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Abstract—There are many problems in Graph Theory for Furthermore, the number of edges (and, eventually, new

finite graphs relating the number of vertices and the number  services) can be limited locally by considering the numider o
of edges and, therefore, related to the average degree for fta  edges incident in each vertex (i.e., their vertex degres)tts

graphs. However, when dealing with real-life problems invdving js 3 good reason to study average degrees in graphs modelin
networks, it is often useful to model the situation by usingiifinite real road transport networks.

graphs, which can represent extendable systems. In this pap we
will generalize the concept of average degree for infinite gphs in
a family of graphs that we call average-measurableBesides, this . . .
new definition allows the generalization of the universal fonulae On the basis of the above, this paper aims to relate the
for evaluation of percolation thresholds. concepts of average degree and infinite graph. In fact, the
average degree has already been used to deal with economi
Keywords—Infinite graph, average degree, complete graph, road matters (see [11], [14], for example), and it had been defined
transport network, percolation. only for finite graphs. For this reason its properties carb®ot
used in gradually increasing models.

In another context, percolation models are infinite random
|. INTRODUCTION graph models for phase transitions and critical phenomena.
Percolation is also a key-concept when dealing with haz-
Graph Theory is a tool with many uses in different fieldsardous issues such as those concerning dangerous gooc
of human knowledge. It is particularly related to networks.transportation. The determination of the critical proligbi
We, as authors who deal with them, have a keen interest ifor percolation threshold) for the percolation model is one
road transport networks, since we have been asked to solveof the most interesting problems in this area (see [15],,[16]
problem of the location of parking areas for dangerous goodfor example). The exact percolation threshold is known only
in Europe. for a few arbitrary trees and infinite 2-dimensional periodi
graphs. It is therefore interesting to find bounds for pextioh
However, when trying to solve real problems, scientiststhresholds usinginiversal formulaebased on features of the
may need to develop existing theory beyond the point it hasfinite model graph. Most of the formulae cited in Physicd an
reached so far. In our case, when modeling a road transpoingineering literature are based on the average degreeof th
network by using a graph, vertices (or nodes) usually corinfinite graphs (see [17], [18]). The average degree of itgini
respond to crossroads, while edges represent road sectiogsaphs is only well defined for infinite 2-dimensional peitd
(where we may be interested in placing a specific servicgraphs. The results that we present in this paper genethbze
for drivers; see, for example, [13]). In such a situatiore th notion of average degree for a new family of infinite graphs
possibility of minimizing the number of roads is relevant. allowing this universal formulae to be used for other inénit
Such roads are usually represented by edges in the modetgaphs.
It is also essential to consider some characteristics wimai
be related to the presence of certain complete graphs (i.e.,
graphs including all the possible edges between theirogsyi Theoretically, there exist many problems in Graph Theory
For example, the presence &f; implies the existence of a involving the relationship between the number of verticed a
cycle which will be, in all likelihood, not be necessary to edges of a graph (see [4], [5], [12], for example), i.e., the
guarantee communication and transport. The presencesaf a average degree. In some cases, many of these problems coul
might affect the future development of the network since itbe posed for infinite graphs.
goes against outerplanarity. The presencd<gfprevents the
network from being a design without intersections. Finally
road networks tend to expand over time. In Graph Theory this Notations and terminologies not explicitly given here can
characteristic is usually translated into an infinite graph be found in [6], [10].



Il. AVERAGE-MEASURABLE GRAPHS ,

In this section, we will define the average degree for a
family of infinite graphs that we will calaverage-measurable
We will start from a sequence of finite graphs, and the average
degree for infinite graphs will inherit the properties of the
average degree for the finite case (see, for example, [1], [17
[19]). We will prove that trees are examples of average-
measurable graphs. On the other hand, we will introduce
another family of graphs, calleskmi-regulargraphs, that will
be average-measurable. To achieve these goals we will ne€@. 1. TreeH with an increasing degree.
some prior notations and definitions.

