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Abstract—There are many problems in Graph Theory for
finite graphs relating the number of vertices and the number
of edges and, therefore, related to the average degree for finite
graphs. However, when dealing with real-life problems involving
networks, it is often useful to model the situation by using infinite
graphs, which can represent extendable systems. In this paper, we
will generalize the concept of average degree for infinite graphs in
a family of graphs that we call average-measurable. Besides, this
new definition allows the generalization of the universal formulae
for evaluation of percolation thresholds.
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I. I NTRODUCTION

Graph Theory is a tool with many uses in different fields
of human knowledge. It is particularly related to networks.
We, as authors who deal with them, have a keen interest in
road transport networks, since we have been asked to solve a
problem of the location of parking areas for dangerous goods
in Europe.

However, when trying to solve real problems, scientists
may need to develop existing theory beyond the point it has
reached so far. In our case, when modeling a road transport
network by using a graph, vertices (or nodes) usually cor-
respond to crossroads, while edges represent road sections
(where we may be interested in placing a specific service
for drivers; see, for example, [13]). In such a situation, the
possibility of minimizing the number of roads is relevant.
Such roads are usually represented by edges in the models.
It is also essential to consider some characteristics whichmay
be related to the presence of certain complete graphs (i.e.,
graphs including all the possible edges between their vertices).
For example, the presence ofK3 implies the existence of a
cycle which will be, in all likelihood, not be necessary to
guarantee communication and transport. The presence of aK4

might affect the future development of the network since it
goes against outerplanarity. The presence ofK5 prevents the
network from being a design without intersections. Finally,
road networks tend to expand over time. In Graph Theory this
characteristic is usually translated into an infinite graph.

Furthermore, the number of edges (and, eventually, new
services) can be limited locally by considering the number of
edges incident in each vertex (i.e., their vertex degree). So, this
is a good reason to study average degrees in graphs modeling
real road transport networks.

On the basis of the above, this paper aims to relate the
concepts of average degree and infinite graph. In fact, the
average degree has already been used to deal with economic
matters (see [11], [14], for example), and it had been defined
only for finite graphs. For this reason its properties cannotbe
used in gradually increasing models.

In another context, percolation models are infinite random
graph models for phase transitions and critical phenomena.
Percolation is also a key-concept when dealing with haz-
ardous issues such as those concerning dangerous goods
transportation. The determination of the critical probability
(or percolation threshold) for the percolation model is one
of the most interesting problems in this area (see [15], [16],
for example). The exact percolation threshold is known only
for a few arbitrary trees and infinite 2-dimensional periodic
graphs. It is therefore interesting to find bounds for percolation
thresholds usinguniversal formulaebased on features of the
infinite model graph. Most of the formulae cited in Physics and
Engineering literature are based on the average degree of the
infinite graphs (see [17], [18]). The average degree of infinite
graphs is only well defined for infinite 2-dimensional periodic
graphs. The results that we present in this paper generalizethe
notion of average degree for a new family of infinite graphs
allowing this universal formulae to be used for other infinite
graphs.

Theoretically, there exist many problems in Graph Theory
involving the relationship between the number of vertices and
edges of a graph (see [4], [5], [12], for example), i.e., the
average degree. In some cases, many of these problems could
be posed for infinite graphs.

Notations and terminologies not explicitly given here can
be found in [6], [10].



II. AVERAGE-MEASURABLE GRAPHS

In this section, we will define the average degree for a
family of infinite graphs that we will callaverage-measurable.
We will start from a sequence of finite graphs, and the average
degree for infinite graphs will inherit the properties of the
average degree for the finite case (see, for example, [1], [17],
[19]). We will prove that trees are examples of average-
measurable graphs. On the other hand, we will introduce
another family of graphs, calledsemi-regulargraphs, that will
be average-measurable. To achieve these goals we will need
some prior notations and definitions.

