Depósito de investigación de la Universidad de Sevilla
https://idus.us.es/
"This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/jf502444u ."

Effect of salt stress in the regulation of anthocyanins and color of Hibiscus flowers by digital image analysis

Alice Trivellini ${ }^{\mathrm{a}}$, Belén Gordillo ${ }^{\mathrm{b}}$, Francisco J. Rodríguez-Pulido ${ }^{\mathrm{b}}$, Eva Borghesi ${ }^{\mathrm{c}}$, Antonio Ferrante $^{\text {b }}$, Paolo Vernieri ${ }^{\text {c }}$, Natalia Quijada-Morín ${ }^{\text {d }}$, M. Lourdes González-Miret ${ }^{\text {b }}$ and Francisco J. Heredia ${ }^{\text {b* }}$
${ }^{\mathrm{a}}$ Dept. Produzione Vegetale, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
${ }^{b}$ Food Colour \& Quality Laboratory, Department of Nutrition \& Food Science, Facultad de Farmacia,, Universidad de Sevilla, 41012 Sevilla, Spain
${ }^{\text {c }}$ Dept. Biologia delle Piante Agrarie, University of Pisa, viale delle Piagge 23, 56124 Pisa, Italy
${ }^{\text {d }}$ Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain

* Corresponding author:

Francisco J. Heredia

Tel.: +34 954556495 Fax: +34 954556110
e-mail: heredia@us.es

Abstract

The effect of salinity stress (200 mM NaCl for 28 days) on physiological characteristics of Hibiscus rosa-sinensis such as abscisic acid content, electrolyte leakage, and photochemical efficiency in leaves; and its influence on the biomass production, anthocyanin composition and color expression of flowers was evaluated. Salinity significantly increased electrolyte leakage and ABA content in leaves, and reduced the flower fresh weight. Chlorophyll fluorescence parameters were lower in salt stress condition, compared to control. Moreover, salt stress negatively affected the content of anthocyanins (mainly cyanidin-3-sophoroside), which resulted in a visually perceptible loss of color. The detailed anthocyanin composition monitored by HPLC-DAD-MS and the color variations by digital image analysis due to saline stress showed that the effect was more noticeable at the basal portion of petals. A Forward Stepwise Multiple Regression was performed for predicting the content of anthocyanins from appearance characteristics obtained by Image Analysis, reaching R-square values up to 0.90 .

Keywords: Hibiscus rosa-sinensis, salt stress, anthocyanins, color, image analysis.

INTRODUCTION

Hibiscus genus (Malvaceae) is one of the most popular ornamental plants cultivated in tropical and subtropical regions since it presents several species with varying attractive flower colors ${ }^{1}$. Species of the genus Hibiscus, as H. rosa-sinensis, are particularly appreciated for the color of the flowers with the base of the corolla forming a deep-colored heart and a bright red limb ${ }^{2}$. The main compounds responsible for the characteristic heterogeneous color pattern of Hibiscus flowers in red cultivars are anthocyanins, being preferentially accumulate on calyces ${ }^{3}$. More specifically, the major anthocyanins described in Hibiscus spp. are delphinidin and cyanidin derivatives glycosylated with various sugar moieties and occasionally acylated with organic acids and other phenolic compounds also present in the flower organs ${ }^{4}$.

Anthocyanins are the largest group of water-soluble flavonoids pigments widely spread in vascular plants where imparts the red, purple, and blue colors. As prominent members of the secondary metabolite of plants, anthocyanins have multi-biological functions including visual signal for pollinating insects, protection against different biotic and abiotic stresses, hormone-like activity, etc. Consequently, they are considered very efficient bioactive compounds and one of the most important natural and innocuous pigments in the plantderived food. Thus, despite its undeniable importance as coloring agents, anthocyanins are responsible for the commercial and medicinal value of Hibiscus spp. because of their role as antioxidants and the health benefits that have been associated with their presence in the diet ${ }^{5,6}$. Indeed, based on of their high content on anthocyanin pigments ($2.5 \mathrm{~g} / 100 \mathrm{~g} \mathrm{DW}$), Hibiscus calyces continue attracting much attention for the pharmaceutical and food industry as a functional food or a good source of nutraceutical constituents. In this sense, they are worldwide utilized in the preparation of beverages and color extracts ${ }^{1,3}$.

