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Abstract

Carbon nanotube (CNT)-reinforced composites exhibit a piezoresistive behavior that permits their use as sensors
in novel structural health monitoring (SHM) applications, by measuring the electrical resistivity change of the CNT
modified laminate. However, the presence of cracks in such composite materials may not only compromise their struc-
tural integrity, but may as well alter their capability to act as reliable piezoresistive sensors. In this paper, we conduct
a numerical study aimed at quantifying how the presence of cracks in reinforced polymer composites does influence
their electrical conductivity and, consequently, their sensor performance. To this end, the electromechanical constitu-
tive properties of the composite are determined by a mixed micromechanics approach that allows characterizing both
the elastic properties and the strain-induced alterations in the overall electrical conductivity of the CNT-reinforced
composite. The strain response of the cracked composite domain is accurately determined by means of a dual Boun-
dary Element (BE) approach. Electrical conductivity in the cracked composite follows from its computed strain state
at each point in the domain. Subsequently, the resulting non-homogeneous electrical conductivity problem is sol-
ved using a finite differences scheme that also accounts for semipermeable crack-face electrical boundary conditions.
Several parametric studies are conducted to illustrate the influence of various crack geometries in the piezoresistive
behavior of CNT-reinforced composites at varying CNTs concentrations.
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1. Introduction

Over the past fifteen years, composite materials fabricated by dispersing various carbon nano-scale fillers into
a polymeric matrix, say for example graphene nanoplatelets or CNTs, have attracted enormous attention from the
scientific community. This is due to the fact that the electrical conductivity properties that such fillers confer to
the otherwise non-conductive matrix, make them good candidates as sensors for novel SHM applications. CNTs do
not only reinforce the base matrix material by greatly improving its overall mechanical properties, but also have the
capability of forming minimally invasive- electrically conductive networks that enable strain sensing [1, 2, 3, 4, 5, 6],
all of it by adding quite low CNT filler contents. Recent advances on fabrication and testing of CNT-reinforced
composites ensure repeatability and stability of this new class of piezo-resistive sensors and establish them as an
actual alternative for SHM [7, 8, 9, 10, 11, 12, 13]. For instance, previous works by the authors have satisfactorily
illustrated the expected performance of multi-walled CNTs (MWCNT)/epoxy strip-like strain sensors for buckling
detection in beam structures [14] and for crack detection and localization in reinforced concrete beams [15].

In this context, it is crucial to develop tools for assessing the structural integrity of the sensor itself, as cracks
may appear within the MWCNT/epoxy strip sensor during its service life. In such a case, the problem that we face is
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twofold: the presence of a crack in the sensor will not only compromise its integrity, but it may significantly modify its
sensing capability and therefore could lead to the adoption of wrong maintenance measures in a SHM framework. All
of it, bearing in mind that addition of CNTs to the epoxy matrix does also contribute to improve the composite fracture
toughness and the energy release by bridging up the crack faces, as previous experimental [16, 17, 18, 19, 20, 21, 22]
and numerical works reveal [23, 24, 25, 26]. However, most of these works focus on analyzing the improvement of
the fracture behavior of the CNT-reinforced polymer composite from a mechanical perspective.

In this paper, we conduct a numerical study that aims at characterizing the change in electrical conductivity
induced in a MWCNTs/epoxy composite by the presence of several crack configurations at varying CNTs volume
fractions, with the objective of assessing how the performance of the CNT-epoxy sensor is affected by cracking.
To this end, the dual BE formulation previously developed by Garcı́a-Sánchez et al. [27] for fracture mechanics
applications is employed herein, provided the ability of the BE method to model high stress gradients accurately and
efficiently in the context of linear elastic fracture mechanics problems [28, 29].

The implemented dual BE formulation is based on both the displacement and traction boundary integral equations,
together with an efficient regularization procedure that permits to deal with the singular and hypersingular integrals in
a straightforward manner. Discontinuous quarter-point elements are used to accurately evaluate the relevant fracture
parameters. The constitutive electro-mechanical modeling of the MWCNTs/epoxy composite follows a two-step
procedure, whose details may be consulted elsewhere [14, 15]. In essence, provided that piezo-resistivity is a one-way
coupled electro-mechanical property, we first conduct the homogenization of the mechanical properties by applying
a mean-field approach that takes into account the interfacial effects that characterize the load transfer mechanisms at
the epoxy matrix/MWCNT interfaces. The second step tackles the homogenization of the electrical conductivity and
piezo-resistivity properties, implementing the model proposed by Garcı́a-Macı́as et al. [30] and further adjusting the
parameters of such micromechanics model to fit experimental results available in the literature [14, 15]. In this way,
the dual BE approach computes the strain state in the cracked domain and, subsequently, strains can be directly related
to local changes in piezo-resistivity. The resulting non-homogeneous electrical conductivity problem is then solved
using a finite differences scheme, in order to correlate the crack damage observed in a MWCNT/epoxy strip-like strain
sensor with the electrical resistance change measured between electrodes. The proposed numerical framework permits
to solve the problem for different crack-face electric permittivity boundary conditions, ranging from impermeable
crack conditions to fully permeable crack conditions. Several parametric studies are presented and discussed in detail
that reveal how the presence of cracks does significantly alter the piezo-resistive behavior of the MWCNTs/epoxy
composite strain sensors.

2. Micromechanics modeling of MWCNT/epoxy nanocomposites

This section concisely overviews the micromechanics modeling of the electromechanical constitutive properties
of strain self-sensing MWCNT/epoxy nanocomposites. For notational convenience, blackboard bold letters are used
to denote fourth-order tensors A = Ai jkl, while bold letters indicate second-order tensors A = Ai j. A colon between
two fourth-order tensors denotes inner product, (A : B)i jmn ≡ Ai jklBklmn.