Definition 2.1: Let G be an infinite, locally finite graph gyt this property proved for the vertexis, in fact, true for

and let{G,, }cn be a sequence of finite subgraphstafWe  eyery vertex offf. Moreover, this property is true for every
say that{G, }.en IS anincreasing concentric sequence (ICS) yree.

of G if the three following assertions are verified:
Proposition 2.5: Every infinite, locally finite tred’ is
o Gy CGpy foralln. average-measurable andl, (T') = 2.

e 0G,NIG 11 =0 for all n.

o U G, =G, The following example shows a non-average-measurable
neN graph.
wheredG,, = (V(G,) — V(Gn-1))c denotes theboundary Example 2.6: Let us consider the graph(see Figure 2),
of Gy. obtained from the definition process of the graphin the

We note that, given an infinite graphi andv € G, it is ~ Previous example, and verifying

always possible to find an ICS. In fact, if we consider the Gy (v) = K3
subgraphs7,,(v) = ({u € V(G) : d(u,v) < n})q, where

d(u,v) denotes the distance between the verticeend v, it ~ and

is easy to prove that the sequenf@, (v)},en Vverifies the |E(0G,(v))] =n|V(Gn(v))| for n > 2.
conditions described above to be an ICS(hf

Definition 2.2: Given an infinite, locally finite graplt,
we define thdnferior-average degreef G as .

doo (G) = inf{liminf d(Gn(v)) : v € G}, /I\

whered(G,,) is average degree of each finite gra@h(v). )\ \/7\ ) o

On the other hand, we define tkaperior-average degreef (_/ VN 740N 748 \) 26at)

G as e
doo (G) = sup{lirgilig d(Gp(v)) = veG}. C ) o

Definition 2.3: Let G be an infinite, locally finite grapht:
is said to beaverage-measurabiié d_ (G) = dw (G) < +c.
Besides, in this case, we define theerage degre®f G as
doo (G) = do (G) = doo (G). Fig. 2. GraphG obtained fromH.

Example 2.4: Le# be the tree showed in Figure 1, where
the vertexu is a root and the degree of the vertices of each By induction, it is immediate that
level equals its predecessor plus one.

V(0G, (v
If we consider the ICS H,,(u)}nen, it is easy to check n|V(Gn(v))| < ( v 9 @) > ;
that
204+ (n+2)! o, :
V (H(u))] = . ( ) . and, therefore, it is possible to construct such a gr&ph

On the other hand, from the construction Gf

V(G (v))] = 24+ (n+2)!

|E(Hy ()] = |V (Hy ()] — 1 2
and

[E(Gn(v)] = [V(Gn(0)|=14342[V(G2(v)) [+ - 40|V (Gn ()]

On the other hand, taking into account that each finite sub-
graph H,, (u) of H is a tree,

and, therefore,

BH,) 1
WPV, ()]~ 2 T W )]



Now, let M be the graph designed in such a way thatBy applying again Stolz Theorem:

,w), (v, see Figure 3). i = .
{(u, w), (v, w)} ( 9 ) Jm (n+3)!+ (n+1)! oo
: enee B, ()
nlu
lim 2 ——— =400
. . n—too [V (Mp(u))]
and, therefored,, (M) = +oc. Thus,
doo(M) <2 < do(M) = +00,
and M is non-average-measurable.
Fig. 3. GraphM obtained fromH andG.
A. Semi-regular graphs
We are about to study the sequende¥,,(u)}nen and Next we will define a family of infinite graphs which are
{M,,(v)}nen. By definition ofM,,(u), for n > 2: average-measurable when their maximal degree is bounded.
[V (M, (u))| = [V (Hp(u)| + [V (Gn2(v))] +1 Definition 2.7: Let G be an infinite, locally finite graph.
and The ICS{G, }.cn verifies the so-calledhoundary condition
when
V(0G|
E(M, = |F(H, E(G, - 2. —— =0.
|E( n(“))l | | (Hn(u))] + [E(Gn—2(v))| + N ngrfoo V(G| 0
To determine the limit of the S%‘%?\;”?g%n(“))}nz% itis Remark 2.8:The boundary condition
sufficient to analyze the quotie M”(u))'. By applying the V(0G|
well known Stolz Theorem for sequ%nces: nEIEOO V(G| =0
|E(Mpyi1(w)| — |[E(My(u))] _ is equivalent to
VL1 (w) = [V ()] V(G
! ! I, ! i =5b
(n+3)! n (n+1)! Fn-1) 204+ (n+1)! —+oo |V(G,)]
2 2( ) R T = since
n . n .
5 T V0G| _ [V(Gn)| = [V(Gn-1)| _{  [V(Gu-1)|
ot (4 1) V(G VG ViG]
(n—1)- 5 Definition 2.9: Let G be an infinite, locally finite graptG
L+ n+3)! (n+1) . is said to besemi-regularif there exists a vertex € G such
5 5 that the ICS{G,,(v) }nen Verifies the boundary condition.
If we apply again Stolz Theorem, it holds that The following result shows that the previous definition does
not depend of the chosen vertex, i.e., if there exists a xerte
iy (DA DY for which {G,,(v)}nen verifies the boundary condition, then
n—-+oo (n+3)!+ (n+1)! ' it is verified for all v.
So, Lemma 2.10:Let GG be an infinite, locally finite graph. If
lim QM —9 G is semi-regular, then the sequen&,, (v)},en Verifies the
n=-too |V (M, (u))] boundary condition for alb € G, i.e.,
and, therefored (M) < 2. . [V (0Gn(v))] 0
1m ——— = U.
Now we analyze what happens with the sequence notoo [V(Gn(v))|
{ M5, (v) }nen.

