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A mamá, a papá y a mi siempre presente amigo Javi.



Brain, n. An apparatus with which we
think that we think.

Ambrose Bierce, The Devil’s Dictionary
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Resumen

El objetivo de este trabajo es introducir al lector en algunos modelos de EDOs y EDPs
que permiten estudiar el comportamiento de la dinámica en el cerebro. Se partirá de algu-
nas hipótesis físicas del comportamiento de las neuronas para deducir modelos que pasarán
a ser estudiados cualitativamente y resueltos numéricamente. Posteriormente, se utiliza-
rán aproximaciones para reducir la dimensionalidad y mejorar el análisis para, finalmente,
conseguir entender el comportamiento de redes neuronales bajo estímulos estocásticos me-
diante el uso de la ecuación de Fokker-Planck y de la teoría de ecuaciones diferenciales
estocásticas.

Abstract

The aim of this work is to introduce the reader to some models of ODEs and PDEs that
allow us to study the behaviour of the dynamics in the brain. We will start from some
physical hypotheses of the behaviour of neurons to deduce models that will be studied
qualitatively and solved numerically. Subsequently, approximations will be used to reduce
dimensionality and improve the analysis in order to finally understand the behaviour of
neuronal networks under stochastic stimuli through the use of the Fokker-Planck equation
and the theory of stochastic differential equations.
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Part 1. The neuron: ion diffusion and action po-
tentials

We will dedicate this first part to understand the voltage of neurons. In Chapter 1, we will
consider the physical properties of the cellular medium in order to obtain a set of equations,
which will then be used to produce simulations. We will simplify these equations in Chapter
2 to a 2D system which is analytically tractable. Finally, in Chapter 3, the 2D system will be
further simplified to obtain the Integrate-and-Fire models, single equations which will prove to
be very useful in the second part of this work in the end.

To understand the work it is necessary to have previous knowledge of the theory of dif-
ferential equations and their qualitative analysis. The theorems and definitions that will be
used throughout the work and that are assumed to have been studied along the degree in
Mathematics will be included in an appendix at the end.

Chapter 1: The Hodgkin-Huxley equations

Alan Hodgkin and Andrew Huxley, two British researchers at Cambridge University, were
awarded the Nobel Prize of Medicine in 1963 due to their articles published in 1952 regarding the
propagation of action potentials in a squid’s axon. They developed a mathematical framework
to understand the change in the potential between the interior and the exterior of cells that
have since opened the field of Computational neuroscience. In this first Chapter, we will
follow the reasoning they used to write their articles.

1.1. Anatomy of a neuron

Fig. 1: Parts of a neuron [1].
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First, it is necessary to know some of the biology underlying the processes that will be
analyzed.

Starting from the basics, a neuron is the basic cell of the nervous system, responsible for
the homeostasis, which is the equilibrium and coordination of the different parts of the body.

As the figure 1 shows, the neuron is not a homogeneous cell as it has very differentiated
parts. Neurons communicate using action potentials which are waves of voltage that travel
across the membrane to the synaptic terminals. When they arrive there, the synaptic vesicles
release neurotransmitters, chemicals that arrive at other neurons’ dendritic tree and generate
post-synaptic potentials which are new action potentials in the activated cells.

1.2. Ion Diffusion and Nernst potential

In the cellular medium, there are a lot of ions of different chemical species: Na`, K`, Cl´, etc...
We can quantify the difference in voltage generated by the imbalance in the number of ions
inside and outside the cell:

VM “ Vin ´ Vout

when this voltage surpasses a threshold, an action potential is started. The underlying
mechanism of this phenomenon will be thoroughly explained throughout this chapter.

Ions move across the cell’s membrane through the so-called ion channels which are proteins
that allow the passing of some selective ions. There are hundreds of channels, but we will focus
on the sodium and potassium ones, as they are the most important to determine the cell’s
voltage.

Fig. 2: Ion movement through a cell’s membrane [2].

These ions are subjected to two different forces which will determine their movement through
the membrane: diffusion and electric drift.

The density of current due to the action of the electric field on the ions (drift) is easily
obtained using Ohm’s Law:

j⃗drift “ qt E⃗ “ ´c µq ∇V (1)

7
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where qt is the total charge of the ions travelling through the channel (C), c is the concentration
(kg ¨ m´3), µq the electrical mobility (m2 ¨ V ´1 ¨ s´1).

Diffusion is a phenomenon originating from the Brownian (random) motion of the particles
in the liquid. When observing a gradient of concentration in a chemical species, the spontaneous
motion of the particles macroscopically is towards the zone of less concentration. The action
of special enzymes called bombs will maintain this concentration gradient, but this will not
interfere with our analysis.

Mathematically this is modelled by the first of Fick’s Laws:

j⃗diff “ ´D∇c (2)

where c is the concentration and D is the diffusion constant (m2 ¨ s´1). Einstein found that
this constant is related to the mobility of the ions (µq):

D “
µq kB T

q
“

µq kB T

ze
(3)

where kB “ 1.38 ¨ 10´23m2 ¨ kg ¨ s´2 ¨ K´1 is the Boltzmann’s constant, T the temperature (K)
and e “ 1.6 ¨ 10´19C the elementary charge, which is the net charge of a proton or an electron.
The z in this equation is the valence of the ions, which is the number of net charges that it
contains, as the ion can have an excess or a defect of electrons, z is an entire number.

Now, if we assume there is no interaction between ions in a channel and that this channel
is approximately unidimensional, we can sum (1) and (2) and use (3) to obtain:

jT “ ´µqc
dV

dx
´

µqkBT

ze

dc

dx
. (4)

Which is the total density of flux of ions through the channel.
As we have assumed that the channel is unidimensional, the gradients are reduced to deriva-

tives in the spatial variable x which represents the length of the channel.
It will be interesting to know the value of the voltage needed to stop the flow of a particular

ion, which will be easily obtained by equating (4) to zero and then integrating between the
inside and outside of the cell:

Ei “
kBT

zie
ln

˜

cin,i
cout,i

¸

.

This is the Nernst Potential of the ion i.
This potential represents the membrane voltage at which the flux of that particular ion is

stopped, which will be illustrated in the next section.

8



Alejandro Barea Moreno ODE and PDE models used in neuroscience

1.3. The equivalent circuit

We are ready now for the first of the equations that will be presented in this work. This
one will be useful to understand the behaviour of the membrane potential in the so-called
sub-threshold regime, this is the behaviour of the membrane voltage when an action potential
hasn’t fired yet.

The cell’s membrane has the ability to store charge, which is similar to the function of
a capacitor of capacity per unit length CMpF {m2q. For each of the channels, we know that
there will be flux if and only if VM ‰ Ei, because Ei, as defined by equation (1.2), represents
the equilibrium potential for that particular ion. Therefore we can model each channel as a
branch in a circuit with a resistor, which models the irregularities in the channel that oppose
the movement of the ions and a generator with a value of Ei.

We then consider three channels, one for sodium, one for potassium and then a final one
which takes account of all of the other ions that are not as important, this last one is called
the leak (L) channel.

Fig. 3: Equivalent circuit, L stands for "leak".

From the physics of circuits, we know Kirchoff’s currents law:

The net sum of the currents entering a node of the circuit is zero.

If we apply this law to the circuit in figure 3, we can see that the current Iptq that is injected
in the circuit branches in 4:

Iptq “ IC ` INa ` IK ` IL. (5)

Which are the currents of the capacitor and the ion channel branches, respectively.
Now, to calculate these currents, we use Kirchoff’s voltages law:

The net sum of the voltage drops around a cycle in the circuit is zero.

9
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and Ohm’s Law:
V “ IR,

we obtain these expressions:

IC “ CM
dVM

dt
(6)

INa “
VM ´ ENa

RNa

(7)

IK “
VM ´ EK

RK

(8)

IL “
VM ´ EL

RL

(9)

where we have used the characteristic equation of a capacitor.
Now, plugging (6), (7), (8) and (9) into (5), we obtain:

CM
dVM

dt
“ ´gNapVM ´ ENaq ´ gKpVM ´ EKq ´ gLpVM ´ ELq ` Iptq, (10)

where the gi are the conductances per unit length (S ¨ m´2) of the channels. These conduc-
tances are the inverse of the resistance featured in figure 3.

By defining:

gtot “ gNa ` gK ` gL

Etot “ gNaENa ` gKEK ` gLEL.

We obtain a simpler version:

CM
dVM

dt
“ ´gtotVM ` Etot ` Iptq. (11)

This is an inhomogeneous linear differential equation, which we can easily solve using the
variation of constants method obtaining:

VMptq “ V0 exp

ˆ

´
t ´ t0
τM

˙

`
Etot

gtot

«

1 ´ exp

ˆ

´
t ´ t0
τM

˙

ff

`

exp

ˆ

´
t ´ t0
τM

˙

gtotτM

ż t

t0

Ipsq exp

ˆ

s

τM

˙

ds

(12)
where V0 “ VMpt0q and

τM “
CM

gtot

is the membrane time constant (s).
If we assume that V0 “ 0V we can obtain a much easier equation with which we can make
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some simulations to understand the behaviour of the membrane.
From now on, the parameters that we will be using in our simulations will be:

CM 1 µF ¨ cm´2

ENa 55 mV
EK -77 mV
EL -54.5 mV
gNa 120 mS ¨ cm´2

gK 36 mS ¨ cm´2

gL 0.3 mS ¨ cm´2

Table 1: Data used for the numerical experiments involving these constants. Obtained from [2]
and [4].

Fig. 4: Voltage response of the neuron following the behaviour described by equation (12)
under the stimulus given by a step current starting at t “ 0ms and stopping at t “ 20ms. For
these simulations we have used Etot “ 0mV, V p0q “ 0mV .

We have to bear in mind that, although we denote current with the letter I, we are really
talking about current density or current per unit area (A ¨ m´2). The order of magnitude we
have used is motivated by the order of magnitude of the other variables in the experiment to
achieve a noticeable change in the membrane voltage, but for the moment it is arbitrary.

In this case, although Etot is non-zero, we have decided to set it to zero in order to see the
evolution of the voltage with respect to this equilibrium and also because the term corresponding
to Etot grows fast enough not to allow us to observe the behaviour of the function.

From the graph, we can see the behaviour described by the equation (12) if the integrand
is constant. If we had subjected the system to a constant pulse for an indefinite time, without

11
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neglecting Etot we would obtain:

V p8q “
Etot ` I

gtot
.

As the stable equilibrium of the system.

1.4. Hodgkin-Huxley equations

1.4.1. The Problem with the equivalent circuit

The model we just saw only describes the membrane voltage at a point of its surface but we
already know that the neuron has a very elongated part through which this pulse is propagated:
the axon.

The axon is a dissipative medium and as such, the signal will eventually be lost. If we
consider the axon a linear cable and each point of its surface a circuit like the ones we studied
then there is no way that a signal can be sent.

In nature, there are a lot of examples of ondulatory phenomena in dissipative mediums. For
example, the case of Domino pieces in a relatively dense fluid, such as water. If the first piece is
hit with a force below a given threshold, it will oscillate slightly with respect to its equilibrium
position, however, if we hit it with more force, there will be a point at which the piece will lie
down and hit the next one, producing a periodic phenomenon.

