex combination of its vertices. That is for any ˆx∈ Ω, there
existsnv valuesθ j(x̂) ≥ 0, with j ∈ Nnv such that ˆx = ∑nv

j=1 θ j(x̂)v j and∑nv
j=1θ j(x̂) = 1.

Therefore the claim can be proved in a way similar to the proveof Theorem 5.9.

The second part of the theorem is proved next. Considerε ∈ [0, 1]. From the convexity
of F̌(·,HT

i ), for all i ∈ Nnh, and (5.17), it is inferred that

F̌(εv j ,HT
i )− ελn ≤ max

ε∈[0,1]

{

F̌(εv j ,HT
i )− ελn

}

=

= max
{

F̌(0,HT
i )−0; F̌(v j ,HT

i )−λn
}

≤ max
{

0, F̌(v j ,HT
i )−λn

}

= 0,

for all j ∈ Nnv andi ∈ Nnh, that is,

F̌(εv j ,HT
i ) ≤ ελn, ∀ j ∈ Nnv ∀i ∈ Nnh, (5.18)

for all ε ∈ [0, 1]. From convexity ofΩ, and then convexity ofεΩ, and the fact thatεv j , with
j ∈ Nnv are the vertices ofεΩ, any x̂ ∈ εΩ can be expressed as ˆx = ∑nv

j=1θ j(x̂)(εv j), for

properθ j(x̂) ≥ 0, for j ∈ Nnv and∑nv
j=1θ j(x̂) = 1. Then,

Hi f (x̂) = Hi f

(

nv

∑
j=1

θ j(x̂)(εv j)

)

≤ F̌

(

nv

∑
j=1

θ j(x̂)εv j ,HT
i

)

≤

≤
nv

∑
j=1

θ j(x̂)F̌(εv j ,HT
i ) ≤

nv

∑
j=1

θ j(x̂)ελn = ελn,

(5.19)
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for all i ∈ Nnh. This means thatxk ∈ εΩ implies xk+1 = f (xk) ∈ ελnΩ, for all ε ∈ [0,1].
Hence,Ω is aλ -contractive set with contraction factorλn for the nonlinear DC system and
x0 ∈ Ω impliesxk ∈ λ k

nΩ.

The former theorem provides a criterion for checking whether a polytopic setΩ ⊆ D is a
λ -contractive set for a nonlinear system (5.1). Thus, it suffices to checknv ·nh inequalities
to determine if the sufficient condition forλ -contractiveness in fulfilled.

Another important feature of Theorem 5.13 is that any polytopic setΩ fulfilling condition
(5.17) induces a Lyapunov function and implicitly proves exponential stability of the origin
for the deterministic nonlinear system (5.1), as proved forCDI systems in Corollary 4.17.

Analogously, condition for a polytopeΩ to be aλ -contractive set or a robust control
invariant set for the uncertain nonlinear system (5.11) canbe formulated as a finite set of
convex constraints to be checked for every vertex and every row of matrixH.

Theorem 5.14 Let Assumptions 2.3, 3.17 and 4.11 hold. Given aλw ∈ [0,1], a polytopic set
Ω = {x∈Rn : Hx≤ 1} ⊆ X, with H∈Rnh×n, whose nv vertices are denoted vj with j ∈Nnv,
with nv ∈ N, such that

F̌(v j ,HT
i ) ≤ λw−φW(HT

i ), ∀ j ∈ Nnv, ∀i ∈ Nnh, (5.20)

where functionF̌(·, ·) is defined in (5.4), is aλ -contractive set with contraction factorλw (a
robust invariant set ifλw = 1) for the uncertain DC system (5.11) and constraint x∈ X.

Proof: The proof is a direct adaptation of proof of Theorems 5.11 and5.13.

Note that in case of uncertain nonlinear system,λ -contractiveness of polytopic setΩ
does not imply exponential stability; it is not possible to guarantee asymptotic stability for
systems in form (5.11), affected by additive unknown but bounded uncertainty. Convergence
to a set can be proved in that case, that is a Lyapunov functionoutside a set can be induced
proving that the system is ultimately bounded, see (Blanchini and Miani, 2008).

The relation between contraction factor of aλ -contractive setΩ for the deterministic
system and the measure of the bounding setW such thatΩ preservesλ -contractiveness and
invariance in presence of uncertainty, inequality (5.16),reduces to a finite number of convex
inequalities whenΩ is a polytope.

Property 5.15 Let Assumptions 2.3, 3.17 and 4.11 hold, where f(·) in (5.1) and (5.11) is
the same. Suppose the polytopic setΩ = {x∈ Rn : Hx≤ 1} ⊆ D, with H ∈ Rnh×n satisfies
condition (5.17) for aλn ∈ [0,1]. If there exists aλw ∈ [0,1] such that

max
i∈Nnh

φW(HT
i ) ≤ λw−λn, (5.21)
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thenΩ is a λ -contractive set with contraction factorλw (a robust control invariant set if
λw = 1) for the uncertain DC system (5.11) and constraint x∈ X.

Proof: From condition (5.17) and supposition of existence of aλw ∈ [0,1] such that
(5.21) is satisfied then

F̌(x,HT
i ) ≤ λn ≤ λw− max

i∈Nnh

φW(HT
i ) ≤ λw−φW(HT

i ), ∀i ∈ Nnh,

recalling that, from Assumption 2.3, the origin is an element of co (W) and then the support
function ofW with respect to any vectorη ∈Rn is positive, i.e.,φW(HT

i ) > 0, for all i ∈Nnh.
Then also condition (5.20) is satisfied andΩ is aλ -contractive set with contraction factorλw

for the uncertain DC system (5.11).

The relation between the contraction factor of a compact invariant setΩ for the determi-
nistic system (5.1) and the setW bounding the uncertainty in (5.11), provided in Property
5.12, can be employed to design a robust invariant set for theuncertain system.

5.1.3 Computational issues

In this section a method, based on DC functions properties, for computing aλ -contractive
set for a nonlinear system is presented. The method is based on the determination of a
λ -contractive set for the linear system obtained as the linearization of system (5.1) at the
origin. Recall that, by Assumption 5.1 the linear system is asymptotically stable and hence
λ -contractive sets can be obtained.

For that purpose, the approach illustrated in Section 4.3 for general CDI systems and
overbounding LDI systems can be applied. It has to be noticedthat a linear system can be
considered as an LDI system whose characterizing polytope in the space of square matrices,
A ⊆ Rn×n, is a singleton, that is, a single matrix. Hence, solving theoptimization problem
(4.53) withna = 1 andA1 = Jx(0) provides a contracting ellipsoid for the linearized system,
determined by the optimalP and with contraction factor

√

(1− γ). The polytopeΩ captu-
ring the geometry of the ellipsoidE (P) is obtained asΓ(P), see (4.56). Then, the results of
Theorem 4.46 provide a bound of the determination indexi∗ and a polytopicλ -contractive
set can be determined computing iteratively the setCλ

i (Ω) = Cλ
∞(Ω) with i ≥ i∗. Alterna-

tively, setCλ
∞(x,Ω) can be obtained explicitly by choosingi ≥ i∗ and removing redundant

inequalities from the system






















Hx≤ 1,

HAx≤ λ1,

. . .

H(A)ix≤ λ i1,
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whereA = Jx(0).

Remark 5.16 Suppose that aλ -contractive set for the linearized system, denotedΩ̂, is ob-
tained. From Remark 5.2 andλ -contractiveness of̂Ω, it is easy to infer that there isα > 0
such that f(x) ∈ αΩ̂, ∀x ∈ αΩ̂. This means that, the setαΩ̂ is an invariant set for the
nonlinear system.

The following procedure permits to obtain an invariant set for the nonlinear autonomous
system (5.1):

• A polytopeλ -contractive invariant set for the linearized system (5.2)is first computed,
employing the results from Section 4.3 as illustrated above. This set will be denoted
Ω̂.

• Exploiting the sufficient condition forλ -contractiveness and invariance (5.9), the great-
est value ofα guaranteeing thatΩ = αΩ̂ is an invariant set for the nonlinear system is
computed.

A similar strategy for linear saturated systems was proposed in (Tarbouriech and Gomes
Da Silva Jr., 1997) without using DC functions. The main feature of our criterion is the affor-
dable computational burden needed and the generality of theapproach, since it is applicable
to a wide class of nonlinear functions.

Algorithm 2 for computing an invariant set for a nonlinear DCsystem is given below.

Note that thêλ admissible is greater than
√

1− γ to make finite the upper boundi∗ on the
determination index defined in (4.60). The proposed algorithm always yields a non-empty
invariant set, as the following theorem states.

Theorem 5.17 Let Assumptions 3.17 and 5.1 hold for system (5.1). Then Algorithm 2 con-
verges to a non-emptyλ -contractive setΩ = αΩ̂, with contraction factorλ , for the DC
system (5.1).

Proof: From twice differentiability of functionsg(·) andh(·), there existsδ > 0 such
thatg(·), h(·)∈C 2 for all x∈ δBn

2. From Assumption 5.1 and the results of previous section,
it is clear thatΩ̂ is non-empty and constitutes aλ -contractive set with contraction factorλ̂
for the linear system. That is,̂Ω = {x∈ Rn : Ĥx≤ 1}, with Ĥ ∈ Rnĥ×n, satisfiesĤAx≤ λ̂ ,
∀x∈ Ω̂. First, the setαΩ̂ has to be contained inBn

2, that is,α ∈ (0, α̌ ] whereα̌ = max{α >
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Algorithm 2 Computing aλ -contractive set for nonlinear DC system (5.1).
Given the DC system (5.1):

(1) Obtain the Jacobian at the origin,Jx(0).

(2) ObtainP andγ from optimization problem (4.53) withna = 1 andA1 = Jx(0).

(3) Choosêλ ∈ (
√

1− γ,1) and obtainΩ̂ = Cλ̂
i (Γ(P)) where

i =









lnn

ln
(

λ̂ 2

1−γ

)









−1.

(4) Chooseλ ∈ (λ̂ , 1] and compute the maximalα > 0 such thatΩ = αΩ̂ fulfills the
assumptions of Theorem 5.9.

(5) ReturnΩ, λ -contractive set for system (5.1) with contraction factorλ .

0 : αΩ̂ ⊆ δBn
2}. Note that, from the twice differentiability ofg(·) andh(·), it follows that

there is aγ > 0 such that

|Ĥi( f (x)−Ax)| ≤ ‖ĤT
i ‖∞γxTx, ∀x∈ δBn

2,

for i ∈ Nnĥ
. From this and Theorem 5.6, given aα ∈ (0, α̌] and denotingv j , for j ∈ Nnv the

nv vertices ofΩ̂, we have that

F̌(αv j , ĤT
i ) = ĤiAαv j + Ĥi( f (αv j)−Aαv j)+ F̌(αv j , ĤT

i )− Ĥi f (αv j) ≤
≤ ĤiAαv j + |Ĥi( f (αv j)−Aαv j)|+ |F̌(αv j , ĤT

i )− Ĥi f (αv j)| ≤
≤ αλ̂ +‖ĤT

i ‖∞γα2(v j)Tv j +‖ĤT
i ‖∞ρα2(v j)Tv j ,

for all i ∈ Nnĥ
and j ∈ Nnv. Hence, if

αλ̂ +‖ĤT
i ‖∞γα2(v j)Tv j +‖ĤT

i ‖∞ρα2(v j)Tv j ≤ αλ ,

for all i ∈ Nnĥ
, j ∈ Nnv, then the theorem is proved. Such condition is fulfilled forα ∈

(0, min{α̌, α̂}] where

α̂ = min
i∈Nn

ĥ
, j∈Nnv

λ − λ̂
‖ĤT

i ‖∞(γ +ρ)(v j)Tv j
.
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5.1.4 Numerical example

Consider the following DC function

f (x) =

[

1+0.1x1+0.5x2−e0.1x2
1

0.1+0.9x1−0.1x2−0.1cos(x2)+0.05x2
2

]

,

wherex = [x1, x2]
T ∈ R2. Note that it can be expressed in standard DC formf (x) = g(x)−

h(x), posing

g(x) =

[

0.5x2

0.1+0.9x1−0.1cos(x2)+0.05x2
2

]

,

h(x) =

[

−1−0.1x1+e0.1x2
1

0.1x2

]

.

Figure 5.1: λ -contractive invariant set for the linearized systemΩL (solid line) and ellipsoidsE (P,1)

andE (P, 1
n) (dashed lines).

Functionsg(·) andh(·) are globally convex, in fact the Hessians of functionsg1(·), g2(·),
h1(·), h2(·) exist and are positive semi-definite in the whole spaceR2. The nonlinear DC
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system has been linearized around the origin, obtaining thestable dynamic matrix

A =

[

0.1000 0.5000

0.9000 −0.1000

]

,

whose eigenvalues are−0.6782 and 0.6782.

First, theλ -contractive set for the linear system is computed. Solvingthe LMI optimiza-
tion problem (4.53), we obtain

P =

[

2.2363 −0.0699

−0.0699 1.2579

]

, γ = 0.54.

Henceλ̂ ∈ [0.6783, 1) and the contraction factor is set toλ̂ = 0.733. Employing the
results of Theorem 4.46, theλ -contractive set for the linearized system is computed and it
is represented in Figure 5.1, jointly with the ellipsoidsE (P,1) andE (P, 1

n). Although the
bound on the determination indexi is i ≥ 4, one iteration suffices to obtain̂Ω.

Then, the set̂Ω = Cλ
∞(Γ(P)) is used in Algorithm 2. The contraction factor has been

chosen greater than̂λ and close to 1,λ = 0.9973. Choosing a value ofλ close to 1, the algo-
rithm provides a greaterλ -contractive set with respect to those obtained employing smaller
λ (at the expense of reducing the contractiveness of the obtained invariant set). Hence, the
setΩ = αΩ̂ is aλ -contractive invariant set for the DC system. In particularthe value ofα
is computed by means of a dichotomic-search based procedure.

Finally, the setΩ is compared with a numerical estimation of the domain of attraction of
the DC system. Some points in the state space have been chosenrandomly as initial condi-
tions. In Fig. 5.2 only the initial conditions which lead to asymptotically stable trajectories
have been depicted. The convex hull of such points provides an approximation of the do-
main of attraction for the DC system. Note that, despite of the strong nonlinearity of the
function (an exponential term is present), theλ -contractive and invariant setΩ represents a
good portion of the domain of attraction.

A greater invariant set can be obtained by employing an enlarging method analogous to
the one presented in Section 4.3 for CDI systems.
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Figure 5.2: Asymptotically stable initial points (dots) andλ -contractive invariant set for the DC
system.

5.2 Convex invariant sets for Lur’e systems

In this section, we introduce a new concept of invariance forLur’e systems, calledLNL-
invariance. Conceptually, a setΩ is anLNL-invariant for a Lur’e system if, for everyx∈ Ω,
both the successors obtained through the Lur’e system dynamics and through the dynamics
obtained by linearizing it at the origin, are contained inΩ.

An algorithm to determine the largestLNL-invariant set for this class of systems is pro-
posed. Moreover, it is proved that theLNL-invariant sets provided by this algorithm are
polytopes and constitute an estimation of the domain of attraction of the nonlinear system.
Based on its geometrical properties, a simple algorithm to obtain the largestLNL-invariant
set is proposed.LNL-invariance is a more conservative concept than traditional invariance
but its geometrical properties allows us to obtain a polytopic estimation of the domain of
attraction of the nonlinear system. It is shown that any invariant set obtained for an LDI ap-
proximation of the Lur’e system is anLNL-invariant set which is included into the obtained
estimation of the domain of attraction.
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We remind that Lur’e systems under analysis, see Section 3.2, are dynamic systems in
which a static one-dimensional nonlinearity appears in thefeedback path. In particular we
assume that such nonlinearity has a piecewise affine nature,as well as concave inR and odd,
as specified in Assumption 3.8. That is, we consider the following discrete-time system

{

xk+1 = Axk−Bϕ(yk)

yk = Fxk,

wherexk ∈ Rn is the state vector andyk = Fxk ∈ R the one-dimensional output of the sys-
tem andϕ : R → R satisfies Assumption 3.8, that is, functionϕ(·) is a continuous, odd,
piecewise-affine concave inR+.

A characterization of functions satisfying Assumption 3.8is given in Property 3.9, as
proved in (Hu et al., 2004). An example of function fulfillingAssumption 3.8, hence defining
a Lur’e system, is shown in Figure 3.5. We analyze here some properties of functionϕ(·).
For that purpose the following definition is introduced.