Previous investigations have reported that the content and composition of pigments in plants is conditioned by genetic and agronomic factors associated with biosynthetic changes ${ }^{7}$. Among them, salt stress is one of the most important problems for many species, especially in the Mediterranean areas where water resource is the main limiting factor ${ }^{8,9}$. Under salt stress conditions, plants response with several physiological disorders affecting the osmotic potential, photosynthetic rate and hormone synthesis (among others), which can determine changes on phenological characteristics such as the root/shoot ratio, size and turn-over of flowers or the pigment accumulation in plant tissues ${ }^{7,10}$. These eco-physiological responses are usually visible through biomass reduction, leaf necrosis, chlorophyll loss or flower discoloration, which are quality attributes markedly relevant from an ornamental and phytochemical perspective.

Surprisingly, few studies have been carried out on ornamental pot plants and little have been published regarding the response of these plants to saline fertirrigation, probably because they have been generally irrigated with high-quality water. Those studies reported that the saline fertirrigation had a negative effect on yield and decreased the flower quality ${ }^{11,12}$. However, the positive or negative effects of saline stress will depend on the degree of tolerance of plants and stress saline conditions; so the mechanisms of salt stress action are not yet completely clear, especially the impact on the pigment composition and color expression of the flower organ.

Thus, the aim of this study was to assess the effect of salinity stress on various physiological characteristics (flowers biomass production, ABA content, ion leakage and leaf photochemical efficiency) of Hibiscus rosa-sinensis, which has been described as moderately salt tolerant specie ${ }^{13}$. More deeply, the anthocyanin composition and content of Hibiscus petals was also studied to evaluate the influence of stress saline conditions on the color expression of the flower organ, objectively measure by digital image analysis.

Recent advances in image acquisition technology offer the possibility of using technically sophisticated apparatus available at relatively low cost, and the ability to evaluate areas in terms of millions of pixels. In this way, more detailed evaluations of objects with heterogeneous color as plant tissues is possible, since every different color present in the image can be accounted for one or more pixels. Thus, Image Analysis arises as a good option for satisfying the need of measuring color in this kind of samples. In addition, possible color-anthocyanin composition relationships were studied by applying multivariate statistical analysis.

MATERIAL AND METHODS

Chemicals and standards

Folin Ciocalteau reagent, gallic acid and quercetin standards were purchased from Sigma (St. Louis, Mo., U.S.A). Cyanidin-3-glucoside was purchased from Extrasynthese (Genay, France). The solvents used in chromatography were HPLC-grade and purchased from Merck (Darmstadt, Germany). All other chemicals were analytical grade and supplied by Panreac Química (Barcelona, Spain).

Plant material, growing technique and treatments

Hibiscus rosa-sinensis L. (cv. Porto) plants were grown in a greenhouse located in Pisa (latitude $43^{\circ} 43^{\prime} \mathrm{N}$; longitude $10^{\circ} 23^{\prime} \mathrm{E}$; Italy), under natural environmental conditions (22-26 $\left.{ }^{\circ} \mathrm{C}\right)$. The plants were grown in pots containing soil:pumice mixture $(3: 1, \mathrm{v} / \mathrm{v})$ and were irrigated twice a day with a drip irrigation. Drip irrigation was carried out using a standard nutrient solution (120 g per plant) with an electrical conductivity (EC) of $2.6 \mathrm{dS} \mathrm{m}^{-1}$ and pH 6.5. The composition of the standard nutrient solution was as follows (concentrations are expressed in mol m${ }^{-3}$): $11 \mathrm{~N}-\mathrm{NO}_{3} \mathrm{~h}, 1.3 \mathrm{P}-\mathrm{PO}, 6.2 \mathrm{~K}^{+}, 3.1 \mathrm{Ca}^{2+}, 1.2 \mathrm{Mg}^{2+}, 9 \mathrm{Na}^{+}$, and $1.7 \mathrm{~S}-$ $\mathrm{SO}_{4}{ }^{2-}$. Micronutrients were added at Hoagland's concentration (in $\mathrm{mmol} \mathrm{m}^{-3}: \mathrm{B} 25,88 \mathrm{Fe}, 1$ $\mathrm{Cu}, 5 \mathrm{Zn}$, and 10 Mn).