Definition 2.1: Let G be an infinite, locally finite graph
and let{Gn}n∈N be a sequence of finite subgraphs ofG. We
say that{Gn}n∈N is an increasing concentric sequence (ICS)
of G if the three following assertions are verified:

• Gn ⊂ Gn+1 for all n.

• ∂Gn ∩ ∂Gn+1 = ∅ for all n.

•
⋃

n∈N

Gn = G,

where∂Gn = 〈V (Gn) − V (Gn−1)〉G denotes theboundary
of Gn.

We note that, given an infinite graphG and v ∈ G, it is
always possible to find an ICS. In fact, if we consider the
subgraphsGn(v) = 〈{u ∈ V (G) : d(u, v) ≤ n}〉G, where
d(u, v) denotes the distance between the verticesu and v, it
is easy to prove that the sequence{Gn(v)}n∈N verifies the
conditions described above to be an ICS ofG.

Definition 2.2: Given an infinite, locally finite graphG,
we define theinferior-average degreeof G as

d∞(G) = inf{lim inf
n→+∞

d(Gn(v)) : v ∈ G},

whered(Gn) is average degree of each finite graphGn(v).

On the other hand, we define thesuperior-average degreeof
G as

d∞(G) = sup{lim sup
n→+∞

d(Gn(v)) : v ∈ G}.

Definition 2.3: Let G be an infinite, locally finite graph.G
is said to beaverage-measurableif d∞(G) = d∞(G) < +∞.
Besides, in this case, we define theaverage degreeof G as
d∞(G) = d∞(G) = d∞(G).

Example 2.4: LetH be the tree showed in Figure 1, where
the vertexu is a root and the degree of the vertices of each
level equals its predecessor plus one.

If we consider the ICS{Hn(u)}n∈N, it is easy to check
that

|V (Hn(u))| =
2! + · · ·+ (n+ 2)!

2
.

On the other hand, taking into account that each finite sub-
graphHn(u) of H is a tree,

|E(Hn(u))| = |V (Hn(u))| − 1

and, therefore,

lim
n→+∞

2
|E(Hn(u))|

|V (Hn(u))|
= 2 lim

n→+∞
1−

1

|V (Hn(u))|
= 2.
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Fig. 1. TreeH with an increasing degree.

But this property proved for the vertexu is, in fact, true for
every vertex ofH. Moreover, this property is true for every
tree.

Proposition 2.5: Every infinite, locally finite treeT is
average-measurable andd∞(T ) = 2.

The following example shows a non-average-measurable
graph.

Example 2.6: Let us consider the graphG (see Figure 2),
obtained from the definition process of the graphH in the
previous example, and verifying

∂G1(v) = K3

and
|E(∂Gn(v))| = n|V (Gn(v))| for n ≥ 2.
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Fig. 2. GraphG obtained fromH.

By induction, it is immediate that

n|V (Gn(v))| ≤

(

|V (∂Gn(v))|
2

)

,

and, therefore, it is possible to construct such a graphG.

On the other hand, from the construction ofG,

|V (Gn(v))| =
2! + · · ·+ (n+ 2)!

2

and

|E(Gn(v))| = |V (Gn(v))|−1+3+2|V (G2(v))|+· · ·+n|V (Gn(v))|.



Now, let M be the graph designed in such a way that
V (M) = V (H)∪V (G)∪{w} andE(M) = E(H)∪E(G)∪
{(u,w), (v, w)} (see Figure 3).
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Fig. 3. GraphM obtained fromH andG.

We are about to study the sequences{Mn(u)}n∈N and
{Mn(v)}n∈N. By definition ofMn(u), for n ≥ 2:

|V (Mn(u))| = |V (Hn(u))|+ |V (Gn−2(v))| + 1

and

|E(Mn(u))| = |E(Hn(u))|+ |E(Gn−2(v))| + 2.