Definition 5.18 Given the piecewise-affine odd function concave inR+

ϕ(y) =























k0y, if y ∈ [0,b1),

k1y+c1, if y ∈ [b1,b2),

. . .

kNy+cN, if y ∈ [bN,∞),

∀y≥ 0,

the odd functionsϕi(y), i ∈ NN are defined as:

ϕi(y) =

{

k0y, if y ∈ [0,di),

kiy+ci , if y ∈ [di ,∞),
∀y≥ 0, (5.22)

where di =
ci

k0−ki
, for i ∈ NN.

It might be useful to provide the expression of a piecewise-affine odd functionϕ(y) for
y < 0. Recall that a functionϕ(·) is odd if

ϕ(y) = −ϕ(−y),

for all y∈ R. Then we have that, for negative values ofy, the function defined in Definition
5.18 is given by

ϕ(y) =























k0y, if y∈ (−b1,0),

k1y−c1, if y∈ (−b2,−b1],

. . .

kNy−cN, if y∈ (−∞,−b2],

∀y < 0,
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and functionsϕi(y) are

ϕi(y) =

{

k0y, if y∈ (di ,0),

kiy−ci , if y∈ (−∞,di ],
∀y < 0,

for all i ∈ NN.

Figure 5.3 shows functionsϕi(·), for i ∈ N3 corresponding to functionϕ(·) of Figure
(3.5).

η1

d1
y

ϕ(y)

ϕ1(y)

η2

d2
y

ϕ(y)

ϕ2(y)

η3

d3

y

ϕ(y)

ϕ3(y)

Figure 5.3: Functionsϕi(·), i ∈ N3 corresponding to functionϕ(·) of Figure 3.5.

It can be observed in Figure 5.3 thatϕ(y) is the pointwise minimum ofϕ1(y), ϕ2(y) and
ϕ3(y). The following lemma states a useful relationship between functionϕ(·) and functions
ϕi(·), i ∈ NN.

Lemma 5.19 (Hu and Lin, 2004; Hu et al., 2004) Suppose thatϕ(·) is an odd piecewise-
affine function concave inR+. Then

• ϕi(y) ∈ co (k0y,ϕ(y)), for all y ∈ R and for all i∈ NN.

• ϕ(y) ∈ co (ϕ1(y),ϕ2(y), . . . ,ϕN(y)), for all y∈ R.

Hereafter, the concept ofLNL-invariance is presented. This notion of invariance is
stronger than the classical one. However, theLNL-invariance has some geometrical proper-
ties that allows one to obtain the greatestLNL-invariant set by means of a simple algorithm.
Moreover, it will be shown that everyλ -contractive set for the nonlinear system is contained
into the greatestLNL-invariant set provided by the proposed algorithm.
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Definition 5.20 Consider system xk+1 = Axk−Bϕ(Fxk) and let functionϕ(·) be defined as
in equation (3.20). Functions f(x) and fL(x) are defined as

f (x) = Ax−Bϕ(Fx),

fL(x) = Ax−Bk0Fx.
(5.23)

The notion ofLNL-invariance is introduced in the following definition.

Definition 5.21 A setΩ is said to be LNL-invariant for system xk+1 = Axk −Bϕ(Fxk) if
x∈ Ω implies

f (x) = Ax−Bϕ(Fx) ∈ Ω,

fL(x) = Ax−Bk0Fx∈ Ω.

This implies that, ifΩ is LNL-invariant it is also invariant but not viceversa. We will
see that this leads to obtain the greatest convexλ -contractive invariant set for the Lur’e
system, or alternatively seen, that any convex invariant (contractive) set is contained in the
LNL-domain of attraction.

Remark 5.22 LNL stands for Linear and Non−Linear. Note that the new constraint fL(x)∈
Ω added to the concept of LNL-invariance is not a very strong constraint as there is a neigh-
borhood of the origin where f(x) equals fL(x).

Definition 5.23 We say that S0,S1, . . . ,Sk is an admissible sequence if Si ∈ {1,−1}, i =
0, . . . ,k.

Definition 5.24 Given x and S∈ {1,−1}, function G(x,S) is defined as follows

G(x,S) =

{

f (x) if S= 1,

fL(x) if S= −1.

Definition 5.25 We say that x belong to the LNL-domain of attraction of systemxk+1 =
Axk−Bϕ(Fxk) if the recursion

xk+1 = G(xk,Sk), x0 = x,

converges to the origin for every admissible infinite sequence{S0,S1,S2, . . .}.
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As it will be shown, theLNL-domain of attraction is a convex set that can be obtained by
means of a simple recursion.

In the following definition, some one-step operators related with the notion ofLNL-
invariance are presented.

Definition 5.26 Given a setΩ and the system xk+1 = Axk−Bϕ(Fxk), whereϕ(·) is defined
in Definition 5.18, the one-step operators QNL(·), QL(·) and QLNL(·) are defined as follows

QNL(Ω) = {x∈ Rn : Ax−Bϕ(Fx) ∈ Ω},
QL(Ω) = {x∈ Rn : Ax−Bk0Fx∈ Ω},

QLNL(Ω) = QL(Ω)∩QNL(Ω).

As stated in the following property, the operatorQLNL(·) allows one to determine whether
a set is anLNL-invariant or not.

Property 5.27 Ω is an LNL-invariant set if and only ifΩ ⊆ QLNL(Ω).

Proof: This result is a direct consequence of Definitions 5.21 and 5.26.

Given a convex setΩ, the one-step setQNL(Ω) is not necessarily convex due to the
nonlinear nature of functionϕ(·). The non-convex nature ofQNL(Ω) makes it difficult the
use of operatorQNL(·) in the computation of invariant sets for the considered Lur’e systems.
The most remarkable property ofQLNL(·) is that, given a convex polytopic setΩ, QLNL(Ω)
is a polytope. To prove it, the following auxiliary operators QLNL,i(·) are defined.

Definition 5.28 Given functionsϕi(·), for i ∈ NN, defined in equation (5.22), the operators
QLNL,i(·) i ∈ NN are defined as

QLNL,i(Ω) = QL(Ω)∩{x∈ Rn : Ax−Bϕi(Fx) ∈ Ω}.

The following lemma is propaedeutic for the proof of the subsequent theorem.

Lemma 5.29 Given an odd piecewise-affine functionϕ(·), concave inR+, consider func-
tionsϕi(·), for i ∈ NN, defined as in Definition 5.22. Then:

aϕi(y) ≤ max{ak0y,akiy−|aci |}.



Chapter 5. Convex invariant sets for nonlinear systems 181

Proof: There are two different possibilities,|y| ≤ di or |y| > di , that will be analyzed
separately.

If |y| ≤ di thenϕi(y) = k0y and the inequality holds.

In case that|y| > di, thenϕi(y) = kiy+sign(y)ci . Note that due to Property 3.9:ki < k0,
ηi > 0 anddi = ci

ko−ki
> 0. There are now four different possibilities:

i. a > 0 andy > di . In this case:aϕi(y) = akiy+aci < ak0y.

ii. a > 0 andy < −di . In this case:aϕi(y) = akiy−aci = akiy−|aci |.

iii. a < 0 andy > di . In this case:aϕi(y) = akiy+aci = akiy−|aci |.

iv. a < 0 andy < −di . In this case:aϕi(y) = akiy−aci < ak0y.

The following theorem states thatQLNL,i(·) is a convex operator.

Theorem 5.30 LetΩ be a polytope given byΩ = {x∈Rn : Hx≤g}, QLNL,i(Ω) is a polytope
that can be obtained from the equality

QLNL,i(Ω) = Pi(Ω), i ∈ NN,

where
Pi(Ω) = QL(Ω)∩{x∈ Rn : H(A−BkiF)x≤ g+ |ciHB|},

and |ciHB| denotes the vector whose entries are equal to the absolute values of the entries
of vectorηiHB.

Proof: Let us suppose that there isx∈ Pi(Ω) such thatx 6∈ QLNL,i(Ω). SincePi(Ω) ⊆
QL(Ω), it results thatx 6∈QLNL,i(Ω) impliesx 6∈ {x : Ax−Bϕi(Fx)∈ Ω}. That is, there exists
j such that

H j(Ax−Bϕi(Fx)) > g j ,

whereH j andg j denote thej-th row of H and j-th component ofg respectively. Using the
inequalityaϕi(y) ≤ max{ak0y,akiy−|aci |} (see Lemma 5.29) it follows that

−H jBϕi(Fx) ≤ max{−H jBk0Fx,−H jBkiFx−|H jBci |}.

Two different cases must be considered:
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1. −H jBk0Fx≥−H jBkiFx−|H jBci |. In this case

g j < H j(Ax−Bϕi(Fx)) ≤ H jAx−H jBk0Fx = H j(A−Bk0F)x.

This contradicts the fact thatH(A−Bk0F)x≤ g (recall thatPi(Ω) ⊆ QL(Ω)).

2. −H jBk0Fx < −H jBkiFx−|H jBci |. In this other case

g j < H j(Ax−Bϕi(Fx)) ≤ H jAx−H jBkiFx−|H jBci |.

This contradicts the fact thatH(A−BkiF)x≤ g+ |ciHB| (see the definition ofPi(Ω)).

Then,x∈ Pi(Ω) impliesx∈ QLNL,i(Ω). This proves thatPi(Ω) ⊆ QLNL,i(Ω).

To conclude the proof it will be shown thatQLNL,i(Ω)⊆Pi(Ω). Suppose thatx∈QLNL,i(Ω).
Note that the functions defined in (5.22) can be expressed as

ϕi(y) = kiy+ciσ
(

k0−ki

ci
y

)

,

whereσ(y) = sign(y)min{|y|, 1} is the saturation function. As−|ciHB| ≤ −ciHBσ(y),
for everyy∈ R, it follows that

H(Ax−BkiFx)−|ciHB| ≤ H(Ax−BkiFx)−HBciσ
(

k0−ki

ci
Fx

)

= H(Ax−Bϕi(Fx)) ≤ g,

where the last inequality follows fromx∈ QLNL,i(Ω). This proves that ifx∈ QLNL,i(Ω) then
x∈ Pi(Ω), or equivalently,QLNL,i(Ω) ⊆ Pi(Ω).

In the following theorem it is shown that the operatorQLNL(·) can be obtained from
operatorsQLNL,i(·), i ∈ NN.

Theorem 5.31 Let Ω be a polytope given byΩ = {x∈ Rn : Hx≤ g}, then

QLNL(Ω) =
N
⋂

i=1

QLNL,i(Ω).

Proof: First, it will be shown thatQLNL(Ω) ⊆
N
⋂

i=1
QLNL,i(Ω). Let us suppose thatx ∈

QLNL(Ω). Then, by definition

Ax−Bϕ(Fx) ∈ Ω,

Ax−Bk0Fx∈ Ω.
(5.24)
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Lemma 5.19 states thatϕi(Fx) ∈ co (k0Fx,ϕ(Fx)), i ∈ NN. Bearing this in mind it is
inferred from equation (5.24) and the convexity ofΩ that

Ax−Bϕi(Fx) ∈ Ω, i ∈ NN.

That is,x∈ QLNL,i(Ω). This proves thatQLNL(Ω) ⊆
N
⋂

i=1
QLNL,i(Ω).

To finish the proof it is sufficient to show that
N
⋂

i=1
QLNL,i(Ω) ⊆ QLNL(Ω). Suppose that

x∈
N
⋂

i=1
QLNL,i(Ω). By definition,

Ax−Bk0Fx∈ Ω,

Ax−Bϕi(Fx) ∈ Ω, ∀i ∈ NN.

Since Lemma 5.19 states thatϕ(Fx) ∈ co (ϕ1(Fx), . . . ,ϕN(Fx)) it is concluded that

Ax−Bϕ(Fx) ∈ Ω,

Ax−Bk0Fx∈ Ω.

Therefore,x∈ QLNL(Ω) and the statement is proved.

Theorem 5.32 Let Ω be a polytope given byΩ = {x∈ Rn : Hx≤ g}. Then QLNL(Ω) is a
polytope that can be obtained from the following equality

QLNL(Ω) =
N
⋂

i=1

Pi(Ω), (5.25)

where Pi(Ω) = QL(Ω)∩{x∈ Rn : H(A−BkiF)x≤ g+ |ciHB|}.

Proof: The proof is a direct application of Theorems (5.30) and (5.31).

Now, theLNL-domain of attraction (see Definition 5.25) can be obtained by means of a
simple recursion. It is also stated in this section that anyλ -contractive set is contained in
theLNL-domain of attraction. As it will be shown, this implies thatthe proposed approach
outperforms any estimation strategy based on linear difference inclusions. The following
theorem provides an important result.
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Theorem 5.33 Denote L(F) the region of linear behavior of system (3.19), that is, L(F) =
{x ∈ Rn : |Fx| ≤ b1}. Suppose thatΦ ⊆ L(F) is a polytopic invariant set, with non zero
volume, corresponding to the asymptotically stable systemxk+1 = (A−Bk0F)xk. Denote
now C0 = Φ and consider the following recursion

Ck+1 = QLNL(Ck).

Then:

(i) Ck is a polytope, for all k∈ N.

(ii) Ck is an LNL-invariant set, for all k∈ N.

(iii) Ck belongs to the LNL-domain of attraction of the system, for all k ∈ N.

(iv) The sequence{C0,C1, . . .} converges to the LNL-domain of attraction of system (3.19).

(v) The LNL-domain of attraction of system (3.19) is a convexset.

Proof:

(i) Theorem 5.32 states that ifΩ is a polytope then alsoQLNL(Ω) is a polytope. This, and
the fact thatC0 is a polytope, prove that the recursionCk+1 = QLNL(Ck) always yields
polytopes.

(ii) As C0 belongs toL(F) it results thatxk+1 = Axk−Bk0Fxk = Axk−Bϕ(Fxk), for every
x∈C0. Therefore,C0 is not only an invariant set for the linear systemx+ = Ax−Bk0Fx,
but also for the nonlinear system:x+ = Ax−Bϕ(Fx). This is equivalent to say thatC0
is anLNL-invariant set.

Suppose thatCk−1 is an LNL-invariant set. Property 5.27 guarantees thatCk−1 ⊆
QLNL(Ck−1) = Ck. Therefore, ifx ∈ Ck then Ax− Bk0Fx ∈ Ck−1 ⊆ Ck and Ax−
Bϕ(Fx) ∈Ck−1 ⊆Ck. This proves the claim.

(iii) From theLNL-invariance ofC0⊆L(F) and the asymptotic stability of the non-saturated
system it is inferred thatC0 belongs to theLNL-domain of attraction of the system.
Note that ifCk−1 belongs to theLNL-domain of attraction thenCk = QLNL(Ck−1) also
belongs to theLNL-domain of attraction. This is due to the fact thatG(x,S) ∈ Ck−1,
for all x∈Ck and for allS∈ {1,−1}. Therefore, the recursionCk+1 = QLNL(Ck) with
C0 = Φ yieldsLNL-invariant sets that belong to theLNL-domain of attraction.

(iv) Suppose now thatx belongs to theLNL-domain of attraction of the system. AsΦ is
an invariant set with non zero volume, there existsp such that the recursionxk+1 =
G(xk,Sk) with x0 = x satisfiesxp ∈ Φ = C0 for all admissible sequenceS0,S1, . . . ,Sp.
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This is equivalent to say thatx is included inCp. That is, if x belongs to theLNL-
domain of attraction then there exists a finite integerp such thatx is included into the
p-th LNL-invariant set provided by the algorithm.

(v) It is sufficient to show that given two pointsx1 andx2 belonging to theLNL-domain
of attraction,λx1 +(1−λ )x2 belongs to theLNL-domain of attraction for everyλ ∈
[0,1]. If x1 andx2 belong to theLNL-domain of attraction then it is clear from the
previous claim that there existp1 and p2 such thatx1 ∈ Cp1, x2 ∈ Cp2. Denote now
p= max{p1, p2}, taking into account thatCk ⊆Ck+1, ∀k≥ 0, it is inferred thatx1 ∈Cp

andx2 ∈ Cp. From the fact thatCp is a convex set contained in theLNL-domain of
attraction of the system it is concluded thatλx1+(1−λ )x2 belongs toCp and therefore
to theLNL-domain of attraction for everyλ ∈ [0,1].

The recursion presented in the previous theorem requires aninvariant set for the linear
systemxk+1 = (A−Bk0F)xk, included inL(F). This admissible invariant set can be obtained
by standard algorithms (see (Gilbert and Tan, 1991; Blanchini, 1999)).