When experiment started, 40 plants were subjected to salt-stress fertirrigation with NaCl at 200 mM , and the others 40 to standard fertirrigation (as control plants). This saline condition was selected to achieve a clearly marked discoloration of the petals to be related with the qualitative and quantitative modification of flower pigments. Plants were daily irrigated during 28 days. Fresh leaves and flowers samples with no apparent physical, insect or microbial damage were collected from control and treated Hibiscus plants, during or at the end of the experiment, and carefully transported to the laboratory for the downstream analysis.

Flowers fresh weight

Ten fresh flowers per treatment were collected to determine the fresh weight biomass production, expressed in g flower ${ }^{-1}$. Flowers were sampled from different Hibiscus plants just at the end of the experiment (after 28 days) and directly analyzed.

Abscisic acid content determination, electrolyte leakage and chlorophyll a fluorescence measurements

Leaves, petals, style-stigma plus stamens, and ovary samples (100 mg fresh weight, FW) were collected, weighed, frozen in liquid nitrogen, and then stored at $-80^{\circ} \mathrm{C}$ until analysis. ABA was measured after extraction in distilled water (water:tissue ratio $=10: 1 \mathrm{v} / \mathrm{w}$) overnight at $4{ }^{\circ} \mathrm{C}$. Then ABA was determined by an indirect enzyme linked immunosorbent assay (ELISA) based on the use of DBPA1 monoclonal antibody, raised against $\mathrm{S}(+)-\mathrm{ABA}^{14}$ as described previously ${ }^{15}$.

For the electrolyte leakage, the leaves were sampled every 7 days until the end of the experiment. Ten leaves discs were incubated by shaking in 5 mL of distilled water for 4 h at room temperature. After the incubation, the conductivity in the solution was determined by HI8733 conductivity meter (Hanna Instruments). Then, the samples were autoclaved, cooled and the conductivity was read again in the solutions. Ion leakage was expressed as a
percentage of the total conductivity after autoclaving ${ }^{16}$. Chlorophyll a fluorescence transients were determined on dark-adapted leaves kept for 30 min at room temperature, using a portable Handy PEA (Hansatech, UK). Leaf fluorescence detection was measured by fast-response PIN photodiode with RG9 longpass filter and an excitation light intensity (ultrabright red LEDs with a peak at 650 nm) of $3000 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\left(600 \mathrm{~W} \mathrm{~m}^{-2}\right)$ (Hansatech, technical manual). The parameters measured were Fo, Fm, and Fv/Fm. JIP analysis was performed to determine the performance index (PI).

The chlorophyll fluorescence in plants adapted under ambient light conditions was measured using FMS2 portable chlorophyll fluorometer (Hansatech, UK). The light was measured using a PAR sensor and the parameters measured were the efficiency of the photosystem II (FPSII), maximum fluorescence under light conditions (Fm'), electron transport rate (ETR).

Anthocyanin extracts from Hibiscus petals

Anthocyanin extracts were obtained from red petals of Hibiscus flowers. Nine petals per treatment were carefully taken from fresh flowers just at the end of the experiment (after 28 days) and samples were frozen at -20 C until the analysis

The extraction of anthocyanin compounds was carried out as follows. Petals were manually divided in two pieces: the base (narrow basal portion) and the limb (cup-shaped upper portion). Each part was individually analyzed (petal bases $n=18$; petal limbs $n=18$). Samples were freeze-dried for 24 h (lyophilizer CRYODOS -80, Telstar® Varian DS 102). The total amount of each homogeneous lyophilized powder obtained was separately extracted with methanol containing 5% of concentrated hydrochloric acid, for 12 h , with occasional agitation and sonication, in darkness at room temperature $\left(18-20^{\circ} \mathrm{C}\right)$. Then, supernatants were centrifuged $(4190 \mathrm{~g}, 10 \mathrm{~min})$ and all the methanolic extracts were evaporated to dryness in a rotary evaporator at temperature below $30^{\circ} \mathrm{C}$. The residues were dissolved in $500-1000 \mu \mathrm{~L}$ of distilled water and centrifuged at 4190 g for 3 min .