These phenomena consist of a trigger that fires a periodic effect once getting the value of a
variable over a threshold. However, should this threshold not be surpassed, the movement will
eventually die out.

The answer to the problem of dissipation in the former section would be given by Hodgkin
and Katz, who discovered that the conductances of the ions were in fact non constant. There
exist some special types of channels that open whenever the membrane voltage is depolar-
ized above a threshold thus increasing the conductance of that specific ion: voltage-gated
channels.

1.4.2. Voltage-gated channels

To describe these voltage-gated channels we will follow a probabilistic approach. The con-
ductivity of an ion depends on the number of channels permeable to that ion in a given time.
When a channel is closed there is a probability PopenpVMq that it opens and when a channel is
open there is a probability of it closing down PclosepVMq.

Then let m P r0, 1s be the fraction of open channels for a selected ion.
The evolution of this fraction of channels is easily given by the following equation:

dm

dt
“ PopenpVMq p1 ´ mq ´ PclosepVMqm. (13)

12
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m is the fraction of channels that are open so the only thing they can do is close. 1 ´ m

is then the fraction of closed channels and therefore they can open with the probability we
stated before. These functions are not really probabilities, but, in reality, are probabilities
per unit time (s´1) because they represent the probability of opening or closing at an instant
of time. They are obtained through experimentation. The name of the probabilities can be
misleading due to the fact that they do not sum up to unity. This is because they represent the
probability of opening and closing when a channel is already closed or open, respectively. The
normalization is given if we sum to each case the probabilities of remaining closed or opened.

This equation, when the voltage is not constant, is not analytically solvable. However, by
using Picard’s Theorem (Theorem 0.6.1) knowing that fpt,mq is Lipschitz with respect to
the second variable (this is trivial knowing that the probabilities are bounded and that f is
linear), we easily deduce that this equation has a unique local solution for each initial data
mpt0q “ m0. We must not forget that VM has an implicit dependence on time which we do not
know.

Before going further, it is important to show the fact that equation (13) can be transformed
into:

dm

dt
“

m8pVMq ´ m

τmpVMq
(14)

where the coefficients are defined by:

m8pVMq “
PopenpVMq

PopenpVMq ` PclosepVMq
, τmpVMq “

1

PopenpVMq ` PclosepVMq
.

The m8 represents the fixed point of the dynamical system (13) and τm a time constant which
determines the speed of change of that variable. From now on, we will call the X8 functions,
the steady-state of the gating variables.

Lemma 1.4.1. Given an initial condition mpt0q “ m0 with 0 ď m0 ď 1 and the probability
functions are continuous and non-negative, then the equation (13) has a unique solution ϕmptq

that exists in rt0,8q and 0 ď ϕmptq ď 1, @t P rt0,8q.

Proof: If the functions PopenpVMq and PclosepVMq fulfil the conditions in the hypothesis of the
Lemma, then we can assure that:

0 ď m8pVMq ď 1, 0 ă τmpVMq ă 8.

Now, onto the proof.
We know as we said before, that, given an initial condition, we have a local solution to the

differential equation ϕmptq. That means that the solution will exist in a finite time rt0, t0 `

τq, τ ą 0 and we must prove that it will not go to infinity in order for it to be a global solution
for all positive times.

13
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By looking at equation (14), we can easily see that the derivative to the left of m8pVMq is
positive and to the right is negative, meaning that it will attract the trajectories:

Fig. 5: Behaviour of the derivative at both sides of m8.

However, as we do not know anything about the dependence of VMptq, the only thing we
can take from this is the fact that the derivative to the right of 1 is always negative and to
the left of zero positive, because the attractive point is always in this interval. Therefore, let
us suppose that our function ϕmptq goes to infinity in a finite time t˚ (the treatment if the
function goes to ´8 is analogue and therefore will not be covered). Then, as for one of the
hypotheses of this Lemma, we know that at t0 the function was in the interval r0, 1s, and also,
as a consequence of Picard’s Theorem, the solution is continuous in the interval in which it is
defined, namely rt0, t

˚q. Therefore, there exists at least an instant of time t0 ă t1 ă t˚ in which
the function was 1:

ϕmpt1
q “ 1.

If we choose t1 to be the last time the function achieves 1 before going to infinity, then, between
the times t1 and t˚, ϕmptq is increasing, which goes against the monotony imposed by equation
(14).

˝
For the most basic model using Hodgkin and Huxley’s formalism, we need three gating

variables m, n and h. The functions used by Hodgkin and Huxley in their articles [4] where:

P n
openpV q “ 0.01

V ` 55

1 ´ exp

ˆ

´
V ` 55

10

˙ , P n
closepV q “ 0.125 exp

ˆ

´
V ` 65

80

˙

,

Pm
openpV q “ 0.1

V ` 40

1 ´ exp

ˆ

´
V ` 40

10

˙ , Pm
closepV q “ 4 exp

ˆ

´
V ` 65

18

˙

,

P h
openpV q “ 0.07 exp

ˆ

´
V ` 65

20

˙

, P h
closepV q “

1

1 ` exp

ˆ

´
V ` 35

10

˙ .
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Fig. 6: Evolution of the functions involved in equations (14). a) Steady-state of the gating
variables. b) Time constants of the gating variables.

The input must be expressed in (mV ) and the output is in (ms´1). These functions are
all continuous and non-negative. This is easily seen for some, but for others, simply applying
L’Hôpital’s rule allows us to define them at their conflicting points so that they are continuous.

With this Hodgkin and Huxley modelled the variation of the conductances:

gK “ gK n4, gNa “ gNa m
3 h. (15)

The exponents have biological meaning, the exponent 4 in the potassium is due to the four
particles needed to be attached to the membrane to open the gate. The h variable in the sodium
gate is an inactivation variable (biologically a blocking particle) and the exponent 3 over the
m are the 3 particles needed for the gate to open [4].

1.4.3. Hodgkin-Huxley equations and action potentials

With these gating variables, the circuit equation (10), the equations (14) for m, h and n

and (15) we have finally deduced the Hodgkin-Huxley equations:

CM
dVM

dt
“ ´gK n4

pVM ´ EKq ´ gNa hm
3

pVM ´ ENaq ´ gLpVM ´ ELq ` Iptq (16)

dm

dt
“

m8pVMq ´ m

τmpVMq
(17)

dn

dt
“

n8pVMq ´ n

τnpVMq
(18)

dh

dt
“

h8pVMq ´ h

τhpVMq
. (19)

15
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These equations are only valid when, by using techniques which are not important as of now,
we attain a homogeneous voltage throughout the cell.

This system of coupled non-linear equations is non-analytically solvable. However, these
functions are continuous and have continuous partial derivatives so we can assure that for each
initial condition, they have a solution and this solution is unique, we know this because of
theorems 0.6.1 and 0.6.2.

Lemma 1.4.2. Given an initial condition ϕpt0q “ pV0, m0, n0, h0q with 0 ď m0, n0, h0 ď 1

and the steady-states and time constants of the gating variables are bounded, then the equation
(13) has a unique solution ϕptq “ pϕV ptq, ϕmptq, ϕnptq, ϕhptqq that exists in rt0,8q and 0 ď

ϕmptq, ϕnptq, ϕhptq ď 1, @t P rt0,8q.

Proof: We must prove now that the solution is defined for each t ě t0 “ 0. For this, we must
find a bound the positive trajectory of the system.

We know that the solution is bounded in the m, n and h dimensions (Lemma 1.4.1).
Let ϕptq “ pϕV ptq, ϕmptq, ϕnptq, ϕhptqq the solution of (16) given the initial condition ϕpt0q “

pV0, m0, n0, h0q then by using the integral formulation of the Cauchy Problem we have:

ϕV ptq “ V0 `

ż t

t0

p´gtotpsqpϕV psq ´ Etotpsqq ` Ipsqqds. (20)

Where:

gtotptq “ gNaϕhptqϕmptq3 ` gKϕnptq4 ` gL. (21)

Etotptq “
ENagNaϕhptqϕmptq3 ` EKgKϕnptq4 ` ELgL

gtotptq
. (22)

By using what we proved in Lemma 1.4.2 and the fact that gtotptq ą gL, @t, we know that
(21) and (22) are both bounded.

Now we subtract Etotptq from both sides and apply absolute values to both sides of the
equation, obtaining, after some algebra:

|ϕV ptq ´ Etotptq| ď |V0| `|Etotptq| `∥I∥
8

pt ´ t0q `

ż t

t0

gtot|ϕV psq ´ Etotpsq| ds. (23)

Now, let us consider that our solution only stays finite in [t0, t˚) and therefore in [t0,t1] with
t1 “ t˚ ´ ϵ and that I P L8pRq, then we can do:

|V0| `|Etotptq| `∥I∥
8

pt ´ t0q ď M. (24)

16
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By applying (24) in (23) we can use Gronwall’s Lemma (0.6.1) to obtain:

|ϕV ptq ´ Etotptq| ď Me
şt
t0

gtotpsqds
ď Mept˚´t0q∥gtot∥8 . (25)

As gtotptq and Etotptq are bounded, for each finite time t˚, the trajectory remains bounded and
therefore can be extended. This concludes our proof that our solution exists in rt0,8q.

˝
Looking at the equations and graphs we have already shown above with the steady states

and time constants (which are not constants, but we will keep this nomenclature), we can
qualitatively analyse what is going to happen before we go into more detail. The stimulus
that will allow the neuron’s potential to overcome the threshold will be given by the intensity
represented either by a current injected by the experimenter or by the action potentials of
other neurons arriving via the synapse. If the threshold is not reached, there will be a small
depolarisation followed by a re-establishment of the equilibrium potential, corresponding to the
fixed point of the unexcited system. However, if the value that allows the potential to fire is
reached, what will happen is that the variable m will rapidly go to steady state, due to the
fact that τm is lower than the other time constants, causing the sodium term to be the most
important at first and the membrane to depolarise (increase its potential) to values close to
the sodium Nernst potential, reducing the term pVM ´ ENaq. By the time this happens, the
variable h decreases in value as n increases, giving more importance to the potassium term and
causing it to hyperpolarise (decrease in potential) to values close to the potassium Nernst
potential. Once this occurs, n decreases and the equilibrium state is reached again, with no
more action potentials being released until a new stimulus is imposed.

This is summarised in the following picture:

Fig. 7: Action potential explained by means of the dynamical Hodgkin-Huxley system [5].
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1.4.4. Quick detour: Hopf bifurcations

We will study the behaviour of the dynamical system of Hodgkin and Huxley by using
elements from the qualitative theory of differential equations, mainly Theorem 0.6.3. However,
there is something, which is not studied in preliminary courses of differential equations which
must be discussed before going further and that is theory of structural stability.

If we have a dynamical system dependent on a parameter, as is our case here with I (we
will ignore the variability with respect to Nernst conductances and voltages), it is possible that
the behaviour of some equilibria or limit cycles of the system changes according to the value of
this parameter, i.e. the system does not remain structurally stable.