Property 5.34 Suppose thatΩ is a λ -contractive set in the sense defined in (Milani, 2002),
that is, there existsλ ∈ [0, 1) such that

x∈ εΩ ⇒ Ax−Bϕ(Fx) ∈ λεΩ, ∀ε ∈ [0, 1]. (5.26)

ThenΩ is an LNL-invariant set and it belongs to the LNL-domain of attraction of the
system.

Proof: First, it will be proved that ifΩ fulfills (5.26) then it is alsoLNL-invariant, that
is, for all x∈ Ω,

Ax−Bϕ(Fx) ∈ Ω, (5.27)

and
Ax−Bk0Fx∈ Ω. (5.28)

Equation (5.26) and the fact thatλΩ ⊆ Ω guarantee that equation (5.27) is satisfied. It
remains to show that equation (5.28) is fulfilled for everyx∈ Ω.

Givenx∈ Ω, there existsε ∈ [0,1] such that|Fεx| ≤ b1. From this,

ϕ(Fεx) = k0Fεx,

andεx∈ εΩ.
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Hence, from equation (5.26) we have that

Aεx−Bk0Fεx = Aεx−Bϕ(Fεx) ∈ λεΩ.

It follows that
Aεx−Bk0Fεx∈ λεΩ.

Notice that this is equivalent toAx−Bk0Fx∈ λΩ. This proves that ifΩ is aλ -contractive
set, then it is also anLNL-invariant set.

In the following it will be proved thatΩ belongs to theLNL-domain of attraction of the
system. This means that, ifx(0) ∈ Ω, then, for every admissible sequence{S1, S2, . . . ,Sk},
lim
k→∞

xk = 0 wherexk+1 = G(xk,Sk). Following the same arguments as before, it can be

shown that ifx ∈ λ k−1Ω, thenG(x,S) ∈ λ kΩ, for all S∈ {1,−1}. That is,xk ∈ λ kΩ, for
every admissible sequence{S0,S1, . . . ,Sk−1}. Therefore, lim

k→∞
xk = 0, for every admissible

sequence{Sk}∞
0 . This proves the claim.

A relevant consequence follows from Property 5.27. Indeed,it is well known that any
invariant set obtained using a linear difference inclusionof the nonlinearity yields aλ -
contractive invariant set (see (Blanchini, 1994)). From Property 5.27 it follows that any
approach based on a linear difference inclusion provides a contractive set that is contained
in the one obtained with the proposed result. Another interpretation of the former property
is that any estimation of the domain of attraction obtained by means of a Lyapunov function
induced by a convex set is contained in theLNL-domain of attraction.

5.2.1 CDI approach to invariance computation for Lur’e systems

Now we propose an alternative approach to the problem of characterization and computation
of invariant sets and of the domain of attraction for a Lur’e system. This approach is based on
the results proved for CDI systems. In fact, we employ a CDI system characterized by the set
valued functionF (·) overbounding the Lur’e system, that is such thatAx−Bϕ(Fx)⊆F (x).

In particular, the CDI system is determined by means of its convex bounding functions
f̌η(·), for η ∈ Rn, as illustrated in Section 3.2, which are recalled here:

f̌η(x) =

{

ηTAx−ηTBϕ̌(Fx), if ηTB≤ 0,

ηTAx−ηTBϕ̂(Fx), if ηTB > 0,

where

ϕ̌(y) = max{k0y,ϕ(y)} =

{

k0y, if y≥−b1,

ϕ(y), otherwise,



Chapter 5. Convex invariant sets for nonlinear systems 187

and

ϕ̂(y) = min{k0y,ϕ(y)} =

{

k0y, if y≤ b1,

ϕ(y), otherwise.

Recall moreover that, from Property 4.27, the one-step operator of a setΩ is defined
by means of the directional bounding functionsF̌(·, ·). From Definition 4.3, the directional
upper bounding function forx∈ X andη ∈ Rn is given by

F̌(x,η) = f̌η(x) =

{

ηTAx−ηTBϕ̌(Fx), if ηTB≤ 0,

ηTAx−ηTBϕ̂(Fx), if ηTB > 0,

and the one-step operator is given by

Q(Ω) =
⋂

η∈Rn

{x∈ X : F̌(x,η) ≤ φΩ(η)}. (5.29)

Below we prove that functioňF(·, ·) can be alternatively expressed as the pointwise ma-
ximum of affine functions. In fact, by geometric inspection we have that

ϕ̌(y) = max{k0y, k1y−c1, k2y−c2, . . . , kNy−cN},
ϕ̂(y) = min{k0y, k1y+c1, k2y+c2, . . . , kNy+cN},

and thus

F̌(x,η) =

{

ηTAx−ηTB max{k0Fx, k1Fx−c1, . . . , kNFx−cN}, if ηTB≤ 0,

ηTAx−ηTB min{k0Fx, k1Fx+c1, . . . , kNFx+cN}, if ηTB > 0.

Since, for every set ofp functions fi(x), with i ∈ Np, and everyx∈ X, we have

max{ fi(x) : ∀i ∈ Np} = −min{− fi(x) : ∀i ∈ Np},
amax{ fi(x) : ∀i ∈ Np} = max{a fi(x) : ∀i ∈ Np}, if a > 0,

amax{ fi(x) : ∀i ∈ Np} = min{a fi(x) : ∀i ∈ Np}, if a≤ 0,

it follows that

F̌(x,η) =











































































ηTAx+ max{ −ηTBk0Fx,

−ηTBk1Fx+ηTBc1,

. . . ,

−ηTBkNFx+ηTBcN},

if ηTB≤ 0,

ηTAx+ max{ −ηTBk0Fx,

−ηTBk1Fx−ηTBc1,

. . . ,

−ηTBkNFx−ηTBcN},

if ηTB > 0.
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Now, from the fact that

ηTB = −|ηTB|, if ηTB≤ 0,

ηTB = |ηTB|, if ηTB > 0,

and fromci ≥ 0 for everyi ∈ NN, it follows that

F̌(x,η) = ηTAx+ max{ −ηTBk0Fx,

−ηTBk1Fx−|ηTBc1|,
. . . ,

−ηTBkNFx−|ηTBcN|}.

(5.30)

Hence, finally we have thatx∈ Q(Ω) if and only if

ηTAx−ηTBk0Fx≤ φΩ(η),

ηTAx−ηTBk1Fx−|ηTBc1| ≤ φΩ(η),

. . . ,

ηTAx−ηTBkNFx−|ηTBcN| ≤ φΩ(η),

which meansF̌(x,η) ≤ φΩ(η), for all η ∈ Rn. Such condition, in case of polytopic sets
Ω is given by a finite number of linear constraints, as for the case ofQLNL(Ω), see (5.25).
The one-step operator for the CDI system overbounding the Lur’e one can be used in the
algorithm illustrates in Theorem 5.33 to compute a sequenceof invariant sets for the CDI
system. Any invariant set for the CDI system is invariant also for every overbounded system,
hence also for the Lur’e one.

Finally, we prove that the one-step operators, for the CDI system and for the Lur’e sys-
tem, are the same. This means that the algorithm generates the same sequence of invariant
sets.

Property 5.35 Given Ω ∈ K (Rn) and a Lur’e system (3.19) for which Assumption 3.8
holds, we have that

QLNL(Ω) = Q(Ω), (5.31)

where the one-step operators are defined in (5.25) and in (5.29), withF̌(·, ·) in (5.30).

Proof: The property follows directly from the definitions of one-step operators (5.25)
and (5.29), withηT = H j andφΩ(HT

j ) = g j , for every j-th row of matrixH.
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5.2.2 Numerical example

We provide here two numerical examples of application of theresults presented in this sec-
tion. A two-dimensional and a three-dimensional Lur’e systems are considered.

Example 5.36 Let us consider the system xk+1 = Axk−Bϕ(Fxk) with

A =

[

1.2 1

0 1.2

]

, B =

[

0.5

1

]

,

F = [0.6290 1.2261] .

(5.32)

and the odd functionϕ(·)

ϕ(y) =















y, if y ∈ [0,2)

0.25y+1.5, if y ∈ [2,4)

2.5, if y ∈ [4,∞)

, ∀y≥ 0. (5.33)

This function is represented in Figure 5.4. The matrix F is the LQR gain for the linear
region computed employing identity matrices as weights.

−8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

y

ϕ
(y

)

Figure 5.4: Nonlinear functionϕ(·).
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Theorem 5.33 shows how to obtain a sequence of LNL-invariantsets that constitutes
an estimation of the domain of attraction of the nonlinear system. This sequence has been
computed for system (5.32) and it is shown in Figure 5.5.

−15 −10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8

x1

x 2

Figure 5.5: Sequence of invariant sets for the Lur’e system.

In that figure, the most inner set is an invariant set of the linear system corresponding
to the zone of linear behavior of the system. The sequence C0, C1, . . . converging to the
LNL-domain of attraction is represented in that figure.

This is not the only method to determine invariant sets for piecewise-affine feedback sys-
tems. In (Hu and Lin, 2004), the authors propose an algorithmto obtain ellipsoidal invariant
sets for saturated feedback systems. Figure 5.6 shows the ellipsoidal invariant set obtained
by means of the results presented in (Hu and Lin, 2004), the polytopic LNL-invariant ob-
tained by means of the algorithm proposed in this paper and a numerical approximation
of the non-convex maximal invariant set. As can be seen, the polytopic LNL-invariant set
provides an improvement with respect to the ellipsoidal oneand it is a sharp convex appro-
ximation of the maximal invariant set.
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Figure 5.6: LNL-invariant set (thick line), ellipsoidal invariant set (thin line) and non-convex invariant
set (dotted line).

Example 5.37 Consider the system x+ = Ax−Bϕ(Fx) with

A =









1.2 1 3

0 1.1 1

0 0 1.2









, B =









1

0.5

1









,

F = [0.3447 0.5178 1.7351] .

(5.34)

The matrix F is the LQR gain obtained using identity matricesas weights and the nonli-
nearity is the same as in the previous example, see Figure 5.4.

The resulting tridimensional invariant sets are represented in Figure 5.7. Again, it can be
appreciated that the ellipsoidal invariant set obtained through the method presented in (Hu
and Lin, 2004) lies inside the LNL-invariant set. This is notsurprising because the result of
(Hu et al., 2004) are based on the use of linear difference inclusions.
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Figure 5.7: LNL-invariant set and ellipsoidal set.

5.3 Conclusions

In this chapter computational issues related to convex invariance for the DC and Lur’e sys-
tems are addressed. We proposed here the computational procedure for these particular
families of nonlinear systems, since they represent two useful frameworks for dealing with
real systems, which often present nonlinear dynamic functions rather than set valued ones.

First DC systems have been considered. Sufficient conditions for invariance andλ -
contractiveness of a convex set for DC systems are presented, then the obtained results are
particularized to the case of polytopes in the state space. This leads to interesting properties
which can be employed in the design of algorithmic procedures for computing invariant sets
for nonlinear systems.

Thus, an algorithm for computing aλ -contractive invariant set for discrete-time nonlinear
DC systems has been presented. We propose a method which overcomes the main problem of
the computation of local invariant sets for a nonlinear system, the computational complexity,
often unmanageable. In particular, we exploited properties of DC functions to formulate the
algorithm for computing aλ -contractive invariant set.
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Then, the problem of estimation of the domain of attraction of Lur’e systems is presented.
The results concerning iterative computation of convex invariant sets and the one-step ope-
rator is developed for Lur’e systems. The procedure proposed is based on an convex appro-
ximation of the one-step operator for a Lur’e system. It has been proved that the algorithm
generates a sequence of nested invariant sets converging tothe LNL-domain of attraction,
which represents a convex estimation of the real (possibly non-convex) domain of attraction
for the system.

The same problem is treated also from the point of view of CDI systems. It is shown that,
for every Lur’e system, an overbounding CDI system can be easily computed and, employing
the one-step operator related to the approximated CDI system, the obtained results are the
same as those achieved through the ad-hoc Lur’e approach.

The main feature of the proposed algorithms is their simplicity and their affordable com-
putational burden, indeed no global optimization problem has to be solved. Moreover, they
have been demonstrated to be quite general, since they can beapplied to a large class of
nonlinear systems.
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Chapter 6

Control invariant sets for nonlinear
systems

In this chapter we consider control invariance for nonlinear non-autonomous systems. The
main objective is to provide methods for the practical computation of λ -contractive and
control invariant sets, and the related control law, for nonlinear non-autonomous systems,
possibly uncertain. This means that we are interested in sets which areλ -contractive and
(robust) invariant for the considered nonlinear system in closed-loop with a proper control
law. Since the chapter is focused on practical and computational issues, we will consider non-
autonomous DC system, which, we recall, encloses a very wideclass of nonlinear systems.

The chapter deals with deterministic and uncertain non-autonomous DC systems. Con-
ditions forλ -contractiveness and control invariance, based on CDI systems properties, will
be first given for generic convex and compact sets, then the attention will be directed to the
case of polytopic sets, more suitable for computational aims. Another important concept,
useful in the contest of control invariant sets computation, as the one-step operator for DC
systems, is analyzed. Then, practical issues concerning algorithmic procedures to obtain
control invariant sets and the related control laws are presented and applied to a numerical
example.

6.1 Control invariant sets for DC systems

We consider here an uncertain non-autonomous DC system, that is a nonlinear discrete-time
time-invariant dynamic system

x+ = f (x,u)+w, (6.1)

195
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wherex∈ X ⊆ D ⊆ Rn is the current state,x+ ∈ Rn is the successor state,u∈U ⊆ E ⊆ Rm

is the control action,w ∈ W ⊆ Rn is the unknown but bounded uncertainty andf (·, ·) is a
particular DC function. The state constraint set isX and the input constraint set isU , while
setsD andE determine the domain on which functionf (·, ·) is defined.

In this chapter Assumption 3.19 will be extensively used. Werecall here that with
Assumption 3.19 we suppose thatf : D×E → Rn in (6.1) is a DC function defined on
D×E ⊆ Rn+m, with D ⊆ Rn andE ⊆ Rm convex with(0,0) ∈ int (D×E), and differen-
tiable at the origin. Moreover, denotingg(·, ·) and h(·, ·) the convex functions such that
f (x,u) = g(x,u)−h(x,u), for all (x,u) ∈ D×U , we assume thatg(0,0) = 0 andh(0,0) = 0.
In the sequel we will suppose that Assumption 3.19 holds, to determine the DC nature of the
dynamic functionf (·, ·) in (6.1).

Hypothesis on the state and input constraints,X andU , are expressed in the following
assumption, to which we will refer along the chapter.

Assumption 6.1 Assume that the constraint sets on the state X⊆ Rn and on the input U⊆
Rm, are closed, convex and with0∈ int(X).

In the following, when dealing with the presence of additiveuncertainty, also an assump-
tion on the uncertainty bounding setW is often supposed to hold. In particular Assumption
2.3 is referred to, meaning thatW ⊆Rn is assumed to be a compact set with 0∈ int (co (W))
(no convexity is required).

Remark 6.2 We consider here nonlinear systems with additive uncertainty, although the
results presented can be applied to more generic frameworks, see Remark 6.5. Moreover,
many of the results presented in this chapter can be extendedto DC functions f(·, ·) which
are not differentiable at the origin, see Remark 6.9.

A further assumption, not too restrictive in fact, is that the linearization of system (6.1)
is stabilizable.

Assumption 6.3 Assume that the linear system obtained linearizing function f(·, ·) in (6.1)
at the origin and in absence of uncertainty, is stabilizable.

We recall here that a setΩ ⊆ Rn is a robust control invariant set for system (6.1) and
constraintsx ∈ X andu ∈ U if Ω ⊆ X and for allx ∈ Ω there exists au(x) ∈ U such that
f (x,u(x))+ w ∈ Ω, for all w ∈ W, see the Appendix A. Then, a setΩ is a robust control
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invariant set for the system if there exists an admissible control lawu= u(x) ∈U defined for
all x∈ Ω such that every trajectory of the controlled system (6.1) starting withinΩ remains
inside it regardless on the uncertainty realization.

Also the definition ofλ -contractive set for the uncertain non-autonomous DC system is
recalled here. A setΩ ⊆ Rn is said to be aλ -contractive set for the uncertain DC system
(6.1) and constraintsx∈ X andu∈U if Ω ⊆ X and for allx∈ Ω there exists au(x) ∈U such
that f (x,u(x))+w∈ λΩ, for all w∈W, with λ ∈ [0, 1]. Clearly,λ -contractiveness implies
control invariance.