When experiment started, 40 plants were subjected to salt-stress fertirrigation with NaCl at 200 mM , and the others 40 to standard fertirrigation (as control plants). This saline condition to 9 replicates per 2 treatments and 2 petal zones, as follows: 9 petal bases from control plants; 9 petal limbs from control plants; 9 petal bases from salt-stress plants, and 9 petal limbs from salt-stress plants. Moreover, each sample was analyzed in triplicate.

Total anthocyanin, flavonols and phenolic content

The spectrophotometric determination of total anthocyanin, flavonols and phenolic content were performed with a Hewlett-Packard UV-vis HP8452 spectrophotometer (Palo Alto, CA, USA), using 10 mm path length glass cells and distilled water as reference.

Total anthocyanin content was determined by the pH differential method ${ }^{17}$. Samples were diluted with aqueous pH 1.0 and 4.5 buffers (Potassium chloride solution, $0.025 \mathrm{M}, \mathrm{pH} \quad 1$; sodium acetate buffer, $0.4 \mathrm{M}, \mathrm{pH} 4.5$) and left standing for 10 min , after which the absorbance measurements were taken at 520 and 700 nm . The method assumes that anthocyanin pigments show zero absorbance at pH 4.5 . The molar extinction coefficient of cyanidin-3-glucoside was 26900 and its molecular weight was 449.2 Da. Results were expressed in mg of anthocyanins (as cyanidin-3-glucoside equivalent) per 100 g petal dry weight (DW).

Total flavonols content was determined using a modification of the Glories method ${ }^{18,19}$, originally for wine phenols. Samples were diluted $1: 10$ with 10% ethanol. The method consisted of placing 0.25 mL of sample or standard in a test tube and adding 0.25 mL of $0.1 \% \mathrm{HCl}$ in 95% ethanol and 4.55 mL of $2 \% \mathrm{HCl}$. The solution was mixed and allowed to sit for approximately 15 min before reading the absorbance at 360 nm . Standard used was quercetin in 95% ethanol and the results were expressed as mg of flavonols (expressed as quercetin equivalents) per 100 g petal dry weight (DW).

Total phenolic content (TPC) was determined using a modification of the Folin-Ciocalteau method ${ }^{20}$. Absorbance was measured at 765 nm and the results were expressed as mg of polyphenol (expressed as gallic acid equivalents) per 100 g petal dry weight (DW).

HPLC-DAD-ESI/MS analysis

HPLC-DAD analysis was performed in a Hewlett-Packard 1200 series liquid chromatograph (Palo Alto, CA), equipped with a quaternary pump, column heater, an UV-Vis diode-array detector, an automatic injector, and the ChemStation software. A Zorbax SB C18 column ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 4.6 \mu \mathrm{~m}$ particle size) thermostated at $35^{\circ} \mathrm{C}$ was used. All analyses were made in triplicate by direct injection of the samples, previously filtered through a $0.45 \mu \mathrm{~m}$ Nylon filter (E0034, ANALISIS VINICOS, Spain).

Chromatographic analysis was carried out following a modification of the method described in Quijada-Morin et al. ${ }^{21}$. The solvents used were: (A) an aqueous solution (0.1%) of trifluoroacetic acid (TFA), and (B) 100\% HPLC-grade acetonitrile.

The elution profile was as follows: isocratic 10% B for 3.25 min , from 10 to 15% B for 12.37 min , isocratic 15% B for 5.21 min , from 15 to 18% B for 5.21 min , from 18 to 30% B for 20.84 min and from 30 to $35 \% \mathrm{~B}$ for 5.20 min . The flow-rate was $0.8 \mathrm{~mL} \mathrm{~min}^{-1}$ and the injection volume was $50 \mu \mathrm{~L}$. The UV-vis spectra were recorded from 220 to 600 nm with a bandwidth of 2.0 nm . Detection was carried out at 520 nm as the preferred wavelength.