Proof: Let G be a semi-regular graph and, be a
|V (M, (v)| = |V(Hp—2(w)] + [V (Gn(v))| + 1 vertex such that the IC$G,, (v0)}nen Verifies the boundary
condition. Givenv € GG, we denote by the distance between

and v andwvy (r = d(v,vp)). Taking into account Note 2.8, it is
|[E(M,(v))| = |E(Hy_2(uw)| + |E(G,(v))] + 2. sufficient to prove the equality
We apply Stolz Theorem to compute the limit of the average i V(Gn1() _
degree of each subgrapt’,, (v) : n—too |V (G, (v))]
(n+1) 2!+ .-+ (n+3)! to show that the boundary condition is verified.
n .
| E(Mn11(v)|—| E(Mn (v))] —1+ 2 So, we note that, fon > r +1:
[V (My1(0)) =V (M (v))] (n+3)! (n+1)!

2 + 2 Gn—’r‘—l(’UO) - Gn—l(U) and Gn(U) - Gn-l—'r‘('UO)-



Hence, Therefore, lim 1 (Cn-1G)l _
|V(G'rt—1(”))| > |V(Gn—7‘—1(7)0))|. =400 [V(Gn(Go))|
V(Gn()| — [V(Grgr(vo))] In order to prove the opposite implication, we suppose that
Furthermore, there exists &G such that the sequender,,(Go)} verifies
V(Gp—r_1(v0))| the bpundary condition. Considering that € V(G,) and
V(Grar o)) r = diam(Gy),

Gn—r-1(Go) € Gp—1(v0)

|V(Gn—r—1(UO))| |V(Gn—r('U0))| |V(Gn+r—1(UO))|
)

[V (Grn—r(vo))| |V(Gr—r+1(v0))| [V(Gnsr(vo))] and
Gn(vo) € Gn(Go).

but
VGnra(w)l —— Hence,
Vv Gn—’r
VG ) V(Car @) - V(Gurr(Go)
: V(Gn(vo))l = [V(Gn(vo))]
WV{Grnira(vo))] ot 1. By reasoning as in Note 2.11, it is verified that

[V (Grtr(v0))] |V(G. ' (Go))l

Finally, lim nor DO,
V(Gumr () V(Grers () e
v . n—r—1(00
1> lim ————= > lim =1. SO
= ot VG e [V (Gt (v0))] p WV(Gnoalo) |
V(Gn-1(v))| n=+oo [V(Gn(vo))|
Thus, lim ——————>= =1, and the result follows. = -
n—oo [V(Gn(v))|
Remark 2.11:By reasoning as in the previous Lemma, we  Now, we are about to prove that every semi-regular graph
have that G with bounded maximal degree is average-measurable.
V(G o i

L m M =1 Theorem 2.13:Let G be an infinite, locally finite graph

e n+k{U with A(G) < +oc. If G is semi-regular, thei@; is average-
for all positive integerk. measurable.

The previous Lemma may be generalized to other se-  Proof: Let G be aninfinite graph witi\ (G) = A < +oo0.
quences. Actually, given a finit€)y c G, we consider the Givenv € G, we consider the sequencg, = G, (v), for

ICS {G,,(Go) }n>0 as the sequence defined as follows: n € N. SinceA(G) < +oo0, we know thatd(G,,) < 2A. To
prove that{d(G,)} is convergent, we will see that, in fact, it
Gn(Go) = {u e V(G) : d(u,Go) < n})e. is a Cauchy sequence, that igjim__[d(Gny1) —d(G)| = 0.