This is what is behind action potentials, which are periodic phenomena generated by the
approach of a trajectory to a closed orbit that will act as a limit cycle. These potentials do not
occur for any value of the parameter I, but for those in which the conditions are conducive to
what we have just explained.

First of all, I would like to mention that the phenomena we will be studying will arise from
the change in the local behaviour of the fixed points of the system and that we can infer this
behaviour using the linear version of our dynamical system in the vicinity of these points thanks
to the following Theorem [6]:

Theorem 1.4.1 (Hartman-Grobman Theorem). In a vicinity of a hyperbolic fixed point, a
dynamical system and its linearized version are topologically equivalent.

The definition of hyperbolic fixed points is stated in the appendix (0.6.1).
Without entering into much detail about what it means to be topologically equivalent, we

will say that two dynamical systems are topologically equivalent when you can find a continuous
function that maps trajectories from one system to the other.

The bifurcation with which we will be working in this chapter will be the Hopf bifurcation
which occurs when two complex eigenvalues of the Jacobian matrix of the system cross the
imaginary axis and a fixed point changes from being stable to unstable or vice versa.

Hopf bifurcations come in two flavours: subcritical and supercritical.
In subcritical bifurcations, there is a point before the bifurcation when an unstable limit

cycle and a stable one, both of them around a stable equilibrium, appear. Therefore, trajectories
starting between the two cycles will become periodical and the ones starting inside the unstable
limit cycle will eventually end at the fixed point. When the threshold is surpassed the unstable
limit cycle and the fixed point fuse, making the latter unstable and generating oscillating
orbits. These systems present hysteresis, because after lowering the parameter below the Hopf
bifurcation, oscillations may not stop until achieving the point we talked about before where
the two cycles appear.
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Fig. 8: Behaviour of a subcritical Hopf bifurcation generated by the parameter µ. The
unstable limit cycle is represented with the dashed line which we see disappearing and turning
the point unstable (white) as µ ą 0 [3].

In supercritical bifurcations, the oscillations occur little by little after the threshold is sur-
passed. The stability is lost as from the point appears a stable limit cycle.

Fig. 9: Behaviour of a supercritical Hopf bifurcation generated by the parameter µ. A stable
limit cycle appears as µ ą 0 [3].

1.4.5. Fixed Points, Limit cycles and Bifurcations

We will consider Iptq as a constant input and study the fixed points depending on its
value. By equating Hodgkin-Huxley equations to zero, we obtain that the fixed points will be
the solutions to the equation:

I “ gKn8pVMq
4
pVM ´EKq ` gNah8pVMqm8pVMq

3
pVM ´ENaq ` gLpVM ´ELq “ F pVMq. (26)

So the problem is now simplified, as it only consists in analyzing the number of zeros that the
function F has. We have omitted the CM because in the units we are using its value as 1.

We will be using the data from table 1 for our simulations, as the derivative of (26) will
be difficult to discuss analytically, I have done a numerical experiment with MATLAB which
shows that the function is monotone. It is also easy to see that the function is surjective and
therefore we have a unique solution for each I, which we will call V ˚

MpIq from now on.
We now must analyze the local stability of the system by linearizing it and studying the sign

of its eigenvalues. The jacobian matrix of the system of Hodgkin and Huxley has the following
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form:

JpV ˚
MpIqq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´
BF

BV
´

BF

Bm
´

BF

Bn
´

BF

Bh

m1
8

τm

1

τm
0 0

n1
8

τn
0

1

τn
0

h1
8

τh
0 0

1

τh

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(27)

the analysis of the sign of the eigenvalues of the matrix (27) can easily be done numerically
(which we will soon be doing) but an in-depth analysis requires a lot of mathematical tools
which we will not show. However in [7], Troy shows that there exist two Hopf bifurcations in
the system depending on I. We can show this numerically in a graph:

Fig. 10: Evolution of the local stability of the fixed point of Hodgkin-Huxley equations. We
represent the value V ˚

MpIq as a function of I. Red points are unstable and black points are
stable.

Our estimations locate the two bifurcations at:

I1Hopf “ 8.44µA ¨ cm´2, I2Hopf « 163.37µA ¨ cm´2

1.4.6. Numerical Simulations

Now, with the simulations. We start at equilibrium with I “ 0. (V p0q “ ´64.98mV, mp0q “

0.05, np0q “ 0.32, hp0q “ 0.60). First of all, we will use short current pulses which imitate the
behaviour of a Dirac delta function:
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Fig. 11: Response of a neuron predicted by the H-H equations under a Dirac delta-like input
fired at 20 ms.

As we see, the action potential is an ’all of nothing’ phenomenon, as we had explained
before. The threshold we have calculated before is not valid in this type of pulse because it is
very sensitive to their duration.

We can understand these Dirac delta pulses as finite and instantaneous jumps in coordinates
in the 4D phase plane. When the jump is big enough, the flow of the system starts an action
potential which then finishes in the stable equilibrium we calculated before.

Now, if we consider a constant current with greater amplitude than the one we found as the
trigger in the latter section, we obtain the following behaviour of the different variables:

Fig. 12: Response of a neuron predicted by the H-H equations under a step current injected
and stopping at the times marked by the red lines. I “ 10µA ¨ cm´2.
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We observe repetitive firing, something which is known as bursting in the world of neuro-
science.

The behaviour that we expected is what we actually see, the first gating variable to fire is
the m one whose peaks are narrower than the others because of the smaller magnitude of its
gating variable. Also, I have marked with green dashed lines the Nernst potentials of sodium
and potassium and we see how it approaches both but it comes nearer the potassium one („
-77 mV ). When the step current is stopped, the system swiftly approaches rest.

The shape of the peaks of the n and h gating variables is interesting because we see that
one is almost the exact opposite of the other, we will make use of this fact in the following
chapter to reduce the dimension of the HH system.

Another thing that comes to your mind when seeing this picture is that the first action
potential is much higher than the rest, this is due to the solution approaching the limit cycle
in spiral motion. This can be easily observed in figure 13:

Fig. 13: Phase-plane portrait of the former situation. The red point is the start of the orbit.

The black arrow signals the first action potential as it approaches the limit cycle and the
red arrow the return to the initial state of rest after firing 7 times (doing 7 turns).

This is proof of the usefulness of this model because this is something that is actually
observed in neurons when they fire several action potentials, which is the bursting we mentioned
before.

Now, we can calculate the frequency of these action potentials as a function of I, as it is
characteristic of the type of model that we have, as we will see later, which gives us the following
graph:
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Fig. 14: f ´ I graph for a H-H neuron.

Due to the computational difficulty of calculating these graphs, we cut before the second
bifurcation occurs. The important detail of this one is the discontinuity that occurs near the
first bifurcation, which we will see is characteristic of Hopf-type bifurcations. The fact that
oscillations begin before the value of the bifurcation is a hint that maybe we have a subcritical
Hopf bifurcation.

We can do a little numerical experiment to see another hint that the first bifurcation may
be subcritical. We will model the intensity as a decreasing ramp and this is what we observe:

Fig. 15: Response of the HH equations under an input Iptq “ 20 ´ 0.1 ¨ t µA ¨ cm´2. The red
dashed line indicates the point at which Iptq equals the bifurcation value.
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The hysteric behaviour is typical of subcritical Hopf bifurcations. However, this is by no
means a rigorous proof, even though the literature tells us that it is in fact, subcritical [2], [7].

For the second bifurcation, we can show that the amplitude of the oscillations begins to
decline long before it is surpassed:

Fig. 16: Peak to peak voltage of the signals as a function of the applied intensity.

Therefore, it seems that this second bifurcation is supercritical.
All in all, we have successfully obtained the Hodgkin-Huxley equations, the most funda-

mental differential system in neuroscience. It is worth saying that we can extend this system
to include the influence of each one of the channels that are present in a cell’s membrane.
However, this will increase notably the computational effort to calculate the solutions.
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Chapter 2: Reduction to a 2D model

2.1. Simplifications of the Hodgkin-Huxley model

Let us consider the differential system that we obtained in the former chapter:

CM
dVM

dt
“ ´gK n4

pVM ´ EKq ´ gNa hm
3

pVM ´ ENaq ´ gLpVM ´ ELq ` Iptq

dm

dt
“

m8pVMq ´ m

τmpVMq

dn

dt
“

n8pVMq ´ n

τnpVMq

dh

dt
“

h8pVMq ´ h

τhpVMq
.

There are two tools that will help us reduce the dimensionality of the system. The first one is
the separation of timescales. We have seen in figure 6 that τm ď τh and that τm ď τn, the m

variable is much faster than the other two. Therefore, we can assume that the m gating variable
arrives at the value m8pVMptqq instantly. The other tool that we can use is the relationship
that exists between h and n, which we can see in figure 12. We can see that their behaviour
can be related linearly:

wptq “ b ´ hptq “ anptq (28)

with a and b positive constants.
Therefore, we can write a new system of equations:

CM
dVM

dt
“ ´gK

ˆ

wptq

a

˙4

pVM ´ EKq ´ gNa pb ´ wptqqm3
8pVMq pVM ´ ENaq ´ gLpVM ´ ELq ` Iptq

dw

dt
“

w8pVMq ´ w

τwpVMq
.

The uniqueness and the global existence of the solution of these equations is a corollary of
Lemma 1.4.2.

More numerical experiments confirm that there is a unique fixed point for each I and the
arguments from [7] can be also applied to this situation to confirm the existence of two Hopf
bifurcations.

2.1.1. Simulations

Using the data from table 1, we can adjust points from a simulation of HH equations at, let
us say I “ 10µA ¨ cm´2, to obtain values for the parameters.

We have used a lot of data for the parameters and plotting the points can be a bit confusing,
but the fact, that they approach the line so closely and that its monotony is the one predicted
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by (28) makes us confident of our estimation:

a “ 1.0939, b “ 0.8949

We can see here how the "experimental" points adjust to a line:

Fig. 17: Linear regression used to obtain the parameters for the HH simplified model. In red
the data and in black the adjusted line.

With this data, we do the following simulation:

Fig. 18: Simulation of the HH simplified equations under a constant current of I = 10
µA ¨ cm´2.
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As we have seen the behaviour of this system in 4D, we will analyze a different model in
detail in this chapter, showing the potential of phase-plane analysis.

2.2. The INa,p ` IK model

The Hodgkin-Huxley reduced model shows us, like in the case of its 4D version, how os-
cillations can be produced when a pair of complex conjugates eigenvalues cross the imaginary
axis, which is what we called the Hopf Bifurcation. However, this is not the only mechanism
that can produce limit cycles nor the Hopf Bifurcation is the only type of structural change
that a system can suffer. Now, we will propose a very similar model that hides another type of
change in its fixed point, the INa,p ` IK model [5]:

CM
dVM

dt
“ I ´ gLpVM ´ ELq ´ gNam8pVMqpVM ´ ENaq ´ gKwpVM ´ EKq

dw

dt
“

w8pVMq ´ w

τwpVMq
.

In this model, the sodium current is persistent due to the fact that we have removed the
closing of the gates by the 1´w variable, from this fact comes the p in the name of the model.
Also, we have changed the potassium current so that it can activate way faster because now
the exponent in the potassium gating variable (in this case w) is 1.