For the anthocyanin identification, the mass spectrometer was connected to HPLC system via the DAD cell outlet. MS detection was performed in a API 3200 Qtrap (Applied Biosystems, Darmstadt, Germany) equipped with an ESI source and a triple quadrupole-ion trap mass analyzer that was controlled by Analyst 5.1 software. Zero grade air served as nebulizer gas (GS1) and turbo gas (GS2) for solvent drying. Nitrogen served as curtain (CUR) and collision gas (CAD). MS analysis was carried out in positive mode (ESI +). Setting used was optimized by direct infusion of a malvidin 3-O-glucoside solution:
declustering potential (DP) 41 V , entrance potential (EP) 7.5 V , ion spray voltage (IS) 5000 V , GSI 40 psi, GS2 $50 \mathrm{psi}\left(600^{\circ} \mathrm{C}\right)$, CUR 20 psi, and CAD was set as "High". Both quadrupoles were set at unit resolution. Mass method consisted of three mass experiments: full mass analysis (EMS mode, collision energy (CE) 10V), MS2 analysis (EPI mode, CE 25 V) and MS3 analysis (CE 30V, excitation energy (AF2) 50V). Spectra were recorded between $\mathrm{m} / \mathrm{z} 150$ and 1100 .

Anthocyanin compounds were identified by comparison of their retention time, UV-vis spectra, and mass spectra features with data reported in literature. Quantification of anthocyanins was calculated from the peak areas recorded at 520 nm using a calibration curve purchase standard of cyanidin-3-glucoside. Results were expressed as $\mathrm{mg} / 100 \mathrm{~g}$ of petal dry weight (DW).

Color analysis of Hibiscus petals by Digital Image Analysis

Previous to the frozen treatment, the same fresh petals considered for the anthocyanin determination ($\mathrm{n}=9$ per treatment) were used to analyze the color of Hibiscus flowers by digital images analysis.

The image acquisition was performed with a DigiEye imaging system ${ }^{22}$ consisting of a calibrated digital camera connected to a controlled illumination cabinet and a computer with appropriate software (DigiPix). The digital camera used for image acquisition was a 10.2 megapixel Nikon® D80 with Nikkor® $35 \mathrm{~mm} \mathrm{f} / 2 \mathrm{D}$ objective. It was connected via USB to a computer with Pentium IV processor at 3.00 GHz . The cabinet (VeriVide DigiEye ${ }^{\circledR}$, Leicester, UK) was equipped with two fluorescent tubes that emulate the standard illuminant D65 and offer stable lighting conditions. Lamps were switched on at least ten minutes before being used, according to manufacturer indications, to stabilize them. The camera was calibrated with the Gretag Macbeth Colour Checker DC Chart in order to characterize its response by relating the RGB signals to CIE specifications under the fixed lightning
conditions in the cabinet. For the color measurements, fresh petal samples were appropriately placed into the cabinet using a white background that ensures an adequate segmentation of sample image.

For each image, a 625×625 pixel fixed area was taken and CIELAB color parameters data $\left(L^{*}, a^{*}, b^{*}, C^{*} a b\right.$, and $h_{a b}$) were estimated according to Rodríguez-Pulido et al. ${ }^{23}$, with the software Matlab \circledR^{24}. The color data obtained were averages of three measurements. In addition, the Euclidean distance between two points in the three-dimensional space define by L^{*}, a^{*}, and b^{*} were used to calculate the color difference between control and saline samples as follows: $\Delta \mathrm{E}_{\mathrm{ab}}=\left[\left(\Delta \mathrm{L}^{*}\right)^{2}+\left(\Delta \mathrm{a}^{*}\right)^{2}+\left(\Delta \mathrm{b}^{*}\right)^{2}\right]^{1 / 2}$.

Statistical analysis

All statistical analyses were performed using software Statistica v.8.0 0^{25}. Univariate analysis of variance (ANOVA) was applied, using the general linear model procedure (GLM), to establish whether mean values of the phenological and physicochemical data obtained differed significantly as a function of the salinity treatment applied. The means values were compared by t-test, Bonferroni test, or Tukey test at a significance level of $p<0.05$. Correlations between color parameters and anthocyanin content were studied by Forward Stepwise Multiple Regression at a significance level of $p<0.05$.

