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This work investigates the dynamics modeling, control, and impact resolution between a floating object 
and a free-floating space manipulator (FFSM). The controller design is carried out by using an output- and 
state-dependent Riccati equation (OSDRE) approach. In a collision between an object and a mechanism, the 
computation of the generalized velocities and the impact force or impulse, which are interrelated, is a challenging 
problem. Taking into account the free-floating conditions of the space environment, the conservation of linear 
and angular momentum equations, combined with the conservation of kinetic energy under the elastic impact 
assumption, are used to find the unknown variables of the impact problem. The control problem addressed for 
the FFSM is to regulate its end-effector in a point-to-point motion scenario, this while the space manipulator 
suffers an unintended impact with a floating object, such as a damaged satellite or space debris. By proposing 
a safety pause starting with the occurrence of impact and for a short duration thereafter, the proposed OSDRE 
design succeeds in achieving the end-effector regulation control. Although the FFSM can reach the target point, 
it is shown that maintaining the end-effector regulation at the target is not feasible due to the momentum 
imparted to the FFSM as a result of the collision. To this end, we employ a simple thruster control on the 
space manipulator base to complete the regulation task. The theoretical development and controller design are 
demonstrated through a simulation case study of a spacecraft equipped with a three-link manipulator colliding 
with an object.
1. Introduction

The number of satellites, space debris, and floating objects orbiting 
around Earth is increasing rapidly due to technological progress and 
growth of the space industry. This points to the necessity to study the 
interaction of space manipulators with floating objects. The purpose of 
the interaction can be on-orbit repair [1,2], maintenance [3,4], collec-

tion of debris [5] and grasping of debris [6]; however, a very likely 
occurrence in space operations is an unintended collision between a 
space manipulator and a floating object. The ideal scenario in such a 
situation would be the completion of a control task by the space manip-

ulator, even though it suffered a collision. In this paper, we focus on a 
free-floating space manipulator (FFSM) which includes a robotic arm, 
mounted on a floating base when the thrusters of the base are turned 
off [7,8]. Using the floating characteristics of the FFSM, the dynamics of 
the mounted arm can be presented in a compact form including the state 
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variables of the base. To resolve the impact resulting from the collision, 
for both the floating object and the FFSM, we employ the appropriate 
momentum conservation equations to define relationships between the 
velocities of the components of the colliding system before and after im-

pact. An additional equation used to complete the resolution of impact 
is the conservation of energy over the impact, which applies to elastic 
frictionless impacts between the gripper and the floating object. Thus, 
the principal assumptions for this work are a floating condition for both 
the FFSM and the colliding object, elastic and frictionless impact, and 
hence, no energy dissipation over the impact.

The study of impact in robotic and, more generally, multibody sys-

tems has a long and rich history in the scientific community [9–11]. 
The Jacobian matrix and force control are two useful tools for ana-

lyzing and controlling a manipulator interacting with the environment 
[12,13]. This approach is helpful since the contact point of the gripper 
and the base of the robotic arm are fixed. Rhee et al. presented hybrid 
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admittance and impedance control for impact scenarios of robotic ma-

nipulators [14]. Jung et al. used robust variable structure control for 
position and force control of the arm in contact with the environment 
[15]. The extension of the topic leads to capturing an object or payload 
with space manipulators [16].

A challenge in the collision between a mechanism and an object is 
the computation of the impact force and post-impact velocities. Dim-

itrov and Yoshida used a biased momentum approach to find the distri-

bution of the momentum in a manipulator to analyze the post-impact 
phase [17]. Capturing objects in space includes impact in the formu-

lation. Nagaoka et al. used a repeated impact-based capturing method 
for a tumbling object in space by a dual-arm manipulator [18]. Passive 
damping was proposed to solve the impact issue in the control task. Liu 
et al. designed a new end-effector for refueling satellites which included 
the impact modeling and contact analysis for space missions [19]; the 
end-effector was designed to perform docking and refueling tasks with a 
single arm instead of a dual-arm system. Modeling the object capture as 
inelastic impact allows us to simply “add” the object to the end-effector 
and is a common approach to address the problem of object capture 
in space. Raina et al. proposed reaction-less control for a post-impact 
phase in capturing objects by using the inelastic impact assumption in 
dynamics modeling and control [20]. A dual-arm servicing robot was 
simulated capturing an object.

Research on bipedal humanoid robots provides numerous examples 
of solving the impact dynamics and control problem involving complex 
multi-link mechanisms [21,22]. The oblique impact was proposed for a 
multi-link system in contact with the environment [22]. It was shown 
that the equation of motion for the system could be integrated over the 
impact to obtain an algebraic equation involving the inertia matrix and 
the difference between the velocities of the joints before and after the 
collision. Nekomoto and Sekiguchi modeled and controlled a biped sys-

tem and analyzed the impact [23]. The difference between the impact 
of bipeds with the ground and the impact that occurs between objects 
in space is the absence of gravity and the floating condition [24,25]. 
The analysis of the impact force and integration of the equation of mo-

tion can be adopted for impact in space, where similarly the Coriolis 
and centrifugal terms vanish [26,27] when integrated over impact. The 
advantage of impact analysis for biped locomotion is the possibility of 
experimentation with real systems [28,29].

The state-dependent Riccati equation (SDRE) is chosen here to con-

trol an FFSM in a regulation task. This controller possesses a sub-

optimal design and includes nonlinearity of the dynamics of the system 
in its structure [30]. The capability of the controller to balance the pre-

cision of the state convergence and input efforts through the cost func-

tion integral of the SDRE is a great benefit for easy tuning of the con-

troller [31,32]. The use of the SDRE approach in space and satellite ap-

plications began in the late 90s when the SDRE was proposed for satel-

lite attitude control [33]. Space applications of the SDRE control include 
satellites/spacecraft [34,35], docking [36], CubeSats [37], and space 
robotics [38]. In this work, the focus is on applying the SDRE controller 
to space robotics, specifically for post-impact regulation of an FFSM.

Space manipulators or space robotic arms, which subsume a single 
manipulator, dual-arm systems, or multiple arms, are popular systems 
for operations involving interaction with objects, satellites, or space de-

bris. They are usually intended to operate either in free-floating (with-

out the actuation of the base) or free-flying (with the actuation of the 
base) modes, while the manipulator system is in operation. Sharma 
and Rout presented a reaction-less multi-arm space manipulator for 
cooperative tasks [39]. The proposed application was construction in 
space and manipulation; the multi-arm design was carried out to per-

form energy-efficient manipulation. Typically, the mass of the base 
of the space manipulator, particularly for the free-floating systems, is 
relatively large so that it naturally compensates for the reactions im-

parted by the motion of the arm [40]. The mass difference between 
the base and the arm is justified since the base carries a power supply, 
2
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reference SDRE was designed in [40] and compared in simulation for 
light vs. heavy-base systems, to evaluate the theoretical feasibility of 
controller performance without increasing the actual mass of the base. 
An et al. researched in-orbit assembly and construction by using dual-

arm FFSM via convex programming [41]. Convex programming was 
used to perform time-optimal path tracking.

An ideal controller for an FFSM considers the deviation of the 
FFSM’s base in the point-to-point maneuvers. The output- and state-

dependent Riccati equation (OSDRE) derivation is based on the output 
feedback control method, applied on the sub-optimal control SDRE 
[42]. Using OSDRE, the mass of the base could be reduced to the same 
order of magnitude as the mass of the arm. Another advantage of the 
OSDRE is more precision in regulating the gripper in a control task. 
Since the objective is to guide the gripper to the final point, the base 
and the torque of the arms work to achieve the task, and the perturba-

tion of the base does not affect the success rate of the control. However, 
for the model-reference SDRE design, the controller was sensitive to 
perturbation of the base and its deviations caused more errors in the 
end-effector regulation [40]. The impact dynamics and the SDRE con-

trol in the robotics field were studied quite recently [43] where the 
authors presented force and impact control for a fixed-base robotic ma-

nipulator in contact with the environment. The impact of space robotic 
manipulators using OSDRE controller design is addressed here. This 
work aims to complete a regulation control task, when an unintended 
collision occurs in the middle of the trajectory, as may occur, for exam-

ple, when a collision avoidance strategy fails. Therefore, in this work, 
we study the system modeling over impact, for both the FFSM and the 
object, and address the control problem with consideration of the im-

pact, which has not been studied in the SDRE domain.

The main contributions of this paper are:

1. Impact modeling and resolution in space for a complex mechanism 
(FFSM) colliding with a floating object.

2. A general method to compute the generalized velocities of the FFSM 
involved in elastic impact by using conservation of momentum and 
conservation of energy equations.

3. Formulation and implementation of the OSDRE regulation control 
for an FFSM undergoing collision during a point-to-point task.

Notation: (⋅)⊤ denotes the transpose of a vector or a matrix, 𝛿(⋅)
shows impulse, ℝ𝑛 indicates 𝑛-dimensional Euclidean space, (⋅)† is the 
generalized inverse of a vector or a matrix, ℝ𝑛×𝑚 shows an 𝑛 × 𝑚 real 
matrix, 𝟎𝑛×𝑛 and 𝐈𝑛×𝑛 denote zero and identity matrices of size 𝑛 × 𝑛, 
respectively, and diag(⋅) denotes a matrix with diagonal components.