Again, this model has not an analytical solution but the regularity and the linearity in VM

in the first equation allow us to resort to proofs made in the former chapter to assure the global
existence and uniqueness of the solutions of this system for each initial condition.

For this model, the simulations and the analysis will be more visible, because we will use
graphic tools that we couldn’t before because of the higher dimensionality of the space.

The data for these simulations will be slightly different than the one we used before and it
is summarised in the following table:

CM 1 µF ¨ cm´2

gL 8 mS ¨ cm´2

gNa 20 mS ¨ cm´2

gK 10 mS ¨ cm´2

EL - 80 mV
ENa 60 mV
EL -80 mV

Table 2: Data for the simulations of the INa,p ` IK model.

And the steady-states and time constants:
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m8pVMq “
1

1 ` exp

ˆ

´
V ` 20

15

˙ ,

w8pVMq “
1

1 ` exp

ˆ

´
V ` 25q

5

˙ ,

τwpVMq “ 1.

First, we should see the nullclines and their intersections when I “ 0:

Fig. 19: Nullclines of the differential system for I “ 0. In red is the stable equilibrium and in
green the unstable equilibria.

The intersection of w8pVMq (w-nullcline) and the VM -nulcline consists of three fixed points
for this value of I. The one to the left is stable and the other two are unstable. However,
the second one is what we call a saddle point which is a fixed point whose eigenvalues have
different signs, which makes them approachable in a specific direction, the one given by the
eigenvector corresponding to the negative eigenvalue.

Fig. 20: The process by which two points, one stable and another a saddle point, merge into
a saddle-node [8].
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When considering the differential system, it is noticeable that the only nullcline whose
location and shape will be affected by the change in the parameter I is the VM -nulcline which
will raise. This will not change the stability of the fixed points but the two points to the left will
start approaching until merging in one like what is shown in figure 20, this new point is called
a saddle-node and has the properties of a saddle point. If we further increase the current, the
points disappear and a Saddle-node bifurcation happens.

Fig. 21: Different types of saddle-node bifurcations [5].

What happens in the case of Hopf bifurcations happens also with saddle-node bifurcations.
As we can see in figure 21, there are two kinds, one that ignores the former saddle-point
altogether and the saddle-point-on-invariant-cycle (SNIC) bifurcation, which is the one we
seem to have based on the experiments that we will be doing in the near future. In this type
of saddle-node bifurcations, the "ghost" of the former fixed points bends the trajectories and
attracts them.

We can obtain an estimate for the bifurcation point:

ISNIC “ 4.40µA ¨ cm´2.

Similarly to what we did with the Hodgkin-Huxley equations, we can plot the evolution
of the coordinates of the fixed points and their local stability depending on the value of the
intensity applied and obtain:
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Fig. 22: Evolution of the local stability of the fixed points depending on the current injected.
In red the unstable points and in black the stable ones.

Due to the non-linearity of the w ´ nulcline is not a good option, but we could obtain
another estimate for the intensity at which the bifurcation happens using geometry and the
fact that, when the two points merge, the tangent line to both curves is the same.

If we raise the current above the threshold we have just calculated, we observe repetitive
firing:

Fig. 23: Periodic firing generated by the INa,p ´ IK model with I = 6 µA ¨ cm´2.

Repetitive firing as a consequence of falling into a limit cycle whose existence can be proven
easily using Theorem 0.6.4.

The fact that this limit cycle passes near the point where the saddle-node was is the hint I
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Fig. 24: Limit cycle that generates the periodic firing in the INa,p ´ IK model with I = 6
µA ¨ cm´2.

talked about before when we guessed that we are experiencing a SNIC bifurcation.
We can see the f ´ I diagram of these neurons and we find something interesting:

Fig. 25: f ´ I graph for a INa,p ´ IK neuron. Results have been recorded over a 1s pulse.

In this case, we do not observe a discontinuity, this is a consequence of the internal workings
of a saddle-node bifurcation, where the frequency dependency is proportional to

?
I ´ ISNIC .

In the next chapter, we will work with another model that shows the same behaviour and obtain
this relation for every model that has the same type of bifurcation.

The fact that the frequency starts from 0 and is continuous makes it possible to adjust the
distance between subsequent action potentials.
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2.3. Class I and Class II

We have seen two types of behaviours in the f ´ I characteristic of our models, these were
categorised by Hodgkin in two different classes:

Class I: They can start firing at arbitrarily low frequencies and the time between peaks
is short.

Class II: They have a discontinuity in their f ´ I graph and the recovery time between
peaks is longer.

Neurons that do not belong to any of these two groups are viewed as abnormal. The
remarkable thing is that the shape of these curves depends on the type of bifurcation that
serves as a threshold for their action potentials: models with Hopf bifurcations generate class
II graphs while models with Saddle-node bifurcations generate class I f ´ I characteristics.

Neurons of different parts of the brain behave in one way or another, this classification
is exhaustive as neurons that do not correspond to either of the categories are considered
anomalous.
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Chapter 3: 1D models

In this chapter, we will be studying 1-dimensional models specifically designed for their
application in neural networks. We will start from the famous Leaky Integrate-and-fire model
and conclude with the ring models used for neurons in the visual cortex.

3.1. Further simplification of the Hodgkin-Huxley system

In the former chapter, we studied two models whose orbits follow the dynamics given by
systems of equations of the form:

τM
dVM

dt
“ F pVM , wq ` RMIptq

τw
dw

dt
“ GpVM , wq

where τM “ RMCM . In the actual experience, it is usually seen that τw ąą τM and thus the
derivatives in the phase plane are almost horizontal. Therefore it is entirely justified to suppress
the second equation and obtain the following:

τM
dVM

dt
“ F pVMq ` RMIptq. (29)

This is the general equation of Integrate-and-fire models. It is obvious that a local
solution given an initial condition V pt0q “ V0 exists and is unique if F is sufficiently regular,
which will be the case in the following cases.

Before starting the analysis of the models, from now on we will not give too much importance
to the units of the magnitudes because, in this type of model, abstractions are used that go
beyond the concrete physics of the models. This will not be a big problem since units have not
played an important role up to now.

3.2. Leaky Integrate-and-fire

The leaky integrate-and-fire is a very simple model in which the F function in equation (29)
is a linear one:

τM
dVM

dt
“ ´pVM ´ Vrestq ` RMIptq. (30)

This equation is obtained through a circuit like the one in (10) but with only one channel
with resistance RM and then τ “ RMCM . This model is called leaky because we see that the
only current that we consider is the "leak" one, the one with constant conductance. We can

33



Alejandro Barea Moreno ODE and PDE models used in neuroscience

easily find a general solution given an initial condition V pt0q “ V0:

VMptq “ V0 exp

ˆ

´
t ´ t0
τM

˙

` Vrest

«

1 ´ exp

ˆ

´
t ´ t0
τM

˙

ff

`

exp

ˆ

´
t

τM

˙

CM

ż t

t0

Ipsq exp

ˆ

s

τM

˙

ds.

(31)
This system has the same response that we saw in the first chapter when we approximated

the membrane by an equivalent circuit. The interesting thing that these models do and why
they are useful is that they serve us to sum (integrate) the inputs that other neurons send when
they fire an action potential, modulated by the Green function of the system which is, in this

case, exp
ˆ

s

τ

˙

.

The fact is that, as we had seen with the equivalent circuit in Chapter 1, this is not the
behaviour we want. With this model let alone like this we will not observe repetitive firing. It
only has a fixed point which is always attractive as the Jacobian of the system is always ´1,
therefore all of the trajectories will be attracted to it.

The solution to this problem is to insert a manual threshold. If the membrane potential
arrives at a value Vth, then it is reset manually in Vreset ă Vth after waiting a time which we
call the refractary time tref , analogue to the one we saw in actual action potentials.

For the sake of simplicity and mathematical cleanliness, we will only consider the cases such
that Vreset “ VR and tref “ 0.

This gives us the following properties for the model:

Property 3.2.1. When considering a constant current input Iptq “ I, the system has a current
threshold for firing given by the expression:

Imin “
Vth ´ VR

RM

.

Proof: Let us consider a constant current to determine the threshold.
The steady state of the system is given by:

0 “ ´pV p8q ´ VRq ` RMI. (32)

For a system to fire, the membrane potential must arrive at Vth, the most extreme case is that
the system arrives at this threshold at infinity, therefore, substituting V p8q with Vth in (32)
we obtain the result. ˝

Property 3.2.2. If V0 “ VR, the frequency of firing is given by the equation

f “
1

τM ln

ˆ

1 `
Imin

I ´ Imin

˙ , (33)
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which behaves linearly at high currents.

Proof: If the current is constant and VMp0q “ V0 “ VR, the equation (31) turns into

V ptq “ VR ` RMIp1 ´ e
´ t

τM q,

because tref “ 0 and Vreset “ VR, we know that the period of the signal is the time that it takes
for it to go from the reset to the threshold and can be thus calculated:

Vth “ VR ` RMIp1 ´ e
´ T

τM q

where, doing some algebra and using Property 1, we obtain:

f “
1

T
“

1

τM ln

ˆ

1 `
Imin

I ´ Imin

˙ .

Then, for I ąą 1, we can use the Taylor expansion of the logarithm:

lnp1 ` xq “ x ` opxq.

And we obtain:
fIąą1 «

I ´ Imin

τMImin

which is linear.
˝

Corollary 3.2.1. The LIF model is class I.

Using the following data:

RM 0.125 kΩ
τM 0.125 ms
VR -65 mV
Vth 40 mV

Table 3: Data for the simulations with the Leaky Integrate-and-fire model.

Using the formula given by equation (3.2.1), we can estimate the value of the minimum
current with these parameters:

Imin “ 840µA.

We can do a simple simulation to show the behaviour of the model:
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Fig. 26: Simulation of the Leaky Integrate-and-fire model under a constant current stimulus.
In orange if I ă Imin and in blue I ą Imin. The red dashed line indicates the position of the
threshold.

When the current is not smaller than the threshold (Imin “ 840µAq the system does not
fire, as predicted, but when it is greater, the repetitive firing cannot be stopped.

In terms of the phase space (or in this case phase-line), it is easy to see why this happens.
The steady-state if I ą Imin will be over Vth and, as we said before, will be attractive. When
the points approach the equilibrium but surpass the threshold, the system sends the trajectory
back to the starting point.1

3.3. Quadratic Integrate-and-Fire

The function F pVMq which appears in (29) has a non-linear behaviour which cannot be
understood solely by the leaky integrate-and-fire. This is what motivates the introduction of
the Quadratic Integrate-and-Fire:

dVM

dt
“ apIptq ´ I1q ` bpVM ´ V1q

2 (34)

where a has units of (F´1) and b (V ´1 ¨ s´1) and with I1, V1 are all positive parameters.
In the case in which Iptq “ I, which is the one we will be working from now on, this equation

can be analytically solved, but before finding the solution, let us study something about the
behaviour of fixed points:

1Like Sisyphus, it must repeat the process over and over again without reaching the top of the mountain.
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Property 3.3.1. The equation (34) has two fixed points if I1 ą I and none in the complemen-
tary. Their coordinates will be:

V ˚
M “ V1 ˘

c

a

b
pI1 ´ Iq. (35)

Proof: Using equation (34), and developing the equation for fixed points we obtain:

pVM ´ V1q
2

“
a

b
pI1 ´ Iq.