2.1. Mechanical properties of MWCNT/epoxy nanocomposites

Let us assume a Representative Volume Element (RVE) of an epoxy matrix doped with a sufficient number of
MWCNTs to statistically represent the composite as a whole. The geometrical dimensions of MWCNTs, that is
length Lcnt and diameter Dcnt, are assumed constant throughout the RVE. The orientation of the fillers is unequivocally
defined by two Euler angles, θ and γ as shown in Fig. 1 (a). In order to take into account the filler/matrix interfacial
properties, a core-shell interphase model [31, 32] is adopted. This approach assumes that interfacial properties can
be idealized as finite elastic coatings with constant thickness t surrounding the fillers. Therefore, the composite is
defined as a three-phase composite including the matrix, inclusions and interphases with elastic tensors Cm, Cp and
Ci. Indexes “p”, “i”, and “m” relate the corresponding quantity to the filler, interphase and matrix phases, respectively.
According to the double inclusion methodology by Hori and Nemat-Nasser [33], the effective stiffness tensor of the
composite reads:

C =
(

fmCm + fi 〈Ci : Ai〉 + fp

〈
Cp : Ap

〉)
:
(

fmI + fi 〈Ai〉 + fp

〈
Ap

〉)−1
, (1)
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Figure 1: (a) Euler angles defining the relation between the orientation of a MWCNT in the local coordinate system, K′ ≡
{
0; x′1 x′2 x′3

}
and the global

coordinate system, K≡ {0; x1 x2 x3}. (b) Schematic representation of the contribution of electron hopping and conductive networking mechanisms
to the overall electrical conductivity of MWCNT/epoxy nanocomposites.

with fp, fi, and fm being the volume fractions occupied by the fillers, the interphases and the host matrix, respectively.
MWCNT/epoxy interfaces are characterized by weak van der Waals (vdW) forces, thereby penetrable soft interphases
are assumed in this work, and the expression of their volume fraction fi reads [14, 34]:

fi = (1 − fp)
(
1 − exp

{
−

6 fp

1 − fp

[
η

n(κ)
+

(
2 +

3 fp

n2(κ)(1 − fp)

)
η2+

+
4
3

(
1 +

3 fp

n(κ)(1 − fp)

)
η3

]})
,

(2)

where term η denotes the ratio of the thickness of the interphases t and the equivalent diameter Deq (i.e. η = t/Deq).
The equivalent diameter defines the diameter of an equivalent sphere having the same volume as that of the particles.
Assuming that MWCNTs have an aspect ratio s = Lcnt/Dcnt > 1, Deq takes the form Deq = Dcnt s1/3 [14, 34]. The
term n(s) stands for the sphericity of the fillers and is defined as:

n(s) =
2s2/3 tanϕ
tanϕ + s2ϕ

, (3)

where ϕ is given by ϕ = arcos(1/s). Terms Ai and Ap in Eq. (1) denote the concentration tensors for interphases and
inclusions, respectively, and can be expressed in terms of the corresponding dilute concentration tensors, Adil

i and Adil
p ,

as:

Aχ = Adil
χ :

(
fmI + fiAdil

i + fpAdil
p

)−1
, χ = p, i (4)

Adil
χ = I + S : Tχ, χ = p, i (5)

with

Tχ = −
(
S + Mχ

)−1
, χ = p, i (6)

Mχ =
(
Cχ − Cm

)−1
: Cm, χ = p, i (7)
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where S denotes the mechanical fourth-order Eshelby’s tensor, whose formulation for prolate ellipsoidal particles
can be found elsewhere [35]. Angle brackets 〈·〉 in Eq. (1) indicate orientational average weighted by an orientation
distribution function (ODF) Ω(γ, θ). Unless special aligning techniques are undertaken, fillers are usually randomly
oriented throughout the composite, and the ODF is constant within the whole Euler space.

2.2. Electrical conductivity of MWCNT/epoxy nanocomposites
Most literature works agree to define the electrical behavior of MWCNT-based composites as percolation-type,

according to which their electrical conductivity experiences a rapid increase of several orders of magnitude when the
filler concentration reaches a certain percolation threshold, fc. Below percolation ( fp < fc), fillers are very distant
and electrons can only be transferred through a quantum tunneling effect, also known as electron hopping mechanism.
Once the filler volume fraction reaches the percolation threshold ( fp ≥ fc), some fillers begin forming electrically
conductive paths and the overall conductivity is governed by both electron hopping and conductive networking me-
chanisms as sketched in Fig. 1 (b). The fraction of percolated MWCNTs, ξp, can be approximated as [36]:

ξp =


0, 0 ≤ fp < fc

f 1/3
p − f 1/3

c

1 − f 1/3
c

, fc ≤ fp ≤ 1
(8)

The electron hopping mechanism can be taken into account by conductive interphases, whilst the conductive
networking mechanism can be simulated through variations of the filler aspect ratio [37]. The electrical resistivity of
the interphases is commonly computed by the generalized Simmons’ formula [38]:

Rint(da) =
da~2

ae2 (
2mλ1/2) exp

(
4πda

~
(2mλ)1/2

)
, (9)

where m and e are the mass and the electric charge of the electron, respectively, λ is the height of the tunneling
potential barrier, a is the contact area of the fillers, ~ stands for the reduced Planck’s constant, and da is the average
inter-particle distance. Being dc the maximum filler separation for tunneling penetration of electrons, da is usually
approximated in a piecewise form [37] as dc and dc

(
fc/ fp

)1/3
below and above percolation, respectively. The thickness

of the conductive interphases tc, their electrical conductivity κint, and the volume fraction fe f f of the effective fillers
(MWCNTs plus interphases) can be computed as [39, 37]:

tc =
1
2

da, κint =
da

aRint(da)
, fe f f =

(Dcnt + 2tc)2 (Lcnt + 2tc)
D2

cntLcnt
fp. (10)

On this basis, MWCNT/interphase ensembles can be modeled through equivalent solid cylinders with transversely
isotropic conductivity tensor κc(for more detailed information in this regard, readers may refer to [40, 37]). Hence,
the overall electrical conductivity of the RVE can be estimated by the Mori-Tanaka method as [41, 42]:

κe f f = κm + (1 − ξp) 〈ΓEH〉 + ξp 〈ΓCN〉 , (11)

where κmis the conductivity tensor of the matrix phase, and the matrices ΓEH and ΓCN read:

ΓEH = fe f f (κEH − κm) AEH , (12a)

ΓCN = fe f f (κCN − κm) ACN , (12b)

with subscripts EH and CN referring to the electron hopping and conductive networking mechanisms, respectively.
Nanotubes forming conductive networks can be modeled as fillers with infinite aspect ratio [39]. Therefore, quantities
related to the electron hopping mechanism are defined with the actual filler aspect ratio (Lcnt/Dcnt), while those
related to the conductive networking mechanism are defined with infinite filler aspect ratio (Lcnt/Dcnt → ∞). Finally,
the electric field concentration tensor, A, is defined as [37]:
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Figure 2: Cubic cell containing an embedded filler and deformed under a tri-axial strain state (ε1, ε2, ε3).