Structure of the paper: Section 2 presents the dynamics modeling 
of the floating object, FFSM, and the impact resolution. The OSDRE 
control formulation is summarized in Section 3. It also includes the 
statement of necessary conditions for implementing the control for the 
FFSM, considering the impact. Section 4 demonstrates the performance 
of OSDRE through a simulation study of an FFSM with a three-degree-

of-freedom (DoF) arm, undergoing a planar collision with an object, 
with accompanying discussion of the system responses, both pre- and 
post-impact. Particular attention is given to the validation of the re-

sults by providing momenta and energy responses. The final remarks 
are stated in Section 5.

2. Modeling: mathematical representation of dynamics

The mathematical model of the system is presented in this section, 
including the dynamics equation of the floating object, the equation 
of motion of the FFSM, and the impact modeling. The schematic of 
the FFSM moving from the initial to the final condition is shown in 
Fig. 1. We assume that a floating object (e.g., an out-of-service satel-

lite, a CubeSat, space debris) is on the path of the end-effector of the 

arm and a collision happens. The objective is to model the impact phase 
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Fig. 1. The inertial and body-fixed frame definition, a schematic of the free-floating space manipulator and floating object (in this case a floating damaged satellite 
or an out-of-fuel CubeSat), and end-effector trajectory with possible impact. 𝜙o(𝑡), 𝜃o(𝑡), 𝜓o(𝑡) show base orientation of the floating object and 𝜙(𝑡), 𝜃(𝑡), 𝜓(𝑡) show 
base orientation of the FFSM w.r.t. global reference {𝑋, 𝑌 , 𝑍}.
and to simulate the ensuing motions of both the object and the FFSM 
after the impact. We assume that at the moment of impact, a safety 
switch turns off the actuators of the space manipulator to avoid further 
damage. Following a pre-defined duration security pause, the manip-

ulator regulates the gripper toward the final desired condition in the 
point-to-point control task.

As was alluded in the introduction, obstacle avoidance methods are 
indeed well-developed in literature, including methods such as artifi-

cial potential field [44–46], the SDRE obstacle avoidance [47–49], the 
rapidly exploring random tree algorithm [50,51] and others. However, 
the goal of this work is to model the collision in space in the context 
of the regulation task of the FFSM, and the collision is intentionally 
designed to study this topic.

Assumption 1. Perturbations such as atmospheric drag, solar radiation 
pressure, and other external disturbances are considered to be negligible 
w.r.t. the forces of the FFSM while operating in space.

Assumption 2. Orbital mechanics is neglected and it is assumed that 
the local orbital frame is the inertial, also referred to as the global 
frame.

2.1. Dynamics model of the floating object

The generalized coordinates of the floating object are collected into 
a column vector 𝐪o(𝑡) = [𝑥o(𝑡), 𝑦o(𝑡), 𝑧o(𝑡), 𝜙o(𝑡), 𝜃o(𝑡), 𝜓o(𝑡)]⊤, where the 
position is defined by 𝝃o,1(𝑡) = [𝑥o(𝑡), 𝑦o(𝑡), 𝑧o(𝑡)]⊤, and the orientation 
is parameterized by 𝝃o,2(𝑡) = [𝜙o(𝑡), 𝜃o(𝑡), 𝜓o(𝑡)]⊤, w.r.t. to the inertial 
reference frame. The state variables of the floating object are arranged 
into

𝐱o(𝑡) =
⎡⎢⎢⎢⎣
𝝃o,1(𝑡)
𝝃o,2(𝑡)
�̇�o,1(𝑡)
�̇�o,2(𝑡)

⎤⎥⎥⎥⎦ , (1)

where the following relationships hold between the generalized veloci-

ties and the body-fixed linear (𝝊o,1(𝑡)) and angular (𝝊o,2(𝑡)) velocities of 
the object:

�̇�o,1(𝑡) =𝐑(𝝃o,2(𝑡))𝝊o,1(𝑡),

�̇�o,2(𝑡) =𝐓(𝝃o,2(𝑡))𝝊o,2(𝑡),
(2)
3

in which
R(𝝃o,2(𝑡)) =
⎡⎢⎢⎣
𝑐𝜓o

𝑐𝜃o −𝑐𝜙o𝑠𝜓o
+ 𝑠𝜙o𝑠𝜃o𝑐𝜓o

𝑠𝜙o𝑠𝜓o
+ 𝑐𝜙o𝑠𝜃o𝑐𝜓o

𝑠𝜓o
𝑐𝜃o 𝑐𝜙o𝑐𝜓o

+ 𝑠𝜙o𝑠𝜃o𝑠𝜓o
−𝑠𝜙o𝑐𝜓o

+ 𝑐𝜙o𝑠𝜃o𝑠𝜓o
−𝑠𝜃o 𝑐𝜃o𝑠𝜙o 𝑐𝜃o𝑐𝜙o

⎤⎥⎥⎦ ,
T(𝝃o,2(𝑡)) =

⎡⎢⎢⎣
1 𝑠𝜙o 𝑡𝜃o 𝑐𝜙o 𝑡𝜃o
0 𝑐𝜙o −𝑠𝜙o
0 𝑠𝜙o∕𝑐𝜃o 𝑐𝜙o∕𝑐𝜃o

⎤⎥⎥⎦ .
The translational and orientation dynamics equations of the floating 

object can be obtained by employing the Lagrangian formulation to 
give:

𝑚o�̈�o,1(𝑡) = 𝐅e𝛿(𝑡− 𝑡i), (3)

𝐈(𝝃o,2(𝑡))�̈�o,2(𝑡) +𝐂(𝝃o,2(𝑡), �̇�o,2(𝑡))�̇�o,2(𝑡) = 𝝉e𝛿(𝑡− 𝑡i), (4)

where 𝑚o is the mass of the object, 𝐅e ∈ ℝ3 represents the impul-

sive external force due to the impact, expressed in global coordinates 
{𝑋𝑌𝑍}, 𝛿(𝑡 − 𝑡i) is the Dirac delta function, 𝑡i is the time of impact, 
𝐈(𝝃o,2(𝑡)) = T−⊤(𝝃o,2(𝑡))𝐈cT−1(𝝃o,2(𝑡)) is the generalized inertia of the 
object corresponding to the orientation coordinates 𝝃o,2(𝑡), in which 
𝐈c = diag(𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧) is the centroidal principal-axes inertia matrix of 
the floating object. The term

𝐂(𝝃o,2(𝑡), �̇�o,2(𝑡))�̇�o,2(𝑡) ∶ℝ3 ×ℝ3 →ℝ3,

models the Coriolis and centrifugal effects. The column vector 𝝉e ∈ℝ3

contains the generalized impulsive torque about the CoM of the floating 
object resulting from the impact force.

The time derivative of the state-vector (1) with the substitution of 
(3)-(4) results in the state-space (SS) model of the object:

�̇�o(𝑡) =

⎡⎢⎢⎢⎢⎣
�̇�o,1(𝑡)
�̇�o,2(𝑡)

1
𝑚o

𝐅e𝛿(𝑡− 𝑡i)
𝐈−1(𝝃o,2(𝑡))[𝝉e𝛿(𝑡− 𝑡i) −𝐂(𝝃o,2(𝑡), �̇�o,2(𝑡))�̇�o,2(𝑡)]

⎤⎥⎥⎥⎥⎦
. (5)

Prior to impact, there are no external forces or moments applied to 
the object and it is assumed that the object is initially stationary and 
non-rotating. The impact creates an impulsive input on the object and 
its subsequent motion as per (5) depends on the point of impact, as well 
as the direction and magnitude of the impulsive force. Following the 
impact, the external force vanishes again and the floating object reacts 
to the impulse freely.

With the view to employing the discrete model of impact between 
the object and the FFSM [9], we introduce the linear momentum o
and the angular momentum o of the object, the latter about the ori-

gin of the inertial (global) frame {𝑋, 𝑌 , 𝑍}. The two momenta can be 

compactly formulated as:
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]
=
[

𝑚o�̇�o,1(𝑡)
𝐑(𝝃o,2(𝑡))[𝐈c𝝊o,2(𝑡)] + 𝝃o,1(𝑡) ×𝑚o�̇�o,1(𝑡)

]
, (6)

where we point out the second term in the expression for o, which rep-

resents the moment of the linear momentum about the inertial origin. 
Both momenta are initially zero and are conserved until impact occurs. 
At the instant of collision, the two momenta experience a discontinuous 
change, and once again remain conserved at their new values there-

after. It is also worth noting that prior to and after impact, the angular 
momentum of the object about its center of mass, represented by the 
first term in the expression for o, is also conserved. However, since 
the collision takes place with a multibody system—the FFSM—and in 
anticipation of impact resolution for the object-FFSM system, the angu-

lar momentum of the object about the origin of the inertial frame will 
be required, as per the definition in (6).