To determine the limit of the sequence{d(Mn(u))}n≥2, it is

sufficient to analyze the quotient
|E(Mn(u))|

|V (Mn(u))|
. By applying the

well known Stolz Theorem for sequences:

|E(Mn+1(u))| − |E(Mn(u))|

|V (Mn+1(u))| − |V (Mn(u))|
=

(n+ 3)!

2
+

(n+ 1)!

2
+ (n− 1) ·

2! + · · ·+ (n+ 1)!

2
(n+ 3)!

2
+

(n+ 1)!

2

=

1 +
(n− 1) ·

2! + · · ·+ (n+ 1)!

2
(n+ 3)!

2
+

(n+ 1)!

2

.

If we apply again Stolz Theorem, it holds that

lim
n→+∞

(n− 1)(2! + · · ·+ (n+ 1)!)

(n+ 3)! + (n+ 1)!
= 0.

So,

lim
n→+∞

2
|E(Mn(u))|

|V (Mn(u))|
= 2

and, therefore,d∞(M) ≤ 2.

Now we analyze what happens with the sequence
{Mn(v)}n∈N.

|V (Mn(v))| = |V (Hn−2(u))|+ |V (Gn(v))|+ 1

and

|E(Mn(v))| = |E(Hn−2(u))|+ |E(Gn(v))| + 2.

We apply Stolz Theorem to compute the limit of the average
degree of each subgraphMn(v) :

|E(Mn+1(v))|−|E(Mn(v))|

|V (Mn+1(v))|−|V (Mn(v))|
=1+

(n+ 1) ·
2! + · · ·+ (n+ 3)!

2
(n+ 3)!

2
+

(n+ 1)!

2

.

By applying again Stolz Theorem:

lim
n→+∞

(n+ 1)(2! + · · ·+ (n+ 3)!)

(n+ 3)! + (n+ 1)!
= +∞.

Hence,

lim
n→+∞

2 ·
|E(Mn(u))|

|V (Mn(u))|
= +∞

and, therefore,d∞(M) = +∞. Thus,

d∞(M) ≤ 2 < d∞(M) = +∞,

andM is non-average-measurable.

A. Semi-regular graphs

Next we will define a family of infinite graphs which are
average-measurable when their maximal degree is bounded.

Definition 2.7: Let G be an infinite, locally finite graph.
The ICS{Gn}n∈N verifies the so-calledboundary condition
when

lim
n→+∞

|V (∂Gn)|

|V (Gn)|
= 0.

Remark 2.8:The boundary condition

lim
n→+∞

|V (∂Gn)|

|V (Gn)|
= 0

is equivalent to

lim
n→+∞

|V (Gn−1)|

|V (Gn)|
= 1,

since

|V (∂Gn)|

|V (Gn)|
=

|V (Gn)| − |V (Gn−1)|

|V (Gn)|
= 1−

|V (Gn−1)|

|V (Gn)|
.

Definition 2.9: Let G be an infinite, locally finite graph.G
is said to besemi-regularif there exists a vertexv ∈ G such
that the ICS{Gn(v)}n∈N verifies the boundary condition.

The following result shows that the previous definition does
not depend of the chosen vertex, i.e., if there exists a vertex v
for which {Gn(v)}n∈N verifies the boundary condition, then
it is verified for all v.

Lemma 2.10:Let G be an infinite, locally finite graph. If
G is semi-regular, then the sequence{Gn(v)}n∈N verifies the
boundary condition for allv ∈ G, i.e.,

lim
n→+∞

|V (∂Gn(v))|

|V (Gn(v))|
= 0.

Proof: Let G be a semi-regular graph andv0 be a
vertex such that the ICS{Gn(v0)}n∈N verifies the boundary
condition. Givenv ∈ G, we denote byr the distance between
v and v0 (r = d(v, v0)). Taking into account Note 2.8, it is
sufficient to prove the equality

lim
n→+∞

|V (Gn−1(v))|

|V (Gn(v))|
= 1

to show that the boundary condition is verified.