A = Adil
{(

1 − fe f f

)
I + fe f f

〈
Adil

〉}−1
, (13)

with I being the second-order identity tensor. Assuming ellipsoid inclusions with symmetric axis x,3, tensors Adil and
S denoting the dilute electric field concentration and the Eshelby’s tensors read [43]:

Adil =
{
I + S (κm)−1 (κc − κm)

}−1
, (14)

S 22 = S 33 =


s

2
(
s2 − 1

)3/2

[
s
(
s2 − 11/2

)
− cosh−1 s

]
; s ≥ 1

s

2
(
s2 − 1

)3/2

[
cos−1 s − s

(
1 − s2

)1/2
]

; s ≥ 1

S 11 = 1 − 2S 22.

(15)

2.3. Piezoresistivity properties of MWCNT/epoxy nanocomposites
As pointed out above, the addition of MWCNT into the epoxy matrix does not only reinforce the base matrix ma-

terial by improving its mechanical properties, but it does also lead to the formation of minimally invasive electrically
conductive networks that confer a piezoresistive behavior to the resulting material. The piezoresistive effect refers to
the change in the electrical resistivity experienced by a semiconductor when subjected to mechanical strain [44]. In
contrast to the piezoelectric effect, the piezoresistive effect causes a change only in the electrical resistance, but not in
the electrical potential.

In this manner, it is possible to quantify changes in the strain state of the material by recording changes in its
electrical resistance. The strain self-sensing capability of MWCNT/epoxy composites can be simulated by means of
strain-induced tampering of the electron hopping and conductive networking mechanisms. Specifically, three major
strain effects are usually pointed out in the literature [45, 30], including (i) volume expansion and reorientation of
MWCNTs, (ii) breakage of conductive paths, and (iii) variation of the inter-particle properties.

• Volume expansion and reorientation:

Let us consider a deformable l0-sided cubic cell loaded with a MWCNT as sketched in Fig. 2. When the cell
is subjected to an arbitrary dilation strain (ε1, ε2, ε3), its volume changes from V0 = l30 to V = l30ε1ε2ε3, with
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εi = 1 + εi. Owing to the considerably stiffer behavior of MWCNTs, the deformation is primarily sustained by
the matrix and, as a result, the apparent filler content varies as:

f ∗ =
V0 f
V

=
f

ε1ε2ε3
. (16)

Additionally, the embedded MWCNT also experiences reorientation as an effect of the applied dilation, which
is defined by the change of the Euler angles from (γ, β) to (γ′, β′) (see Fig. 2). The closed-form expression of
the strain-dependent ODF under general dilation strains, Ω(γ′, β′), was recently derived by the authors in [30]
as:

Ω(γ′, β′) =
ε2

1ε
2
2ε

2
3[

ε2
2ε

2
3 cos2 β′ + ε2

1

(
ε2

2 cos2 γ′ + ε2
3 sin2 γ′

)
sin2 β′

]3/2 . (17)

The deformable cell model can be also applied to study the effects of distortion. In this case, distortion does not
originate volume expansion although it does induce filler reorientation. In the particular case of ε32, the polar
angle changes from β to β′, while the azimuthal angle remains unchanged. The closed-form expression of the
resulting ODF was also derived by the authors as [30]:

Ω(γ, β′) =
(
1 − 4ε32 sin γ sin β′ cos β′ + 4ε2

32 sin γ sin β′
)−3/2

. (18)

• Breakage of conductive paths:

The strain-induced filler reorientation reduces the randomness of the MWCNTs’ dispersion and, as a con-
sequence, the likelihood of forming conductive networks decreases, that is to say, the percolation threshold
increases. Such a variation can be included in terms of the previously outlined strain-dependent ODFs as shown
by the authors in reference [30] through the stochastic percolation model of Komori and Makishima [46].

• Variation of the inter-particle properties:

Mechanical strains also have a direct effect on the electron hopping mechanism. In particular, assuming that
deformations are mainly sustained by the matrix phase, mechanical strains primarily affect the inter-particle
distance and the height of the potential barrier. At low strain levels (< 10−4), some research studies in the
literature consider that the inter-particle distance, da, and the height of the potential barrier, λ, vary linearly with
strain as [47]:

da = da,0(1 + C1ε),
λ = λ0(1 + C2ε),

(19)

where subscript 0 relates the corresponding quantities to the unstrained system, and C1 and C2 are proportiona-
lity constants. Given the difficulty involved in their determination, C1 and C2 are usually computed by fitting
experimental data.

Finally, the modeling of the piezoresistivity of MWCNT-based composites can be readily conducted by combi-
ning the previously outlined micromechanics approach in Section 2.2 and the indicated strain-induced effects. For
notational simplicity, the overall electrical resistivity tensor, ρe f f = κ−1

e f f , is written in matrix notation as:

ρe f f =

ρ1 ρ6 ρ5
ρ6 ρ2 ρ4
ρ5 ρ4 ρ3

 . (20)

In the absence of mechanical strains, MWCNTs are randomly oriented, and ρe f f takes the form of a diagonal
matrix with components ρ1 = ρ2 = ρ3 = ρ0 and ρ4 = ρ5 = ρ6 = 0. Once the composite is subjected to a mechanical
strain, the relative change in resistivity can be related to the mechanical strain tensor ε as [30]:
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

∆ρ1/ρ0
∆ρ2/ρ0
∆ρ3/ρ0
∆ρ4/ρ0
∆ρ5/ρ0
∆ρ6/ρ0


=



λ11 λ12 λ12 0 0 0
λ12 λ11 λ12 0 0 0
λ12 λ12 λ11 0 0 0
0 0 0 λ44 0 0
0 0 0 0 λ44 0
0 0 0 0 0 λ44





ε1
ε2
ε3

2ε23
2ε13
2ε12


, (21)

where the terms λi j denote the piezoresistivity coefficients. Specifically, λ11 represents the longitudinal piezoresistive
effect, λ12 relates the transverse piezoresistive effect, and λ44 describes the effect on an out-of-plane electric field by
the change of the in-plane current induced by in-plane shear stress. All the piezoresistivity coefficients λi j can be
obtained by two virtual experiments using the previously outlined micromechanics approach, including a laterally
constrained uni-axial dilation test and a distortion test (interested readers may refer to [30] for further theoretical
details).