2.2. Dynamics model of FFSM

The generalized coordinates of the FFSM system are combined into:

𝐪(𝑡) = [𝐪⊤b (𝑡),𝐪
⊤
a (𝑡)]

⊤,

where 𝐪b(𝑡) = [𝑥c(𝑡), 𝑦c(𝑡), 𝑧c(𝑡), 𝜙(𝑡), 𝜃(𝑡), 𝜓(𝑡)]⊤ contains the general-

ized coordinates of the base, with the CoM position of the float-

ing base represented by 𝝃1(𝑡) = [𝑥c(𝑡), 𝑦c(𝑡), 𝑧c(𝑡)]⊤ and the orientation 
of the base parameterized by (𝜙(𝑡), 𝜃(𝑡), 𝜓(𝑡)) in the global reference 
{𝑋, 𝑌 , 𝑍}. The generalized coordinates of the arm are:

𝐪a(𝑡) =
⎡⎢⎢⎣
𝑞1(𝑡)
⋮

𝑞𝑁 (𝑡)

⎤⎥⎥⎦ ,
where 𝑁 is the number of joints or DoF of the manipulator. The dynam-

ics equation of the FFSM subject to a reactive impact force as a result 
of a collision with the floating object at time 𝑡i can be stated as [42]:[
𝐌b(𝐪(𝑡)) 𝐌b,a(𝐪(𝑡))
𝐌⊤

b,a(𝐪(𝑡)) 𝐌a(𝐪(𝑡))

][
�̈�b(𝑡)
�̈�a(𝑡)

]
+
[
𝐜b(𝐪(𝑡), �̇�(𝑡))
𝐜a(𝐪(𝑡), �̇�(𝑡))

]
=[

𝟎
𝐮(𝑡)

]
− 𝐉⊤(𝐪(𝑡))𝐅e𝛿(𝑡− 𝑡i),

(7)

where the base inertia matrix is 𝐌b(𝐪(𝑡)) ∶ ℝ6+𝑁 → ℝ6×6, the interac-

tion of the inertia between the arm and base is 𝐌b,a(𝐪(𝑡)) ∶ ℝ6+𝑁 →
ℝ6×𝑁 , the arm inertia matrix is 𝐌a(𝐪(𝑡)) ∶ℝ6+𝑁 →ℝ𝑁×𝑁 , the Coriolis 
and centrifugal components of the base are collected in 𝐜b(𝐪(𝑡), �̇�(𝑡)) ∶
ℝ6+𝑁 × ℝ6+𝑁 → ℝ6, those for the arm are denoted as 𝐜a(𝐪(𝑡), �̇�(𝑡)) ∶
ℝ6+𝑁 × ℝ6+𝑁 → ℝ𝑁 , and 𝐉(𝐪(𝑡)) ∶ ℝ6+𝑁 → ℝ3×(6+𝑁) is the Jacobian 
matrix of the FFSM. Finally, the input forces and/or torques of the 
motors of the manipulator are collected in the input column vector 
𝐮(𝑡) ∈ℝ𝑁 .

Remark 1. The sign in front of the impact force term in (7) is negative 
to reflect the fact that it is a reaction of the impulsive force applied to 
the object, as per the object dynamics in (3).

Remark 2. Under the free-floating conditions that exist for FFSM before 
and after impact, the total linear momentum and the total angular mo-

mentum of FFSM, the latter about the origin of the inertial frame, are 
each conserved. As a result of the impact, additional linear and angu-

lar momenta are imparted to FFSM; therefore, these, with the angular 
momentum about the origin of the inertial frame, will be conserved at 
their post-impact values, as per impact resolution.

The integration of the upper set of the equation of motion (7) results 
in:[FFSM

]

4

FFSM
=𝐌b(𝐪(𝑡))�̇�b(𝑡) +𝐌b,a(𝐪(𝑡))�̇�a(𝑡), (8)
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in which FFSM ∈ ℝ3 and FFSM ∈ ℝ3 are the system’s linear and an-

gular momenta of the FFSM. It is noted that the angular momentum of 
the FFSM computed from the system inertia matrices in (8) is about the 
CoM of the base of the FFSM. This angular momentum becomes equiv-

alent to the angular momentum about the origin of the inertial frame 
only when the linear momentum of the system is zero.

Under the assumptions made in this paper, that the FFSM is initially 
stationary and in light of the comments above, we can claim conserva-

tion of both momenta in (8) during the pre-impact motion of the FFSM 
system. After impact, the linear momentum of the FFSM is no longer 
zero, and therefore, its angular momentum about the CoM of the base, 
i.e., FFSM in equation (8), is not conserved, but changes with time. 
However, the angular momentum of the FFSM about inertial frame ori-

gin is conserved and it can be computed from the momenta in (8) as 
FFSM + 𝝃1(𝑡) × FFSM. For later use, we re-state the linear momentum 
and the angular momentum of the FFSM about the origin of the inertial 
frame in compact form as:[ FFSMFFSM,I

]
=
[ FFSMFFSM + 𝝃1(𝑡) ×FFSM

]
, (9)

where subscript“I” denotes the angular momentum computation about 
the origin of the inertial frame.

2.3. Impact modeling

2.3.1. Post-impact velocity computation

In the mathematical modeling of the floating object in Section 2.1

and the FFSM system in Section 2.2, the external input force and torque 
are impulsive and are applied at a specific instance of time. Two sets 
of values associated with impact must be computed: the change in the 
velocity of the states, for both the object and the FFSM, and also the 
impulse created by the impact force. As noted earlier, at the moment of 
impact the actuators of the FFSM are turned off (𝐮(𝑡) = 𝟎), so that the 
equations of motion for the FFSM (7) simplify to:

𝐌(𝐪(𝑡))�̈�(𝑡) + 𝐜(𝐪(𝑡), �̇�(𝑡)) = −𝐉⊤(𝐪(𝑡))𝐅e𝛿(𝑡− 𝑡i), (10)

in which the FFSM system matrices are introduced:

𝐌(𝐪(𝑡)) =
[
𝐌b(𝐪(𝑡)) 𝐌b,a(𝐪(𝑡))
𝐌⊤

b,a(𝐪(𝑡)) 𝐌a(𝐪(𝑡))

]
,

𝐜(𝐪(𝑡), �̇�(𝑡)) =
[
𝐜b(𝐪(𝑡), �̇�(𝑡))
𝐜a(𝐪(𝑡), �̇�(𝑡))

]
.

Assumption 3. The impulse force due to the impact will change the 
generalized velocities; however, it will not change the configuration of 
the system, i.e., its generalized coordinates (see page 51 [26]).

Assumption 3 indicates that the configuration of the FFSM remains 
the same from before (𝑡−i ) to right after (𝑡+i ) impact, that is 𝐪(𝑡−i ) =
𝐪(𝑡+i ). Thus, to obtain a relationship between the applied impulse and 
the change in the generalized velocities, Eq. (10) can be integrated over 
the infinitesimal duration of impact 𝑡 ∈ [𝑡−i , 𝑡

+
i ]:

𝑡+i

∫
𝑡−i

𝐌(𝐪(𝜏))�̈�(𝜏) d𝜏 +

𝑡+i

∫
𝑡−i

𝐜(𝐪(𝜏), �̇�(𝜏)) d𝜏 = −

𝑡+i

∫
𝑡−i

𝐉⊤(𝐪(𝜏))𝐅e𝛿(𝜏 − 𝑡i) d𝜏,

(11)

where Δ𝑡 = 𝑡+i − 𝑡−i and Δ𝑡 → 0.

Lemma 1 (Mean Value Theorem for Integrals [52]). Suppose that 𝑢(𝑥) is 
continuous and 𝑣(𝑥) is integrable and non-negative on interval [𝑎, 𝑏], then

𝑏

𝑢(𝑥)𝑣(𝑥) d𝑥 = 𝑢(𝑐)

𝑏

𝑣(𝑥) d𝑥,
∫
𝑎

∫
𝑎
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for some 𝑐 in 𝑥 ∈ [𝑎, 𝑏].

Assuming that �̈�(𝑡) is non-negative and using Assumption 3, one can 
integrate the first term of (11) as per Lemma 1 to obtain:

𝐌(𝐪(𝑡i))

𝑡+i

∫
𝑡−i

�̈�(𝜏) d𝜏 =𝐌(𝐪(𝑡i))[�̇�(𝑡+i ) − �̇�(𝑡−i )]. (12)

To integrate the second term in (11), it is noted that the velocity 
dependent term in (10), 𝐜(𝐪(𝑡), �̇�(𝑡)), is discontinuous at the point of im-

pact 𝑡i and in order to use Lemma 1, the second term of (11) is divided 
into two parts as follows:

𝑡i

∫
𝑡−i

𝐜(𝐪(𝜏), �̇�(𝜏)) d𝜏 +

𝑡+i

∫
𝑡i

𝐜(𝐪(𝜏), �̇�(𝜏)) d𝜏 =

𝑡i

∫
𝑡−i

𝐂(𝐪(𝜏), �̇�(𝜏))�̇�(𝜏) d𝜏 +

𝑡+i

∫
𝑡i

𝐂(𝐪(𝜏), �̇�(𝜏))�̇�(𝜏) d𝜏 =

𝐂(𝐪(𝑡L), �̇�(𝑡L))
𝑡i

∫
𝑡−i

�̇�(𝜏) d𝜏 +𝐂(𝐪(𝑡U), �̇�(𝑡U))

𝑡+i

∫
𝑡i

�̇�(𝜏) d𝜏 =

𝐂(𝐪(𝑡L), �̇�(𝑡L)) [𝐪(𝑡i) − 𝐪(𝑡−i )]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝟎

+𝐂(𝐪(𝑡U), �̇�(𝑡U)) [𝐪(𝑡+i ) − 𝐪(𝑡i)]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝟎

= 𝟎,

(13)

where 𝑡L ∈ [𝑡−i , 𝑡i], 𝑡U ∈ [𝑡i, 𝑡+i ], and 𝐪(𝑡+i ) = 𝐪(𝑡−i ) = 𝐪(𝑡i) since there is 
no change in configuration at the time of impact, as per Assumption 3. 
Indeed, it has been stated in the literature that the Coriolis and cen-

trifugal terms in the dynamics of multibody systems undergoing impact 
are non-impulsive and their integrals over the impact can be neglected 
[9,53,26].