Because a and b are positive, we know that this equation only has real solutions if I1 ą I, and
the coordinates of such fixed points will be:

VM “ V1 ˘

c

a

b
pI1 ´ Iq.

˝

Property 3.3.2. If I1 ą I, one of the fixed points is stable and attractive and the other is
unstable.

Proof: The derivative of the system with respect to VM is:

Jf pVMq “ 2bpVM ´ V1q. (36)

Substituting (35) into (36) we obtain:

Jf pV ˚
Mq “ ˘2b

c

a

b
pI1 ´ Iq.

Therefore the one to the left will be attractive and stable and the one to the right unstable. ˝

Corollary 3.3.1. The system has a saddle-node bifurcation in I “ I1, VM “ V1.

Property 3.3.3. When I1 ă I or I1 ą I and VMpt0q ą V1 `
a

a
b
pI1 ´ Iq V is monotonically

increasing.

Lemma 3.3.1. When I1 ă I or I1 ą I and VMpt0q ą V1 `
a

a
b
pI1 ´ Iq the solution explodes in

finite time. Otherwise, it stays finite.

Proof: The proof of the second affirmation, that is, the case in which I1 ą I and V pt0q ă

V1 `
a

a
b
pI1 ´ Iq, is trivial seeing what we just studied about fixed points.

For the remainder of the proof, t0 “ 0.
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Equation (34) is a Ricatti differential equation, which we can reduce to:

d2x

dt2
“ γ2x, γ “

a

´abpI ´ I1q. (37)

With the change of variables

VM “ V1 ´
1

xb

dx

dt
,

the solution to equation (37) is:
xptq “ Aeγt ` Be´γt.

Therefore:

VMptq “ V1 ´
γ

b

˜

A
B
eγt ´ e´γt

A
B
eγt ` e´γt

¸

.

Imposing the initial condition VMp0q we obtain:

A

B
“

1 ´ D

1 ` D
, D “ b

VMp0q ´ V1

γ
.

For the solution to explode in finite time, there must be a value of t, let us say T where:

1 ´ D

1 ` D
eγT ` e´γT

“ 0.

Now, we must distinguish between cases.
If I ą I1, then γ is pure imaginary and the former equation can be transformed into:

tanpiγT q “
iγ

bpVMp0q ´ V1q

which has a solution because the tangent is surjective.
If I ă I1, γ is real and:

e´2γT
“

D ´ 1

1 ` D
.

As the exponential is positive the equation has a solution if and only if D ě 1 which means:

D ě 1 ñ VMp0q ě V1 `

c

´
a

b
pI ´ I1q.

Which proves the result.
˝

So, what can we do when our model goes to infinity on a common basis? We consider the
times at which the solution does this as firing instants and the reset potential is ´8. Then:

Property 3.3.4. The frequency of firing if I ą I1 fulfils the following law:
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f 9
a

I ´ I1.

Proof: We know that if I ą I1, we can use the equation:

tanpiγT q “
iγ

bpVMp0q ´ V1q

to compute the period.
If we impose VMp0q “ ´8 then:

tanpiγT q “ 0 ñ T “
π

iγ
“

π
a

abpI ´ I1q
.

Taking the inverse gives us the desired result.
˝

Using the parameters:

a 1 F´1

b 1 mV ´1 ¨ ms´1

V1 0 mV
I1 2 A

Table 4: Data for the simulations with the Quadratic Integrate-and-fire model.

We can do some simulations to show what we just proved (of course we stop before going
to 8, because we cannot treat that numerically):

Fig. 27: Simulation of the QIF model with I “ 2.5A, V p0q “ ´8, which is over the threshold.
The red dashed line indicates the position of the threshold.
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From this we have measured the distance between peaks obtaining an estimate which is
near the value that we can calculate using the last property:

Texp “ 4.42ms « 4.44ms “
π

a

abpI ´ I1q

which makes sense because of the fact that we stopped the simulation before actually going to
infinity, so the simulated period is slightly smaller.

If I “ 1 ă I1 and the initial condition is between the fixed points we find, as expected:

Fig. 28: Simulation of the QIF model with I “ 2A, V p0q “ ´2mV , which is under the
threshold. The red dashed line indicates the position of the threshold.

3.4. θ-model

Let the following change of variables in (34):

VM “ V1 `
c

b
tan

ˆ

θ

2

˙

where c is a positive constant (s´1).
Then, it can be found that the equation for θptq is:

dθ

dt
“ cp1 ´ cospθqq `

ab

c
p1 ` cospθqqpI ´ I1q. (38)

This is the so-called θ-model.
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This model has very similar characteristics to the ones found in the Quadratic Integrate-
and-fire, it has the same properties and the bifurcation point is exactly the same.

Apart from this, we must consider the fact that θptq P r´π, πq and the system is said to fire
when θ “ π, restarting it to ´π.

Using the parameters from 4 with c “ 1ms´1.
We can show its behaviour which is very similar to the one we saw before in the Quadratic

Integrate-and-fire:

Fig. 29: Simulation of the θ-model under a current I “ 2.5A ą I1. The red dashed line
indicates the position of the threshold.
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Part 2. When neurons become noisy: the Fokker-
Planck approach.

In this second part, we will now change the scope and will work with a collection of neurons
with similar behaviour. In Chapter 4 we will present the mathematical tools needed for this
new formalism and deduce a general expression for the Fokker-Planck equation. In Chapter 5
we will explain in depth the arguments that allow us to obtain an equation which can actually
be solved and finally, in Chapter 6, we will study the solutions of this equation in different
situations.

Many of the proofs and definitions in this chapter have been taken and adapted from [10],
[12], [11] and [2].

Chapter 4: Stochastic Calculus

4.1. Random real variables

First, we will present three basic definitions. Our analysis will be unidimensional but can
be generalized easily.

Definition 4.1.1 (σ-algebra). Let Ω be a set, then F Ă PpΩq is a σ-algebra if it has the
following properties:

Ω P F .

A P F ñ A “ ΩzA P F .

A, B P F ñ A Y B P F .

Then pΩ,Fq is called a measurable space.

One particularly important example of a measurable space is pR, BpRqq where BpRq is the
Borel σ-algebra which is the smallest σ-algebra that contains the euclidean topology in R.

Definition 4.1.2 (Probability function). Let pΩ,Fq be a measurable space, then P : F Ñ r0, 1s

is a probability function if it has the following properties:

P(Ω) = 1.

Let tAnunPN Ă F with Ai X Aj “ H, i ‰ j then:

P

˜

8
ď

n“1

An

¸

“

8
ÿ

n“1

P pAnq

.
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We call pΩ,F , P q a probability space.

Definition 4.1.3 (Real random variable). Let pΩ,Fq and pR,BpRqq be measurable spaces and
a function X : Ω Ñ R. Then X is a real random variable if X´1pBq “

␣

ω P Ω : X pωq P B
(

P

F , @B P BpRq.

We know that if the space pΩ,Fq has a probability function then X induces a new probability
in pR,BpRqq:

PX pBq “ P pX´1
pBqq, B P BpRq.

We will denote the probability of a variable having the value x as P pxq.
If our variable is not discrete but continuous, we define the density function:

Definition 4.1.4 (Density Function). If X is a continuous variable, we call f its density
function if:

P pX P Bq “

ż

B

fpxqdx.

Definition 4.1.5 (Expectation value). Let X be a random variable, then the sum:

EpX q “
ÿ

j

xjP pX “ xjq (39)

where xj are the discrete values that the variable can take.
Or, in the case that our variable is continuous:

EpX q “

ż

R
xfpxqdx (40)

where f is the density function of X . It is only defined if Ep|X |q is convergent.

We need a last definition to conclude this part:

Definition 4.1.6 (Independent variables). We say that two real random variables X and Y
are independent if:

P pX P A, Y P Bq “ P pX P AqP pY P Bq, @A, B P F .

4.2. Basics of stochastic processes

From now on we will be always talking about random variables in a probability space
pΩ ,F , P q.

We know that the study of neurons will be time-dependent, as we want to know how the
membrane potential will evolve in time, we will study static situations but our main aim is to
try and figure out how the distributions will change over time. For this, we need to introduce
the concept of a stochastic process:
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Definition 4.2.1 (Stochastic process). A stochastic process is a parametrized family of real
random variables:

tXtutPT

where T is the time domain.

So when we think of a stochastic process, we must think about a function of two variables:
ω and time. ω can be a lot of things, for instance, a particle. In future chapters, we will work
with random variables which represent the membrane potential of a ω neuron at a given time.

Now, we want to figure out the probability of our stochastic variable having a particular
value in a particular instant of time. We will call this P1px, tq.

We can, however, also consider various instants of time t1, ¨ ¨ ¨ , tn in which we want our
variable to be x1, ¨ ¨ ¨ , xn. We will then call this probability Pnpx1 , t1; x2 , t2; ¨ ¨ ¨ ; xn, tnq. We
should also consider the fact that there is a hierarchy of these probability functions and that
having one we can obtain the ones of lower order just by integrating:

Pn´1px1, t1; ¨ ¨ ¨ ; xn´1, tn´1q “

ż

R
Pnpx1, t1; ¨ ¨ ¨ ; xn, tnqdxn. (41)

and we can define its expectation value (in the continuous case) as:

Definition 4.2.2 (Expectation value of a stochastic variable). If

Ep|Xt|q “

ż

R
|x|P1px, tqdx ă 8,

then the expectation value of Xt is defined as:

EpXtq “

ż

R
xP1px, tqdx.

If we have a function g : R ˆ T Ñ R which is Borel-measurable, then we can define:

EpgpXtqq “

ż

R
gpx, tqP1px, tqdx

if the integral of the absolute value is convergent.

We know that some events can have an effect on future ones. This can be mathematically
modelled by the use of conditional probability.

To illustrate this point, let us imagine that our variable has passed through time instants
t1, ¨ ¨ ¨ , tn with values x1, ¨ ¨ ¨ , xn. Now, this will influence the future probabilities of the
process. If we consider l new time steps, we define the conditional probability as:

Definition 4.2.3 (Conditional Probability). Let t1, ¨ ¨ ¨ , tn be time instants and x1, ¨ ¨ ¨ , xn

values of a stochastic process Xt, if we consider l new time steps and values, we define the
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conditional probability of Xt subjected to t1, ¨ ¨ ¨ , tn and x1, ¨ ¨ ¨ , xn as:

Pl|npxn`1, tn`1; ¨ ¨ ¨ ; xn`l, tn`l |x1, t1; ¨ ¨ ¨ ; xn, tnq “
Pn`lpx1, t1; ¨ ¨ ¨ ; xn`l, tn`lq

Pnpx1, t1; ¨ ¨ ¨ ; xn, tnq
. (42)

4.3. Markov processes

We are interested in a specific kind of stochastic process: Markov processes. There are
many different definitions of such processes but we will use the following:

Definition 4.3.1 (Markov process). We say that a stochastic process tXtutPT is a Markov
process if, for each finite time collection t1 ă ¨ ¨ ¨ ă tn´1 ă tn, the following equation holds:

P1|n´1pxn, tn |x1, t1, ¨ ¨ ¨ , xn´1, tn´1q “ P1|1pxn, tn |xn´1, tn´1q. (43)

That is, the probability of the variable’s value of being xn at time tn only depends on the
last known value.