3. Basic formulae and numerical implementation

3.1. Governing equations

This work considers a two-dimensional, homogeneous, elastic and linear fractured FRP domain Ω ⊂ R2 with
boundary ∂Ω, in a Cartesian coordinate system (xi) (i = 1, 2). The boundary ∂Ω is divided in two disjoint parts:
∂Ω = ∂Ωe ∪ ∂Ωc, where ∂Ωe denotes the external boundary and ∂Ωc is the crack surface. The boundary ∂Ωe is
eventually divided in two partitions: ∂Ωe = ∂Ωu∪∂Ωp, with ∂Ωu being the external boundary on which displacements
ũi are prescribed and ∂Ωp its counterpart with imposed tractions p̃i. Moreover, the crack surface is constituted by the
upper and lower crack faces, i.e., ∂Ωc = ∂Ω+

c ∪ ∂Ω−c (see Fig.3), where the crack surface tractions (i.e., p+
i and p−i )

depend on the crack opening conditions (the superscripts + and − stand for the upper and lower crack surfaces).
Assuming static loading conditions, the mechanical equilibrium equations on Ω, in the absence of body forces,

are
σi j, j = 0 in Ω,
σi jn j = p̃i on ∂Ωp,
σi jn+

c, j = p+
i on ∂Ω+

c ,

σi jn−c, j = p−i on ∂Ω−c ,

(22)

with σi j being the components of Cauchy stress tensor, ni the unit normal on ∂Ωp, n+
c,i being the unit normal on the

upper crack face ∂Ω+
c and n−c,i the unit normal on the lower face ∂Ω−c . Finally, the stress and strain tensors for a general

linear elastic material are coupled through the following constitutive law

σi j = Ci jklεkl, (23)

where the infinitesimal strain tensor εi j can be obtained from derivatives of the displacements field ui in Ω as: εkl =

(uk,l + ul,k)/2 and Ci jkl denotes the components of the elastic stiffness tensor, which satisfies the following symmetries:
Ci jkl = C jikl = Ci jlk = Ckli j and it is positive definite.

3.2. Boundary element formulation

Let us consider a two-dimensional, homogeneous and linear fiber-reinforced fractured composite Ω ⊂ R2 with
boundary ∂Ω = ∂Ωe ∪ ∂Ωc. To overcome the difficulty of having two coincident boundaries on the crack surfaces
∂Ωc = ∂Ω+

c ∪ ∂Ω−c , the dual formulation for the BE solution of crack problems [48, 49] is considered herein. In this
manner, a combination of the displacement (DBIE) and the traction (TBIE) boundary integral equations is used to
solve crack problems.

The DBIE is applied for collocation points ξ on the crack-free boundary ∂Ωe and on either of the crack faces, say
∂Ω−c (ξ ∈ {∂Ωe ∪ ∂Ω−c }), to yield

ci j(ξ)u j(ξ) + −

∫
∂Ω

p∗i j(x, ξ)u j(x)dS (x) =

∫
∂Ω

u∗i j(x, ξ)p j(x)dS (x), (24)
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Figure 3: Cracked plate under uniform stress (σ̄yy).

where x is a boundary point (x ∈ ∂Ω), the symbol −
∫

stands for the Cauchy Principal Value (CPV) of the integral, u j is
the displacement vector and p j denotes the crack surface tractions. The free term ci j depends on the local geometry
of the boundary ∂Ω at the collocation point ξ; u∗i j and p∗i j are the displacement fundamental solution [27, 49] and the
traction fundamental solution at a boundary point x due to a unit extended source applied at point ξ, respectively:

u∗i j(z
x
m, z

ξ
m) = −

1
π

Re

 2∑
r=1

A jr

[
Hri ln(zx

r − zξr )
] (25)

p∗i j(z
x
m, z

ξ
m) =

1
π

Re

 2∑
r=1

L jr

[
Hri

µrn1 − n2

(zx
r − zξr )

] (26)

In equations (25) and (26), Re { } stands for the real part, n = (n1, n2) is the outward unit normal at the observation
point x and both the source point, zξ, and the observation point, zx, have been redefined on the complex plane as

zξm = ξ1 + µmξ2 ; zx
m = x1 + µmx2 ; m = 1, 2 (27)

with µm being the roots of the following characteristic equation:∣∣∣C1i j1 + (C1i j2 + C2i j1) µm + C2i j2 µ
2
m

∣∣∣ = 0 (28)

where Ci jkl are the elastic moduli of the material. For each characteristic root, µm, the columns of the matrix A are
obtained from

[C1i j1 + (C1i j2 + C2i j1) µm + C2i j2 µ
2
m] A jm = 0 (no sum on m) (29)

and the components of the L matrix are given by

Lim =

2∑
j=1

[C2i j1 + C2i j2 µm] A jm (30)
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and the terms of matrix H follow from

H = A−1(B−1 + B
−1

)−1 with B = iAL−1. (31)