Finally, the last term in (11) yields:

𝑡+i

∫
𝑡−i

𝐉⊤(𝐪(𝜏))𝐅e𝛿(𝜏 − 𝑡i) d𝜏 = 𝐉⊤(𝐪(𝑡i))

𝑡+i

∫
𝑡−i

𝐅e𝛿(𝜏 − 𝑡i) d𝜏 = 𝐉⊤(𝐪(𝑡i))𝐈e,

(14)

where 𝐈e is the linear impulse produced by the impact. Substituting 
from (12)-(14) into (11), one obtains the commonly used relationship 
between the change in generalized velocities and the applied impulse 
for the FFSM system:

𝐌(𝐪(𝑡i))[�̇�(𝑡+i ) − �̇�(𝑡−i )] = −𝐉⊤(𝐪(𝑡i))𝐈e. (15)

The non-negativity assumption for �̈�(𝑡) and �̇�(𝑡) that was made to 
make use of Lemma 1 in the above derivation may not hold in all cases. 
It must be noted that a milder condition is keeping the same sign over 
the interval [𝑡−i , 𝑡

+
i ] for those terms and express the same discussion for 

the negative part with proper changes. In the case that �̈�(𝑡) and �̇�(𝑡)
change sign over the impact, the conventional argument of negligible 
non-impulsive terms can be used instead of the Mean Value Theorem to 
find (15) [9,53,26].

In the context of impact resolution, we assume that the generalized 
velocities of the FFSM prior to impact are known. Then, Eq. (15) can be 
used to compute the generalized velocities right after impact with:

�̇�(𝑡+i ) = �̇�(𝑡−i ) −𝐌−1(𝐪(𝑡i))𝐉⊤(𝐪(𝑡i))𝐈e, (16)

provided that the unknown impulse 𝐈e can be solved for, as is described 
5

next.
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Since the floating object is a rigid body, the linear and angular ve-

locities of that will be found directly through momentum and energy 
conservation equations.

2.3.2. Impulse computation

To resolve the impact, that is to compute the post-impact general-

ized velocities of the FFSM from (16), as well as the velocity state of the 
floating object after impact, requires the value of the impulse 𝐈e.

In the multibody dynamics, robotics, and graphics communities, the 
dynamics of multibody systems, and the modeling of contact, impact, 
and friction have been studied for many years [10,11,53,9]. Some ma-

ture methods have been implemented in various physics engines, such 
as MuJoCo, Bullet, Drake, and others. In this work, we use the discrete 
modeling approach to resolve the impact; therefore, conservation of lin-

ear and angular momenta of the FFSM-object system are enforced in all 
directions, due to the free-floating nature of the system. In addition, 
the assumption of frictionless elastic impact allows us to employ the 
conservation of energy to complete the resolution of the impact.

Conservation of linear momentum and angular momentum about 
the origin of the global frame for the whole FFSM-object system, from 
before to after impact, can be stated in the following form:[ FFSMFFSM + 𝝃1 ×FFSM

]
𝑡=𝑡−i

=
[ FFSMFFSM + 𝝃1 ×FFSM

]
𝑡=𝑡+i

+
[oo

]
𝑡=𝑡+i

,

(17)

where we made use of the fact that the floating object is stationary prior 
to impact and the FFSM momenta FFSM and FFSM are defined in (8).

Remark 3. Conservation of angular momentum for a system comprised 
of a space manipulator colliding with a floating object can be defined 
about the point of impact or about the inertial frame origin. In this 
work, we employ the latter for impact resolution and therefore, the 
angular momentum of the FFSM has been defined in (9) w.r.t. the global 
reference frame {𝑋𝑌𝑍}, and similarly, the angular momentum of the 
floating object is calculated based on the same frame as per (6).

Assumption 4. It is assumed that the impact between the FFSM and the 
floating object is elastic and frictionless.

The number of unknown variables of the impact problem is 12 +𝑁

in (17) where 6 unknowns are velocity variables of the position and ori-

entation of the floating object, other 6 of those for the base of the FFSM, 
and 𝑁 unknowns for the velocity of the joints of the FFSM. Equation 
(17) only provides 6 equations. To solve the problem, 6 +𝑁 unknown 
variables of velocities after impact are replaced with (16) which is based 
on unknown impact force 𝐈e. Considering that the impact is frictionless, 
Assumption 4, the only component of the impact impulse force is the 
normal component to the surface of the floating object. Then 𝐼e,n (with 
projection on fixed global frame 𝐈e) is one unknown term that replaces 
6 +𝑁 unknowns. Consequently, one additional equation is missing to 
complete the calculation, “conservation of energy.”

Another equation is written using the energy of the systems before 
and after the impact. There might be three cases: (a) elastic impact 
Δ𝑇 (𝐪, �̇�) = 0 in which 𝑇 (𝐪, �̇�) is the kinetic energy of the whole system, 
the floating object, and the FFSM. In the elastic impact, the dissipa-

tion of the energy and penetration of the objects due to the impact are 
neglected and the conditions are assumed ideal. (b) Inelastic collision 
Δ𝑇 (𝐪, �̇�) < 0 in which the system loses energy through dissipation, etc. 
(c) Super elastic collision Δ𝑇 (𝐪, �̇�) > 0 in which the energy of the sys-

tem after the impact is more than one before the collision, such as an 
explosion. Here in this work, a complete elastic impact has been con-

sidered which results in another equation:[ ] [ ]

𝑇T(𝐪, �̇�) 𝑡=𝑡−i

= 𝑇o(𝐪o, �̇�o) + 𝑇T(𝐪, �̇�) 𝑡=𝑡+i
. (18)
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Fig. 2. Control task operation time phases: before and after impact regulation 
along with safety pause.

Now there are 7 equations and 7 unknowns. By solving the mo-

mentum equation (17) and the conservation of the energy (18), the 
linear/angular velocities of the floating object will be obtained (right 
after the impact), �̇�o,1(𝑡), �̇�o,2(𝑡), along with the unknown value of the 
impact force. Then Eq. (16) provides all 6 +𝑁 unknown velocity vari-

ables of the FFSM, base and links.

2.4. Reduced-order dynamics for controller design

In this section, we formulate the reduced-order model of the FFSM 
system that will be required for the SDRE controller design to be pre-

sented in Section 3. This model is obtained by reducing the general 
equations of motion of the under-actuated FFSM system and making 
use of the conservation of momenta for the FFSM outside of impact. 
Accordingly, since the FFSM undergoes impact while performing a 
point-to-point maneuver, the overall control task of the FFSM will be 
divided into three phases as follows: (a) regulation before impact in 
𝑡 ∈ [0, 𝑡i), where recall 𝑡i denotes the moment of impact, (b) a safety 
pause 𝑡 ∈ (𝑡i, 𝑡p] during which actuation of FFSM is disabled, and (c) 
regulation to the final point of the task after impact under the post-

impact conditions in 𝑡 ∈ (𝑡p, 𝑡f ] where 𝑡f is the final time. The operation 
time phases are illustrated in Fig. 2.

To design a controller for the under-actuated FFSM, we formulate 
the reduced-order model in conjunction with a constraint between the 
base motion and the motion of the manipulator. This constraint is pro-

vided by the appropriate conservation of momenta equations for the 
FFSM system, formulated separately for the pre-impact and post-impact 
phases as detailed in the following.

2.4.1. Prior to impact 𝑡 ∈ [0, 𝑡i)
As discussed in Section 2.2, for the FFSM starting from rest condi-

tions, the linear and angular momenta of equation (8) are conserved 
at zero values during this phase of the maneuver. Thus, the following 
kinematic relation can be obtained from (8) between the base and the 
arm motions of the FFSM:

�̇�b(𝑡) = −𝐌−1
b (𝐪(𝑡))𝐌b,a(𝐪(𝑡))�̇�a(𝑡). (19)

To formulate the reduced-order equations of motion, we begin with 
the dynamics equations (7) simplified for the prior-to-impact condi-

tions:

𝐌b(𝐪(𝑡))�̈�b(𝑡) +𝐌b,a(𝐪(𝑡))�̈�a(𝑡) + 𝐜b(𝐪(𝑡), �̇�(𝑡)) = 𝟎, (20)

𝐌⊤
b,a(𝐪(𝑡))�̈�b(𝑡) +𝐌a(𝐪(𝑡))�̈�a(𝑡) + 𝐜a(𝐪(𝑡), �̇�(𝑡)) = 𝐮(𝑡). (21)

Extracting �̈�b(𝑡) from (20) and substituting into (21) results in:

𝐌e(𝐪(𝑡))�̈�a(𝑡) + 𝐜e(𝐪(𝑡), �̇�(𝑡)) = 𝐮(𝑡), (22)

where

𝐌e(𝐪(𝑡)) =𝐌a(𝐪(𝑡)) −𝐌⊤
b,a(𝐪(𝑡))𝐌

−1
b (𝐪(𝑡))𝐌b,a(𝐪(𝑡)),

𝐜e(𝐪(𝑡), �̇�(𝑡)) = 𝐜a(𝐪(𝑡), �̇�(𝑡)) −𝐌⊤
b,a(𝐪(𝑡))𝐌

−1
b (𝐪(𝑡))𝐜b(𝐪(𝑡), �̇�(𝑡)).