Proposition 2.12:Let G be an infinite, locally finite graph. Now, we consider the sequen¢e, } defined as follows:
Then, G is semi-regular if and only if there exists a finite B(G B(G
subgraphGy C G verifying the boundary condition, that is Sp = | E(Grnt)l — | E(Gn)] =

V(Gni)l  [V(Ga)

to say, lim M = 0. Besides, if the aforemen-

n—too |V(Gr(Go))l , : W) — :
tioned assertion is true, then the boundary condition igigdr ‘lE(G”“)l ||;/((g”))|| |V|fC§Gn))|| V(G ‘
nj)l- n+1

for every finite subgraplizg C G.

Proof: Let G be an infinite, semi-regular graph, T we denote
and Gy C G be a finite subgraph. We proving that E(0G, 0Gp 1) =
ViGn1(Go)l _ 1. For this purpose, let us con-  {(Wn,wni1) € E(G) : wy € 0Gy, wpy1 € 0Gpi1}),

1m
n—+too  |V(Gn(Go))| . .
sider vy € V(Gp) and denote byr the diameter ofG,  then (see Figure 4)
(r = diam(Gy)). We have that
(o) (B(Goi1)| = |E(Go)| + [ E(0Gn, 0Gs1)| + |E@Gin)].
Gn—l('UO) - Gn—l(GO) and Gn(GO) - Gn-l—r('UO

So,

for all n. So B

[V(Gn-1(Go) | V(G- 1(U0))|. V(@) (1B(Gn)| + |B(0Gn, 0G4 1) + |B©OG,, 4 1I) — |EGn)l - V(G

[V(Gn(Go))l |V(Gn+r(vo))| V(G| - V(G =

V(Gpo1(G IBEG)| [IV(Gn)] = IV(GnyDI|  |E0GR. 0G4 1) |E0G,41)]
Bearing in mind the inequalit |1E’(G Eé ;))|)| < 1 and by V(G V(G + w(cwl)\ﬂ * w(c;w:)\ '
n 0

applying Note 2.11: However,

o g VGGl L V(G| EGIV(Ga)| = [V(Gust)ll _ 5 V(0G|
= e VGG~ ot [V(Grpr(oo))] VG VGl =" W (Gar)l




y Gt

Fig. 4. Edge decompositiof(G+1).

|E(6GnvaGn+1)| < A|V(8Gn)| < |V(6Gn)|

V(Gut)l = V(Gu1)| = V(G|
and
|[E@Gui1)| _ \[V(©Gusn)|
V(Gns1)l = [V(Gna)
Hence,
[V (0Gn41)| [V (9Gn)| [V (0Gn+1)|
sp < A + A + A .
[V(Gn1)] V(Gn)I [V(Gnt1)|
As W =0, thenl lim s, = 0 and, therefore,

n——+oo |V(Gn| n——+o00
the sequencéd(G,,)}nen IS convergent.

Finally, to reachd. (G) = d«(G), we are going to
prove that, for allu € V(G), lim B(Gn ()] =
" oo [V(Gn(u)

o E(G(v))] :

1 ——— = — . For that, d V(G d
Jm VG )] or that, we considet € V(G) an
r =dg(u,v). So,

t — ‘ ‘E(Gn u))| _ ‘E(Gn(”)l
" WV(Gn()]  [V(Gn(v)]

— ‘IE(Gn(U))\-\V(Gn(v))\*\E(Gn(v))|~|V(Gn(u))|
V(G (u)]-[V(Gn(v))] ’

Besides, taking into account that
Gnr(v) € Gn(u) € Gpyr(v)

for n > r, we have that

: < ’ [E(Gpyr () V(Gn () —|E(Gn (V)| [V (Gp_r(v)]
"= [V(Gp—r (W) TV(Gn (v)]

— [E(Gnir@)]  |E(Gn ()]
[V(Gp—r ()] V(Gn() |~

Sinee V(Gal))

e VGt ()]
and
|E(Grir(v)] _ |E(Grir(@)| [V(Gryr(v))] [V (Grn-ri1(v))]
|V(Gn7T(U))‘ |V(Gn+r(v))| ‘V(Gn+rfl(v))‘ ‘V(anr(v)” '
it holds: B (G (o)

. n+r

e VG o] !

and, therefore, lim ¢, = 0. [ |

n——+00

On the one hand, we note that the conditid(G) < +oo
is necessary in this Theorem, as we can see with the graph
from Figure 5:G is semi-regular but not average-measurable.