The TBIE is applied for collocation points ξ on the other crack surface ∂Ω+
c (i.e., ξ ∈ ∂Ω+

c ) to yield

ci j(ξ)p j(ξ)+ =

∫
∂Ω

s∗i j(x, ξ)u j(x)dS (x) = −

∫
∂Ω

d∗i j(x, ξ)p j(x)dS (x), (32)

to complete the set of equations. Symbols =
∫

in Eq.(32) stands for the Hadamard Finite Part (HFP) of the integral and
s∗i j and d∗i j are obtained by differentiation of u∗i j and p∗i j, as

d∗i j(x, ξ) = −Ns(ξ)Csikru∗k j,r(x, ξ), (33)

s∗i j(x, ξ) = −Ns(ξ)Csikr p∗k j,r(x, ξ), (34)

with Ns(ξ) being the outward unit normal to the boundary at the source point. The derivatives of the u∗i j and p∗i j at the
collocation point are evaluated from

u∗i j,k(zx
m, z

ξ
m) =

1
π

Re

 2∑
r=1

A jr

[
Hri

(δk1 + µr δk2)

(zx
r − zξr )

] , (35)

p∗i j,k(zx
m, z

ξ
m) =

1
π

Re

 2∑
r=1

L jr

[
Hri (δk1 + µr δk2)

µrn1 − n2

(zx
r − zξr )2

] , (36)

where δi j stands for the Kronecker delta.
Alternatively, when the cracks are mechanically self-equilibrated, i.e., ∆pi = p+

i + p−i = 0 on ∂Ωc, instead of the
collocation approach described in equations (24) and (32), it would suffice to apply the DBIE (24) for collocation
points ξ on ∂Ωe (i.e., ξ ∈ ∂Ωe):

ci j(ξ)u j(ξ) + −

∫
∂Ωe

p∗i j(x, ξ)u j(x)dS (x) + −

∫
∂Ω+

c

p∗i j(x, ξ)∆u j(x)dS (x) =

∫
∂Ωe

u∗i j(x, ξ)p j(x)dS (x), (37)

and the TBIE (32) for collocation points ξ on either side of the crack, say ∂Ω+
c (i.e., ξ ∈ ∂Ω+

c ):

p j(ξ)+ =

∫
∂Ωe

s∗i j(x, ξ)u j(x)dS (x)+ =

∫
∂Ω+

c

s∗i j(x, ξ)∆u j(x)dS (x) = −

∫
∂Ωe

d∗i j(x, ξ)p j(x)dS (x) (38)

Eqs. (37) and (38) yield a complete set of equations to compute the displacements and tractions on ∂Ωe and the crack
opening displacements ∆ui = u+

i − u−i on ∂Ωc. In Eq. (38) the free term has been set to 1 because of the additional
singularity arising from the coincidence of the two crack surfaces.

Numerical evaluation of the TBIE requires C1 continuity of the displacements. As in previous works [27], dis-
continuous quadratic elements with the two extreme collocation nodes shifted towards the element interior are used
to mesh the cracks. The asymptotic behavior of the displacements near the crack tip are modeled via discontinuous
quarter-point elements. For the rest of the boundaries, continuous quadratic elements are employed. A detailed justi-
fication of the discretization procedure together with the integration scheme implemented and the expressions of the
fundamental solutions, may be found in Garcı́a-Sáchez et al. [27].

A collocation procedure on boundary integral equations (37) and (38) leads to the following system of equations:
Āx = F̄, where the boundary conditions have been imposed and all the unknowns have been passed to vector x, to
yield [

Āxe Ā∆uc

] { xe

∆uc

}
= F̄. (39)
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In expression (39), xe collects the nodal external unknowns (i.e. the nodal unknowns on ∂Ωe) and ∆uc collects the
nodal crack opening displacements. Moreover, due to the fact that in all the numerical examples analyzed herein
the MWCNT/epoxy composite plate is subjected to crack opening loads, no crack-face contact conditions have been
considered in Eq. (39). At any event, without loss of generality, the resolution of a general cracked domain involving
crack-face contact conditions could be easily implemented in the present scheme [50].

Finally, Mode-I and Mode-II stress intensity factors (KI , KII) (SIF) are directly computed from the nodal values
of the crack opening displacements across the crack, at the closest collocation node to the crack-tip by following the
approach proposed by the authors in [27].(

KII

KI

)
= 2

√
2π/L Y−1

(
∆u1
∆u2

)
, (40)

where Y is the compliance (Irwin) matrix defined in [27] and L is the length of the crack tip extreme quarter-point
element.

3.3. Resistivity changes detection scheme
The dual BE formulation summarized above permits to numerically solve any fracture mechanics problem in

CNT-reinforced composites. So, once the displacements and tractions are known on the boundary (∂Ω), the strain
field in the domain of the plate Ω can be computed as: εi j = (ui, j + u j,i)/2, being:

ui,m(ξ) =

∫
∂Ω

u∗i j,m(x, ξ)p j(x)dS (x) −
∫
∂Ω

p∗i j,m(x, ξ)u j(x)dS (x). (41)

In the expression above, the space derivatives have been taken with respect to the coordinates of the collocation point
and have been applied to the fundamental solution tensors: u∗i j and p∗i j. Eq. (41) follows straightforwardly from the
particularization of the DBIE (24) for internal points in the domain Ω.

Once the strain field is known in the cracked domain, the relative resistivity changes (r = ∆ρ/ρo) can be computed
according to the procedure formerly outlined in Section 2.3. Note that the micromechanics approach previously
presented in Section 2.1. is used to predict the constitutive properties of MWCNT/epoxy composites. At the material
level, percolation paths must be defined in a 3D space since it is hypothesized that no special aligning techniques
are applied. Nevertheless, the subsequent structural analyses are bi-dimensional in nature, thereby Eq. (21) can be
simplified to:  ∆ρ1/ρo

∆ρ2/ρo

∆ρ6/ρo

 =

 λ11 λ12 0
λ12 λ22 0
0 0 λ44


 ε11
ε22
2ε12

 . (42)

3.4. Electric potential distribution and electric resistance changes
Once the strains have been computed inside the domain and, therefore, the non-homogeneous electrical conducti-

vity (or its inverse, the electrical resistivity) is known at each internal point, it is possible to solve the corresponding
electric problem to characterize how the presence of the crack does affect the piezoresistive performance of the CNT-
reinforced composite sensor.