For controller design, we rewrite the reduced equation of motion 
(22) in SS form, with the state variables of the FFSM selected as:[

𝐪a(𝑡)
]

6

𝐱(𝑡) = �̇�a(𝑡)
,
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to give:

�̇�(𝑡) =
[

�̇�a(𝑡)
−𝐌−1

e (𝐪(𝑡))𝐜e(𝐪(𝑡), �̇�(𝑡))

]
+
[

𝟎𝑁×𝑁
𝐌−1

e (𝐪(𝑡))

]
𝐮(𝑡). (23)

The above SS equation of the FFSM (23) depend on the base con-

figuration and motion variables 𝐪b(𝑡) and �̇�b(𝑡). These are in turn com-

puted from the kinematic constraint equation (19), which are integrated 
jointly with (23) to generate the information on the base motion vari-

ables.

It is emphasized that the reduced-order dynamics of this subsection, 
in particular, the kinematic constraint (19) applies for the pre-impact 
phase only. The kinematic constraint for the post-impact phase is de-

fined next.

2.4.2. Post impact 𝑡 ∈ (𝑡p, 𝑡f ]
As discussed in Section 2.2, the impulse generated by the collision 

of the FFSM with the object imparts a linear and an angular momentum 
to the FFSM. Equation (8) can still be employed to relate the motion 
of the base to the arm, with the provision that the post-impact linear 
momentum FFSM is conserved at its post-impact value; however, the 
angular momentum FFSM is not conserved and has to be updated at the 
sampling rate of the controller. Thus, defining the post-impact momenta 
of the FFSM for the third phase of the maneuver as:

(𝑡) =
[FFSM(𝑡+p )FFSM(𝑡)

]
,

and solving for the base motion from (8) with the momenta (𝑡) on 
the left-hand side yields:

�̇�b(𝑡) =𝐌−1
b (𝐪(𝑡))((𝑡) −𝐌b,a(𝐪(𝑡))�̇�a(𝑡)). (24)

Thus, in the third phase of the maneuver, equation (24) is used to 
compute the motion of the base in conjunction with the reduced-order 
dynamics equations (23) for the SDRE regulation controller.

Although the reduced-order dynamics can be employed for the con-

troller design for the post-impact phase of the regulation maneuver, the 
following comments are in order. In the absence of an impact phase 
and assuming the FFSM begins its motion from rest, the SDRE con-

troller can regulate the end-effector motion to a final stationary pose. 
However, following impact which imparts a non-zero momentum to the 
FFSM, the actuation of the manipulator alone is not sufficient to com-

plete the point-to-point maneuver: without external input to the base 
by using thrusters, it is not possible to compensate for the conserved 
non-zero momentum of the system with actuation of the manipulator 
alone.

To summarize, the OSDRE controller for the manipulator formulated 
in the next section, or any other controller of the arm, cannot complete 
the point-to-point regulation with the FFSM experiencing a collision 
part way. The FFSM will invariably drift away, with the drift rate de-

pending on its inertial properties and the magnitude of the impulse. 
This implies that the existence of thrusters on the base of the FFSM is 
essential. In Section 4.4, we will demonstrate the use of base thrusters 
during the safety pause, to reduce the linear momentum of the base 
to zero, before engaging the OSDRE controller for the arm in the third 
phase of the maneuver.

Main result: An initially static FFSM without thrusters on the base can-

not finish the regulation control task no matter what controller it has if the 
slightest impact in regulation happens.

Clearly, this subject could be expanded for capturing objects in 
space, and contact cases for the manipulators and indicates the neces-

sity of thrusters to keep the FFSM in the same local location (orbit).

3. Output feedback SDRE control

Consider a 𝑘-th-order system of differential equations for a dynami-
cal system
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𝐫(𝑘)(𝑡) = 𝜼
(
𝐫(𝑡), �̇�(𝑡),⋯ , 𝐫(𝑘−1)(𝑡),𝐮(𝑡)

)
, (25)

where 𝐮(𝑡) ∈ ℝ𝑚 is the input vector, 𝑚 is the number of actu-

ators, 𝐫(𝑡) ∈ ℝ𝑛 is the generalized coordinate, and 𝑛 is the DoF 
of the system. The state-vector of the system is chosen as 𝐱(𝑡) =
[𝐫⊤(𝑡), �̇�⊤(𝑡), ⋯ , (𝐫(𝑘−1)(𝑡))⊤]⊤ and it leads to the SS representation of 
the system (25), states and outputs [42]:

�̇�(𝑡) =𝐟(𝐱(𝑡)) + 𝐠(𝐱(𝑡),𝐮(𝑡)),

𝐲(𝑡) =𝐡(𝐱(𝑡)),
(26)

in which

𝐟(𝐱(𝑡)) =
⎡⎢⎢⎢⎣

�̇�(𝑡)
�̈�(𝑡)
⋮

𝜼x
(
𝐫(𝑡), �̇�(𝑡),⋯ , 𝐫(𝑘−1)(𝑡)

)
⎤⎥⎥⎥⎦ ,

𝐠(𝐱(𝑡),𝐮(𝑡)) =
⎡⎢⎢⎢⎣

𝟎
𝟎
⋮

𝜼u
(
𝐫(𝑡), �̇�(𝑡),⋯ , 𝐫(𝑘−1)(𝑡),𝐮(𝑡)

)
⎤⎥⎥⎥⎦ ,

are vector-valued functions that satisfy the local Lipschitz condition 
(continuous and smooth), 𝐲(𝑡) ∈ ℝ𝑝 is the output vector, moreover, 
𝐟(𝐱(𝑡)) ∶ℝ𝑘𝑛 →ℝ𝑘𝑛, 𝐠(𝐱(𝑡), 𝐮(𝑡)) ∶ℝ𝑘𝑛 ×ℝ𝑚 →ℝ𝑘𝑛, and 𝐡(𝐱(𝑡)) ∶ℝ𝑘𝑛 →
ℝ𝑝 are held.

The following assumptions are made to transform state feedback 
dynamics (26) into output feedback form:

A1. The output vector’s components 𝐲(𝑡) in (26) are non-singular in 
𝑡 ∈ [0, 𝑡f ].

A2. rank
[
𝜕𝐠(𝐱(𝑡),𝐮(𝑡))

𝜕𝐮(𝑡))

]
=𝑚 which shows that the inputs are independent 

[54].

A3. The output terms are differentially independent.

A4. 𝑚 ≥ 𝑝.

A5. The output component 𝑦𝑖(𝑡) shows a combination of generalized 
coordinates in 𝑖-th row of 𝐡(𝐱(𝑡)), specifically, 𝑦𝑖(𝑡) has at least one 
term of 𝑞𝑖(𝑡).

Lemma 2. Derivation of the output dynamics, 𝑘-times, reveals the indepen-

dent control terms in the output dynamics [42].

A1-A5 and Lemma 2 transform the dynamics (26) into output feed-

back design. The state variables of the output feedback dynamics are:

𝐳(𝑡) =
⎡⎢⎢⎢⎣

𝐲(𝑡)
�̇�(𝑡)
⋮

𝐲(𝑘−1)(𝑡)

⎤⎥⎥⎥⎦ . (27)

The SS representation of the output dynamics is found by computing 
the time-derivative of (27):

�̇�(𝑡) =𝐀(𝐱(𝑡), 𝐳(𝑡))𝐳(𝑡) +𝐁(𝐱(𝑡))𝐮(𝑡), (28)

where 𝐁(𝐱(𝑡)) ∶ℝ𝑘𝑛 →ℝ𝑘𝑝×𝑚 and 𝐀(𝐱(𝑡), 𝐳(𝑡)) ∶ℝ𝑘𝑛 ×ℝ𝑘𝑝 →ℝ𝑘𝑝×𝑘𝑝 are 
output and state-dependent coefficient (OSDC) parameterization of the 
output dynamics.

Based on Lemma 2, the derivation of 𝐲(𝑘)(𝑡) in (28) generates an 
affine control input vector

𝐲(𝑘)(𝑡) =𝜶(𝐱(𝑡))𝐫(𝑘)(𝑡) + 𝜷(𝐱(𝑡)) =

𝜶(𝐱(𝑡))𝜼x(𝐱(𝑡)) + 𝜷(𝐱(𝑡)) + 𝜶(𝐱(𝑡))𝜼u(𝐱(𝑡),𝐮(𝑡)) =

𝜶(𝐱(𝑡))𝜼x(𝐱(𝑡)) + 𝜷(𝐱(𝑡)) + 𝜶(𝐱(𝑡))𝐄u(𝐱(𝑡))𝐮(𝑡),

(29)

where 𝜶(𝐱(𝑡)) ∶ ℝ𝑘𝑛 → ℝ𝑝×𝑛, 𝜷(𝐱(𝑡)) ∶ ℝ𝑘𝑛 → ℝ𝑝, and 𝐄u(𝐱(𝑡)) ∶ ℝ𝑘𝑛 →
7

ℝ𝑛×𝑚. Equation (29) provides the OSDC parameterization:
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𝐀(𝐱(𝑡), 𝐳(𝑡)) =
[𝟎𝑝(𝑘−1)×𝑝 𝐈𝑝(𝑘−1)×𝑝(𝑘−1)
𝟎𝑝×𝑝(𝑘−1)

[
{𝜶(𝐱(𝑡))𝜼x(𝐱(𝑡)) + 𝜷(𝐱(𝑡))}[𝐲(𝑘−1)(𝑡)]†

]
𝑝×𝑝

]
,

𝐁(𝐱(𝑡)) =
[

𝟎𝑝(𝑘−1)×𝑚[
𝜶(𝐱(𝑡))𝐄u(𝐱(𝑡))

]
𝑝×𝑚

]
,

(30)

where [𝐲(𝑘−1)(𝑡)]† is the generalized inverse of 𝐲(𝑘−1)(𝑡).