So, we note that, forn ≥ r + 1 :

Gn−r−1(v0) ⊆ Gn−1(v) andGn(v) ⊆ Gn+r(v0).



Hence,
|V (Gn−1(v))|

|V (Gn(v))|
≥

|V (Gn−r−1(v0))|

|V (Gn+r(v0))|
.

Furthermore,
|V (Gn−r−1(v0))|

|V (Gn+r(v0))|
=

|V (Gn−r−1(v0))|

|V (Gn−r(v0))|

|V (Gn−r(v0))|

|V (Gn−r+1(v0))|
· · ·

|V (Gn+r−1(v0))|

|V (Gn+r(v0))|
,

but
|V (Gn−r−1(v0))|

|V (Gn−r(v0))|
−−−−→
n→+∞ 1

...
|V (Gn+r−1(v0))|

|V (Gn+r(v0))|
−−−−→
n→+∞ 1.

Finally,

1 ≥ lim
n→+∞

|V (Gn−1(v))|

|V (Gn(v))|
≥ lim

n→+∞

|V (Gn−r−1(v0))|

|V (Gn+r(v0))|
= 1.

Thus, lim
n→+∞

|V (Gn−1(v))|

|V (Gn(v))|
= 1, and the result follows.

Remark 2.11:By reasoning as in the previous Lemma, we
have that

lim
n→+∞

|V (Gn(v))|

|V (Gn+k(v))|
= 1

for all positive integerk.

The previous Lemma may be generalized to other se-
quences. Actually, given a finiteG0 ⊂ G, we consider the
ICS {Gn(G0)}n≥0 as the sequence defined as follows:

Gn(G0) = 〈{u ∈ V (G) : d(u,G0) ≤ n}〉G.

Proposition 2.12:Let G be an infinite, locally finite graph.
Then, G is semi-regular if and only if there exists a finite
subgraphG0 ⊂ G verifying the boundary condition, that is

to say, lim
n→+∞

|V (∂Gn(G0))|

|V (Gn(G0))|
= 0. Besides, if the aforemen-

tioned assertion is true, then the boundary condition is verified
for every finite subgraphG0 ⊂ G.

Proof: Let G be an infinite, semi-regular graph,
and G0 ⊂ G be a finite subgraph. We proving that

lim
n→+∞

|V (Gn−1(G0))|

|V (Gn(G0))|
= 1. For this purpose, let us con-

sider v0 ∈ V (G0) and denote byr the diameter ofG0

(r = diam(G0)). We have that

Gn−1(v0) ⊆ Gn−1(G0) andGn(G0) ⊆ Gn+r(v0)

for all n. So

|V (Gn−1(G0))|

|V (Gn(G0))|
≥

|V (Gn−1(v0))|

|V (Gn+r(v0))|
.

Bearing in mind the inequality
|V (Gn−1(G0))|

|V (Gn(G0))|
≤ 1 and by

applying Note 2.11:

1 ≥ lim
n→+∞

|V (Gn−1(G0))|

|V (Gn(G0))|
≥ lim

n→+∞

|V (Gn−1(v0))|

|V (Gn+r(v0))|
= 1.

Therefore, lim
n→+∞

|V (Gn−1(G0))|

|V (Gn(G0))|
= 1.

In order to prove the opposite implication, we suppose that
there exists aG0 such that the sequence{Gn(G0)} verifies
the boundary condition. Considering thatv0 ∈ V (G0) and
r = diam(G0),

Gn−r−1(G0) ⊆ Gn−1(v0)

and
Gn(v0) ⊆ Gn(G0).

Hence,

|V (Gn−1(v0))|

|V (Gn(v0))|
≥

|V (Gn−r−1(G0))|

|V (Gn(v0))|
.