If the probability P1|1pxn, tn |xn´1, tn´1q only depends on τ “ tn ´ tn´1, then we call this
Markov process homogeneous.

4.3.1. Wiener processes

A very important type of Markov process is the Wiener process, which we are going to use
in the future to define stochastic integrals and deduce the Fokker-Planck equation.

They are defined as:

Definition 4.3.2 (Wiener Process). Let Wt be a stochastic process such that:

W0 = 0.

Their probability distribution is Gaussian:

P1px, tq “
1

?
2πt

exp

˜

´
x2

2t

¸

.

For any finite collection of times t1 ă t2 ă ¨ ¨ ¨ ă tn, the random variables Wtj ´Wtj´1
are

independent.

EpWtq “ 0 and EppWt ´ Wsq
2q “ t ´ s, @ t, s such that 0 ď s ď t.

t Ñ Wtpωq is continuous for almost all ω.

45



Alejandro Barea Moreno ODE and PDE models used in neuroscience

4.4. Langevin, Itô, Fokker and Planck

Imagine we have a differential equation of the form:

dx

dt
“ Apx, tq. (44)

In real-life problems, when we are modelling we do not usually have an exact expression of our
coefficients as they have some fluctuations or noise:

Apx, tq “ apx, tq ` noise.

Let us call for now bpx, tqWt the noisy term, where Wt is a stochastic process. We now want
to find solutions to the previous equations which are not functions but stochastic processes,
due to the introduction of random noise. Let us call the unknown process Xt.

Now, let us consider a discretisation (0 “ t0 ă t1, ¨ ¨ ¨ ă tm “ t) in order to approach the
solution to the problem:

Xk`1 ´ Xk “ apXk, tkq∆tk ` bpXk, tkq∆tkWk

where:
Xk “ Xtk , Wk “ Wtk .

If we iterate from 0, we arrive at:

Xt “ X0 `

m
ÿ

j“0

apXj, tjq∆tj `

m
ÿ

j“0

bpXj, tjq∆Bj

where:
∆Bj “ Bj`1 ´ Bj “ Wj∆tj.

is a Wiener process. The reason behind this is that the characters we observe in many situations
conduct us to introduce hypotheses on the noise that are only fulfilled when considering a
Wiener process [10].

If we take the limit when ∆tj Ñ 0, we know that the first sum turns into a Riemman
integral, however, the second sum is somewhat stranger, and it motivates the introduction of
stochastic integrals.

The equation (44) after applying the noise is called a Langevin equation and noted as:

dXt “ apXt, tqdt ` bpXt, tqdWt. (45)

Due to the fact that this work is about neuroscience and not about stochastic calculus, we
will introduce the definitions and theorems that we need without proof.
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Definition 4.4.1 (Itô integral). Let fptq a piecewise continuous functions, we define the Itô
integral (whenever it converges) as:

ż t

t0

fpsqdBs “ lim
nÑ8

n
ÿ

j“0

fpτjq∆Bj

where τj “ tj.

In the case of (45), we have that:

ż t

t0

bpXs, sqdBs “ lim
nÑ8

n
ÿ

j“0

bpXtj , tjq∆Bj.

The Itô integral has a very interesting property:

Theorem 4.4.1 (Itô formula). Let Xt be the solution of an equation as in (45) with bounded
coefficients. Let gpx, tq P C2pr0, 8q ˆ Rq and let us define:

Yt “ gpXt, tq.

Then Yt is the solution of:

dYt “
Bg

Bt
pXt, tqdt `

Bg

Bx
pXt, tqdXt `

1

2

B2g

Bx2
pXt, tqpdXtq

2

where we must consider:

dt ¨ dt “ dt ¨ dBt “ dBt ¨ dt “ 0, dBt ¨ dBt “ dt.

From this, we can finally deduce the Fokker-Planck equation.

Theorem 4.4.2 (Fokker-PFlanck equation). The probability function P1px, tq corresponding to
the solution of the Langevin equation (45) fulfills:

BP1px, tq

Bt
“ ´

BpP1px, tqapx, tqq

Bx
`

1

2

B2pP1px, tqbpx, tq
2q

Bx2

for almost all px, tq P R ˆ r0, 8q.

Proof: Let us consider h a function that is only dependent on x and apply Itô’s formula:

dYt “
dhpXtq

dx
apXt, tqdt `

dhpXtq

dx
bpXt, tqdBt `

1

2

d2hpXtq

dx2
b2pXt, tqdt.
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Taking derivatives with respect to time and taking the expected values from both sides we
obtain:

B

Bt

ż

hpxqP1px, tqdx “

ż

˜

dh

dx
apx, tq `

1

2

d2h

dx2
b2px, tq

¸

P1px, tqdx.

If we do integration by parts on the second side, we obtain:

B

Bt

ż

hpxqP1px, tqdx “

ż

«

´
d

dx
papx, tqP1px, tqq `

1

2

d2

dx2
pb2px, tqP1px, tqq

ff

hpxqdx.

Because the function h is arbitrary, we can just, assuming enough regularity of P1 move the
derivative with respect to time into the integral and obtain the result.

˝
We know that the solution of the Fokker-Planck equation is the probability distribution of

a Markov process because we have used this hypothesis to deduce it. However, in [10] we can
see a Lemma that shows that if the coefficients of the Langevin equation are independent of
time, then the process will be time-homogeneous.
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Chapter 5: Noisy neurons

We have introduced some mathematical tools that helped us to deduce the Fokker-Planck
equation in a general case. However, how does this apply to neural networks? What are we
expecting to obtain? Which are the boundary conditions that we must impose for our solution
to have physical sense? In this chapter, we will answer all of these questions and give a physical
context to mathematics.

5.1. Population activity

There are many, many neurons in the brain („100 billion [13]), each of which evolves
according to its own dynamics. In reality, our calculations so far have been somewhat anecdotal
and illustrative, but if we want to make predictions about the behaviour of the brain in such
a way that they can have something to do with the macroscopic sphere and with the data
obtained in diagnostic tests, we cannot restrict ourselves to one or two neurons, we have to talk
about a significantly larger set of neurons: Neuronal Populations.

Each neuronal population comprises neurons that have similar properties and respond in
the same way to the same stimuli, which will mathematically translate into their dynamics
following the same differential equations. An example of a neuronal population is neighbouring
cells in the visual cortex that respond favourably to a given orientation. In this case, the main
orientation would be the discrimination criterion that would allow us to define the boundaries
of the population.

Let us imagine now that we have a set of N neurons that are part of the same population.
Each of them will have its own voltage and will communicate with each other by sending action
potentials. If the dynamics of each cell are governed by a system of k equations and we take
into account that they are not independent of each other, in order to know the state of the
system, that is, the voltages of each of the neurons, we would need to solve a system of k N
equations, and knowing that N is usually a huge number, the reader will be able to deduce that
this is practically an impossible task.

This situation is very similar to what happened at the dawn of statistical mechanics. When
one wants to study the kinetics of gases, one realises that it is impossible to solve Hamilton’s
equations for systems with such a large number of particles. Thus, we began to work not with
microscopic quantities such as the momentum and position of individual molecules, but with
macroscopic quantities such as pressure and temperature, deduced from the probability of the
particles occupying specific volumes.

We will perform an analogous treatment to this, where the spatial volumes will be replaced
by abstract volumes in the dimension of the membrane voltage. Moreover, as we have been
introduced in the previous chapter, our treatment will be time-dependent.

But what is the macroscopic quantity we want to measure?
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We want a quantity that gives us information about the functioning of a neuronal population,
and a way to characterise it. This will be the firing rate of action potentials in the network or
Population Activity.

There are several ways of defining this firing rate, which we will denote by the letter A.
First, we can think of the most obvious definition:

Aptq “
npeakspt, t ` Ttestq

Ttest

(46)

where npeakspt, Ttestq is the number of peaks between t and t `Ttest.
While this is the most intuitive, it does not really make physical sense, since, in nature, the

brain does not wait to estimate the firing rate, because, if it did, phenomena such as reflexes
would not exist.

But this is where the role of a large number of neurons in our brain comes into play. Indeed,
if we average across our population we get a much simpler and quicker result.

Thus we get a definitive definition of the magnitude to be studied:

Definition 5.1.1 (Population Activity). The activity of a neuronal population with N cells is
defined by:

Aptq “ lim
∆tÑ0

npeakspt, t ` ∆tq

N∆t
. (47)

And it is measured in Hertz (Hz).

5.2. Mean-Field argument

From now on, we will work with 1D models.
We have already mentioned about the humongous number of neurons that inhabit the brain

and even though we are treating a limited portion of them, namely a neuronal population, the
number is also large enough to make the treatment of a system of N equations, being N the
number of neurons in said population, nearly impossible.

One of the facts that makes this process very difficult is the inability of differentiating
between neurons and thus of differentiating between current inputs. This is why we need to
resort to stochastic theory and assume that the input current of a neuron is random:

Iptq “ µptq ` σptqBt (48)

where µptq is the mean, σ the standard deviation and Bt a Wiener process or white noise
which we defined before.

For the mathematics of the following sections to be easier and more satisfactory, we will as-
sume that µptq “ µ, σptq “ σ. Even though a time-dependent analysis would prove interesting,
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using constant parameters is not a bad approximation based on what is actually observed in
experimentation.

Now, if we consider a 1D model whose function does not include the time explicitely:

dVM

dt
“ F pVM , Iq.

If we insert equation (48) into the value of I, we obtain a Langevin equation:

dVM “ fpVM , µqdt ` gpVM , σqdBt.

And therefore, using the results proven in the former chapter, we obtain the following Fokker-
Planck equation for the Langevin equation (5.2):

BP pVM , tq

Bt
“ ´

BpfpVM , µqP pVM , tqq

BVM

`
1

2

B2gpVM , σq2P pVM , tq

BV 2
M

. (49)

This equation will give us the probability of a neuron’s membrane voltage of having the
value VM at an instant of time t.

We want to study the ensemble behaviour and for this, we will use arguments inherited
from statistical mechanics. We know that the input Iiptq of a neuron is given by equation
(48) and this equation does not contain any reference to the index of the neuron, therefore is
independent.

If we assume that the neurons are identical, as they receive the same input, if we study the
stationary scenario, we will deduce that the population activity is equal to the firing rate of an
individual neuron.

Lemma 5.2.1. If the activity of a neuronal population Aptq is constant, then it is equal to the
firing rate of an individual neuron.

Proof: Suppose that Aptq “ A0.
We know that in a time period T, the N neurons of the neuronal population will produce a

number of spikes equal to:

nnetwork
spikes pT,Nq “ NTA0.