RESULTS AND DISCUSSION

Effect of salinity stress on abscisic acid content, ion leakage and photochemical efficiency

The application of salinity stress for a prolonged period influenced the morphology and the physiology of H. rosa-sinensis plants.

In our conditions, the saline irrigation caused a significant decrease in flower fresh mass, which was about 60% after 28 days of treatment. The biomass reduction due to salt stress may either be determined by the decreased availability of water or to the NaCl toxicity ${ }^{26}$.

Previous research on other ornamental flowers showed that quality parameter like flower weight was unfavorably affected by salinity ${ }^{27}$. In fact, plants subjected to saline irrigation require additional energy on plant cells. This extra metabolic energy is likely to be consumed in processes related to osmotic adjustment within the cells and hence less carbon is available for growth ${ }^{28}$. This is particularly relevant for plant visual quality, because the most decorative elements for ornamental plants are usually the flowers.

As reviewed by Ashraf and Harris ${ }^{29}$, the salt sensitive species, showed an increase in electrolyte leakage in the leaves under saline conditions. Electrolyte leakage is an indicator for the extent of membrane damage under salinity stress and was determined in the fully expanded leaves of salt-stressed H. rosa-sinensis. Low values of electrolyte leakage were recorded in the controls $(0 \mathrm{mM})$. The presence of NaCl in the rooting medium induced a significant increase in electrolyte leakage in the leaves (Figure 1) and was greater as exposure time to saline treatment increased reaching the maximum values after 28 days. The hormone ABA is well known as a mediator in plant responses for both biotic and abiotic stresses. Endogenous ABA concentrations fluctuate in response to environmental conditions ${ }^{30}$, allowing plants to survive under adverse conditions, such as salt stress. In H. rosa-sinensis plants, salinity increased ABA content in leaves (Figure 2). This is consistent with other plant species that increase ABA production in response to salinity ${ }^{31}$. Moreover, ABA levels varied among the flower tissues examined, and as showed in Figure 2, its content enhanced in the style stigma plus stamens whereas in petals and ovary tissues decreased. A possible relationship among the differential tissue-rate of growth under salinity could explain the divergent trend of ABA levels in floral organs and needs to be further explored.

To better characterize the physiology of Hibiscus, the chlorophyll a fluorescence was measured. In dark adapted leaves the PI declined drastically after 28 days of saline
treatment, being 8.4 units in the control leaves whereas in the treated plants was 3.9 units. PI is an overall index that combines different fluorescence parameters and has been frequently employed to understand the responses of the photosynthetic apparatus to different physiological and environmental conditions ${ }^{10,32}$. Our results confirmed PI as a sensitive indicator of salt stress. Also the chlorophyll a fluorescence measured from the light adapted leaves subjected to saline irrigation, revealed a statistically relevant reduction in the relative quantum yield of PSII (0.7 in the control plants versus 0.4 under saline treatment) and these results are in agreement with the literature ${ }^{33}$.

To summarize, salinity promoted several physiological and biochemical changes in Hibiscus plant tissues including reduction of flower biomass and parameters associated with the functioning of the photosynthetic apparatus as well as fluctuation of ABA levels, and increase electrolyte leakage.

Effect of salinity stress on the anthocyanin composition and color

Considering the heterogeneous color pattern of H. rosa-sinensis flowers with two red zones visually discernible, the base and the limb of petals were analyzed as separate groups to determinate possible differences regarding their anthocyanin composition and content; as well as to evaluate the influence of saline stress in each zone.

Results showed that the base and limb of flowers presented the same anthocyanin profile. The chromatographic analysis of the extracts, registered at 520 nm , shows the presence of five anthocyanins (Figure 3.A), all of them identified as cyanidin derivatives according to their chromatographic and spectrometric features obtained in the HPLC-DAD-MS analysis (Table 1).