Condition 1. {𝐀(𝐱(𝑡), 𝐳(𝑡)), 𝐁(𝐱(𝑡))} is a completely controllable 
OSDC pair [42].

The cost function of the OSDRE is defined as:

𝐽 = 1
2

∞

∫
0

{𝐮⊤(𝑡)𝐑(𝐱(𝑡))𝐮(𝑡) + 𝐳⊤(𝑡)𝐐(𝐱(𝑡))𝐳(𝑡)} d𝑡, (31)

in which the states are penalized by the symmetric positive-semi-

definite weighting matrix 𝐐(𝐱(𝑡)) ∶ ℝ𝑘𝑛 → ℝ𝑘𝑝×𝑘𝑝, and the inputs are 
penalized by symmetric positive definite weighting matrix 𝐑(𝐱(𝑡)) ∶
ℝ𝑘𝑛 →ℝ𝑚×𝑚.

Condition 2. {𝐀(𝐱(𝑡), 𝐳(𝑡)), 𝐐1∕2(𝐱(𝑡))} is a completely observable 
OSDC pair, where 𝐐1∕2(𝐱(𝑡)) is the Cholesky decomposition of 𝐐(𝐱(𝑡))
in (31) [42].

The input law of the OSDRE is

𝐮(𝑡) = −𝐑−1(𝐱(𝑡))𝐁⊤(𝐱(𝑡))𝐊(𝐱(𝑡), 𝐳(𝑡))𝐳(𝑡), (32)

in which 𝐊(𝐱(𝑡), 𝐳(𝑡)) ∶ℝ𝑘𝑛 ×ℝ𝑘𝑝 →ℝ𝑘𝑝×𝑘𝑝 is the positive-definite solu-

tion to the OSDRE (a symmetric gain):

𝐀⊤(𝐱(𝑡), 𝐳(𝑡))𝐊(𝐱(𝑡), 𝐳(𝑡)) +𝐊(𝐱(𝑡), 𝐳(𝑡))𝐀(𝐱(𝑡), 𝐳(𝑡)) +𝐐(𝐱(𝑡))−

𝐊(𝐱(𝑡), 𝐳(𝑡))𝐁(𝐱(𝑡))𝐑−1(𝐱(𝑡))𝐁⊤(𝐱(𝑡))𝐊(𝐱(𝑡), 𝐳(𝑡)) = 𝟎.
(33)

4. Case study: FFSM with a three-DoF manipulator

4.1. System definition

The implementation of the OSDRE controller, the computations of 
impact impulse and the velocity of the states after impact, and the sim-

ulation of the complete system dynamics are carried out for an FFSM 
with a three-DoF arm, moving from the initial to the final configura-

tions, as illustrated in Fig. 3. The state-space dynamics of the floating 
object experiencing impact at 𝑡i is simplified to the following equations 
for planar motion:

�̇�o(𝑡)=

⎡⎢⎢⎢⎢⎢⎢⎣

�̇�o(𝑡)
�̇�o(𝑡)
�̇�o(𝑡)
�̈�o(𝑡)
�̈�o(𝑡)
�̈�o(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝑥o(𝑡)
𝑦o(𝑡)
𝜓o(𝑡)
�̇�o(𝑡)
�̇�o(𝑡)
�̇�o(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

1∕𝑚o 0 0
0 1∕𝑚o 0
0 0 1∕𝐼zz,o

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
𝐹e,𝑥𝛿(𝑡− 𝑡i)
𝐹e,𝑦𝛿(𝑡− 𝑡i)
𝜏e,𝜓 𝛿(𝑡− 𝑡i)

⎤⎥⎥⎦.

The mass of the object is 𝑚o = 5 kg and it is modeled as a box with 1 
m side length and centroidal moment of inertia of 𝐼zz,o = 0.8333 kg-m2. 
Prior to impact, the object is stationary and is located on the way of the 
path of the gripper of the FFSM, at the initial position and orientation 
defined as (CoM of the object):

[𝑥o(0), 𝑦o(0), 𝜓o(0)]⊤ = [3.5,−0.5,0]⊤(m, rad).

The impact will happen on the right side of the object, 𝑥i = 4 m; 
however, 𝑦i depends on the position of the end-effector when it hits 
the object. If it hits the object below the CoM, the object will rotate 
clockwise, and if above the CoM, counter-clockwise. Following impact, 
the object responds to the impulsive force and moment about its CoM, 

which impart a translational and rotational motion to the object.
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Fig. 3. The schematic view of the case study of the simulation, an FFSM with a three-DoF manipulator on the way of a collision.
Table 1

The parameters of the FFSM [42].

description parameter unit value

mass of links 𝑚1,𝑚2,𝑚3 kg 2

mass of load 𝑚p kg 1

mass of base 𝑚b kg 5

length of links 𝑎1, 𝑎2 , 𝑎3 m 2

center-of-mass of links 𝑎c,1, 𝑎c,2, 𝑎c,3 m 1

moment of inertia of links 𝐼𝑧𝑧,1, 𝐼𝑧𝑧,2 , 𝐼𝑧𝑧,3 kg −m2 0.6667

moment of inertia of base 𝐼𝑧𝑧,b kg −m2 2.0833

stall torque of motors 𝑢1,stall, 𝑢2,stall, 𝑢3,stall N −m 14

no-load speed of motors 𝜔1,nl,𝜔2,nl,𝜔3,nl rad∕s 0.54

The generalized coordinates of the FFSM considering the planar ge-

ometry and the DoF of the manipulator in Fig. 3 are:

𝐪b(𝑡) = [𝑥c(𝑡), 𝑦c(𝑡), 𝜓(𝑡)]⊤,

𝐪a(𝑡) = [𝑞1(𝑡), 𝑞2(𝑡), 𝑞3(𝑡)]⊤,

which define the generalized coordinates of FFSM as

𝐪(𝑡) =
[
𝐪b(𝑡)
𝐪a(𝑡)

]
,

and 𝑁 = 3. The physical parameters of the FFSM are presented in Ta-

ble 1.

The output of the FFSM system is 𝐲(𝑡) = 𝐡(𝐱(𝑡)) = [𝑥e(𝐪(𝑡)), 𝑦e(𝐪(𝑡))]⊤
with 𝑝 = 2 where (𝑥e(𝐪(𝑡)), 𝑦e(𝐪(𝑡))) are the 2D Cartesian coordinates of 
the end-effector of the FFSM [42]. For the second-order dynamics of 
FFSM, 𝑘 = 2, and applying the dynamics equation (23) results in the 
following OSDC parameterization (30):

𝐀(𝐱, 𝐳) =
[
𝟎2×2 𝐈2×2
𝟎2×2

[
{𝜷(𝐱) − 𝜶(𝐱)𝐌−1

e (𝐱)𝐜e(𝐱)}[�̇�]†
]
2×2

]
,

𝐁(𝐱) =
[

𝟎2×3[
𝜶(𝐱)𝐌−1

e (𝐱)
]
2×3

]
.

The tuning weighting matrices of states and inputs (for before im-

pact 𝑡 ∈ [0, 𝑡i)) are selected as

𝐑 =𝐈3×3,

𝐐 =diag(1,1,0.5,0.5),

and for the after-impact 𝑡 ∈ (𝑡p, 𝑡f ], the weighting matrix of inputs is 
reduced to enhance the controller in regulation to recover from the 
deviation due to the impact:

𝐑 = 0.1 𝐈3×3.

The initial position of the gripper is set to 𝐲(0) = [7.5, 1.5]⊤(m) and 
the initial angle for the third link is 0.1 rad while the initial position 
and orientation of the base are set to:
8

[𝑥c(0), 𝑦c(0), 𝜓(0)]⊤ = [5,−1.75,0.1]⊤(m, rad).
Fig. 4. Simulated configurations and trajectory of FFSM and object: the object 
moves away due to the impact impulse and lack of actuator for compensation 
of the deviation. The video presentation of the reaction and the impact are 
illustrated as the supplementary material of the paper.

The final desired location of the end-effector is 𝐲(𝑡f ) = [3, 0]⊤ m and 
the total time for the control task is set to 𝑡f = 30 s.

As described earlier, the control task is set up in three phases, as 
illustrated in Fig. 2. The first pre-impact phase ends upon impact detec-

tion. In our simulation, the impact detection is carried out by checking 
the distance between the gripper and the right side of the floating 
object: if the distance is < 1 mm, the impact is declared, the simula-

tion switches to the impact resolution and the manipulator controller 
is turned off. The impact solution gives the initial conditions for the 
post-impact phase, with the FFSM and the floating object reacting to 
the collision for 2.3 s as a safety pause. This concludes the second phase 
of the simulation. At the beginning of the third phase, the OSDRE con-

troller re-starts its regulation of the FFSM and is constrained based on 
(24).