By reasoning as in Note 2.11, it is verified that

lim
n→+∞

|V (Gn−r−1(G0))|

|V (Gn(G0))|
= 1,

so

lim
n→+∞

|V (Gn−1(v0))|

|V (Gn(v0))|
= 1.

Now, we are about to prove that every semi-regular graph
with bounded maximal degree is average-measurable.

Theorem 2.13:Let G be an infinite, locally finite graph
with ∆(G) < +∞. If G is semi-regular, thenG is average-
measurable.

Proof: LetG be an infinite graph with∆(G) = ∆ < +∞.
Given v ∈ G, we consider the sequenceGn = Gn(v), for
n ∈ N. Since∆(G) < +∞, we know thatd(Gn) ≤ 2∆. To
prove that{d(Gn)} is convergent, we will see that, in fact, it
is a Cauchy sequence, that is,lim

n→+∞
|d(Gn+1)− d(Gn)| = 0.

Now, we consider the sequence{sn} defined as follows:

sn =

∣

∣

∣

∣

|E(Gn+1)|

|V (Gn+1)|
−

|E(Gn)|

|V (Gn)|

∣

∣

∣

∣

=

∣

∣

∣

∣

|E(Gn+1)| · |V (Gn)| − |E(Gn)| · |V (Gn+1)|

|V (Gn)| · |V (Gn+1)|

∣

∣

∣

∣

.

If we denote
E(∂Gn, ∂Gn+1) =

{(wn, wn+1) ∈ E(G) : wn ∈ ∂Gn, wn+1 ∈ ∂Gn+1},

then (see Figure 4)

|E(Gn+1)| = |E(Gn)|+ |E(∂Gn, ∂Gn+1)|+ |E(∂Gn+1)|.

So,
sn =

∣

∣

∣

∣

∣

∣

|V (Gn)|
(

|E(Gn)| + |E(∂Gn, ∂Gn+1)| + |E(∂Gn+1)|
)

− |E(Gn)| · |V (Gn+1)|

|V (Gn)| · |V (Gn+1)|

∣

∣

∣

∣

∣

∣

≤

|E(Gn)|
∣

∣

∣|V (Gn)| − |V (Gn+1)|
∣

∣

∣

|V (Gn)| · |V (Gn+1)|
+

|E(∂Gn, ∂Gn+1)|

|V (Gn+1)|
+

|E(∂Gn+1)|

|V (Gn+1)|
.

However,

|E(Gn)| ||V (Gn)| − |V (Gn+1)||

|V (Gn)| · |V (Gn+1)|
≤ ∆

|V (∂Gn+1)|

|V (Gn+1)|
,
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Fig. 4. Edge decompositionE(Gn+1).

|E(∂Gn, ∂Gn+1)|

|V (Gn+1)|
≤

∆|V (∂Gn)|

|V (Gn+1)|
≤ ∆

|V (∂Gn)|

|V (Gn)|
,

and
|E(∂Gn+1)|

|V (Gn+1)|
≤ ∆

|V (∂Gn+1)|

|V (Gn+1)|
.

Hence,

sn ≤ ∆
|V (∂Gn+1)|

|V (Gn+1)|
+∆

|V (∂Gn)|

|V (Gn)|
+∆

|V (∂Gn+1)|

|V (Gn+1)|
.

As lim
n→+∞

|V (∂Gn)|

|V (Gn|
= 0, then lim

n→+∞
sn = 0 and, therefore,

the sequence{d(Gn)}n∈N is convergent.

Finally, to reachd∞(G) = d∞(G), we are going to

prove that, for all u ∈ V (G), lim
n→+∞

|E(Gn(u))|

|V (Gn(u)|
=

lim
n→+∞

|E(Gn(v))|

|V (Gn(v)|
= t. For that, we consideru ∈ V (G) and

r = dG(u, v). So,

tn =
∣

∣

∣

|E(Gn(u))|
|V (Gn(u))|

− |E(Gn(v)|
|V (Gn(v)|

∣

∣

∣

=
∣

∣

∣

|E(Gn(u))|·|V (Gn(v))|−|E(Gn(v))|·|V (Gn(u))|
|V (Gn(u))|·|V (Gn(v))|

∣

∣

∣
.