To this end, the electrostatic field in a non-homogenous domain can be computed, in absence of space-charge
density, solving the partial differential equation,

∇ · (κ∇φ) = 0, (43)

that describes the potential (φ) distribution within a given region Ωel characterized by a non-homogenous electric
conductivity tensor κ, which can be computed as κ = ρ−1. Due to the piezoelectric behavior of the CNT-reinforced
composite material, its non-homogenous electric resistivity tensor can be computed as discussed above [15, 30], form:

ρ = ρo(I + r) = ρo(I + Πε). (44)

Adopting the electrodes configuration presented in Fig.4, one simple way to quantify the electric resistivity chan-
ges induced by the presence of a crack in the strip-like sensor would be to evaluate the electric resistance between
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Figure 4: Electrodes position and electric field domain considered to study the crack-induced resistivity changes in cracked MWCNT/epoxy
composite plate under uniform stress.

electrodes (R) of the damaged plate and compare its value with the electric resistance measured for the undamaged
plate (Ro). The electric resistance (R) of a plate of thickness t can be computed as

R =
∆φ

I
, (45)

where ∆φ = φ1 −φo is the voltage difference recorded from electrodes and I is the electric current flowing through the
sensor, which may be computed from the electric flux density J (J = −κ∇φ)as

I =

∫
A

JndA ≈
∫ +l

−l
Jntdx. (46)

It should be emphasized that, even though the mechanical problem (22-41) is homogeneous, due to the piezoresi-
tive behavior of the MWCNT reinforced composite (i.e. elastic deformations cause electrical conductivities variations)
and to the electrical-conductivity discontinuities produced by the crack, the electrical problem (43-46) has to be solved
under non-homogeneous electrical conductivities conditions.

In this paper, the resolution of the Eq. (43) is tackled, due to the non-homogenous electric conductivity properties,
via the finite difference (FDM) scheme described in Appendix A. As previously explained, the values of the electric
resistivity at each grid point of the FDM mesh are calculated from the strain values numerically computed using
the dual BEM approach summarized above. Furthermore, the FDM mesh includes grid points coinciding with the
location of the crack, where the crack-face electric permittivity conditions are directly imposed. in this manner, the
influence of crack permittivity conditions ranging from impermeable crack conditions (vacuum inside the crack) to
perfectly permeable crack conditions (presence of a conductive medium in the crack) can be easily analyzed in the
results sections.

4. Numerical results

Several parametric studies are next conducted to illustrate the influence of various crack geometries in the piezo-
resistive behavior of a MWCNT/epoxy strip-like sensors. In particular, we analyze how it is affected by the presence of
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Table 1: Effective electromechanical properties of smart MWCNT/epoxy strip-like sensor [14, 15].
wt% E(GPa) ν κ(S m−1) λ11 λ12 λ44

0.5 2.86 0.28 1.22 × 10−2 6.84 7.99 1.19
0.7 3.01 0.27 3.01 × 10−2 4.85 6.01 1.19
1.0 3.23 0.27 6.56 × 10−2 3.23 4.38 1.19

Figure 5: Influence of the crack size parameter (L/a) on the stress intensity factors: KI/Ko and KII/Ko, being Ko = σ̄yy
√
πa.

a crack at varying CNTs concentrations and crack electric permeability conditions. For this purpose, a MWCNT/epoxy
composite square plate (2L×2L) under uniform stress (σ̄yy = 1 MPa) is studied (see Fig.3). The plate presents a finite
straight crack along the x-direction whose length is 2a (a = 0.1 m). This problem is devised to characterize how the
piezo-resistive behavior of the MWCNT/epoxy strip-like sensor [14, 15] is modified due to the presence of damage,
and thus establish its validity range when cracked. In this example, we have considered a MWCNT/epoxy composite
with filler contents moderately far from the percolation threshold ( fc ≈ 0.3 wt%), namely fc = {0.5, 0.7, 1.0} wt%. In
this manner, we ensure: (i) a linear strain sensitivity of the sensor, and (ii) the accuracy of the approach implemented
to model the piezoresistive behavior of the composite [15, 30]. Based on [15], the values of the material constants are
given in Table 1.

Moreover, several crack sizes are also considered, ranging from a crack in an infinite domain configuration (L/a ≥
10) to a severely cracked plate (L/a = 3). In Fig.5 we can observe the influence of the crack size parameter (L/a) on
the stress intensity factors: KI/Ko and KII/Ko, being Ko = σ̄yy

√
πa. The stress and strain fields are illustrated in Fig.6:

Fig.6 (a) shows the σyy stress distribution (relative to the prescribed stress σ̄yy) for L/a = 10 and L/a = 3, whereas
Fig.6 (b) presents the εyy strain distribution relative to the undamaged uniform strain ε̄yy for the cases: L/a = 10 and
L/a = 3.

4.1. Resistivity changes: influence of the strain field
According to Eq.(42), the strain field computed in our cracked domain causes changes in electric resistivity. To

quantify the severity of these changes, the relative resistivity change (∆ρ2/ρo) is presented in Fig.7(a) and Fig.7(b)
for L/a = 10 and L/a = 3, respectively. Both distributions look very similar. However, it is much more interesting
to see how the piezoresistive behavior of the MWCNT/epoxy strip-like sensors is affected by the presence of a crack.
For this purpose, Fig.8 shows the resistivity changes due to the crack (∆ρ2/ρo), relative to those corresponding to the
undamaged plate (∆ρ2,o/ρo), under several L/a ratios. We can observe in Fig.9 that the resistivity variation at x = 2.5a
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(a)

(b)

Figure 6: (a) σyy stress distribution for L/a = 10 and L/a = 3. (b) εyy strain distribution relative to the undamaged uniform strain ε̄yy, for L/a = 10
and L/a = 3.

can reach values up to 20−25% at −a ≤ y ≤ +a. These results are obtained assuming electrically perfectly permeable
boundary conditions at the crack faces).

4.2. Resistivity changes: influence of the electric permittivity crack conditions
The electric conductivity tensor κ can be obtained as κ = ρ−1, being ρ the electric resistivity computed according to

Eq.(45). Afterward, the electric potential distribution is obtained from Eq.(44) and the electric flux density (J = −κ∇φ)
allows us to compute electric current I according to Eq.(46). The FDM based resolution is detailed in Appendix A).