Remark 6.4 In case that the setΩ is polytopic and0∈ int(Ω), that is if there exist a finite
nh ∈ N and a matrix H∈ Rnh×n such thatΩ = {x∈ Rn : Hx≤ 1}, the condition for the set
Ω ⊆ X to beλ -contractive is the existence of a u(x) ∈ U such that H f(x,u(x),w) ≤ λ , for
all x ∈ Ω and w∈W.

In the following we propose a condition for a convex setΩ, subset of the state space, to be
a robust control invariant set for the uncertain non-autonomous DC system. Then the condi-
tion is employed to design an algorithm for computation of a robust control invariant set. The
affordable computational burden required and the generality are important characteristics of
the proposed approach.

Remark 6.5 The results provided here can be extended to the dynamic systems given by
x+ = f (x,u,w), where W⊆ Rn is a polytope and the dependence of function f(·, ·, ·) with
respect to w∈W is affine, i.e., for everȳx∈ X andū∈U, function f(x̄, ū,w) is affine in w.
In this case the system can be expressed as

x+ ∈ co ( f (x,u,wi), i ∈ Nnw),

where wi , with i∈Nnw, are the nw vertices of polytope W. It can be proved that if a setΩ⊆X
and a control law u(x) ∈ U defined for all x∈ Ω, are such thatΩ is a control invariant set
for every system x+ = f (x,u(x),wi), with i ∈ Nnw, thenΩ is a control invariant set also for
system x+ = f (x,u(x),w).

6.1.1 Control invariance condition for DC systems

In this section we present theoretical properties and results on control invariance for a convex
set and a DC system, which will be useful to define control strategies for nonlinear systems.
In the following, in fact, such properties are employed for the case of polytopic control
invariant sets, leading to computational procedures characterized by affordable complexity.
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Given the DC functionf (·, ·) as in Assumption 3.19 the directional bounding functions
F̌(·, ·,η) for anyη ∈ Rn, is defined below.

First it is worth recalling here that the CDI system overbounding a non-autonomous DC
system is characterized by

f̌η(x,u) = ∑
j∈k+

η j
(

g j(x,u)−hL
j (x,u)

)

+ ∑
j∈k−

η j
(

gL
j (x,u)−h j(x,u)

)

, (6.2)

wheregL
j (x,u) = ∇xg j(0,0)x+∇ug j(0,0)u andhL

j (x,u) = ∇xh j(0,0)x+∇uh j(0,0)u, for j ∈
Nn andk+ = k+(η) = { j ∈Nn : η j ≥ 0} andk− = k−(η) = { j ∈ Nn : η j < 0}, see Property
3.20. Recall thatg j(·, ·) andh j(·, ·) denote thej-th components ofg(·, ·) andh(·, ·), j ∈ Nn,
respectively,k+ = k+(η) is the set of indexes of non-negative elements of vectorη ∈ Rn and
k− = k−(η) the set of indexes of negative elements ofη.

Definition 6.6 Given the DC function f: D×E → Rn as in (6.1) such that Assumption 3.19
holds andη ∈ Rn, define the directional upper bounding functionF̌ : Rn×Rm×Rn → R as

F̌(x,u,η) = f̌η(x,u), (6.3)

where functionšfη(·, ·), for everyη ∈ Rn, are given by (6.2).

Then we have that the explicit expression ofF̌(x,u,η) is

F̌(x,u,η) = ∑
j∈k+

η j
(

g j(x,u)−hL
j (x,u)

)

+ ∑
j∈k−

η j
(

gL
j (x,u)−h j(x,u)

)

. (6.4)

Property 6.7 Let Assumptions 2.3, 3.19 and 6.1 hold. Given the DC functionf : X×U →Rn

as in (6.1), for everyη ∈ Rn, functionF̌(·, ·,η) defined in (6.4) is convex with respect to
(x,u) ∈ X×U.

Proof: By Definition 6.6, functionF̌(·, ·,η) is the sum of elements composed by the
sum of a convex term and a linear one. From the fact that a linear function is convex and
since also the sum of two convex functions is a convex function, the claim follows.

In the following we prove that, for anyη ∈ Rn, the functionF̌(·, ·,η) provides an upper
bound of the functionηT f (·, ·).

Property 6.8 Let Assumptions 2.3, 3.19 and 6.1 hold. Given the DC functionf : X×U →Rn

as in (6.1), for everyη ∈ Rn we have

ηT f (x,u) ≤ F̌(x,u,η), ∀(x,u) ∈ X×U, (6.5)

whereF̌(·, ·,η) is defined in (6.4).
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Proof: SincegL
j (·, ·) andhL

j (·, ·) are, by definition, the linearizations at the origin of the
convex functionsg j(·, ·) andh j(·, ·), respectively, forj ∈ Nn, it follows

gL
j (x,u) ≤ g j(x,u), ∀ j ∈ Nn, ∀(x,u) ∈ X×U,

hL
j (x,u) ≤ h j(x,u), ∀ j ∈ Nn, ∀(x,u) ∈ X×U.

(6.6)

Thus,η j(hL
j (x,u)−h j(x,u)) ≤ 0 if j ∈ k+ andη j(g j(x,u)−gL

j (x,u)) ≤ 0 if j ∈ k−, for
all j ∈ Nn and any(x,u) ∈ X×U . Hence, from this and (6.4), we have

ηT f (x,u)− F̌(x,u,η) =
n
∑
j=1

η j
(

g j(x,u)−h j(x,u)
)

−

∑
j∈k+

η j(g j(x,u)−hL
j (x,u))− ∑

j∈k−
η j(gL

j (x,u)−h j(x,u)) =

= ∑
j∈k+

η j(hL
j (x,u)−h j(x,u))+ ∑

j∈k−
η j(g j(x,u)−gL

j (x,u)) ≤ 0.

for all η ∈ Rn and for any(x,u) ∈ X×U .

Remark 6.9 Notice that differentials at the origin of functions gj(·, ·) and hj(·, ·), with res-
pect to x and u, for j∈Nn, are used to determine linear functions gL

j (·, ·) and hL
j (·, ·) fulfilling

the inequalities (6.6), see Definition 6.6. In case functions gj(·, ·) and hj(·, ·), for j ∈ Nn, are
convex but not differentiable at the origin, linear functions satisfying inequalities (6.6) can
be obtained by means of the subdifferential of gj(·, ·) and hj(·, ·) at the origin with respect to
x and u.

Another important property of functioňF(·, ·, ·) is presented in what follows.

Property 6.10 Let Assumptions 2.3, 3.19 and 6.1 hold. Given the DC functionf : X×U →
Rn as in (6.1) andη ∈ Rn, for every collection of nk elementsηk ∈ Rn and θk ≥ 0, with
k∈ Nnk, such that∑nk

k=1 θk = 1 andη = ∑nk
k=1 θkηk, we have

F̌(x,u,η) ≤
nk

∑
k=1

θkF̌(x,u,ηk), ∀(x,u) ∈ X×U, (6.7)

whereF̌(·, ·,η) is defined in (6.4).

Proof: Both sides of inequality (6.7) are given by a sum ofn terms. For the lefthand
side term, this stems directly from the definition ofF̌(·, ·, ·). For the righthand side term, for
everyk∈ Nnk, we have that

F̌(x,u,ηk) = ∑
j∈k+(ηk)

ηk
j

(

g j(x,u)−hL
j (x,u)

)

+ ∑
j∈k−(ηk)

ηk
j

(

gL
j (x,u)−h j(x,u)

)

,
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and then

nk

∑
k=1

θkF̌(x,u,ηk) =
nk

∑
k=1

θk

(

∑
j∈k+(ηk)

ηk
j

(

g j(x,u)−hL
j (x,u)

)

+

+ ∑
j∈k−(ηk)

ηk
j

(

gL
j (x,u)−h j(x,u)

)

)

=
n
∑
j=1

nk

∑
k=1

c j ,k(x),

where

c j ,k(x) =

{

θkηk
j (g j(x)−hL

j (x)), if ηk
j ≥ 0,

θkηk
j (g

L
j (x)−h j(x)), if ηk

j < 0,

for every j ∈ Nn andk∈ Nnk.

We prove that thej-th term of the lefthand side is smaller than thej-th term of the
righthand side, for everyj ∈ Nn. This, clearly, implies (6.7).

Given a genericj ∈Nn, denoted = d( j) = [η1
j , η2

j , . . . ,η
nk
j ]T and defined+ = ∑

k∈k+(d)
θkηk

j

andd− = ∑
k∈k−(d)

θkηk
j . We have thatd+ ≥ 0, d− ≤ 0, by definition, and thej-th term of the

righthand side of (6.7) is given by

nk

∑
k=1

c j ,k(x) = d+(g j(x,u)−hL
j (x,u))+d−(gL

j (x,u)−h j(x,u)).

Suppose thatη j ∈ k+(η), the case ofη j ∈ k−(η) is similar. We have to prove that

η j(g j(x,u)−hL
j (x,u)) ≤ d+(g j(x,u)−hL

j (x,u))+d−(gL
j (x,u)−h j(x,u)). (6.8)

Sinceη j = d++d− by definition,g j(x,u)−gL
j (x,u)≥0,h j(x,u)−hL

j (x,u)≥ 0 by convexity,
andd− ≤ 0, we have

η j(g j(x,u)−hL
j (x,u)) ≤ (d+ +d−)(g j(x,u)−hL

j (x,u))−
−d−(g j(x,u)−gL

j (x,u))−d−(h j(x,u)−hL
j (x,u)),

(6.9)

since the righthand side term in (6.9) is obtained by adding positive quantities to the lefthand
side one. Notice that (6.9) is equivalent to (6.8), then the property is proved.

The previous properties are the basis for the following results on control invariance and
λ -contractiveness of a convex, compact setΩ for a non-autonomous DC system.

Property 6.11 Let Assumptions 2.3, 3.19 and 6.1 hold. Givenλ ∈ [0,1], a convex, compact
setΩ ⊆ K 0(X) is a λ -contractive set (a robust control invariant set ifλ = 1) for system
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(6.1) and constraints x∈ X and u∈U if and only if there exists a control law u= u(x) ∈U
such that

ηT f (x,u(x)) ≤ λφΩ(η)−φW(η), ∀x∈ Ω, ∀η ∈ Rn. (6.10)

Proof: By definition,Ω⊆K 0(X) is aλ -contractive set for system (6.1) and constraints
x∈ X andu∈U if there exists a control lawu = u(x) ∈U such that

x+ = f (x,u(x))+w∈ λΩ, ∀x∈ Ω, ∀w∈W. (6.11)

Taking into account thatΩ is a convex, compact set and equation (C.2), we have that condi-
tion (6.11) is equivalent to

ηT( f (x,u(x))+w) ≤ φλΩ(η), ∀x∈ Ω, ∀w∈W, ∀η ∈ Rn. (6.12)

Notice that, by definition of support function, we have

φλΩ(η) = sup
x∈λΩ

ηTx = sup
x∈Ω

ηTλx = λφΩ(η), ∀η ∈ Rn,

and therefore (6.12) is satisfied if

ηT f (x,u(x)) ≤ λφΩ(η)− sup
w∈W

ηTw, ∀x∈ Ω, ∀η ∈ Rn,

which, in turn, is equivalent to equation (6.10).

The necessary and sufficient condition for a setΩ to be a robust control invariantλ -
contractive set, given by (6.10), is very hard to be tested since, even if the control law is
assumed to be known, checking the condition requires in practice to verify the fulfillment of
an infinite number of non-convex constraints, one for allx∈ Ω and allη ∈ Rn.

In what follows we present a convex relaxation of such condition to obtain an only suf-
ficient condition for a convex setΩ ⊆ X to be λ -contractive. The convex nature of the
proposed condition allows one to devise a simple algorithm to check its fulfillment. The
sufficient condition forλ -contractiveness of a setΩ is given in the following property. Note
that it has to be verified only on the boundary ofΩ.

Property 6.12 Let Assumptions 2.3, 3.19 and 6.1 hold. Givenλ ∈ [0,1] and a compact,
convex setΩ ⊆ K 0(X), if there exists a control law u= u(x) ∈ U defined on x∈ ∂Ω such
that

F̌(x,u(x),η) ≤ λφΩ(η)−φW(η), ∀x∈ ∂Ω, ∀η ∈ Rn, (6.13)

where functionF̌(·, ·, ·) is defined in (6.4), thenΩ is a λ -contractive set (a robust control
invariant set ifλ = 1) for system (6.1) and constraints x∈ X and u∈U.
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Proof: First note that, from Property 6.8, it follows that

F̌(x,u,η) ≤ λφΩ(η)−φW(η), ∀x∈ Ω, ∀η ∈ Rn, (6.14)

implies fulfillment of equation (6.10), and thenλ -contractiveness and robust control invari-
ance ofΩ. In general the inverse is not true, for this reason the condition is only sufficient,
while it is necessary and sufficient for the CDI system implicitely overbounding the DC one.
We prove that there exists a control lawu(x) ∈ U defined on∂Ω such that the condition
(6.13) is satisfied if and only if there exist a ˆu(x) ∈U defined onΩ such that condition (6.14)
is fulfilled.

Necessity is trivial, sinceΩ compact implies∂Ω ⊆ Ω. Sufficiency has to be proved.
Suppose, hence, that there exists a control lawu = u(x) ∈ U , for all x ∈ ∂Ω such that
condition (6.13) is fulfilled. From compactness and convexity of Ω it follows that given
x̂ ∈ Ω there exists a set of points of∂Ω such that ˆx is their convex combination (see The-
orem 18.5 of (Rockafellar, 1970)). This means that there exist a non-empty set ofp points
x j(x̂) ∈ ∂Ω, with p = p(x̂) ∈ N, and a set ofp reals θ j(x̂) ∈ R, for j ∈ Np, such that
x̂ = ∑p

j=1θ j(x̂) x j(x̂), θ j(x̂) ≥ 0 for all j ∈ Np, and∑p
j=1θ j(x̂) = 1. Since also the setU

has been assumed convex and the control lawu(x) ∈ U is defined on the boundary ofΩ,
then, denotingu j(x̂) = u(x j(x̂)), for all j ∈ Np, we have that ˆu(x̂) = ∑p

j=1 θ j(x̂) u j(x̂) is such

that û(x̂) ∈ U . By convexity of functionF̌(·, ·,η) on the convex setX ×U and equation
(6.13), it follows that

F̌(x̂, û(x̂),η) = F

(

p
∑
j=1

θ j(x̂) x j(x̂),
p
∑
j=1

θ j(x̂) u j(x̂),η

)

≤

≤
p
∑
j=1

θ j(x̂) F(x j(x̂),u j(x̂),η)≤
p
∑
j=1

θ j(x̂)(λφΩ(η)−φW(η))=

= λφΩ(η)−φW(η), ∀x∈ Ω, ∀η ∈ Rn.

This means that condition (6.13) implies condition (6.14) and then it is a sufficient condition
for λ -contractiveness ofΩ for system (6.1).

Property 6.12, besides giving a sufficient condition forλ -contractiveness and robust con-
trol invariance based on convex constraints satisfaction,provides a simple way to compute
an admissible, nonlinear in general, control law defined onΩ. In fact, a family of control
laws defined onΩ ⊆ X can be obtained from the knowledge of the control determinedon the
boundary ofΩ, as illustrated in the corollary below.

Corollary 6.13 Let Assumptions 2.3, 3.19 and 6.1 hold and considerλ ∈ [0,1], a compact,
convex setΩ ⊆ K 0(X) and a control law u(x) defined on∂Ω such that equation (6.13) is
fulfilled. Any control lawû(x̂) defined atx̂ ∈ Ω as û(x̂) = ∑p

j=1 θ j(x̂) u j(x̂), where p∈ N,

x j(x̂) ∈ ∂Ω and θ j(x̂) ∈ R, for j ∈ Np, are such that̂x = ∑p
j=1 θ j(x̂) x j(x̂) and θ j(x̂) ≥ 0

and∑p
j=1 θ j(x̂) = 1, is an admissible robust control law such thatΩ is a λ -contractive set

(a robust invariant set ifλ = 1) for the nonlinear system (6.1) in closed-loop.
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This means that, given a pointx ∈ Ω, any admissible set of pointsx j with j ∈ Np on the
boundary such thatx is a convex combination of them, determines an admissible control
input atx. Any control law defined onΩ as a selection atx ∈ Ω among all the admissible
control input determined in that way provides an admissiblerobust control law.

6.1.2 Condition for control invariance for polytopic Ω.

The aim of the section is to propose a condition for control invariance, andλ -contractiveness,
simple to be computed. In particular, under the assumption thatΩ is a polytope, we provide
a condition for control invariance given by a finite number ofconvex constraints involving
only its vertices.