Besides, taking into account that

Gn−r(v) ⊆ Gn(u) ⊆ Gn+r(v)

for n ≥ r, we have that

tn ≤
∣

∣

∣

|E(Gn+r(v))|·|V (Gn(v))|−|E(Gn(v))|·|V (Gn−r(v))|

|V (Gn−r(v))|·|V (Gn(v))|

∣

∣

∣

=
∣

∣

∣

|E(Gn+r(v))|

|V (Gn−r(v))|
− |E(Gn(v))|

|V (Gn(v))|

∣

∣

∣
.

Since

lim
n→+∞

|V (Gn(v))|

|V (Gn+1(v))|
= 1

and
|E(Gn+r(v))|

|V (Gn−r(v))|
=

|E(Gn+r(v))|

|V (Gn+r(v))|

|V (Gn+r(v))|

|V (Gn+r−1(v))|
· · ·

|V (Gn−r+1(v))|

|V (Gn−r(v))|
,

it holds:

lim
n→+∞

|E(Gn+r(v))|

|V (Gn−r(v))|
= t

and, therefore, lim
n→+∞

tn = 0.

On the one hand, we note that the condition∆(G) < +∞
is necessary in this Theorem, as we can see with the graphG
from Figure 5:G is semi-regular but not average-measurable.
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Fig. 5. Semi-regular graph with∆(G) = +∞, but non-average-measurable.

This graph is defined in such a way that the subgraph∂Gn

is the complete graph of size2n+ 1, for n ≥ 1. So,

|V (Gn(v))| = 1 + 3 + 5 + · · ·+ (2n+ 1)

and

|E(Gn(v))| =

3+5+ · · ·+(2n+1)+

(

3
2

)

+

(

5
2

)

+ · · ·+

(

2n+ 1
2

)

.

G is semi-regular because

lim
n→+∞

|V (∂Gn(v))|

|V (Gn(v))|
= lim

n→+∞

2n+ 1

1 + 3 + 5 + · · ·+ (2n+ 1)
= 0.

In order to get the value of the limit
|E(Gn(v))|

|V (Gn(v))|
, we apply

Stolz Theorem:

|E(Gn+1(v))| − |E(Gn(v))|

|V (Gn+1(v))| − |V (Gn(v))|
=

2n+ 3 +

(

2n+ 3
2

)

2n+ 3
= +∞.

Thus,d∞(G) = +∞ andG is not average-measurable.

On the other hand, we consider the graphH from Ex-
ample 2.4 to find an average-measurable graph which is not
semi-regular. Actually, sinceH is a tree, this graph is average-
measurable; however, it is not semi-regular:

|V (∂Hn(u))|

|V (Hn(u))|
=

|V (Hn(u))| − |V (Hn−1(u))|

|V (Hn(u))|
=

(n+ 2)!

2! + · · ·+ (n+ 2)!
.

By applying Stolz Theorem:

lim
n→+∞

(n+ 3)!− (n+ 2)!

(n+ 3)!
= lim

n→+∞

n+ 2

n+ 3
= 1 6= 0

and, therefore, the sequence{Hn(u)} does not verify the
boundary condition and, then,H is not semi-regular.



B. Periodic graphs

Now, we will see that the periodic graphs are semi-regular.
These graphs are very useful because they are frequent and
easily computed. We may find examples of periodic graphs in
tiling and patterns [9], Cayley diagrams [3], [8], and they even
appear as the resultant graphs of solving linear systems [2].