In this context, it is important to consider the crack-face electric permittivity conditions, i.e., permeable, imper-
meable or semipermeable crack conditions. The crack permittivity is designed as κcv and its values oscillate between
κcv ≈ 0 (i.e., impermeable crack conditions) and κcv ≈ κo (i.e., perfectly permeable crack conditions), being κo the
electric conductivity of the undamaged and the unstrained plate.

For the damaged plate L/a = 3, Fig.10 shows the influence of several electric permittivity crack conditions on the
electric potential distribution. Fig.10(a) presents the electric potential distribution for quasi-perfectly permeable crack
conditions (κcv/κo = 0.5), whereas Fig.10(c) shows the electric potential distribution for quasi-perfectly impermeable
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(a) (b)

Figure 7: Relative resistivity changes for the L/a ratios: (a) L/a = 10 and (b) L/a = 3.

crack conditions (κcv/κo = 0.001). We can observe that the electric field potential is clearly affected by the presence
of a crack when impermeable or semipermeable crack conditions are considered. In other case, the electric potential
distribution is almost the same as the distribution for the undamaged plate.

Same results can be observed in Fig.11, where the influence of the electrical permittivity conditions of the crack
on the electric resistance R are presented for different CNT volume fractions for the experimental set-up sketched in
Fig.4. Fig.11(a) shows the electric resistance (R) for different CNT volume fractions, relative to the electric resistance
of the undamaged plate with 1.0 wt% (R(o,1.0wt%)). It can be observed an increment of the electric resistance when the
CNT volume fraction is reduced. Fig.11(b) presents the electric resistance of the damaged plate (R) is divided by the
electric resistance of the undamaged plate (Ro), according to their corresponding CNT volume fractions. A electric
resistance increment is computed when impermeable or semipermeable crack conditions are considered. However, no
electric resistance increment is observed (i.e., R/Ro = 1) when perfectly permeable crack conditions are assumed, in
spite of the resistivity changes due to the strain field were considered. Moreover, the R/Ro value tends to a constant
value (R/Ro ≈ 1.18) when the permittivity values of the crack goes to zero (i.e., impermeable crack conditions). The
same R/Ro behavior is observed for the different CNT volume fractions considered herein.

Finally, the distribution of the components of the non-homogenous electric conductivity tensor (κ) under imper-
meable electric conductivity crack conditions on the damaged plate L/a = 3 can be observed in Fig.12.

4.3. Resistivity changes due to the crack size increment
To conclude this section, the influence of the crack size on the electric resistance changes in the damaged plate

scheme presented in Fig.4 is studied. Fig.13 shows the influence of the the crack size parameter (l/a) on the electric
resistance, taking into account the several electrical permittivity conditions on the crack. As we observed in Section
4.2, electric resistance increments are computed when impermeable or semipermeable crack conditions are conside-
red. In all these cases (i.e., κcv/κo < 1), the resistance (R) increases with crack size (a), or in other words, with the
decrease of the ratio l/a (see Fig.13).

The resulting electric potential distributions for two crack size values are presented in Fig.14. Fig.14(a) shows the
electric potential distributions due to the presence of an impermeable crack with l/a = 2.50 and Fig.14(b) presents
the electric potential distribution caused by an impermeable crack with l/a = 1.25. It is clear that the electric field is
clearly affected by the crack size.

5. Summary and conclusions

This work presents a numerical framework to quantify the electrical resistivity changes in CNT-reinforced com-
posites induced by the presence of cracks. Previous studies demonstrated the potential of MWCNT/epoxy strip-like
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(a) (b)

(c) (d)

Figure 8: Resistivity changes due to the crack, relative to the undamaged plate, under several L/a ratios: (a) L/a = 10, (b) L/a = 5, (c) L/a = 4,
(d) L/a = 3.

piezoresistive sensors for monitoring and damage detection in structures [14, 15]. Here, we aim at characterizing to
which extent cracking in the sensor alters its performance. In this way, a dual BE approach has been proposed in order
to accurately compute the strain in the cracked domain and, subsequently -by substituting the strains in Eq. (42)-
determine the electrical resistivity at each point of such cracked domain [30]. Finally, a finite difference scheme has
been implemented to solve the electric field and compute the resulting electric resistance caused by the presence of a
crack in the MWCNT/epoxy strip-like strain sensors.

Three parameters can affect the efficiency of the sensitive skin sensor due to electrical resistance changes:

• the strain field around the crack alters the electric resistivity due to the piezo-resistive behavior of the MW-
CNT/epoxy composite,

• the electric permeability of the crack is a key factor in the electric conductivity response

• and finally, the severity of the damage, i.e., the crack size.
15



Figure 9: Resistivity changes relative to the undamaged plate under several L/a ratios at x = 2.5a.

Results reveal that the strain gradients caused by the crack affect the resistivity of the plate when they are compared
to the crack without damage. However, they are not as significant as those that appear due to the discontinuity in the
electrical conductance that the crack causes in the domain.

The influence of the electric permeability of the crack has revealed as a key parameter that controls the efficiency
of the strip-like sensor, i.e., that determines the behavior of the electric resistance of the plate. Section 4.2 has showed
the electric resistance increment (or the reduction of the electrical conductance) due to the presence of an impermeable
or a semipermeable crack. Moreover, the severity of the damage also greatly affects the electric conductance of the
sensing-plate. Section 4.3 has clearly illustrated the important changes in the electrical resistance of the sensor when
the crack size increases.

Therefore, the obtained results show that the efficiency of the structural health monitoring scheme based on a
MWCNT/epoxy sensing-skin [14, 15] is clearly affected by the presence of damage. A crack in the sensing plate
increases the electrical resistance and therefore distorts the measurements. So prediction protocols have to be esta-
blished to detect damage in these systems. The numerical scheme presented in this work makes it possible to quantify
the electrical resistance changes in these sensors (due to the presence of a crack) and it can serve as a numerical tool
to assist in establishing such prediction protocols.