The motors of the manipulator are bounded by [55]:

𝑢𝑖,max(𝑡) = 𝑢𝑖,stall −
𝑢𝑖,stall

𝜔𝑖,nl
�̇�𝑖(𝑡),

𝑢𝑖,min(𝑡) = −𝑢𝑖,stall −
𝑢𝑖,stall

𝜔𝑖,nl
�̇�𝑖(𝑡),

(34)

where 𝑢𝑖,stall is the stall torque of the motor of link 𝑖, and 𝜔𝑖,nl is the 
corresponding no-load speed. Equations (34) define the upper and lower 
bounds for joint torque plots, such as Figs. 7a, 7b and 8.

4.2. Simulation: baseline scenario

The results are presented for the baseline scenario as per system defi-

nition and control phases described in Section 4.1. Since the contact sur-
face of the floating object is perpendicular to the 𝑋-axis, the only com-
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Fig. 5. (a) The orientation and position of the base of the FFSM. (b) The angles and velocities of the arm on the FFSM.

Fig. 6. (a) End-effector error of the FFSM in the impact simulation. (b) End-effector velocity of the FFSM in the impact simulation.

Fig. 7. (a) The torque of the first link. (b) The torque of the second link.
Fig. 8. The input torque of the third joint.

ponent of the impact impulse is in the 𝑋 direction 𝐈e = [𝐼e,n, 0]⊤(Ns). 
Impact happens at 7.77 s of the simulation and considering the veloc-

ities and positions of the system before the impact, Eq. (16) provides 
9

the corresponding values after the impact as a function of the normal 
component of impulse. The detailed expressions related to the impact 
resolution are included in the Appendix for future validations.

The trajectories of the FFSM’s gripper and the base, as well as the 
evolution of the system configuration for the whole motion, are illus-

trated in Fig. 4. The position variables of the base CoM and the rotation 
of the base are plotted in Fig. 5a. The arm’s angles and joint rates are 
presented in Fig. 5b. The position error of the gripper along with the 
velocity of the gripper are illustrated in Figs. 6a and 6b, respectively. 
The input torque signals are also presented in Figs. 7a, 7b, and 8.

The end-effector starts from the initial position and collides with 
the static floating object at 7.77 s. It bounces back during the 2.3 s
safety pause and, subsequently is regulated towards the final point, 
as can be seen in Fig. 4. The impact point is [𝑥e(𝐪(𝑡i)), 𝑦e(𝐪(𝑡i))]⊤ =
[4.009, −0.3172]⊤ m. Considering that the CoM of the object in 𝑦o-axis 
is −0.5, the end-effector hits the object above the CoM and results in 
counter-clockwise rotation. As expected, the joint rates of the manip-

ulator and the end-effector velocities change discontinuously as per 
discrete modeling of impact, while the corresponding position variables 

(joint angles and end-effector positions) remain continuous, Fig. 5b. The 
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Fig. 9. (a) The linear momentum components and angular momentum of the object, the latter about the origin of the inertial frame. Note that the angular momentum 
of the object is negative even though it rotates counter-clockwise, i.e., in the positive direction. (b) The linear momentum components and angular momentum of 
the FFSM, the latter about the origin of the inertial frame.
end-effector error is reduced progressively from the large initial error of 
5 m to 0.118 m which is less than 2.3% of the travel distance, indicating 
that the FFSM regulated the gripper towards the endpoint after the im-

pact. After the impact during the safety pause of 2.3 s, the actuators are 
turned off, with zero signals showing during this safety zone, Figs. 7a, 
7b, and 8. The linear impulse imparted to the object (𝐼e,n = −1.2226 Ns) 
produces the expected object motion immediately after impact. In par-

ticular, the object moves to the left while rotating counter-clockwise, 
the latter in accord with the angular impulse of 0.2235 Nms (counter-

clockwise) since the impact occurs above the CoM of the object along 
the 𝑦o-axis.

The responses of the momenta and energy for the FFSM and the 
object provide the necessary validation of the correctness of the com-

putations. Outside of impact, the momenta (linear and angular about 
the origin of the inertial frame) of the object and those of the FFSM 
must be conserved. Since the object and FFSM are initially at rest, the 
conserved values are at zero until a collision occurs between them. Fol-

lowing the collision, momenta are imparted to both FFSM and the object 
and are again conserved at their post-impact values for both systems. 
The momenta of the object and the FFSM are plotted in Figs. 9a and 
9b, respectively. The momentum generated by the impact on FFSM is 
added to the FFSM system and remains constant throughout the second 
and third control phases, Fig. 9b. This generated momentum manifests 
itself in the drifting motion of the FFSM, in this particular scenario to 
the right, and this motion will continue indefinitely, unless countered 
with external actuation on the base (e.g., with thrusters). This drift in 
the motion of the FFSM is observable in the end-effector position error 
plot, Fig. 6a. The minimum error reached is 0.118 m, but it increases re-

sulting in a final error of 1.169 m at the end of the simulation in 30 s. 
If the simulation is continued, this error will increase as well and, the 
FFSM will be lost in space, similarly to the floating object. As alluded 
to earlier, this confirms the necessity of thrusters on the base of FFSM 
and the required switching to a free-flying control mode after the FFSM 
experiences a collision.

We also note that two responses representing the linear and angular 
momenta of the FFSM are included in Fig. 9b. This is done to provide 
additional validation of the momentum equation (17) (momentum 1 
in Fig. 9b.) The comparison is done w.r.t. computing the linear and 
angular momenta of FFSM by summing individual momenta of each 
body/link about the origin of the global reference frame (momentum 
10

2).
Fig. 10a plots the kinetic (total) energy of the FFSM and Fig. 10b 
shows the kinetic (total) energy of the object. The energy response of 
the FFSM indicates a higher power consumption by the motors in the 
first phase of the controller, when the initial errors are higher, while 
in the third phase of the regulation control, closer to the endpoint, we 
expect a lower power consumption by the motors. As expected, the en-

ergy remained constant during the safety pause when the actuators were 
turned off.

4.3. Simulation: FFSM response to impact without post-impact actuation

In this section, we are interested in exploring the response of the 
FFSM in a scenario where the controller is not reactivated after the 
safety pause so that we can observe the unactuated post-impact re-

sponse of the FFSM. Does it move to the right steadily after the impact? 
Simulation results are presented for the system with the same parame-

ters and conditions as in Section 4.2 with the only change of keeping 
the actuators turned off after the impact, until the end of the simulation. 
The motion of the robot and the floating object are shown in Fig. 11 and 
the error of the end-effector is plotted in Fig. 12a.

The approximately 6 m motion of the floating object to the left and 
a similar overall translation of the FFSM base to the right are visible in 
Fig. 11. This simulation shows that the impact that occurred with the 
last link of the FFSM is distributed to the previous links and the carrier 
of the arm. The actuator input at the third joint of the FFSM is plotted in 
Fig. 12b, to confirm that the manipulator is unactuated after the impact 
with the object.

4.4. Free-flying in safety pause: compensating for impact momentum

We had stated in Section 2.4.2 that the momentum generated by 
the impact will not allow the FFSM to complete its regulation task 
because of the drift it will experience following the impact. In this sub-

section, we briefly describe how to incorporate the free-flying phase in 
the space manipulator control in order to compensate for the generated 
momentum and to address this issue. Thus, by activating thrusters and 
reaction wheels of the FFSM, the robot switches to a free-flying mode. 
We consider the presented simulation scenario as in the previous sec-

tions, except that now, we turn on the base actuators during the safety 
pause 𝑡 ∈ (𝑡i, 𝑡p] and actuate the manipulator as well. For the before-
impact, and after-safety-pause control loops, the OSDRE controller as 
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Fig. 10. The energy of the FFSM and the floating object in simulation.
Fig. 11. The comparison between the floating object and the FFSM, in reaction 
to impact, showing the whole range of motion, without actuation after impact. 
The video presentation of the reaction and the impact is illustrated as the sup-

plementary material of the paper.

presented before will be used, while the base thrusters are off. The ob-

jective for the free-flying mode is to regulate the system immediately 
after impact, by using both the base and the arm actuators, to the sys-

tem configuration right before impact, ideally with zero momentum 
(static state). Therefore, the thrusters and the reaction wheel are con-

trolled with proportional-derivative (PD) controllers as follows:

𝐮t (𝑡) = −𝐊p,t

[
𝑥c(𝑡) − 𝑥c(𝑡i)
𝑦c(𝑡) − 𝑦c(𝑡i)

]
−𝐊d,t

[
�̇�c(𝑡)
�̇�c(𝑡)

]
,

𝑢r (𝑡) = −𝐾p,r (𝜓(𝑡) −𝜓(𝑡i)) −𝐾d,r �̇�(𝑡),

where 𝐮t (𝑡) and 𝑢r (𝑡) are the control inputs of thrusters and reaction 
wheel of the base, respectively, 𝐊p,t = 50 𝐈2×2 is the proportional gain 
matrix of the thrusters, 𝐊d,t = 0.75𝐊p,t is the derivative gain, 𝐾p,r = 200
and 𝐾d,r = 0.75 𝐾p,r are the proportional and derivative gains of the 
reaction wheel, respectively. Another set of PD controllers is designed 
for the arm to counteract the generated momentum of the arm:

𝐮a(𝑡) = −𝐊p,a(𝐪a(𝑡) − 𝐪a(𝑡i)) −𝐊d,a�̇�a(𝑡),

where 𝐊p,a = 150 𝐈3×3 is the proportional gain matrix of the arm con-

troller and 𝐊d,a = 0.75 𝐊p,a is the derivative gain. The desired base and 
joint velocities in the PD controllers are set to zero to bring the system 
to a static state after the impact.