First we consider a sufficient condition for a polytopeΩ ∈ K 0(X) to beλ -contractive
for the deterministic nonlinear system

x+ = f (x,u), (6.15)

where f (·, ·) is the DC dynamic function of (6.1). Then the result will be extended to provide
a sufficient condition for robust control invariance of a polytope for the uncertain nonlinear
system (6.1).

Property 6.14 Let Assumptions 3.19 and 6.1 hold. Givenλn ∈ [0,1] and a polytopeΩ =
{x ∈ Rn : Hx ≤ 1} ⊆ X, with H ∈ Rnh×n, and denoting as vj ∈ Rn, for j ∈ Nnv, its nv

vertices, if there exist control actions defined at the vertices, uj = u(v j) ∈U, for all j ∈ Nnv,
such that

F̌(v j ,u j ,HT
i ) ≤ λn, ∀ j ∈ Nnv, ∀i ∈ Nnh, (6.16)

where functionF̌(·, ·, ·) is defined in (6.4), thenΩ is a λ -contractive set (a control invariant
set if λn = 1) for system (6.15) and constraints x∈ X and u∈ U. Moreover, there exists a
control law u(x) ∈U defined onΩ such that for any x0 ∈ Ω the trajectory{xk}k∈N generated
by (6.15) with control law uk = u(xk), satisfies xk ∈ λ k

nΩ, for all k ∈ N.

Proof: First notice that, from Property 6.8 and equation (C.3), it follows that

F̌(x,u,HT
i ) ≤ λφΩ(HT

i ) = λ , ∀x∈ Ω, ∀i ∈ Nnh (6.17)

implies fulfillment of equation (6.10) withW = {0}, and thenλ -contractiveness ofΩ. In
general the inverse is not true, for this reason the condition is only sufficient. Similarly to
the case of generic setsΩ ∈ K 0(X), see Property 6.12, we have to demonstrate that there
exists a control lawu j ∈U defined at verticesv j , for j ∈ Nnv such that the condition (6.16)
is satisfied if and only if there exist a ˆu(x) ∈ U defined onΩ such that condition (6.17) is
fulfilled. Necessity is trivial, sincev j ∈ Ω for all j ∈ Nnv. Sufficiency has to be proved.
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Notice that, since any point of a polytope,x ∈ Ω, can be expressed as the convex com-
bination of its vertices then there existθ j(x) ≥ 0, j ∈ Nnv, such thatx = ∑nv

j=1 θ j(x) v j , and

∑nv
j=1 θ j(x) = 1. Moreoveru(x) = ∑nv

j=1θ j(x) u j is admissible, i.e.,u(x)∈U , from convexity

of U . Considerε ∈ [0, 1]. From the convexity of̌F(·, ·,HT
i ), for anyHT

i ∈ Rn and (6.16), it
is inferred that, for allj ∈ Nnv andi ∈ Nnh

F̌(εv j ,εu j ,HT
i )− ελn ≤ max

0≤ε≤1

{

F̌(εv j ,εu j ,HT
i )− ελn

}

=

= max
{

F̌(0,0,HT
i )−0; F̌(v j ,u j ,HT

i )−λn
}

≤ 0,

sinceF̌(0,0,HT
i ) = 0 from Assumption 3.19, and that means thatF̌(εv j ,εu j ,HT

i ) ≤ ελn,
for all j ∈ Nnv and i ∈ Nnh, for anyε ∈ [0, 1]. Consider ˆx∈ εΩ and notice that there exists
x∈Ω such that ˆx= εx= ∑nv

j=1θ j(x)εv j , by definition. Define ˆu(x̂) = εu(x) = ∑nv
j=1θ j(x)εu j ,

clearly û(x̂) ∈U . From Property 6.8 and convexity of functioňF(·, ·,HT
i ), for anyHT

i ∈ Rn,
it follows that if x̂∈ εΩ then

Hi f (x̂, û(x̂)) ≤ F̌(x̂, û(x̂),HT
i ) = F̌

(

nv

∑
j=1

θ j(x)εv j ,
nv

∑
j=1

θ j(x)εu j ,HT
i

)

≤

≤
nv

∑
j=1

θ j(x)F̌(εv j ,εu j ,HT
i ) ≤

nv

∑
j=1

θ jελn = ελn,

for all i ∈ Nnh. This means that condition (6.17) is satisfied posing forε = 1 and that ˆx∈ εΩ
implies f (x̂,u(x̂)) ∈ ελnΩ, for all ε ∈ [0,1]. Hence,Ω is a λ -contractive set for the DC
system (6.15) andx0 ∈ Ω impliesxk ∈ λ k

nΩ.

The following corollary will be employed to enlarge a (robust) control invariant set.

Corollary 6.15 Let Assumptions 3.19 and 6.1 hold. Consider a polytopic setΩ = {x∈ Rn :
Hx≤ 1}⊆X, with H∈Rnh×n, its vertices vj ∈Rn for j ∈Nnv and admissible control actions
defined at the vertices uj = u(v j) ∈ U for all j ∈ Nnv such that condition (6.16) is fulfilled.
Givenx̂ ∈ X, defineΩ̂ = co(Ω∪ x̂) = {x ∈ Rn : Ĥx ≤ 1}, whereĤ ∈ Rnĥ×n and n̂h ∈ N.
If there existsû = û(x̂) ∈ U such thatF̌(x̂, û, ĤT

i ) ≤ λn, for every i∈ Nnĥ
, thenΩ̂ is a λ -

contractive set (a control invariant set ifλn = 1) for system (6.15) and constraints x∈ X and
u∈U.

Proof: ConsiderΩ̂ as candidateλ -contractive set in Property 6.14. If ˆx ∈ Ω, then
Ω̂ = Ω, trivial. Consider ˆx /∈ Ω. We have to check condition (6.16) forΩ̂ and all its vertices,
which are given by ˆx and a subset of the vertices ofΩ. Pointx̂ fulfills condition (6.16) for all
ĤT

i by hypothesis, we consider now any vertex ofΩ.

SinceΩ ⊆ Ω̂ we have thatai = maxx{Ĥix : x∈ Ω} ≤ 1, for everyi ∈ Nnĥ
. Since strong
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duality holds, see (Boyd and Vandenberghe, 2004), we have that

ai = min
α,θ i∈Rnh

α

s.t. α =
nh

∑
k=1

θ i
k,

Ĥi =
nh

∑
k=1

θ i
kHk,

θ i
k ≥ 0, ∀k∈ Nnh,

which means that the dual optimizer, denote itθ̂ i ∈ Rnh, is such thatĤi = ∑nh
k=1 θ̂ i

kHk and

∑nh
k=1 θ̂ i

k = ai ≤ 1, for all i ∈ Nnĥ
.

From Property 6.10, for allv j andu j , j ∈ Nnv, we have that

F̌(v j ,u j , ĤT
i ) ≤

nk

∑
k=1

θ i
kF̌(v j ,u j ,HT

k ) ≤
nk

∑
k=1

θ i
kλn = aiλn ≤ λn,

for all i ∈ Nnĥ
, since vertices ofΩ are assumed to satisfy condition (6.16). The result is

proved.

Any setΩ̂ as in Corollary 6.15 is a control invariant set, with contraction factorλn. Prop-
erty 6.14 provides a criterion to design a control law and to determine whether a polyhedral
setΩ ⊆ X is a robust control invariant set for a discrete-time DC system in absence of uncer-
tainty, the subsequent corollary permits to determine an enlarged control invariant set. These
results are easily extended to the uncertain DC system (6.1).

Property 6.16 Let Assumptions 2.3, 3.19 and 6.1 hold. Consider a polytopeΩ = {x∈ Rn :
Hx ≤ 1} ⊆ X, with H ∈ Rnh×n, its nv vertices vj ∈ Rn for j ∈ Nnv, and the uncertain DC
system (6.1). If there exists an admissible control law defined at the vertices uj = u(v j) ∈U
for all j ∈ Nnv, such that

F̌(v j ,u j ,HT
i ) ≤ λw−φW(HT

i ), ∀ j ∈ Nnv, ∀i ∈ Nnh, (6.18)

for a λw ∈ [0,1], where functionF̌(·, ·, ·) is defined in (6.4), thenΩ is a λ -contractive set for
the DC system (6.1) with contraction factorλw.

Moreover, given anŷx∈ X and denotinĝΩ = co(Ω∪ x̂) = {x∈ Rn : Ĥx≤ 1} with Ĥ ∈
Rnĥ, if there existŝu = u(x̂) ∈U satisfyingF̌(x̂, û, ĤT

i ) ≤ λw−φW(ĤT
i ), for all i ∈ Nnĥ

, also

the setΩ̂ is a λ -contractive set for the DC system (6.1) with contraction factor λw.

Proof: Condition onΩ to be aλ -contractive set for the uncertain DC system is that
H( f (x,u(x))+w) ≤ λw, for all x∈ Ω andw∈W. Inequalities (6.18) implies the fulfillment



206 6.1. Control invariant sets for DC systems

of the condition at the verticesv j , j ∈ Nnv, in fact

Hi f (v j ,u j)+Hiw≤ F̌(v j ,u j ,HT
i )+Hiw≤

≤ F̌(v j ,u j ,HT
i )+ sup

w∈W
Hiw= F̌(v j ,u j ,HT

i )+φW(HT
i )≤λw,

for all j ∈ Nnv and i ∈ Nnh. From convexity of functionF̌(·, ·,η), for any η ∈ Rn and
convexity ofΩ andU , the results can be proved similarly to Property 6.14 and Corollary
6.15.

Then, Property 6.16 provides a sufficient condition for a given polytopeΩ ∈ K 0(X) to
be a robust control invariant andλ -contractive set for the uncertain DC system (6.1). In what
follows we demonstrate a convexity related property of the set of polytopes for which the
sufficient condition is satisfied. For this purpose, a definition is introduced here.

Definition 6.17 Let Assumptions 2.3, 3.19 and 6.1 hold. We denote withΛ(λw) ⊆ K 0(X)
the set of polytopesΩ ⊆ X which satisfy hypothesis of Property 6.16. That is, polytope
Ω ∈ Λ(λw) if there exists an admissible control law defined at its vertices such that condition
(6.18) is fulfilled.

Roughly speaking, givenλw ∈ [0,1], the setΛ(λw) is composed by those polytopes inX
which satisfy the sufficient condition for robust invariance andλ -contractiveness (6.18) for
the non-autonomous uncertain DC system.

Property 6.18 Let Assumptions 2.3, 3.19 and 6.1 hold. Given a polytopeΩ = {x ∈ Rn :
Hx≤ 1} andλw ∈ [0,1], the set

Γ(Ω,λw) = {γ ∈ R+ : γ Ω ∈ Λ(λw)} (6.19)

is an interval inR+.

Proof: First notice that 0/∈ Γ(Ω,λw), since this would imply the existence ofu ∈ U
such that

f (0,u)⊕W ⊆ {0},
which contradicts the assumption 0∈ int (co (W)). Then we considerγ > 0.

Denoting the vertices ofΩ asv j , for j ∈ Nnv, then the vertices of the polytopeγ Ω are
v j

γ = γ v j , for j ∈ Nnv, with γ > 0. Moreover, since for anyγ > 0 we have

γΩ = {x∈ Rn : Hx≤ γ} = {x∈ Rn :
1
γ

Hx≤ 1},



Chapter 6. Control invariant sets for nonlinear systems 207

then it can be proved thatγΩ satisfies condition (6.18) if and only if there existu j
γ = u j(γv j)∈

U such that

F̌(γv j ,u j
γ ,H

T
i ) ≤ γλw−φW(HT

i ), ∀ j ∈ Nnv, ∀i ∈ Nnh. (6.20)

In fact we have that condition (6.18) for setγΩ is given by

F̌(γv j ,u j
γ ,

1
γ

HT
i ) ≤ λw−φW(

1
γ

HT
i ), ∀ j ∈ Nnv, ∀i ∈ Nnh,

and from

F̌(γv j ,u j
γ ,

1
γ

HT
i ) =

1
γ

F̌(γv j ,u j
γ ,H

T
i ), ∀ j ∈ Nnv, ∀i ∈ Nnh,

and

φW(
1
γ

HT
i ) =

1
γ

φW(HT
i ), ∀i ∈ Nnh,

then conditions (6.18) and (6.20) are equivalent.

Assume thatα ∈ Γ(Ω,λw) andβ ∈ Γ(Ω,λw), i.e., there exist two control lawsu j
α ∈ U ,

defined at the verticesv j
α of αΩ, and u j

β ∈ U , defined at the verticesv j
β of βΩ, for all

j ∈ Nnv, such thatαΩ andβΩ satisfy the hypothesis of Property 6.16. For anyθ ∈ [0,1],
denoteδ = δ (θ) = θα +(1−θ)β and defineu j

δ = u j
δ (θ) = θu j

α +(1−θ)u j
β , for all j ∈Nnh.

Note thatu j
δ ∈U , j ∈ Nnv, by convexity ofU . From convexity of functionF̌(·, ·,η) for any

η ∈ Rn, it follows that

F̌(δv j ,u j
δ ,HT

i ) = F̌(θαv j +(1−θ)βv j ,θu j
α +(1−θ)u j

β ,HT
i ) ≤

≤ θ F̌(αv j ,u j
α ,HT

i )+(1−θ)F̌(βv j ,u j
β ,HT

i ) ≤ δλw−φW(HT
i ), j ∈ Nnv, i ∈ Nnh

(6.21)
which means thatδΩ with control lawu j

δ defined at its verticesδv j , for j ∈ Nnh, satisfies
hypothesis of Property 6.16, thenδΩ ∈ Λ(λw). This implies thatδ (θ) ∈ Γ(Ω,λw) for any
θ ∈ [0,1], or equivalently, thatΓ(Ω,λw) is a convex set inR, hence an interval inR+.

An explicit relation between the contractive factorλn for the deterministic DC system
(6.15) and the uncertainty that can be tolerated by the system beforeΩ looses its condition
of invariance is easily inferred. That is, given a control law and a setΩ whose contraction
factor isλn for system (6.15), if

max
i∈Nnh

φW(HT
i ) ≤ λw−λn, (6.22)

thenΩ is aλ -contractive set for the uncertain system (6.1), with contraction factorλw.
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6.1.3 One-step operator for non-autonomous DC systems

We present here some considerations on the one-step operator for the particular case of non-
autonomous DC systems and polytopic setsΩ. It has been already pointed out the impor-
tance of the one-step operator, on which many iterative algorithms for the computation of
invariant andλ -contractive sets are based. See for instance Theorems 4.32and 5.33, which
provide properties of the sequence of invariant sets obtained applying iteratively the one-
step operator for CDI systems and Lur’e systems. Similar results can be stated for the case
of non-autonomous DC systems.

It is worth pointing out that, in what follows, we consider the non-autonomous DC system
(6.15) and that for the one-step operator and its convex approximations defined below the
dependence on the contraction factorλ is posed explicitly, for notational clearness.

Definition 6.19 Let Assumptions 3.19 and 6.1 hold. Consider a polytopeΩ = {x ∈ Rn :
Hx≤ 1} ⊆ X, with H∈ Rnh×n, λ ∈ [0,1] and the DC system (6.15). Define

QF(Ω,λ ) = {x∈ X : ∃u∈U, F̌(x,u,HT
i ) ≤ λ ,∀i ∈ Nnh},

Q(Ω,λ ) = {x∈ X : ∃u∈U, f (x,u) ∈ λΩ},
(6.23)

where functionF̌(·, ·, ·) is defined in (6.4).

OperatorQF(·, ·) provides a convex inner approximation of the exact one-stepoperator
Q(·, ·), widely employed in many classical recursive algorithms tocompute control invariant
andλ -contractive sets. Recall that Property 6.14, to which we refer in the following property,
is the sufficient condition forλ -contractiveness for polytopic sets and deterministic non-
autonomous DC systems.

Property 6.20 Let Assumptions 3.19 and 6.1 hold. For any polytopeΩ = {x∈ Rn : Hx≤
1} ⊆ X, with H∈ Rnh×n, andλ ∈ [0,1], set QF(Ω,λ ) is convex and closed and such that
QF(Ω,λ )⊆Q(Ω,λ ). If Ω is such that hypothesis of Property 6.14 holds, thenΩ⊆QF(Ω,λ )
and QF(Ω,λ ) is a λ -contractive set with contraction factorλ .