We recall some prior results about periodic graphs. We
denote byC the unit square[0, 1]× [0, 1] ⊂ R

2 and we define
a cellular graph as the graph verifyingV (G) ⊂ C with no
isolated vertices. So, given a cellular graphG, we define the 2-
dimensional periodic graph (MG) as the graph obtained from
G as follows:

V (MG)={τ(m,n)(v) : v∈V (G) and (m,n)∈Z
2};

E(MG)={(τ(m,n)(u),τ(m,n)(v)) : (u,v)∈E(G) and (m,n)∈Z
2},

whereτ(m,n) denotes the translation of vector(m,n) in the
plane.

If MG is a 2-periodic graph generated by the cellular graph
G, then we define the 8-neighbors ofG as the subgraphs
τ(i,j)(G) of MG such thati ∈ {−1, 0, 1} andj ∈ {−1, 0, 1},
with (i, j) 6= (0, 0).

Given a cellular graphG and the 2-periodic graph gen-
erated byG, MG, we define then-square of centerG and
radiusn (

∏

n G) as the subgraph ofMG:
∏

n G = {τ(i,j)(G) : (i, j) ∈ Z
2, max{|i|, |j|} ≤ n}.

We are proving that, in fact, the 2-periodic graphs are
semi-regular and average-measurable (since they have bounded
maximal degree).

Proposition 2.14:Every infinite, periodic, connected graph
MG generated by the cellular graphG is semi-regular and
average-measurable.

Proof: Let G be a cellular graph andM = MG be the
2-periodic graph generated fromG. From Proposition 2.12, it
is sufficient to prove that

lim
n→+∞

|V (∂Mn(G))|

|V (Mn(G))|
= 0

to show thatM is semi-regular. We recall that

Mn(G) = 〈u ∈ V (M) : d(u,G)M ≤ n〉M.

Let us considerd = max{d(u,G) : u ∈ Gi, 1 ≤ i ≤ 8},
whereGi are the 8-neighbors ofG. Firstly, for all n ≥ d, it
is verified that (see Figure 6):

∏

⌊n
d ⌋

G ⊆ Mn(G) ⊆
∏

n G,

because ifv ∈
∏

⌊n
d ⌋

G, then (see Figure 7):

d(u,G) ≤ d+ d(u,
∏

⌊n
d
−1⌋G) ≤ · · · ≤ d

⌊n

d

⌋

≤ n.
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Fig. 6. Chain of inclusions forMn(G).
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∏

⌊n
d ⌋

G ⊆ Mn(G).

So,

|V (∂Mn(G))|

|V (Mn(G))|
≤

|V (∂Mn(G))|

|V (
∏

⌊n
d ⌋

G)|
≤

|V (∂Mn(G))|
(

2
⌊n

d

⌋

+ 1
)2

|V (G)|
.

On the other hand, for alln ≥ 1, let us considerk(n) =
|V (∂Mn(G))|. As

V (Mn(G)) =

n
⋃

i=0

V (∂Mi(G)) ⊆ V (
∏

n G),

then:

sn = k(1) + k(2) + · · ·+ k(n) ≤ (2n+ 1)2|V (G)|.



Let us suppose thatlim sup
n→+∞

k(n)

n2
= l, with l > 0. By

applying Stolz Theorem to the quotient
sn

(2n+ 1)2
, we get

that

sn+1 − sn

(2n+ 3)2 − (2n+ 1)2
=

k(n+ 1)

8n+ 9
=

k(n+ 1)

(n+ 1)2
(n+ 1)2

8n+ 9

and, therefore,

lim sup
n→+∞

sn

(2n+ 1)2|V (G)|
=

1

|V (G)|
lim sup
n→+∞

k(n+ 1)

(n+ 1)2
(n+ 1)2

8n+ 9
= +∞.

But this is not possible, because we were supposing that

sn

(2n+ 1)2|V (G)|
≤ 1.