The major anthocyanin found in Hibiscus rosa-sinensis flowers was identified as cyanidin-3-sophoroside (peak 1), which accounted for 80% of total peak area. The mass spectrum of peak 1 (Figure 3.B) obtained in the ESI positive mode exhibited an ion at $\mathrm{m} / \mathrm{z} 611$. MS/MS
fragmentation of $\mathrm{m} / \mathrm{z} 611$ produced a daughter ion at $\mathrm{m} / \mathrm{z} 287$ which was indicative of the cyanidin moiety, as previously found in literature ${ }^{34}$.

Peak 2, was identified as cyanidin-3-sambubidoside based on its characteristic molecular ion at $\mathrm{m} / \mathrm{z} 581$ and a major fragment in MS^{2} at $\mathrm{m} / \mathrm{z} 287$, which has been described as one of the most common anthocyanin in diverse Hisbiscus spp ${ }^{1}$. However, in our H. rosa-sinensis extracts, it was only detected in trace levels.

Peak 3 represented the second predominant anthocyanin in the analyzed extracts accounting for nearly 12% of total anthocyanins. Its fragmentation pattern showed a molecular ion at $\mathrm{m} / \mathrm{z} 639$ which produced two MS^{2} daughter ions at $\mathrm{m} / \mathrm{z} 449(\mathrm{M}+-190)$ which corresponds to cyanidin-hexose moiety; and m / z ratio at $287(\mathrm{M}+-190-162)$ which corresponds to cyanidinaglycone moiety were found (Figure 3.C). Despite MS^{2} fragmentation pattern could not be confirmed with reported data, it indicated the sequential losses of an unidentified substituent (190 amu) and one hexose residue (162 amu, i.e. glucose as abundant sugar in plants) from aglycone. According to the literature, the glycoside moieties of anthocyanins are usually esterified with different organic or phenolic acids. Among them, the hibiscus acid has been described as a common compound of Hibiscus species showing a characteristic loss of 190 amu^{35}, when it appears as an esterification substituent. Moreover, the acylated nature of this compound is consistent with their relative retention time in the HPLC analysis, eluting before the corresponding 3-glycosides derivatives. Thus, peak 3 would tentatively correspond to a cyanidin-3-glucoside esterified by an hibiscus acid moiety.

In addition to the abovementioned compounds, other two minor pigments were also detected (peaks 4 and 5) although their absorption or mass spectra were insufficient to allow speculation about their identity. Their structures still need to be elucidated by comparison of MS data with reference standards or using other spectroscopic techniques such as NMR.

The concentration of the different anthocyanins detected by HPLC-DAD-MS together with the total content of anthocyanins, flavonols and polyphenols assessed by rapid spectrophometric methods are shown in Table 2, where the effect of saline fertirrigation can be observed.

Although there were five anthocyanins detected, quantitative differences for all the individual compounds were observed among the two distinct areas of the petals. Generally, the petal limb contained more anthocyanins and other phenolics than the base, which support the heterogeneous color pattern exhibited by H. rosa-sinensis flowers. For the control sample, the average values of Total anthocyanins, flavonols and polyphenolic content in the petal limb were found to be $821.5 \pm 37.3,23.0 \pm 0.9$ and $2252.4 \pm 129.4 \mathrm{mg} / 100 \mathrm{~g}$ DW, whereas the global levels in the petal base were $228.0 \pm 48.9,12.9 \pm 1.2$ and 1077.9 ± 98.5 $\mathrm{mg} / 100 \mathrm{~g}$ DW, respectively.

As can be observed, the saline treatment significant ($p<0.05$) affected the anthocyanin composition of Hibiscus flowers reducing its content (Figure 3.A), but the magnitude of the effect was different in each zone of the petal (Table 2). The increase in the salinity of the nutrient solution was accompanied by a stronger decrease of the Total anthocyanin content in the base than in the limb (30% versus 20%, approximately), which is mainly due to the cyanidin-3-sophoroside reduction in both cases. In particular, some of the individual anthocyanin compounds present in the limb were not affected by the saline treatment, which could explain the lower loss of pigments in this zone of the flower. As reported by other authors ${ }^{3}$, differences between the glycosyl units and acyl groups attached to the aglycone, and the site of their bonding, have a significant influence on the stability and reactivity of the anthocyanin molecule.