Proof: Convexity and closure follow from the definition, since for every i ∈ Nnh the set

PF(Ω,λ)={(x, u) ∈ X×U : F̌(x,u,HT
i )≤λ ,∀i ∈ Nnh},

is convex and closed, from Property 6.7 and Assumption 6.1, andQF(Ω,λ ) is the projection
on the state space of the setPF(Ω,λ ) ⊆ X×U .
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InclusionQF(Ω,λ )⊆Q(Ω,λ ) follows from Property 6.8. InclusionΩ⊆QF(Ω,λ ) is due
to the fact that ifx∈ Ω then there existsu∈U such thatF̌(x,u,HT

i ) ≤ λ , for all i ∈ Nnh, as
proved in proof of Property 6.14. Finally, contractivenessis due to the fact thatx∈QF(Ω,λ )
impliesx∈Q(Ω,λ ) and then the existence ofu(x)∈U such thatf (x,u)∈ λΩ⊆ λQF(Ω,λ ).
That is,x∈ QF(Ω,λ ) implies the existence ofu = u(x) ∈U such thatf (x,u) ∈ λQF(Ω,λ ),
which is the definition ofλ -contractiveness for the setQF(Ω,λ ).

Hence, given a polytopeΩ ∈ K 0(X) andλ ∈ [0,1], the iterative application of operator
QF(·, ·), provides a sequence of nestedλ -contractive sets for the DC system (6.15). The main
problem from the computational point of view is thatQF(Ω,λ ) is not a polytope in general
case, thus the sequence of sets generated by applying iteratively the one-step operator are
not polytopic, not even if the initial set is a polytopic control invariant set. Alternatively,
a polytopic inner approximation can be computed. The following property is instrumental
to that purpose and provides a deeper insight on the characterization of the convex one-step
operatorQF(·, ·).

Property 6.21 Let Assumptions 3.19 and 6.1 hold. Given any polytopeΩ = {x∈Rn : Hx≤
1} ⊆ X, with H∈ Rnh×n, andλ ∈ [0,1], then QF(Ω,λ ) = Q̂F(Ω,λ ) with

Q̂F(Ω,λ)={x∈ X : ∃u∈U, F̌(x,u,η)≤λ ,∀η ∈ Θ(H)}, (6.24)

where functionF̌(·, ·, ·) is defined in (6.4) and

Θ(H) = {η ∈ Rn : ∃θ ∈ Rnh,θi ≥ 0,
nh

∑
i=1

θi ≤ 1,η =
nh

∑
i=1

θiH
T
i }. (6.25)

Proof: Notice thatΘ(H) ⊆ Rn is the polytope whose elements are those vectors inRnh

that can be expressed as convex combinations of the rows of matrix H, that is ofHT
i , with

i ∈ Nnh.

We prove thatQF(Ω,λ ) ⊆ Q̂F(Ω,λ ) and Q̂F(Ω,λ ) ⊆ QF(Ω,λ ). The latter is trivial,
sinceHT

i ∈ Θ(H), for all i ∈ Nnh, and thenQF(Ω,λ ) is defined by a set of constraints which
are a subset of those defininĝQF(Ω,λ ). We proveQF(Ω,λ ) ⊆ Q̂F(Ω,λ ) by reduction to
absurd. Suppose that there is a ˆx ∈ QF(Ω,λ ) such that ˆx /∈ Q̂F(Ω,λ ). Then, there exists a
η ∈ Θ(H) such that

F̌(x̂, û,η) > λ , ∀û∈U.

From x̂∈ QF(Ω,λ ) and Property 6.10, we have that

λ < F̌(x̂, û,η) ≤
nh

∑
i=1

θiF̌(x̂, û,HT
i ) ≤

nh

∑
i=1

θiλ ≤ λ ,

for a proper selection ofθ ∈ Rnh, which is absurd. ThenQF(Ω,λ ) ⊆ Q̂F(Ω,λ ), and the
property is proved.
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The meaning of Property 6.21 is clear: a pointx∈ X belongs to setQF(Ω,λ ) if and only
if there existsu∈U such thatF̌(x,u,η)≤ λ , not only forη = HT

i , with i ∈ Nnh, but also for
any vectorη that belongs to the polytopeΘ(H) ⊆ Rn.

Corollary 6.22 Let Assumptions 3.19 and 6.1 hold. Consider a polytopeΩ = {x ∈ Rn :
Hx≤ 1} ⊆ X, with H∈ Rnh×n, andλ ∈ [0,1], such that hypothesis of Property 6.14 holds
for Ω, andx̂∈QF(Ω,λ ). Then the set̂Ω = co(Ω∪ x̂) = {x∈Rn : Ĥx≤ 1}, whereĤ ∈Rnĥ×n

and n̂h ∈ N, is aλ -contractive set (a robust control invariant set ifλn = 1) for system (6.15)
and constraints x∈ X and u∈U.

Proof: We prove that alsôΩ satisfies the hypothesis of Property 6.14, which, we recall,
provides a sufficient condition for a polytope to be aλ -contractive set. Analogously to the
proof of Corollary 6.15, we have thatΩ ⊆ Ω̂ implies the existence ofθ j ≥ 0 such that
ĤT

j = ∑nh
k=1 θ j

k HT
k , ∑nh

k=1 θ j
k ≤ 1, which is equivalent tôHT

j ∈ Θ(H), for all j ∈ Nnĥ
. Property

6.20 and ˆx ∈ QF(Ω,λ ) imply that Ω̂ ⊆ QF(Ω,λ ), because alsoΩ is a subset ofQF(Ω,λ )
and setQF(Ω,λ ) is convex. From this and Property 6.21 we have that for everyx∈ Ω̂ there
existsu ∈ U such thatF̌(x,u,η) ≤ λ , for all η ∈ Θ(H), and in particular for every vertex
of Ω̂ and everyĤT

j , j ∈ Nnĥ
. Hence hypothesis of Property 6.14 holds forΩ̂, thenΩ̂ is a

λ -contractive set.

Property 6.22 means that, given a polytopic setΩ that satisfies the sufficient condition for
λ -contractiveness, any point ˆx in the setQF(Ω,λ ) determines anotherλ -contractive polytope
for the non-autonomous DC system. Then, this permits to design an algorithmic procedure
to generate a sequence of nested control invariant orλ -contractive polytopic sets for the DC
system.

6.1.4 Practical issues on design.

The first issue to be tackled in order to apply the results shown in the previous section is
how to define the potential control invariant setΩ. Once a suitable guess forΩ is given, the
sufficient condition for control invariance can be applied.One possible choice is to select, as
initial guess ofΩ, a (robust) invariant set for the linear system obtained linearizing the DC
system.

Standard iterative algorithms to determine a (robust) invariant set for linear systems have
been proposed in literature, see for instance (Gilbert and Tan, 1991; Blanchini, 1999) and
(Kolmanovsky and Gilbert, 1998). In case of absence of uncertainty, given aλ -contractive
invariant setΩL for the linearized system with contraction factorλ ∈ [0, 1), a properly scaled
setαΩL, with α > 0, can provide an invariant set also for the nonlinear system.
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Once a (robust) control invariant setΩ is given, many approaches can be considered in
order to obtain the control law such that setΩ is a robust invariant set for the nonlinear
DC system (6.1) in closed-loop. From a practical point of view, it is sufficient to define a
control action at any of the vertices, i.e.u j = u(v j), to obtain a control law defined over the
whole setΩ. In fact, as illustrated above, a proper convex combinationof valuesu(v j), with
j ∈ Nnv, determines a control value at everyx∈ Ω such that invariance ofΩ is ensured for
the closed-loop system, from convexity ofΩ and functionsF̌(·, ·,η).

Here we propose an algorithm to generate a control invariantset for the deterministic
DC system. We select as initial shape for the control invariant set, a polytopeΩ which is a
control invariant set for the system linearized at the origin.

Recall that by Assumption 6.3, there exists a linear feedback such that the linearized
system is asymptotically stable. A sketch of the algorithm follows, wherekmax∈ N is the
number of maximal iterations performed.

Algorithm 3 Computing a control invariant set for a deterministic DC system.
Given the DC system as in (6.15):

(1) Compute a linear feedbackK ∈Rm×n such that the linearized system is asymptotically
stable in closed-loop and compute an invariant setΩ for the closed-loop linear system.

(2) Obtain α̂, (a lower approximation of) the maximalα such thatαΩ fulfills (6.16).
DenoteΩ0 = α̂Ω = {x∈ Rn : H0x≤ 1}, with H0 ∈ Rn0

h×n and a propern0
h ∈ N, and

k = 0.

(3) Generatexk ∈X such thatxk /∈Ωk and definêΩ = co(Ωk∪xk) = {x∈Rn : Hk+1x≤ 1},

with Hk+1 ∈ Rnk+1
h ×n and a propernk+1

h ∈ N.

(4) If there existsuk ∈ U such thatF̌(xk,uk,(Hk+1
i )T) ≤ λn, for every i ∈ Nnk+1

h
then

Ωk+1 = Ω̂, otherwise go to (3).

(5) Posek = k+1. If k≥ kmax stop, otherwise go to (3).

Once a stabilizing feedback law is determined, we employ themethod illustrated in
(Fiacchini,Álamo and Camacho, 2007) to obtainΩ, invariant set for the linearized system in
closed-loop with the linear feedback. The sufficient condition for control invariance (6.16)
for a polytopic setΩ is employed in a dichotomic algorithm to compute an approximation
of the maximalα > 0 such thatαΩ is a control invariant set for nonlinear system (6.1).
Checking if inequality (6.16) is fulfilled by every vertex ofαΩ, is achieved by solving a set
of convex problems. Once a control invariant setαΩ has been obtained, Corollary 6.15 is
used to enlarge the set. Random pointsxk in the state space are generated: if forxk ∈ X there
exists auk ∈U fulfilling the hypothesis of Corollary 6.15, then the new control invariant set
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is obtained as the convex hull of the current control invariant set and pointxk.

It has to be pointed out that the enlargement step often requires a considerable com-
putational effort. An accurate procedure to select properly pointsxk should be defined for
high dimensional cases, with the aim of reducing the complexity due to the computation of
hyperplanes determining setsΩ̂.

Another computational problem involves the choice ofxk ∈ X such thatx /∈ Ωk, that
can be a non-trivial procedure for high dimensional problems. We propose an alternative
procedure based on the following corollary, which is a direct consequence of Property 6.22.

Corollary 6.23 Let Assumptions 3.19 and 6.1 hold. Consider a polytopeΩ = {x ∈ Rn :
Hx≤ 1} ⊆ X, with H∈ Rnh×n, andλ ∈ [0,1], such that hypothesis of Property 6.14 holds
for Ω, and, givenx̂∈ X, define the set̂Ω = co(Ω∪ x̂). If there existŝu = û(x̂) ∈U such that
F̌(x̂, û,HT

i ) ≤ λn, for every i∈ Nnh, thenΩ̂ is a λ -contractive set (a control invariant set if
λn = 1) for system (6.15) and constraints x∈ X and u∈U.

Proof: Altough the result can be considered as an application of Property 6.22, the proof
is provided. It is worth pointing out that under the hypothesis of the corollary we have that

F̌(x̂, û,HT
i ) ≤ λn, ∀i ∈ Nnh ⇒ Hi f (x̂, û) ≤ λn, ∀i ∈ Nnh ⇒ f (x̂, û) ∈ λnΩ,

and f (x,u(x)) ∈ λnΩ for all x∈ Ω and a properu = u(x) ∈U , beingΩ a λ -contractive set.
This does not implyλ -contractiveness of̂Ω, that is f (x,u(x)) ∈ λnΩ̂, for all x ∈ Ω̂ and for
properu = u(x) ∈U , which is the claimed result and has to be proved.

We consider the non-trivial case ofx /∈Ω. We prove that alsôΩ satisfies the hypothesis of
Property 6.14. DenotêH ∈Rnĥ×n, with nĥ ∈N, the matrix such that̂Ω = {x∈Rn : Ĥx≤ 1}.
Remind that the set ofnv̂ vertices ofΩ̂ is composed by ˆx and a subset of vertices ofΩ
and then, by assumption, every vertex ofΩ̂ satisfies (6.16). We prove that satisfaction of
condition (6.16) withHT

i , for everyi ∈ Nnh, implies fulfillment also withĤT
j , for all j ∈ Nnĥ

.

Analogously to the proof of Corollary 6.15, we have thatΩ ⊆ Ω̂ implies the existence of
θ j ∈Rnh with θ j

k ≥ 0, such thatĤT
j = ∑nh

k=1 θ j
k HT

k , ∑nh
k=1 θ j

k ≤ 1 for all j ∈Nnĥ
. From this and

Property 6.10 we have that for vertex ˆvk of Ω̂ there exists ˆuk ∈U such thatF̌(v̂k, ûk, ĤT
j )≤ λn,

for all j ∈ Nnĥ
, and everyk∈ Nnv̂. Hence hypothesis of Property 6.14 holds forΩ̂, thenΩ̂ is

a λ -contractive set.

The meaning of the previous corollary is that given a polytopeΩ satisfying the sufficient
condition for λ -contractiveness for DC systems (6.16), any point ˆx ∈ X for which there
existsû(x̂)∈U such thatF̌(x̂, û,HT

i )≤ λn, for everyi ∈Nnh, determines a set which satisfies
the same sufficient condition, hence it isλ -contractive. Thus the corollary can be used to
generate a sequence of nested polytopes sharing the property of λ -contractiveness.
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Then, a convex problem can be solved to determine pointsxk ∈ X to enlarge the control
invariant set. The 3-rd and 4-th steps of Algorithm 3 should be replaced with the following.

(3a) Generateηk ∈ Rn and computexk ∈ X and uk ∈ U as an optimizer of the convex
problem

max
x∈X,u∈U

{(ηk)Tx : F̌(x,u,(Hk
i )

T) ≤ λn,∀i ∈ Nnk
h
}.

(4a) If xk /∈ Ωk, thenΩk+1 = co(Ωk∪ xk) = {x∈ Rn : Hk+1x ≤ 1}, with Hk+1 ∈ Rnk+1
h ×n

and a propernk+1
h ∈ N, otherwise go to (3a).

Although a random component is still present, in the choice of vectorηk, with this en-
larging method pointxk lies in the complement ofΩk or on its boundary. For this reason, in
point (4a), we check ifxk /∈ Ω. On the other hand, if for all directionηk ∈ Rn the solutionxk

is on the boundary, we found the maximal convex set fulfillingProperty 6.14.

Remark 6.24 Notice that, with the modification proposed, two important computational
problems are overcome. The first is the fact that the choice ofa point xk /∈ Ωk and xk ∈ X,
which can be a very demanding computational task for high dimension, is avoided in prac-
tice. The second problem is related to the necessity of computing matrix Hk+1 from point
xk and Ω. Also this computation can be demanding for high dimension,then it is strongly
preferable to avoid it, at least for all those points xk discarded in step (4) of Algorithm 3.
Through the modification proposed the computation of matrixHk+1 is performed only for
points xk inducing an enlargement.

Finally, since there exists a relation between the contraction factor for the determinis-
tic system and the maximal uncertainty affordable, see inequality (6.22), the procedure for
computing a control invariant for the deterministic case can be employed to obtain a robust
control invariant set. Moreover, considerations analogous to those of Remark 4.50 permit to
directly adapt the algorithm to the uncertain case.

6.1.5 Numerical example

To illustrate the proposed method to compute a control invariant set and design a control
law, we apply it to an example proposed in continuous-time version in (Chen, Ballance
and O’Reilly, 2001), where ellipsoidal invariant sets are considered. The same system, dis-
cretized, has been used by (Cannon et al., 2003) to test theirresults on computation of control
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invariant parallelogram. The example allows us to compare the proposed technique with dif-
ferent methods.

The bilinear discrete-time system, obtained discretizingthe continuous-time system pre-
sented in (Chen et al., 2001), is

xk+1 =

[

1 T

T 1

]

xk +T

{

µ

[

1

1

]

+(1−µ)

[

1 0

0 −4

]

xk

}

uk

with the sample timeT = 0.01 and the parameterµ = 0.9, the constraints on input and state
areU = {u ∈ R : |u| ≤ 2} andX = {x ∈ R2 : ‖x‖∞ ≤ 4}. Note that the assumption of
stabilizability is satisfied. The system considered is deterministic, no uncertainty is assumed
at first. Since we are interested in a control invariant set, we setλn = 1.

Figure 6.1: Polytopic control invariant sets generated by Algorithm 3.