If we call the stationary value of the firing rate of a neuron f0, then we know that in the
time period T, it will produce:

nneuron
spikes pT q “ Tf0.

Therefore, as all of the neurons are identical, the spatial average that we take in the definition
of the population activity (46), we get:
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A0 “ f0.

˝
If we now assume that the dynamics of the system are quasi-stationary, that is, at each time

equilibrium is reached, we can assume that the activity of the population, which is a magnitude
that averages itself, is equal to the firing rate of a neuron, and the Fokker-Planck equation (49)
is used to study it.

The meaning of this new probability density function is the following:

ż V2

V1

P pVM , tqdVM “
neurons with membrane voltage between V1 and V2

N
.

This application of the so-called mean-field arguments is not very rigorous, but it serves to
illustrate the main ideas that lead us to disregard the individual character of the neurons that
make up the network.

5.3. Boundary conditions, uniqueness and existence

Obviously, we cannot solve this equation as it is, but we need some good boundary condi-
tions.

First of all, it is clear that we have to give it an initial profile P0pVMq “ P pVM , 0q to work
with, and in the next chapter, we will be testing the effects that are generated depending on
the type of temporary initial condition we give.

On the other hand, we know that what we have in hand is a probability distribution. Let Ω
be the spatial domain of the solution (which in our case will be unidimensional), we will have
to impose that:

ż

Ω

P pVM , tqdVM “ 1, @t P r0,8s. (50)

If this condition is fulfilled by the initial profile, it suffices to prove that the temporal
derivative of the integral is zero.

It is interesting the choice of writing the Fokker-Planck equation (49) as:

BP pVM , tq

Bt
“ ´

BJpVM , tq

BVM

(51)

where
JpVM , tq “ fpVM , µqP pVM , tq ´

1

2

BgpVM , σq2pVM , tq

BVM

(52)

is a flux of probability.
We have dropped the µ and σ dependency for a neater presentation.
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This new form helps us understand the fact that the Fokker-Planck equation is indeed a
conservation equation, similar to those of charge or fluid mechanics.

We will be treating two models stochastically: the Leaky Integrate-and-fire (30) and the
θ-model (6), which is why we divide the discussion in two parts.

5.3.1. Leaky Integrate-and-fire

Now, we should consider the fact that we will be working with Integrate-and-fire models.
In these models, we imposed a threshold for an action potential to be fired. The way to do this
was kind of rudimentary: the potential had to be manually reintroduced at the reset voltage
Vreset. Here, we can impose the threshold by adding a Dirichlet boundary condition:

P pVth, tq “ 0, @t P r0,8q. (53)

From now on, the domain of the solution in the voltage dimension will be p´8, Vths.
Also, for the probability to be normalisable we need to impose:

lim
VMÑ´8

P pVM , tq “ 0, @t P r0,8q. (54)

This condition, in the context of the Fokker-Planck equation, is called an absorbing bound-
ary condition. This is because all points (neurons) that reach the right-hand boundary, the
one defined by Vth, will vanish. Even if P cancels out at this boundary, there is a non-zero
flux J and therefore all neurons passing its refractory period will vanish from our probability
distribution, to solve this a delta term is introduced to the equation:

BP pVM , tq

Bt
“ ´

BJpVM , tq

BVM

` JpVth, tqδpV ´ Vresetq. (55)

Which means that the probability flux leaving on the far right will be reinserted at Vreset ă

Vth which is the reset voltage of our neurons.
This term will cause many problems for the numerical solving of the solutions, so we will

have to approximate the Dirac delta by a function that resembles it, has integral 1 in the
domain of our solution and is smooth enough not to cause us problems. The solution for this is
a Gaussian function multiplied by a term that normalises it in our semi-infinite domain. This
Gaussian will have a mean Vreset and a standard deviation σapprox „ 0 which we will adjust
according to our needs in future experiments. Thus, the equation (55) is:

BP pVM , tq

Bt
“ ´

BJpVM , tq

BVM

` JpVth, tqgpVMq (56)

where g is the normalized Gaussian function that we have just defined.
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Lemma 5.3.1. The probability given by equation (56) is conserved when considering the bound-
ary condition (54) at infinity.

Proof: We can do the following:

B

Bt

ż Vth

´8

P pVM , tqdVM “

ż Vth

´8

BP pVM , tq

Bt
dVM , (57)

due to the fact that the time is not the variable of integration and we assume that P is
sufficiently regular. Then, substituting (56) into (57) we obtain:

ż Vth

´8

BP pVM , tq

Bt
dVM “ ´

ż Vth

´8

BJpVM , tq

BVM

dVM ` JpVth, tq

“ lim
VMÑ´8

JpVM , tq ` JpVth, tq ´ JpVth, tq “ lim
VMÑ´8

JpVM , tq

where we have used that:
ż Vth

´8

gpVMqdVM “ 1.

We know that the probability function being 0 at infinity imposes that the J function must
also be 0, otherwise, seeing the definition of the flux of probability, the function P would not
turn out to be 0. With this, we have the result. ˝

5.3.2. θ-model

Here things are easier. Let us remember that the θ-model was defined by equation:

dθ

dt
“ cp1 ´ cospθqq `

ab

c
p1 ` cospθqqpI ´ I1q.

For now, consider a “ b “ c “ 1, I1 “ 0.
If we plug (48) into that equation, we obtain the following Langevin equation:

dθt “ f1pθt, µqdt ` f2pθt, σqdBt (58)

where:
f1pθ, µq “ p1 ´ cospθqq ` p1 ` cospθqqµ, f2pθ, σq “ p1 ` cospθqqσ,

which are both periodic functions. Therefore, the Fokker-Planck equation for the θ model will
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have periodic coefficients and it is justifiable to add periodic boundary conditions:

lim
θÑπ´

P pθ, tq “ lim
θÑ´π`

P pθ, tq, (59)

lim
θÑπ´

Jpθ, tq “ lim
θÑ´π`

Jpθ, tq. (60)

and, because of the periodicity of the coefficients and their derivatives, we have:

Property 5.3.1. The second periodic boundary condition is equivalent to:

lim
θÑπ´

BP pθ, tq

Bθ
“ lim

θÑ´π`

BP pθ, tq

Bθ
.

Then, we have the following:

Lemma 5.3.2. The solution to the Fokker-Planck equation generated by (58) is conserved with
the periodic boundary conditions (59) and (60).

The proof is analogous to the one in Lemma 5.3.1.

5.4. Analysis of the solutions

We analyze mathematically the solutions for the θ model, as the case of the Leaky Integrate-
and-fire includes a term JpVM , tq which is an evaluation of the solution we are trying to calculate
and that ruins our efforts at some previous analysis.

First of all, consider strong solutions to the problem:

BP pθ, tq

Bt
“ ´

Bpf1pθqP pθ, tqq

Bθ
`

1

2

B2pf2pθq2P pθ, tqq

Bθ2
. (61)

Lemma 5.4.1. The Fokker-Planck equation (61) with periodic boundary conditions (59) and
(60) has an unique strong solution in the domain r´π, πs if the initial condition P pθ, 0q “ P0pθq

is analytic.

Proof: Near t “ 0, the application of Cauchy-Kovalevska theorem (Theorem 0.6.5) tells
us that the solution exists and is unique, because of the analyticity of the coefficients f1 and
f2, which are combinations of cosines. If then we consider that probability is conserved, the
solution does not blow up and therefore we have global unique solutions.

˝
Calculating this solution can be very tedious as we would have to use analytic methods

which would yield very complex solutions that are difficult to compute, so we would have to
resort to the weak solutions. For this, we will use the following theorem found in [15]:
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Theorem 5.4.1 (Lions). Let V Ă H be two separable Hilbert spaces such that V is dense in H.
Let M, α, T ą 0, β ě 0, F P L2p0, T ; Hq, u0 P H and a : r0, T s ˆ V ˆ V Ñ V a family of

bilinear applications, then if:

|apt; u, vq| ď M∥u∥V ∥v∥V , @u, v P V .

apt; u, vq ě α∥v∥2V ´ β∥v∥2H , @v P V .

t Ñ apt; u, vq is measurable @u, v P V .

Then, the variational problem:
$

’

’

&

’

’

%

Find u P L2p0, T ; V q X C0pr0, T s; Hq such that
d
dt

pu, vqH ` apt; u, vq “ pF ptq, vqH , @v P V, for almost all t P p0, T q

up0q “ u0

has a unique solution.

Now, we can discuss the weak solutions.

Lemma 5.4.2. The Fokker-Planck equation (61) with periodic boundary conditions (59) and
(60) has an unique weak solution in the domain r´π, πs if the initial condition P pθ, 0q “ P0pθq

is in L2pΩq.

Proof: Let us start establishing the settings for the variational problem in which we will
transform the PDE.

Take H “ L2pΩq where Ω is r´π, πs, and V will be the following subset of Sobolev space
H1pΩq:

V “
␣

v P H1
pΩq | vp´πq “ vpπq

(

which is Hilbert because it is closed in H1pΩq. The norms in those two spaces are:

∥v∥H “

ż π

´π

|vpθq|2 dθ.

∥v∥V “

ż π

´π

˜

|vpθq|2 `

∣∣∣∣dvdθ pθq

∣∣∣∣2
¸

dθ.

Now, to obtain the bilinear form, we must choose a test function v P V , multiply and then
integrate, to obtain (we will drop the dependencies for neatness):

ż

BP

Bt
v `

ż

Bpf1P q

Bθ
v ´

1

2

ż

B2pf2P q

Bθ2
v “ 0
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We analyze now, part by part, the candidates for a and F :

ż

B2pf2P q

Bθ2
v “ vpπq

Bpf2P q

Bθ
pπq ´ vp´πq ´

Bpf2P q

Bθ
p´πq ´

ż

Bpf2P q

Bθ

Bv

Bθ

where we can remove the first part due to the periodic boundary conditions that we imposed
in v and in P .

We are left, then with the following applications:

F ptq “ 0 (62)

apt; P, vq “

ż

Bpf1P q

Bθ
v `

1

2

ż

Bpf2P q

Bθ

Bv

Bθ
. (63)

About (62) there is not much to talk about, as it is evidently of class L2.
On the contrary, about (63) we should prove its continuity and the second property of Lions’

Theorem because it is obviously bilinear (due to the linearity of the differential and integral
operators) and measurable.

For the continuity, considering that f1 and f2 are bounded and using the expression of the
norms that we discussed above and the Cauchy-Schwarz inequality (Hölder (Theorem 0.6.6)
with p “ 1

2
), it is trivial.

The second condition is a little bit more difficult to prove:

apt; v, vq “

ż

Bpf1P q

Bθ
v `

1

2

ż

Bpf2P q

Bθ

Bv

Bθ
. (64)

First, let us analyze each part:

ż

Bpf1vq

Bθ
v “

ż

f 1
1v

2
`

ż

f1
Bv

Bθ
v “

ż

f1v
2

`
1

2

ż

f1
Bv2

Bθ
.

And now, we can transform this using integration by parts on the second integral, obtaining:

ż

Bpf1vq

Bθ
v “

1

2

ż

f 1
1v

2.