Finally, the resistance changes computing scheme presented in this work could be extended for self-sensing struc-
tures developments (for instance, application in carbon fiber reinforced composite panels) or other structures of great
interest in the civil or aeronautical industries.
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(a) (b)

(c) (d)

Figure 10: Electric potential distribution for several electric permittivity crack conditions: (a) κcv/κo = 0.5, (b) κcv/κo = 0.1, (c) κcv/κo = 0.01, (d)
κcv/κo = 0.001.
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(a) (b)

Figure 11: Influence of the electrical permittivity conditions of the crack on the electric resistance (R) for different CNT volume fractions: (a)
relative to the electric resistance of the undamaged plate with 1.0 wt% (R(o,1.0wt%)) and (b) relative to the undamaged resistance of its own CNT
volume fractions.

Figure 12: Distribution of the components of the non-homogenous electric conductivity tensor (κ)under impermeable electric conductivity crack
conditions on the damaged plate L/a = 3.
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Figure 13: Influence of the the size of the crack on the electric resistance changes.

(a) (b)

Figure 14: Influence of the crack size a in the electric potential distributions due to the presence of a crack for the l/a ratios: (a) l/a = 2.50 and (b)
l/a = 1.25.
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Figure 15: A schematic showing the FDM mesh numbering.

A. Finite difference method for non-homogenous conductivity distribution

The electrostatic field in a non-homogenous conductivity distribution domain can be computed, in absence of
space-charge density, solving Eq.(43). This equation can be written as

[ ∂/∂x ∂/∂y ]
( [

κ11 κ12
κ21 κ22

] [
∂φ/∂x
∂φ/∂y

] )
= 0. (47)

Derivatives in the partial differential equation Eq.(47) are approximated by linear combinations of function values at
the grid points (see Fig.15) as

∂

∂x

(
κ11

∂φ

∂x

)
≈

1
2∆x

(
κ11|i+ 1

2 , j
φi+1, j − φi, j

∆x
+ κ11|i− 1

2 , j
φi−1, j − φi, j

∆x

)
, (48)

∂

∂x

(
κ12

∂φ

∂y

)
≈

1
2∆x

(
κ12|i+ 1

2 , j
φi, j+1 − φi, j

∆y
+ κ12|i− 1

2 , j
φi, j−1 − φi, j

∆y

)
, (49)

∂

∂y

(
κ21

∂φ

∂x

)
≈

1
2∆y

(
κ21|i, j+ 1

2

φi+1, j − φi, j

∆x
+ κ21|i, j− 1

2

φi−1, j − φi, j

∆x

)
, (50)

∂

∂y

(
κ22

∂φ

∂y

)
≈

1
2∆y

(
κ22|i, j+ 1

2

φi, j+1 − φi, j

∆y
+ κ22|i, j− 1

2

φi, j−1 − φi, j

∆y

)
, (51)

where constant values are assumed for ∆x and ∆y (i.e., xi+1 = xi + ∆x and y j+1 = y j + ∆y, and

κ11|i+ 1
2 , j

= (κ11|i+1, j + κ11|i, j)/2, κ11|i− 1
2 , j

= (κ11|i−1, j + κ11|i, j)/2 (52)
κ12|i+ 1

2 , j
= (κ12|i+1, j + κ12|i, j)/2, κ12|i− 1

2 , j
= (κ12|i−1, j + κ12|i, j)/2 (53)

κ21|i, j+ 1
2

= (κ21|i, j+1 + κ21|i, j)/2, κ21|i, j− 1
2

= (κ21|i, j−1 + κ21|i, j)/2 (54)
κ22|i, j+ 1

2
= (κ22|i, j+1 + κ22|i, j)/2, κ22|i, j− 1

2
= (κ22|i, j−1 + κ22|i, j)/2 (55)

Substituting the linear combination of the function values at the grid points (48-40) into Eq.(47) allows us to obtain
the finite difference equation of Eq.(47):

b−φi, j−1 + a−φi−1, j − āφi, j + a+φi+1, j + b+φi, j+1, (56)
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being ā = a+ + a− + b+ + b− and

a+ =
κ11|i+ 1

2 , j

2∆x2 +
κ21|i, j+ 1

2

2∆x∆y
, a− =

κ11|i− 1
2 , j

2∆x2 +
κ21|i, j− 1

2

2∆x∆y
, (57)

b+ =
κ12|i+ 1

2 , j

2∆x∆y
+
κ22|i, j+ 1

2

2∆y2 , b− =
κ12|i− 1

2 , j

2∆x∆y
+
κ22|i, j− 1

2

2∆y2 , (58)

The boundary conditions are described in Fig.15, so Eq.(56) can be written as

A B+ 0 · · · 0

B− A B+

. . .
...

0
. . .

. . .
. . . 0

...
. . . B− A B+

0 · · · 0 B− A





φ1
φ2
...

φN−2
φN−1


=



−B−φ̄0
0
...
0

−B+φ̄N


(59)

where

A =



−ā a+ + a− 0 · · · 0

a− −ā a+

. . .
...

0
. . .

. . .
. . . 0

...
. . . a− −ā a+

0 · · · 0 a+ + a− −ā


, B+ =


b+ 0 · · ·

0
. . . 0

... 0 b+

 , B− =


b− 0 · · ·

0
. . . 0

... 0 b−

 , (60)

φ j =



φ0, j
...
φi, j
...

φM, j


, φ̄0 =



φ0
...
φ0
...
φ0


, φ̄M =



φ1
...
φ1
...
φ1


, (61)

and φ0 and φ1 are the prescribed electric potentials showed in Fig.15.
The system of equations (59) allow us to obtain the electric potential (φ) on every grid point. So the electric current

(I) in our plate of thickness t can be obtained as,

I =

∫ +l

−l
Jntdx =

∫ +l

−l
Jy t dx ≈

M∑
i=1

(Jy)i, j t dx. (62)

where the y-component of the electric flux density is computed as

(Jy)i, j = κ21|i, j
φi+1, j − φi−1, j

2∆x
+ κ22|i, j

φi, j+1 − φi, j−1

2∆y
. (63)

Finally, the resistance (R) of our plate is obtained as,

R =
φ1 − φo

I
. (64)
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