Consequently, lim
n→+∞

k(n)

n2
= 0 and, therefore,

lim
n→+∞

|V (∂Mn(G))|
(

2
⌊n

d

⌋

+ 1
)2

|V (G)|
≤

1

|V (G)|
lim

n→+∞

k(n)

n2

n2

(

2
(n

d
− 1

)

+ 1
)2 = 0.

Thus,

lim
n→+∞

|V (∂Mn(G))|

|V (Mn(G))|
= 0

andM is semi-regular. Besides, sinceM is a 2-periodic graph,
the assertion∆(M) < +∞ is verified, and (by applying
Theorem 2.13)M is average-measurable.

Now, we present an illustration of 2-periodic graph.

Example 2.15: We consider the 2-periodic graphM gen-
erated by the cellular graphG as in Figure 8.
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Fig. 8. Periodic graph with average degree
8

3
.

SinceM is connected, by applying the previous result, we
deduce that this graph is average-measurable. Let us consider
the sequence{Mn(G)}. Since the sequence{d(Mn(G))} is
convergent, we know that

lim
n→+∞

d(Mn(G)) = lim
n→+∞

d(M2n(G)).

On the other hand,

|V (M2n(G))| = 5+ 16 + 6(4 + 8 + · · ·+ 2n)

and

|E(M2n(G))| = 4 + 16 + 8(4 + 8 + · · ·+ 2n)

and, therefore, by applying Stolz Theorem:

lim
n→+∞

d(M2n(G)) =
8

3
.

Another periodic graph is the 1-dimensional case. This
graphM1

G is generated by a cellular graphG and horizontal
translationsGi of the graphG (see Figure 9). Here we denote
by vi the translated vertex ofv in Gi, for all integeri and all
v ∈ V (G).

q q qqqq

u

v

G

u u

v

1

v

2

G

1

G

2

uu

v

�1

v

�2

G

�1

G

�2

Fig. 9. 1-dimensional periodic graph generated fromG.

Now, we are able to formulate the final result.

Proposition 2.16:Let G be a finite cellular graph. IfM1
G

is connected, then it is semi-regular and, therefore, average-
measurable.

Proof: Let G be a finite graph, beingM = M1
G

connected. Let us consider the sequence{Mn(G)}n∈N and
d = diam(G). We want to study the cardinal ofV (∂Mn(G)).
To do so, we getvk ∈ V (Gk) such thatd(vk, G)M = n, with
k = min{i > 0 : d(vi, G) = n}. So, for alli ≥ k+d+1, we
getd(vi, G) ≥ n+1, because if we suppose thatd(vi, G) ≤ n,
as d(vi, Gk) ≥ i − k (see Figure 10), there would be a
wk ∈ V (Gk) such thatd(vi, wk) ≥ i− k and, therefore:

d(wk, G) ≤ d(vi, G)− d(vi, wk) ≤ n− i+ k ≤ n− d− 1.
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Fig. 10. Path fromvi to Gk in M.

However,

d(vk, G) ≤ d(vk, wk) + d(wk, G) ≤ d+ n− d− 1 = n− 1,

and this is not possible. Following an analogous reasoning for
k < 0 :

|V (∂Mn(G))| ≤ 2(d+ 1)|V (G)|.

Then,

lim
n→+∞

|V (∂Mn(G))|

|V (Mn(G))|
= 0,

because

lim
n→+∞

|V (Mn(G))| = +∞,

and the result follows.

III. C ONCLUSION

In this paper we have extended a definition of average
degreed∞(G) for a family of infinite graphs which we
call average-measurable (see Figure 11). For instance, trees,
periodic graphs, and maximal degree bounded semi-regular
graphs are average-mesurable graphs.

This generalization of average degree may be useful to
model complex, increasing networks, and it extends the use of
the universal formulae introduced by J.C. Wierman and D.P.
Naor [17] to determine percolation thresholds.

Average-measurable graphs

Semi-regular graphs

Trees

1-periodi


2-periodi


� < +1

Fig. 11. Relationships among average-measurable graphs.
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