In parallel:
1

2

ż

Bpf2vq

Bθ

Bv

Bθ
“

ż

f 1
2f2

Bv2

Bθ
`

1

2

ż

f 2
2 p

Bv

Bθ
q
2

where the first integral can be transformed into:

ż

f 1
2f2

Bv2

Bθ
“ ´

ż

pf
p2q

2 f2 ` pf 1
2q

2
qv2.
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If we sum and substract:
ż

f 2
2 v

2.

From (64), we will have that:

apt; v, vq ě
∥∥f 2

2

∥∥
8
∥v∥V `

ż

p¨ ¨ ¨ qv2.

where the (¨ ¨ ¨ ) are a combination of sines and cosines and therefore they have a lower bound.
If this lower bound is negative, as v2 is positive, we find the β as minus this lower bound. If
this lower bound is positive, we could just take β “ 0 and obtain the desired result.

˝

5.5. Stationary Solutions

We know that stationary solutions are to partial differential equations what fixed points are
to ordinary differential equations, so it will be useful to have an understanding of these before
doing simulations.

5.5.1. Leaky Integrate-and-fire

The Fokker-Planck equation for the LIF model is:

BP pVM , tq

Bt
“

1

τM

BpVM ´ VrestqP pVM , tq

BVM

`
σ2

2τ 2M

B2P pVM , tq

BV 2
M

` JpVthqgpVMq.

If we remove the temporal dependence we obtain:

0 “
1

τM

dpVM ´ Vrest ´ µqPspVMq

dVM

`
σ2

2τ 2M

d2PspVMq

dV 2
M

` JpVthqgpVMq,

which is linear and therefore has a unique global solution. We will solve this numerically
because the term JpVthq which depends on the solution makes it impossible to find an analytic
solution.

Our domain of integration was infinite, but since we cannot solve numerically in such a
domain, we will use a value ´A with A large enough to observe the phenomena. This will give
us the boundary conditions P p´Aq “ P pVthq “ 0 which will allow us to calculate the solutions
using the finite difference method.

Another curious numerical detail is the way in which I have calculated the stationary activity
A0 and that is that, inspired by [18], I have left JpVthq as a free parameter and adjusted its value
so that the norm of 1, which can be done in two steps because the steady state distribution
function is directly proportional to the stationary activity, something which also appears in [18].

We use the following data, of which we ignore the units:
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µ 3
σ 0.5

σapprox 1
τM 0.125
A -85

Vreset -65
Vrest -65
Vth 40
T 2

Table 5: Data for the simulations with the LIF model.

We have chosen the σapprox because it is one order of magnitude below that of the longitude
of the voltage domain.

We observe the following profile:

Fig. 30: Steady-state of the LIF model.

For the population activity we simply have to take into account the fact that, by definition,
it is the fraction of neurons per unit of time that fire:

Aptq “ lim
VMÑV ´

th

JpVM , tq.

With this we obtain a stationary activity:

A0 “ 1.59, (65)

which should coincide with the limit at large times of the one we calculate.
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5.5.2. θ-model

If we erase the time derivative in (61), then we have:

0 “
dJpθ, tq

dθ
.

Therefore:
J0 “ f1pθqP pθq ´

1

2

dP pθq

dθ
,

which gives us an infinitude of solutions.
No more discussion will be done as in a future section we will see that the function does not

arrive at any equilibrium.

5.6. Simulations

5.6.1. Leaky Integrate-and-fire

I used a mixed method between explicit Euler and finite differences to calculate the solution.
It is important to note how I treated the JpVM , tq and that is that I did it in two steps. First,
I calculated the solution for all voltages and for an instant of time using the J corresponding
to the previous instant and then, using those solutions, I obtained a new value for the J with
which I calculated the final solution.

Using the data in the table 5 plus the initial condition:

P0pθq “
1

σinit

?
2π

expp´px ´ Vresetq
2
q, σinit “ 5.

We obtain:

Fig. 31: Probability distribution over time of the LIF neuron model.
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where we can see how a steady state is generated when the neurons reach the barrier and
then reappear at the reset voltage.

Fig. 32: Population activity over time of the LIF neuron model.

As for their activity, we can see how it approaches a stationary value that practically
coincides with the one calculated above (65):

Apt Ñ 8q “ 1.60.

If we see how much the solution is worth at the final instant of our simulation, we can observe
that it coincides with the calculated stationary solution:

Fig. 33: Probability distribution at time T of the LIF neuron model applied to a neuronal
population.
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5.6.2. θ-model

We will use the data:

µ 3
σ 0.5
T 2

Table 6: Data for the simulations with the θ model.

and the initial condition:

P0pθq “
1

σinit

?
2π

expp´θ2q, σinit “ 0.5

The selection of these parameters, as in the previous case, is not arbitrary. It is impor-
tant to choose values that allow for neuron firing while ensuring that the numerical scheme
remains stable. This is especially important as the numerical scheme can be very sensitive to
small changes, and any divergence could have significant consequences for the accuracy and
reliability of the model. Therefore, we carefully considered various factors when selecting these
parameters, such as the properties of the neural network and the specific task at hand.

We observe:

Fig. 34: Probability distribution over time of the θ neuron model applied to a neuronal
population.

We have also calculated the values for the activity. Where we only see a peak corresponding
to the one in the graph, that is, the moment where almost all of the neurons fire and then go
back to the starting point:
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Fig. 35: Population activity over time of the θ neuron model applied to a neuronal population.

We see that the solution is periodic, and the waves will produce indefinitely, however, due
to the numerical defects of the scheme we are using, the probability is lost little by little and
therefore the wave is fading. The stationary solution is thus never attained in theory. This loss
of probability is a function of the number of nodes used in time and in space.
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Conclusions

Throughout this work we have seen a staggering variety of neuron models and some so-
called neuronal population models for clusters of cells, but there is still a great deal to be seen,
many mathematical artefacts of great calibre that, for the brevity of this work, must remain
unexamined.

Each chapter of this work acts as a node in the tree of computational neuroscience, because
from each small Lemma, equation or concept, a large number of related concepts appear that
have been or are being treated by some of the experts in the field, so I wanted to restrict myself
to some of the most relevant aspects.

This work does not pretend to be an exhaustive analysis of the subject and to exhaust it,
since a field as extensive as this, which is growing day by day, is impossible to cover in so few
pages. However, it is a brief introduction to some of the concepts on which current research of
such calibre as the European Union’s flagship project, The Human Brain Project, is based,
as well as such fundamental tools in the work of health researchers as The Virtual Brain.

Fig. 36: Simulations of the brain done with The Virtual Brain [19].

We have also neglected concepts such as the detailed study of the waves that travel through
the brain, the delayed integrodifferential equations that serve to explain communication over
long distances or the models of memories based on neural networks, which are so fashionable
today. A good synthesis of most of the knowledge in the field is found in [18] which is a paper
that has influenced greatly the structure of this work.

Still, I hope that the reader will be satisfied with my treatment of mathematics and neuro-
science and that he or she will have been able to retain some of the ideas that were presented.
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Appendix

Simulations code

All of the code for the simulations have been developed by me using MATLAB. As I have
used a lot of little scripts and including them here would prolong the work unnecessarily, I link
you to my GitHub where I have uploaded everything:

https : {{github.com{alejbarea{TFGneuroscience.git

Previous mathematical results

We will need some results known to everyone that has taken part in courses on ODEs and
stability theory. These will be stated in this section without proof. These results have been
extracted from [17] and [16].

Definition 0.6.1 (Hyperbolic fixed point). Let F : Rn Ñ Rn be a dynamical system with a
fixed point p. Then if J , the jacobian matrix of F at p, has no eigenvalue with zero real parts
then p is hyperbolic.

Theorem 0.6.1 (Local Existence and Uniqueness Theorem). Let Ω Ă RN`1 an open set and
f : Ω Ñ RN so that f P C0pΩq X Liplocpy; Ωq. Under these conditions, for each pt0, y0q P Ω,
there exists one and only one maximal solution to the Cauchy Problem:

pCP q

#

y1 “ fpt, yq

ypt0q “ y0

Lemma 0.6.1 (Gronwall’s Lemma). Let 0 ă t0 ă t1 ă 8 and u, a P C0prt0, t1sq with aptq ě

0, @t P rt0, t1s and:

uptq ď M `

ż t

t0

apsqupsqds, @t P rt0, t1s.

Then:

uptq ď Me
şt
t0

apsqds
, @t P rt0, t1s.

Theorem 0.6.2 (Sufficient condition for Lipschitzianity). Let Ω Ă RN`1 an open set and

f “ pf1, ¨ ¨ ¨ , fNq : Ω Ñ RN .

a function whose partial derivatives Bfi
Byj

exists and are continuous @i, j “ 1, ¨ ¨ ¨ , N then
f P Liplocpy,Ωq.
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Theorem 0.6.3 (Stability by linearization). Let

y1
“ fpyq

be a differential system with f P C2pBpq, Bp Ă RN , N ě 1 a closed ball. Let y˚ be a critical
point of the system, i.e. fpy˚q “ 0. If the eigenvalues of the Jacobian matrix evaluated in
y “ y˚, p

Bfi
Byj

py˚qqij have all negative real parts, then ϕ˚, the solution with an initial condition
in y y0 “ y˚, is an exponentially asymptotically stable equilibrium of the system. If any of the
eigenvalues has a positive real part, then the equilibrium is unstable.

Theorem 0.6.4 (Poincaré-Bendixon). Let y1 “ fpyq be an autonomous system with f P

C1pDq, D Ă R2 an open and connected non-empty set. Let y0 P K Ă D with D a compact
that γ`py0q Ă K with γ`py0q being the orbit of the system starting from t0. Then, if the set of
limit points Λ`py0q does not have critical points of the system we have:

Λ`py0q is a non-degenerated cyclic orbit.

Either γpy0q “ Λ`py0q or γ`py0q approaches Λ`py0q in spiral motion. In this case we call
Γ`py0q a limit cycle.

Theorem 0.6.5 (Cauchy-Kovalevska). A PDE of the form:

BMu

BxM
1

“ fpxi, u,
Bm1`¨¨¨`mnu

Bxm1
1 ¨ ¨ ¨ Bxmn

n

q

where m1 ` ¨ ¨ ¨ ` mn “ M and boundary conditions for x1 “ x0
1:

Bju

Bxj
1

“ Ljpx2, ¨ ¨ ¨ , xnq, j “ 0, ¨ ¨ ¨ , M ´ 1.

If f and Lj are analytic in a neighbourhood of upx0
1, ¨ ¨ ¨ , x0

nq and Bm1`¨¨¨`mnu
Bx

m1
1 ¨¨¨Bxmn

n
px0

1, ¨ ¨ ¨ , x0
nq then

the equation has an unique local solution in a neighbourhood of px0
1, ¨ ¨ ¨ , x0

nq.

Theorem 0.6.6 (Hölder). Let p, q P p1, 8q such that:

1

p
`

1

q
“ 1.

And f, g : X Ñ 8 are two measurable positive functions over X. Then:
ż

fgdµ ď p

ż

fpdµq
1{p

p

ż

f qdµq
1{q
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