The algorithm has been applied to the case under analysis, the sequence of control inva-
riant sets is depicted in Figure 6.1. The initial setΩ0 is the inner polytope drawn in bold line,
polytopesΩk, k∈ N60, are represented in thin lines. The final set obtained withkmax= 60 is
the external polytope, depicted in bold line too.

In Figure 6.2, a comparison between the ellipsoidal controlinvariant set proposed in
(Chen et al., 2001), the parallelogram provided by (Cannon et al., 2003) and the control
invariant set obtained applying the proposed algorithm, isprovided. It is evident the im-
provement achieved exploiting the DC structure of the system, allowing the control law to
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be nonlinear and dependent on the particular geometry of thecontrol invariant set. The price
to pay is the complexity increase of the representation of the invariant set.

Finally, also a robust control invariant set is computed. Applying relation (6.22), we
found that, if additive uncertainty for the continuous-time system is bounded byW = {w∈
Rn : ‖w‖∞ ≤ 0.4}, the set depicted in dashed line in Figure 6.2 is a robust control invariant
set.

Figure 6.2: Comparison: invariant ellipsoid, invariant parallelogram and polytopic invariant set and
robust invariant set generated by Algorithm 3.

6.2 Conclusions

In this chapter the problem of obtaining control invariant sets for nonlinear systems has been
tackled. Particular attention has been devoted to computational aspects, with the purpose
of proposing algorithmic procedures to obtainλ -contractive and control invariant sets for
nonlinear systems. The class of non-autonomous DC systems,deterministic and uncertain,
has been considered. Properties of CDI systems have been adapted to such class of systems
and to polytopic sets to provide practical applicability tothe results presented. A sufficient
condition for control invariance of a set has been employed as the basis of the algorithm
proposed. Also the one-step operator characterization hasbeen provided, pointing out the
beneficial properties for computational purposes.
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Chapter 7

Conclusions

In this thesis we dealt with issues related to set-theory and, in particular, invariance for nonli-
near systems. The main objective of this thesis is to providetheoretical results to characterize
invariance related topics and computational tools to obtain in practice control laws and inva-
riant andλ -contractive sets, for nonlinear and uncertain systems.

As exposed extensively in the introduction and throughout the thesis, invariance has
gained in the last years great importance in the field of dynamic systems analysis and control
design. In fact, invariant andλ -contractive sets are regions of the state space whose elements
can be related to many key properties often required in control theory, such as stability, con-
vergence, hard constraints satisfaction, Lyapunov theory, robustness, etc.

Particularly significant is the case of prediction based control laws, such as MPC. We re-
call here that MPC-related strategies found their main justification in their capability to cope
with hard constraints satisfaction and convergence, also in presence of additive uncertainty
and nonlinearity. It is also worth pointing out that many of the beneficial results ensured by
MPC are based on the assumption of availability of an invariant set or a control invariant set
to be used as terminal region. Moreover, a control law and a Lyapunov function are often
required to prove stability and convergence of the predictive control law. Furthermore, in the
case of presence of additive uncertainty, many modern MPC techniques, called tube-based,
use the concept of reachable sets to guarantee constraints satisfaction and convergence, at
least to a bounded set.

Hence, if on one hand invariance,λ -contractiveness and set-theory in general are greatly
useful for MPC design, as well as for the design of many robustand nonlinear control
schemes, on the other, few general results regarding these topics for nonlinear and uncer-
tain systems have been provided. The main conceptual aim of our research efforts is to
contribute to the reduction of this gap.

217



218

We noticed that many of the classical approaches to the problem of invariant sets compu-
tation, and related issues, have been developed for the caseof linear systems, also in presence
of additive uncertainty, but many of these results are hardly extendable to the case of non-
linear systems. This is due to the fact that many properties concerning invariance are based
on linearity, which permits often to infer features involving an uncountable set of points by
means of the analysis of a finite subset of them. This does not happen, in general, when a
nonlinearity is present in the system. Furthermore, the computational tools useful to deal
with linear systems related topics are often far less complex and more efficient than those
which are required to be used when the system is nonlinear, such as nonlinear optimization
problems.

It has been shown that the key concept which can permit to adapt linearity based tech-
niques to nonlinear systems, what we called the “missing” ingredient, is convexity. Conve-
xity of sets and functions allows us to cast many important results, well established for linear
systems, to the case of invariant sets computation for nonlinear ones. The price is an affor-
dable increase of the computational complexity, and some conservatism in certain cases, but
the results are general and can be applied to a very wide classof nonlinear systems.

The main contributions of the thesis are:

• Unifying modelling framework. We introduced a novel modelling framework, repre-
sented by the CDI systems. The elements of such class of systems are deeply cha-
racterized by convexity, as the set valued map determining the systems dynamics, are
defined through a set of convex functions. It has been shown that CDI systems are
very powerful in order to approximate nonlinear systems. Asa matter of fact, the
elements of many classes of common nonlinear and uncertain systems admit a CDI
representation or, at least, can be easily approximated by aCDI system. We proved
that CDI systems are able to represent or approximate Lur’e systems, generalized sat-
urated systems, DC systems, linear parametric uncertain (hence for LDI and LPV)
systems. Moreover, with such framework, the analysis is extended to a family of sys-
tems, as all the systems whose dynamic function is overbounded by a CDI one share
some important properties, invariance for instance.

• Procedures to obtain CDI representations for nonlinear systems. We have provided
particular classes of nonlinear and uncertain systems for which a CDI representation
or an approximation can be determined. The first family of systems are the CCDI one,
which are particular CDI systems whose dynamic functions are determined by a finite
number of convex and concave functions. This makes such class of systems suitable
in order to bound many nonlinear systems. Then the cases of Lur’e and generalized
saturated systems have been considered, providing a methodto obtain directly a CDI
overbounding system for any element of these classes. It hasbeen shown that many
common nonlinearities affecting real systems lead to Lur’eor generalized saturated
systems. Another important class of systems related to CDI ones are the called DC
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systems. It has been proved that DC systems can be easily approximated by CDI
ones and are highly expressive in the nonlinear context. In fact, any nonlinear sys-
tem whose dynamic function is twice differentiable has a DC representation and those
whose dynamics are given by a continuous one admit an arbitrarily close DC appro-
ximation. Also linear parametric uncertain systems (and then LPV and LDI systems)
are particular cases of CDI systems. Summarizing, many common nonlinear systems,
either deterministic or uncertain, can be cast in CDI form orbe approximated by a CDI
system.

• Theoretical results on invariance for CDI systems. We employed the convexity based
characteristics of the elements of this unifying frameworkto extend some well esta-
blished and powerful results, valid for linear systems, to CDI ones. One of the main
contributions, whose particular adaptations have been used throughout the thesis, is
the necessary and sufficient condition for invariance andλ -contractiveness of a con-
vex, compact set, for deterministic and uncertain CDI systems. It has to be stressed
that such conditions are boundary type ones, as for linear systems. Their satisfaction
can be tested by means of the analysis of a subset, possibly finite, of elements of the
potential invariant andλ -contractive set. It has been proved that any convex, com-
pactλ -contractive set containing the origin in its interior induces a Lyapunov function
for a CDI system. Also this property does not hold for genericnonlinear systems.
Another important tool as the one-step operator, on which many standard procedures
for computing invariant andλ -contractive sets are based, has been analyzed. It has
also been proved that its iterative application generates asequence of convex, compact
nested invariant sets converging to the domain of attraction of the origin for a CDI sys-
tem. Finally, some considerations on how to apply the proposed theoretical results has
been presented, leading to an algorithmic procedure for invariant andλ -contractive
sets computation.

• Application of theoretical results to autonomous nonlinear systems. The theoretical
results developed for the CDI framework have been applied for practical purposes,
to particular classes of common nonlinear autonomous systems. Sufficient conditions
for a polytope to be invariant andλ -contractive for a DC system, also in presence of
additive uncertainty, have been proposed. Such conditionsensure generality, entailed
by the expressive power of DC functions in the nonlinear context, and computational
efficiency, being boundary type ones, as for linear systems.Computational issues are
considered and an algorithm for obtaining a polytopic invariant andλ -contractive set
for nonlinear systems is given. It is proved that the algorithmic procedure ensures to
provide aλ -contractive set for the case of DC systems with no additive uncertainty.
The problem of convex invariant sets computation for a particular class of Lur’e sys-
tems, enclosing many nonlinear systems, is considered. An ad-hoc method to obtain
a sequence of nested convex invariant sets converging to a convex approximation of
the domain of attraction is presented. It has also been proved that the use of LDI ap-
proximation of the systems, commonly employed in this case,leads to an invariant set
contained in the approximation of the domain of attraction.Explicit relations with the
CDI methods are illustrated.
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• Application of theoretical results to non-autonomous nonlinear systems. Finally, the
theoretical results exposed for CDI framework have been employed for dealing with
the problem of convex control invariant sets andλ -contractive sets computation for
non-autonomous DC systems, and for the related control lawsdetermination. It has to
be recalled the importance of such structures for the application of MPC for nonlinear
systems. Sufficient conditions for (robust) control invariance andλ -contractiveness
for non-autonomous DC systems have been provided, focussing on computational
purposes. Particular attention have been directed to the polytopic case. It has been
proved that such conditions induce the implicit computation of (robust) control laws
determined by means of a finite number of convex optimizationproblems. Also the
characterization of the one-step operator for non-autonomous DC systems has been
addressed. Computational issues on the algorithmic generation of (robust) control in-
variant sets and the related (robust) control laws for non-autonomous DC systems have
been analyzed.

Summarizing, the main objective of the thesis has been to provide theoretical results as
well as computational tools useful for dealing with set-theory in general, and invariance re-
lated topics in particular, in the context of nonlinear and uncertain systems. For that purpose,
the key unifying CDI framework has been introduced. It has been shown that the properties
based on convexity characterizing CDI systems permit to extend techniques and methods,
proper of the linear case, to the nonlinear one. Based on this, computational procedures to
obtain in practice polytopic invariant andλ -contractive sets for nonlinear systems have been
proposed and applied to classes of common nonlinear systems.

Finally, we provide a list of possible developments of the results exposed and directions
of future research:

• Application of CDI framework to the problem of robust model predictive control for
nonlinear uncertain systems, robust NMPC. It has been shownthat many nonlinear
systems can be overbounded by CDI systems. Hence, given the uncertain nonlinear
system, the CDI one overbounding it can be used to compute external approximations
of the reachable sets and the nonlinear MPC can be solved imposing that the resulting
reachable tube satisfies the hard constraints.

• Synthesis ofH∞ controller for uncertain nonlinear system. It has been proved that a
λ -contractive setΩ for a CDI system can induce, in a region of the space, a Lyapunov
function whose level sets are given byαΩ, for α in a certain interval. Considering the
Minkowski function ofΩ as a sort of norm to be minimized, it can be determined an
H∞ control law ensuring ultimate boundedness and performance.

• Numerical algorithms to obtain CDI representations for nonlinear systems. The objec-
tive is to extend the applicability of the presented resultsto a wider class of nonlinear
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systems as well as to obtain tighter overbounding CDI approximations, reducing the
conservatism for the elements of particular families of systems.

• Application of the CDI framework to obtain solutions to LMI-based problems. Conve-
xity characterizing CDI systems can be used to obtain solutions of classical problems
of control theory that can be posed in LMI form.

• Set-membership identification for nonlinear systems. Properties of CDI systems can
be used to bound the region of the parameter vector consistent with the measurements
and the model. Preliminary results in this direction are already available for the DC
framework.

• Numerical solution of nonlinear programming problems rising from NMPC through
the use of CDI framework.
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Appendix A

Definitions and properties of invariance

Here we provide standard definitions related to invariance for discrete-time systems, see
(Blanchini and Miani, 2008).

Consider an autonomous discrete-time system

x+ = f (x), (A.1)

wherex∈ Rn is the state,x+ ∈ Rn is the successor state andf : D → Rn is defined on the set
D ⊆ Rn.

We say that a setΩ ⊆ D is a positive invariant set if every trajectory{xk}k∈N generated
by (A.1) and withx0 ∈ Ω, is such thatxk ∈ Ω for all k∈ N. The formal definition follows.

Definition A.1 A set in Ω ⊆ Rn is a positive invariant set for the the discrete-time au-
tonomous system (A.1) ifΩ ⊆ D and f(x) ∈ Ω for all x ∈ Ω.

An alternative definition of positive invariance for discrete-time autonomous systems can
be stated in terms of the image of functionf (·). A setΩ ⊆ D is a positive invariant set if

f (Ω) ⊆ Ω. (A.2)

Remark A.2 The expressionpositive invariant setis employed in literature to differentiate
the concept illustrated in Definition A.1 from the calledinvariance set: a setΩ ⊆ D is an
invariant set if xk ∈ Ω for all k ∈ Z, for any x0 ∈ Ω. This means that also the elements
of trajectory at negative instants must be contained inΩ to be an invariant set. Since the
concept of invariant set is not employed in the thesis, we refer to positive invariant sets simply
as invariant sets.
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In the case of presence of uncertainties affecting the dynamic system, the condition of
robust invariance has to be introduced. Consider a discrete-time uncertain autonomous sys-
tem

x+ = f (x,w), (A.3)

wherex∈Rn is the state,x+ ∈Rn is the successor state,w∈Rp is the uncertainty, i.e.w∈W
with W ⊆ Rp, and f : D×W → Rn is a function defined on the setD×W ⊆ Rn+p.

Definition A.3 A setΩ ⊆ Rn is a robust positive invariant set for the uncertain autonomous
system (A.3) ifΩ ⊆ D and f(x,w) ∈ Ω for all x ∈ Ω and all w∈W.

That is, robust invariance means that any trajectory of the uncertain system starting inside
the setΩ, remains confined in it for every possible realization of theuncertaintyw∈ W, at
every time instant.

In terms of set relation, and by definition of Minkowski sum ofsets, we have that set
Ω ⊆ D is a robust invariant set for system (A.3) if it is such that

f (Ω,W) ⊆ Ω. (A.4)

In the case that the uncertainty is additive, i.e., if the system has the formx+ = f (x)+w,
with f (·) defined inD ⊆ Rn, thenΩ ⊆ D is a robust invariant set if

f (Ω)⊕W ⊆ Ω, (A.5)

by definition of Minkowski summation, or, equivalently, if

f (Ω) ⊆ Ω⊖W. (A.6)

Analogous definitions can be given for non-autonomous systems, that is, in presence of
a manipulable input. Consider the non-autonomous system

x+ = f (x,u), (A.7)

wherex ∈ D is the state,x+ ∈ Rn is the successor state,u ∈ E is the control input and
f : D×E → Rn is a function defined on the setD×E ⊆ Rn+m.

A setΩ ⊆ D is a control invariant set if there exists a control lawu = u(x) ∈ E, defined
for everyx∈ Ω, such that every trajectory{xk}k∈N generated by (A.7), in closed-loop with
u(x) and withx0 ∈ Ω, is such thatxk ∈ Ω for all k∈ N.

Definition A.4 A setΩ ⊆ D is a control invariant set for the discrete-time system (A.7) if
there exists a control law u= u(x) ∈ E such thatΩ ⊆ D and f(x,u(x)) ∈ Ω for all x ∈ Ω.
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Clearly, a setΩ is a control invariant set for a dynamic system if there exists an admissible
control lawu= u(x) defined onΩ such thatΩ is an invariant set for the system in closed-loop
with u(x).

For the case of presence of uncertainty, the concept of robust control invariance has to be
introduced. Robust control invariance deals with the uncertain non-autonomous system

x+ = f (x,u,w), (A.8)

wherex ∈ Rn is the state,x+ ∈ Rn is the successor state,u ∈ E is the control input,w ∈
W, with W ⊆ Rp is uncertainty andf : D×E×W → Rn is a function defined on the set
D×E×W ⊆ Rn+m+p.

Definition A.5 A setΩ ⊆ Rn is a robust control invariant set for the uncertain discrete-time
system (A.8) if there exists a control law u= u(x) ∈ E such thatΩ ⊆ D and f(x,u(x),w) ∈ Ω
for all x ∈ Ω and all w∈W.

A concept strongly related with invariance, that isλ -contractiveness, is introduced. Con-
ceptually, if invariance is the property of a set whose elements are mapped inside the set
itself, λ -contractiveness entails that the elements are mapped inside a “contraction” of such
set. In the following the definition ofλ -contractive set is given.

Definition A.6 A convex, compact setΩ⊆Rn with the origin in its interior is aλ -contractive
set for the discrete-time system (A.1) if there existsλ ∈ [0,1] such thatΩ ⊆ D and f(x)∈ λΩ
for all x ∈ Ω. λ is called the contracting factor ofΩ.