Fig. 5. Semi-regular graph with (G) = +oo, but non-average-measurable.

This graph is defined in such a way that the subgi@@h
is the complete graph of siz& + 1, for n > 1. So,

V(G,(v)|=14+34+5+---+(2n+1)

and
|E(Gn(v))] =

3+5+...+<2n+1)+( : )+( ; )+.,,+( 2041 )

G is semi-regular because

V@G )| _ 2n + 1 .
notoo [V(Gp(v))]  notoo14+34+54---4+2n+1)

In order to get the value of the Iim'E(G”(Um, we apply
V(G (v))]

Stolz Theorem:

2n+ 3
|E<Gn+1<v>>||E<Gn<v>>|:2”+3+( 2 )
V(G (0) = [V (Ga(0)) 2013

= +00.

Thus,d(G) = +oc and G is not average-measurable.

On the other hand, we consider the graghfrom Ex-
ample 2.4 to find an average-measurable graph which is not
semi-regular. Actually, sincél is a tree, this graph is average-
measurable; however, it is not semi-regular:

V(OH, (uw)| _ [V (Hn(uw)] = [V(Hn1(u))] _

[V (Hp(u)| |V (Hp(u))l

(n+2)!
204+ (n+2)!

By applying Stolz Theorem:

. (n+3) = (n+2)! .on+2
lim = lim ——¢
n—+oo (n+3)! n—foo n + 3

—1#0

and, therefore, the sequendéf, (u)} does not verify the
boundary condition and, ther{ is not semi-regular.



B. Periodic graphs

II¢

Now, we will see that the periodic graphs are semi-regular.

n

These graphs are very useful because they are frequent and
easily computed. We may find examples of periodic graphs in
tiling and patterns [9], Cayley diagrams [3], [8], and thege
appear as the resultant graphs of solving linear systems [2]

We recall some prior results about periodic graphs. We
denote byC the unit squaré0, 1] x [0, 1] C R? and we define
a cellular graph as the graph verifying(G) c C with no
isolated vertices. So, given a cellular gra@ghwe define the 2-
dimensional periodic graphMl¢) as the graph obtained from
G as follows:

V(Ma)={7(m,n)(v) : v€V(G) and (m,n)GZQ};

E(Ma)={(T(m,n) (W), T(m,n) (v)) © (u,0)E€E(G) and (m.n)€Z’},

where 7(,,, ,y denotes the translation of vectm,n) in the

plane.

If Mg is a 2-periodic graph generated by the cellular grapftig. 6. chain of inclusions forvt,, (G)

G, then we define the 8-neighbors ¢f as the subgraphs
74,5 (G) of Mg such thati € {—1,0,1} andj € {-1,0,1},

with (i,) # (0,0).

Given a cellular graphG and the 2-periodic graph gen-
erated byG, Mg, we define then-square of centet; and
radiusn ([[,, G) as the subgraph of1:

[T, G = {ri.(G) : (ij) € 2%, max{lil, jl} < n}.

We are proving that, in fact, the 2-periodic graphs are
semi-regular and average-measurable (since they havelbdun
maximal degree).

Proposition 2.14:Every infinite, periodic, connected graph
M generated by the cellular gragh is semi-regular and
average-measurable.

d

Proof: Let G be a cellular graph and1 = Mg be the  Fig, 7. HHJ G C My (G).

2-periodic graph generated froG. From Proposition 2.12, it
is sufficient to prove that

VOMLG)] _ So,

lim

n—+oo |V(M,(G))]

[V (OMn(G))]

to show thatM is semi-regular. We recall that

My (G) =(ue V(M) : d(u,G)m < na

VOMAG)] _ [VOM(G)] _
VM@~ VT O~ (2] 1) o

. On the other hand, for alh > 1, let us considerk(n) =
Let us considerl = max{d(u,G) : u€ Gy, 1 <i <8}, |Y(9M,(G))|. As

whereG; are the 8-neighbors afi. Firstly, for all n > d, it
is verified that (see Figure 6):

12 G S M@ <L, G,
because ifv € HL%J G, then (see Figure 7): then:

n

d(u, G) §d+d(u,HL%,1J G)<--- Sde <n. $n=k(1) +k(2)+ -

1=0

+ k(n)