Furthermore, the saline fertirrigation caused a negative impact in the accumulation of other phenolic compounds since their total content was lower in flowers from plants grown with
salinity stress conditions (25% and 15% lower for Total flavonols, and 29% and 10% lower for Total polyphenols; in the base and limb respectively). There is considerable controversy in the literature concerning the positive and negative effects of salt stress on the phenolic composition of many plant species. Some authors have shown that the application of moderate salt stress stimulates the anthocyanin synthesis ${ }^{7}$. However, our results are in agreement with those reported by Li et al. ${ }^{36}$, which observed that the anthocyanin content in grapes was negatively affected by high saline conditions $(100-150 \mathrm{mM} \mathrm{NaCl})$.

Regarding the color characteristics of H. rosa-sinensis flowers, Figure 4 shows the threedimensional colorimetric representation of a petal sample (control plant) obtained by Digital Image analysis. It presents the L^{*}, C^{*} ab, and $h_{a b}$ CIELAB values assigned to each pixel of the petal image grouped regarding the petal zone (base and limb; $n=100$ pixel/petal zone), which provide a full characterization of the color variability of samples ${ }^{37}$. As can be seen, the color of the base could be easily distinguishable from the limb. Color points corresponding to the limb area appeared more disperse than those of the base, and showed higher values of lightness (L^{*} ranging from 23 to 42 versus 26 to 37 CIELAB u., respectively), chroma ($\mathrm{C}^{*}{ }_{\mathrm{ab}}$ from 31 to 47 versus 29 to 35 CIELAB u.) and hue (h_{ab} from 35 to 53° versus 30 to 41°). This meant that the petal limb exhibits more vivid color with redorange hues, which is consistent with the higher accumulation of red-orange forms of anthocyanins (cyanidin derivatives) in this flower zone ${ }^{38}$. On the contrary, the base of the petal corresponds to a more homogeneous redness area with darker and less saturated color, due to their lower concentration in cyanidin derivative pigments. Apart from the different amounts in pigments, the differences observed for the total content of flavonols and polyphenols in each petal zone (Table 2) may also account for the natural color variability of Hibiscus flowers since colorless phenolics are usually implied in the color expression of anthocyanins by means of copigmentation reactions contributing with color changes ${ }^{39}$.

The concentration of the different anthocyanins detected by HPLC-DAD-MS together with the fertirrigation treatment are summarized in Table 2, where p-values for comparison among control and saline samples are shown. Results indicate that the color of Hibiscus flowers was significantly $(p<0.05)$ affected by salt treatment, which was in accordance with the effect induced in the pigment composition. The addition of 200 mM of NaCl into nutrient solution resulted in quantitative (L^{*} and C^{*} ab) and qualitative (h_{ab}) color variations both in the base and the limb of Hibiscus petals (Figures 5.A and 5.B). Specifically, salt stress resulted in a general loss of color, as can be seen in Table 2. In each zone, L^{*} and $h_{a b}$ values increased while C^{*} ab values decreased (L^{*} by 21% and 11%; $h_{a b}$ by 20% and 5%, C*ab by 12% and 3%, in the base and the limb respectively), so Hibiscus flowers exhibited clearer and less vivid red color when they were fertirrigated under saline stress conditions, being the effect more marked in the base of the petals.

These results were also confirmed through the quantitative mean color difference ($\Delta \mathrm{E}^{*}{ }_{a b}$) calculated among control and saline samples in each petal zone, which were 4.1 and 9.6 CIELAB u. for the petal limb and base, respectively. Taking into account that $\Delta E^{*}{ }_{a b}$ of up to three CIELAB units indicates color differences appreciable to the human eyes ${ }^{40}$, it was confirmed that more important and hence more easily perceptible color loss was caused in the base of the Hibiscus petal, which is consistent with the higher reduction of the pigment concentration in this flower zone.

Apart from the assessment of color itself, the objective measurement of color can be harnessed for the rapid determination of pigments. In this regard, color measurements offer a series of advantages for this purpose, like rapidity, non destructiveness and simplicity, among others. A Forward Stepwise Multiple Regression was performed for predicting the