In terms of set relation, setΩ ⊆ D is aλ -contractive set for system (A.1) if it is such that

f (Ω) ⊆ λΩ. (A.9)

Analogous definitions ofλ -contractive set for non-autonomous and uncertain systems
can be given. Note that, definition ofλ -contractive set for contracting factorλ = 1 is equiv-
alent to the definition of invariant set and thatλ -contractiveness implies invariance. We
provide also the definition of robust control invariant set.

Definition A.7 A convex, compact setΩ⊆Rn with the origin in its interior is aλ -contractive
set for the discrete-time uncertain non-autonomous system(A.1) if there existλ ∈ [0,1] and
a control law u= u(x) ∈ E such thatΩ ⊆ D and f(x,u(x),w) ∈ λΩ for all x ∈ Ω and all
w∈W. λ is called the contracting factor ofΩ.
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It is worth providing two important results on the existenceof invariant sets, for linear
autonomous systems, see (Gilbert and Tan, 1991) and (Kolmanovsky and Gilbert, 1998).

First we recall that, for an (uncertain) autonomous linear system with state constraint
x ∈ X, the maximal (robust) invariant setX∞ is given by all the points inX such that the
related trajectories do not leaveX, at any time step. It is easy to prove that every invariant
set contained inX is contained inX∞. Computationally, the maximal (robust) invariant set
can be obtained iteratively. If the number of iterations required to compute the maximal
(robust) invariant set is finite, it is called finitely determined and such number is referred to
as the determination index. A result for deterministic linear systems, provided in (Gilbert
and Tan, 1991), is recalled here.

Property A.8 For a given linear asymptotically stable system x+ = Ax, subject to constraint
x∈ X, with X bounded and0∈ int(X), the maximal invariant set is finitely determined.

The minimal invariant setR∞ for an uncertain autonomous linear system

x+ = Ax+w,

with w∈ W andW compact and containing the origin, is given by those points of the state
space that can belong to an admissible trajectory starting at the origin. It can be proved that
such set is contained in every invariant set for the system. The explicit expression of the
minimal robust invariant set is

R∞ =
∞
⊕

i=0

AiW,

which means that, in general, it is obtained by means of a sum with an infinite number
of terms. Important results for uncertain linear systems, presented in (Kolmanovsky and
Gilbert, 1998), are summarized in the following property.

Property A.9 Consider a linear uncertain system x+ = Ax+w, subject to constraint x∈ X
and w∈W, with X and W compact and containing the origin. The maximalrobust invariant
set X∞ is non-empty if and only if R∞ ⊆ X and it is finitely determined if R∞ ⊆ int(X).

Standard iterative algorithms to determine a (robust) invariant set for uncertain linear
systems have been proposed in literature, see the cited references.

Kolmanovsky and Gilbert’s algorithm (adapted to the systemwith no output and con-
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straints on state) is recalled here. Such algorithm is basedon the following sets:

R0 = {0},
Rt = At−1W⊕At−2W⊕ . . .AW⊕W,

Yt = X⊖ (At−1W⊕At−2W⊕ . . .AW⊕W) =

= X⊖At−1W⊖At−2W⊖ . . .AW⊖W) =

= X⊖Rt ,

Ot = {x∈ Rn : Aix∈Yi , ∀i ∈ Nt} =

= {x∈ Rn : Aix∈ X⊖Ri , ∀i ∈ Nt} =

= {x∈ Rn : Aix⊕Ri ⊆ X, ∀i ∈ Nt}.

(A.10)

An iterative procedure to compute recursively such sets, presented in (Kolmanovsky and
Gilbert, 1998), is adapted to the case of absence of output and sketched here.

• Initialization:

Y0 = X, O0 = X; (A.11)

• Iteration:
Yt+1 = Yt ⊖AtW,

Ot+1 = Ot ∩{x∈ Rn : At+1x∈Yt+1},
(A.12)

andO∞ is the maximal robust invariant set.

An alternative way to compute the maximal robust invariant set, based on the procedure
well presented in (Blanchini and Miani, 2008), is given by the following steps.

• Initialization:

Ω0 = X, (A.13)

• Iteration:
Ωt+1 = Ωt ∩

(

A−1(Ωt ⊖W)
)

=

= Ωt ∩{x∈ Rn : Ax+w∈ Ωt, ∀w∈W} =

= Ωt ∩{x∈ Rn : Ax⊕W ⊆ Ωt},
(A.14)
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with Ω∞ maximal robust invariant set.

Here we demonstrate that the two methods are essentially thesame proving thatOt = Ωt

for all t ∈ N.

Ω0 = {x : x∈ X},
Ω1 = {x : x∈ X, Ax+w∈ X,∀w∈W} = {x : x∈ X, Ax⊕W ⊆ X},
Ω2 = {x : x∈ Ω1; Ax+w∈ Ω1, ∀w∈W} =

= {x : x∈ X; Ax+w∈ X, ∀w∈W;

Ax+w∈ X, ∀w∈W; A(Ax+w1)+w2 ∈ X, ∀w1,w2 ∈W} =

= {x : x∈ X, Ax⊕W ⊆ X, A2x⊕AW⊕W ⊆ X} =

= {x : x∈ X, Ax⊆ X⊖W, A2x⊆ X⊖ (AW⊕W)} =

= {x : x∈ X, Ax⊆ X⊖R1, A2x⊆ X⊖R2} =

= {x : Aix⊆ X⊖Ri , ∀i ∈ N[0,2]} = O2,

. . .

Ωt+1 = {x : x∈ Ωt , Ax+w∈ Ωt , ∀w∈W} =

= {x : Aix∈ X⊖Ri , ∀i ∈ N[0,t]; Ai(Ax+w) ∈ X⊖Ri , ∀w∈W, ∀i ∈ N[0,t]} =

= {x : Aix∈ X⊖Ri ; ∀i ∈ N[0,t]; At+1x+Atw∈ X⊖Rt , ∀w∈W,} =

= {x : Aix∈ X⊖Ri ; ∀i ∈ N[0,t]; At+1x∈ X⊖Rt+1} = Ot+1.
(A.15)
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Convex sets and convex functions

Many of the following definition and property are based on theworks (Rockafellar, 1970;
Schneider, 1993; Boyd and Vandenberghe, 2004; Ben-Tal and Nemirovski, 2001), the aim of
which is the deep analysis of convexity of sets and functions.

Definition B.1 A set S⊆ Rn is said to be convex if, for every x∈ S and y∈ S, we have that

(1−λ )x+λy∈ S, (B.1)

for all λ ∈ [0, 1].

Geometrically, this means that, if two points are elements of a convex setS⊆ Rn, then
the whole segment between them is contained inS, and viceversa.

Definition B.2 Given a set of point xj ∈ Rn, with j ∈ Nm, the element

x =
m

∑
j=1

λ jx
j ,

is said to be a convex combination of points xj , j ∈ Nm if parametersλ j ≥ 0, for all j ∈ Nm

and∑m
j=1λ j = 1.

Convexity of a set and the concept of convex combination of points are strictly related,
as shown in the following theorem, see (Rockafellar, 1970).

Theorem B.3 A set S⊆ Rn is convex if and only if it contains all the convex combinations
of its elements.
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Figure B.1: Convex sets.

Definition B.4 For any set S⊆ Rn, the convex hull of S, denoted co(S) is the set of all the
convex combinations of elements of S.

Alternatively, the convex hull of a setS⊆ Rn can be defined as the intersection of all
convex sets containingS.

It is convenient to shortly recall some properties of convexsets.

• The intersection of an arbitrary collection of convex sets is convex.

• If C andD are two convex sets, thenC⊕D is convex.

• Given a linear mapA from Rn to Rm, the image of every convex set inRn is convex
and the preimage of every convex set inRm is convex.

We provide here the definition of convexity for functions, showing the strong relation
with the concept of convex set.

Given a functionf : Rn → R, denote with domf the effective domain off , i.e. the set of
pointsx∈ Rn such thatf (x) < +∞, and define its graph as{(x, f (x)) ∈ Rn+1 : x∈ dom f}
and its epigraph, meaning “above the graph“, as

epi( f ) = {(x,µ) ∈ Rn+1 : x∈ D, µ ≥ f (x)}, (B.2)

whereD ⊆ Rn is the domain off , see (Boyd and Vandenberghe, 2004). Now, simply, a
function is convex if its epigraph is a convex subset ofRn+1.

Definition B.5 A function f : D → R is convex if its epigraph is a convex subset ofRn+1. A
function f(·) is concave if− f (·) is convex.
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Figure B.2: Two dimensional and three dimensional graphs of convex functions.

Remark B.6 The effective domain of a convex function is a convex subset of Rn. Hence,
given a convex function, we can consider it defined on its effective domain or consider its
extension toRn, by defining f(x) = +∞ for all x /∈ dom f , since the effective domain and the
epigraph are the same in both cases. The convex functions canbe assumed to be defined
on the whole spaceRn, implicitly considering the extension of f if it is not defined for all
x∈ Rn.

An alternative definition of convex function, commonly employed, is presented here as a
theorem, see (Rockafellar, 1970).

Theorem B.7 A function f : Rn → R is convex if dom f is a convex set ofRn and for all
x, y∈ dom f we have that

f ((1−θ)x+θy) ≤ (1−θ) f (x)+θ f (y), ∀θ ∈ [0, 1]. (B.3)

Since we are interested, in many cases, in dynamic functionswith values onRn, we
extend the definition of convexity to multivalued functions.

Definition B.8 A function f : Rn → Rm is convex if fj : Rn → R is convex, for all j∈ Nm.

Remark B.9 Since in the thesis we deal also with non-autonomous systems, i.e. x+ =
f (x,u), we show here the meaning of convexity for a function f: Rn×Rm → Rn.
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A function g: Rn×Rm→ R is convex if its epigraph is convex. Alternatively, we say that
it is convex if, for every x, y∈ Rn and u, v∈ Rm we have

g((1−θ)(x,u)+θ(y,v))≤ (1−θ)g(x,u)+θg(y,v), ∀θ ∈ [0, 1]. (B.4)

Notice that, if a function g(·, ·) is convex onRn ×Rm, then for every x0 ∈ Rn, g(x0, ·) is
convex onRm and for every u0 ∈ Rm, g(·,u0) is convex onRn.

A function f : Rn×Rm → Rn, as that one characterizing a non-autonomous system, is
convex if fj(·, ·) is convex for every j∈ Nn.

Finally we report Thorem 10.1 from (Rockafellar, 1970) which stated a key relation be-
tween convexity (and then concavity) and continuity of a function.

Theorem B.10 A convex function f(·) on Rn is continuous relative to any relatively open
convex set C in its effective domain, in particular relativeto ri(dom f).

With ri(D) (and analogously with relatively open) we denote the relative interior ofD ⊆
Rn, that is, geometrically, it is the interior of the set once werestrict the analysis to the
smaller affine space containing the set. To avoid formal definition, we give here an example:
suppose that the effective domain of functionf (·) is a segment inR2. No non-trivial open
set is contained in the set. But restricting the analysis to the line containing the segment
as a (possibly translated) subspace of dimension 1, then the(relative) interior of f (·) is the
greatest open segment contained in the segment domf .
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Support function

We provide here some properties related to support function. Such tool has been extensively
developed and analyzed in (Rockafellar, 1970; Schneider, 1993) and has been applied to
control, see (Kolmanovsky and Gilbert, 1998). We first provide the definition of support
function.

Definition C.1 Given a setΩ ⊆Rn, the support function ofΩ evaluated atη ∈Rn is defined
as

φΩ(η) = sup
x∈Ω

ηTx.

A geometrical meaning of the support function of a setΩ evaluated atη is the signed
“distance” of the point ofΩ (or its closure) further from the origin, along the direction η.

If Ω is bounded then its support function is defined for anyη ∈ Rn. If 0 ∈ co(Ω) then
φΩ(η) ≥ 0 for all η ∈ Rn, if 0 ∈ int(co(Ω)) then φΩ(η) > 0 for all η ∈ Rn, with η 6=
0. Moreover, the support function of a non-empty convex set is a positively homogeneous
function, which is the meaning of the following property.

Property C.2 SupposeΩ ⊆ Rn is convex. Then

φΩ(λη) = λφΩ(η), (C.1)

for all η ∈ Rn and allλ > 0.

If setΩ is convex and closed, then it is determined by its support function. That is a point
belongs to the set,x∈ Ω, if and only if

ηTx≤ φΩ(η), ∀η ∈ Rn,
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then we have that the setΩ can be defined through its support function.

Property C.3 If Ω is closed and convex, then

Ω = {x∈ Rn : ηTx≤ φΩ(η), ∀η ∈ Rn}. (C.2)

If Ω is a polytope, i.e.Ω = {x∈ Rn : Hx≤ b}, with H ∈ Rnh×n andb∈ Rnh then

x∈ Ω ⇔ Hix≤ bi = φΩ(HT
i ), ∀i ∈ Nnh. (C.3)

A particularly interesting class of sets for which the valueof support function can be
easily evaluated at anyη ∈Rn are the ellipsoids. In fact, given an ellipsoidE (P) = {x∈ Rn :
xTPx≤ 1}, centered at the origin, we have that

φE (P)(η) =
√

ηTP−1η ,

for everyη ∈ Rn. From the fact that, givenx0 ∈ Rn and a setΩ ⊆ Rn, the following relation
holds:

φx0⊕Ω = ηTx0 +φΩ(η), ∀η ∈ Rn,

the support function can be computed directly for every ellipsoid.

Support functions can be also employed to express the condition of set inclusion.

Property C.4 SupposeΩ ⊆ Rn is closed and convex.Γ ⊆ Ω if and only if

φΓ(η) ≤ φΩ(η), ∀η ∈ Rn. (C.4)

Other properties of support functions are summarized below.

Property C.5 SupposeΩ ⊆ Rn is convex. Then

φαΩ(η) = αφΩ(η), ∀η ∈ Rn, (C.5)

for everyα > 0.

Proof: By definition of support function, we have

φαΩ(η) = sup
x∈αΩ

ηTx = sup
x∈Ω

ηTαx = αφΩ(η), ∀η ∈ Rn.
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Property C.6 SupposeΩ, Γ ⊆ Rn are convex sets. Then

φΩ⊕Γ(η) = φΩ(η)+φΓ(η), ∀η ∈ Rn. (C.6)

Moreover, for any setΩ ⊆ Rn we have that

φΩ(η) = φco (Ω)(η), ∀η ∈ Rn.

From positive homogeneity of support function, a conditionrequiring to be checked for
everyη ∈ Rn can be, in fact, restricted to the unitary ball, thep-norm ballBn

p for instance,
centered around the origin. For example, ifx∈ Rn is such that

ηTx≤ φΩ(η), ∀η ∈ Bn
p, (C.7)

then
ηTx≤ φΩ(η), ∀η ∈ Rn, (C.8)

which is equivalent to say thatx is an element of the convex, closed setΩ, see Property C.3.

In fact, every elementη ∈ Rn can be written asη = α(η)η̄(η) with η̄(η) ∈ Bn
p and

α(η)≥0 (it is sufficient to poseα(η) = ‖η‖p andη̄(η) = 1
‖η‖p

η). Therefore, from Property
C.2, if condition (C.7) is fulfilled then for anyη ∈ Rn

ηTx = α(η)η̄T(η)x≤ α(η)φΩ(η̄(η)) = φΩ(η),

and then condition (C.8) follows.
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Limón, D., Alvarado, I.,Álamo, T. and Camacho, E. F. (2008), ‘MPC for tracking piecewise
constant references for constrained linear systems’,Automatica44, 2382–2387.

Magni, L., De Nicolao, G., Magnani, L. and Scattolini, R. (2001), ‘A stabilizing model-based
predictive control algorithm for nonlinear systems’,Automatica37, 1351–1362.

Maksarov, D. and Norton, J. P. (1996), State bounding with minimal volume ellipsoids,in
‘Proceedings of UKACC International Conference on Control’96’.

Mayne, D., Rawlings, J., Rao, C. and Scokaert, P. (2000), ‘Constrained model predictive
control: Stability and optimality’,Automatica36, 789–814.

Milani, B. E. A. (2002), ‘Piecewise-affine lyapunov functions for discrete-time linear sys-
tems with saturating controls’,Automatica38, 2177–2184.



BIBLIOGRAPHY 241

Ong, C. J. and Gilbert, E. G. (2006), ‘The minimal disturbance invariant set: Outer approxi-
mations via its partial sums’,Automatica42, 1563–1568.
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