IN

V(M(G)) = | VoMi(G)) € V(T, 6,

(2n 4+ 1) V(@)



ki”) — 1, with | > 0. By

n—-+oo

. . Sn

applying Stolz Theorem to the quotle%i, we get
n+1)2

that

Sl — Sn k(n+1)  k(n+1)(n+ 1)

2n+3)2—2n+1)2  8+9  (n+1)2 8n+9

and, therefore,

STL
limsu —_— =
ot (2n+ D2V (G)]

2
msup En+1)(n+1)

i = +00.
V(G ISP T2 g T°

But this is not possible, because we were supposing that

S n

(2n + 1)?V(G)]
k()

<1.

Consequently, 1ir+n = 0 and, therefore,
n—-+0oo

i VOMACD]
e (2@ + 1) V(G|

Thus,
o VOM.(G))
n=too |[V(Mn(G))]
andM is semi-regular. Besides, singd is a 2-periodic graph,

the assertionA(M) < +oo is verified, and (by applylng
Theorem 2.13)M is average-measurable.

=0

Now, we present an illustration of 2-periodic graph.

Example 2.15: We consider the 2-periodic grapth gen-
erated by the cellular graplé’ as in Figure 8.

Fig. 8. Periodic graph with average degr%e

Since M is connected, by applying the previous result, we
deduce that this graph is average-measurable. Let us censid
the sequencéM,,(G)}. Since the sequendel(M,,(G))} is
convergent, we know that

lim dM,(G)) = lim d(Ma,(G)).

n—-+o0o n—-+oo

On the other hand,

[V (Man(G))| =5+ 16 + 6(4 + 8 + - - +27)
and

|E(Mon(G))| =4+ 16+ 8(4+8+ - +27)

and, therefore, by applying Stolz Theorem:

lim d(Mon(G)) = o

n——+oo 3

Another periodic graph is the 1l-dimensional case. This
graph.M¢, is generated by a cellular gragh and horizontal
translations; of the graphGG (see Figure 9). Here we denote
by v; the translated vertex af in G;, for all integer: and all
v e V(Q).

|
w

|
<
5

Fig. 9. 1-dimensional periodic graph generated frém

Now, we are able to formulate the final result.

Proposition 2.16:Let G be a finite cellular graph. I},
is connected, then it is semi-regular and, therefore, gecra
measurable.

Proof: Let G be a finite graph, being\l = M}
connected. Let us consider the sequefdé,(G)},.cn and
d = diam(G). We want to study the cardinal &f(0M,,(G)).
To do so, we gety, € V(Gy) such thatd(vg, G)y = n, with
k=min{i >0 : d(v;,G) =n}. So, foralli > k+d+1, we
getd(v;, G) > n+1, because if we suppose th#;, G) < n,
as d(v;,Gx) > i — k (see Figure 10), there would be a
wy, € V(Gy) such thatd(v;, wy,) > i — k and, therefore:

d(wg, G) <d(v;,G) —d(vi,wg) <n—i+k<n-—d-—1.



G Gy Gy Gi G
wy /\/\ aee

Vk+1

Fig. 10. Path fronw; to G in M.
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d(vg, G) < d(vg,wy) +d(wy,G) <d+n—d—1=n-1,

and this is not possible. Following an analogous reasorong f
k<O0:

V(OM, (@) < 2(d+ DV(G)]. (1]
Then, 2]
[V (OM,(G))]

im ———7F =0,

n>too [V (M(G))] -

because [4]
Jim [V(Ma(@))] = +oo,

(5]

and the result follows. [ |

(6]

1. CONCLUSION 7

In this paper we have extended a definition of average[S]

degreed.(G) for a family of infinite graphs which we (]

call average-measurable (see Figure 11). For instances, tre
periodic graphs, and maximal degree bounded semi-reguleO]
graphs are average-mesurable graphs.

This generalization of average degree may be useful t 1
model complex, increasing networks, and it extends the tise
the universal formulae introduced by J.C. Wierman and D.P.
Naor [17] to determine percolation thresholds.

[12]
Average-measurable graphs [13]
~- Semii-regular graphs
- ( Trees N
/ =)\ =
< 1-periodic w
N
A< +oo [15]
[16]
e / [17]
. \7// [18]
Fig. 11. Relationships among average-measurable graphs. [19]
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