The base thrusters’ inputs are limited according to:

𝐮t (𝑡) =
{
𝑢t,maxsign(𝐮t (𝑡)) |𝐮t (𝑡)| > 𝐮t,threshold,
𝟎 |𝐮t (𝑡)| ≤ 𝐮t,threshold,

to emulate on-off actuation, with 𝑢t,max = 50 N and 𝐮t,threshold =
11

[1, 1]⊤ N. The reaction wheel is bounded similarly to the motors of 
the arm in (34) where the stall torque of the reaction wheel is set as 20 
N-m and the no-load speed as 2 rad∕s. To allow sufficient time for mo-

mentum compensation, the duration of the safety pause is increased to 
4.6 s.

The resulting system evolution and the end-effector path are illus-

trated in Fig. 13, demonstrating the motion of the robot without a final 
drift. The end-effector error is plotted in Fig. 14a and the velocity of 
the end-effector is plotted in Fig. 14b. The final regulation error of 
the end-effector is 0.3 mm, significantly lower than in the free-floating 
condition. In addition, and more importantly than the reduction in the 
regulation error is the nearly static position of the robot after the reg-

ulation task. Therefore, the robot will not drift and will remain in the 
same operational zone after completing the point-to-point task. The mo-

menta of the FFSM system are shown in Fig. 15 which demonstrate the 
reduction of the impact momenta to approximately zero values during 
the free-flying mode. The thruster signals and the reaction wheel torque 
are plotted in Fig. 16.

4.5. Asymptotic convergence, velocity of the end-effector

The OSDRE controller ensures local asymptotic convergence of the 
system states towards the endpoint [56]. This allows us to highlight an-

other aspect of the regulation of FFSM undergoing a collision during the 
point-to-point maneuver. The location of the object along the nominal 
end-effector path from its initial to the final position has a direct effect 
on the impact velocity of the collision. The control law of the OSDRE 
(32) indicates that the error vector is multiplied by the control gain, 
and since at the beginning of the regulation, the error is at its maxi-

mum value, the largest inputs will be applied to the system dynamics 
in the beginning of the maneuver. Hence, the rate of convergence is 
close to the maximum possible bound. As the end-effector approaches 
its final goal, the regulation error becomes smaller and the speed of 
convergence is reduced. These considerations imply that if the gripper 
collides with the object at the beginning of the point-to-point motion, 
the speed of the gripper is high which results in a larger impact force. 
On the contrary, if the gripper collides with the object close to the final 
goal, it moves slower and the impact between the FFSM and the object 
is weaker, resulting in only a small bounce.

The above aspects are demonstrated here by simulating a scenario 
similar to that considered in Section 4.4, but with a change in the posi-

tion of the object: here, the object is placed at

[𝑥o(0), 𝑦o(0), 𝜓o(0)]⊤ = [2.6,0,0]⊤(m, rad).

Simulating the system response, the end-effector error and velocity 
are presented in Figs. 17a and 17b, respectively. It is noted that the end-

effector error is nearly null when it impacts the floating object; then, in 
response to the impact, the error increases and is regulated back toward 
the final goal point. The velocity of the gripper also shows very small 
values for 𝑥, 𝑦 directions, �̇�e(𝑡i) = −0.0854 and �̇�e(𝑡i) = 0.0489 m∕s. The 
motion of the floating object and the FFSM are shown in Fig. 18. The 

impact impulse was computed as 𝐼e,n = −0.4168 Ns which resulted in 
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Fig. 12. (a) The error of the gripper of FFSM. (b) The input torque of the third link without control.
Fig. 13. The robot motion for free-flying case study. The video presentation of 
the simulation is available as the supplementary material of the paper.

the angular impulse of −0.0251 Nms. Thus, the object responded with 
a motion to the left and a clockwise rotation. The momentum of the 
FFSM is also illustrated in Fig. 19.

5. Conclusions

5.1. Concluding remarks

Although impact modeling between a robot end-effector and envi-

ronment has been studied extensively in robotics, modeling of a free-

floating space manipulator undergoing a collision with a floating object 
is still a challenging problem. In this paper, we present a complete 
solution to this problem, albeit under the simplifying assumptions of 
frictionless elastic impact, by using conservation of momentum and con-

servation of energy equations over the impact. Moreover, we solve this 
problem in the context of end-effector regulation control as the FFSM 
executes a point-to-point motion task while colliding with a floating ob-

ject along the way. The controller of the FFSM is based on the output-

and state-dependent Riccati equation approach which attempts to reg-

ulate the end-effector position, regardless of the free-floating condition 
of the carrier. The basis of this work is on free-floating dynamics of the 
FFSM. The base of the FFSM is completely floated and it does not use 
thrusters or reaction wheels. The simulation results were provided for 
the mentioned scenario and showed the effectiveness of the proposed 
modeling in the computation of the reaction impact force, velocities 
after collision, and control of the system.

It was found that the FFSM will drift away after finishing the control 
task due to the generation of the momentum of the impact on the base 
12

and the links of the robot. The focus of this work was not to address the 
compensation of this generated momentum though a free-flying con-

troller was done briefly to show that control in a steady state is feasible, 
Section 4.4, which suggests more investigation in the future studies.

5.2. Future studies: penetration, pushing, and passing through the object

The modeling, control, and simulation of this research include the 
dynamics, and computation of the impact force and velocity after the 
collision. It does not include contact modeling to avoid penetration in 
case of colliding again after the impact; i.e., consider a case in which 
the end-effector is about to collide with the object, and the last link is 
almost horizontal. Then with this configuration, if the gripper collides 
with the object and the velocity of the object is not more than the whole 
collective velocity of the FFSM, the end-effector might move faster than 
the object. Then the simulation will show a case of penetration of the 
end-effector inside the body of the object. In reality, in such a case, the 
gripper must push the object until the velocity of the floating object 
exceeds the collective speed of the FFSM’s gripper. In summary, the 
configuration of the FFSM is important to present a perfect simulation. 
It must be noted that this does not imply a defect in the formulation. 
It simply says that penetration and pushing were not modeled in this 
work and could be followed in future studies.
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Appendix A

The velocity components of the FFSM after the impact for the sim-

ulation Section 4.2. The velocity vector of the FFSM as a function of 
impact force:

�̇�b(𝑡+i ) =

⎡⎢⎢⎢⎢⎢⎢⎣

0.12 − 0.012𝐼e,n
−7.5 × 10−3𝐼e,n − 0.073
−0.031𝐼e,n − 0.012

0.013 − 1.4 × 10−4𝐼e,n
−0.14𝐼e,n − 0.27
0.37𝐼e,n + 0.55

⎤⎥⎥⎥⎥⎥⎥⎦
. (35)

Substituting (35) into the conservation of momentum and energy 
equations (17) and (18) results in:⎡⎢⎢⎢

𝐼e,n − 5�̇�o(𝑡+i )
−5�̇�o(𝑡+i )

0.32𝐼e,n − 0.83�̇�o(𝑡+i ) − 2.5�̇�o(𝑡+i ) − 18�̇�o(𝑡+i )

⎤⎥⎥⎥ = 𝟎, (36)
⎢⎣ 𝑓 (𝐼e,n, �̇�o(𝑡+i ), �̇�o(𝑡
+
i ), �̇�o(𝑡+i ))

⎥⎦
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Fig. 14. (a) The gripper error in free-flying simulation. (b) The velocity of the gripper for the free-flying robot.
Fig. 15. The robot’s momentum in the free-flying example. Please note that the 
pre-impact and resolution of the impact is similar to Section 4.2 and the jump of 
momentum after the impact is due to the actuation of the thrusters and motors 
of the FFSM.

Fig. 16. The thrusters and reaction wheel inputs for the free-flying robot.
13

where
𝑓 (𝐼e,n,�̇�o(𝑡+i ), �̇�o(𝑡
+
i ), �̇�o(𝑡+i )) = 0.33(0.17𝐼e,n + 0.27)2 + 0.5(0.29𝐼e,n+

0.32)2 + (0.04𝐼e,n + 0.076)2 + (0.031𝐼e,n + 0.012)2+

(0.045𝐼e,n + 0.15)2 + (0.085𝐼e,n + 0.17)2 + 0.33(0.2𝐼e,n + 0.28)2+

0.5(0.14𝐼e,n + 0.11)2 + 2.5(7.5 × 10−3𝐼e,n + 0.073)2+

(0.022𝐼e,n − 0.11)2 + 2.5(0.012𝐼e,n − 0.12)2 + (0.22𝐼e,n + 0.23)2+

0.42�̇�2
o (𝑡

+
i ) + 2.5�̇�2o(𝑡

+
i ) + 2.5�̇�2o(𝑡

+
i ) + (0.08𝐼e,n + 0.017)2+

0.33(0.032𝐼e,n − 6.7 × 10−4)2 − 0.28,

is the result of the energy conservation equation. Solving (36) generates 
the unknown variables of the impact (force and velocities of the object 
after the impact):

⎡⎢⎢⎢⎣
𝐼e,n
�̇�o(𝑡+i )
�̇�o(𝑡+i )
�̇�o(𝑡+i )

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
−1.2226
−0.2445

0
0.2682

⎤⎥⎥⎥⎦ ,
and substituting 𝐼e,n into (35) provides the velocity of the base and the 
links of the FFSM

�̇�b(𝑡+i ) = [0.1354,−0.0641,0.0258,0.0133,−0.1059,0.0979]⊤.

Appendix B. Supplementary material

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .ast .2024 .108945.
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