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Abstract: Chemical composition of seeds changes during grape ripening and 

this affects the sensory properties of wine. In order to control the 

features of wines, the condition of seeds is becoming an important factor 

for deciding the moment of harvesting by winemakers. Sensory analysis is 

not easy to carry out and chemical analysis needs lengthy procedures, 

reagents, and it is destructive and time-consuming. In the present work, 

near infrared hiperespectral imaging has been used to determine flavanols 

in seeds of red (cv. Tempranillo) and white (cv. Zalema) grapes (Vitis 

vinifera L.). As reference measurements, the flavanol content was 

estimated using the p-dimethylaminocinnamaldehyde (DMACA) method. Not 

only total flavanol content was evaluated but also the quantity of 

flavanols that would be extracted into the wine during winemaking. A 

like-wine model solution was used for this purpose. Calibrations were 

performed by partial least squares regression and they provide 

coefficients of determination R2=0.73 for total flavanol content and 

R2=0.85 for predicting flavanols extracted with model solution. Values up 

to R2=0.88 were reached when cultivars were considered individually. 

 

 

 

 



HIGHLIGHTS 

− NIR Hyperspectral imaging was applied to predict the flavanol content in 

grape seeds. 

− The method allows the evaluation of flavanols in grape seeds without sample 

preparation. 

− PLSR predicted total flavanols and flavanols that may be extracted during 

winemaking. 

− The methodology established could be useful for determining the grape 

harvest. 
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ABSTRACT 

Chemical composition of seeds changes during grape ripening and this affects 

the sensory properties of wine. In order to control the features of wines, the 

condition of seeds is becoming an important factor for deciding the moment of 

harvesting by winemakers. Sensory analysis is not easy to carry out and 

chemical analysis needs lengthy procedures, reagents, and it is destructive and 

time-consuming. In the present work, near infrared hiperespectral imaging has 

been used to determine flavanols in seeds of red (cv. Tempranillo) and white 

(cv. Zalema) grapes (Vitis vinifera L.). As reference measurements, the flavanol 

content was estimated using the p-dimethylaminocinnamaldehyde (DMACA) 

method. Not only total flavanol content was evaluated but also the quantity of 

flavanols that would be extracted into the wine during winemaking. A like-wine 

model solution was used for this purpose. Calibrations were performed by 

partial least squares regression and they provide coefficients of determination 

R2=0.73 for total flavanol content and R2=0.85 for predicting flavanols extracted 

with model solution. Values up to R2=0.88 were reached when cultivars were 

considered individually. 
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Chemometrics; Flavanols; Grape seeds; Hyperspectral imaging; Near infrared; 

Vitis vinifera L.;  
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1. Introduction 

Grape seeds constitute a small part of the berry, but they affect extensively the 

sensory properties of wine. Their phenolic compounds are responsible of these 

properties and they change in a qualitative and quantitative manner during 

ripening [1,2]. The most representative of them in grape seeds, flavanols, 

include flavan-3-ol monomers (catechin, epicatechin and epicatechin gallate) 

and procyanidins, which are polymers comprised of flavan-3-ol terminal and 

extension subunits [3]. Phenolic composition of grapes depends on multiple 

factors, including climate, variety, soil, and degree of ripeness, being this 

phenolic maturity decisive for the production of quality red wines. Although 

seeds represent only 0-6% of berry weight, they are an important source of 

flavanols for wines. Another aspect that has raised interest is the extractability 

of these compounds. It has been reported that extractability depends on the 

ripeness of grape seeds. This phenomenon is due to changes in the 

interactions between tannins and cell wall material [4]. Insufficiently ripened 

grapes have higher tannin extractability [5]. 

The determination of flavanols might help on the decision of the harvest date. 

However, the „optimal‟ harvest date should be defined based on several 

measurements. Since changes during ripening affect both gustatory and 

appearance properties, sensorial analysis is the most common approach to 

evaluate the condition of the seeds by vine growers, though it is difficult to be 

carried out in an accurate and objective manner [6]. Some studies have found 

clear evidences relating chemical composition and sensorial parameters in vine 

products. In particular, flavanols are responsible of these properties in grape 
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seeds [7-8]. Nevertheless, these methods frequently are destructive, time-

consuming, and entail the use of reagents [9-12]. Replacing conventional 

analyses, near infrared (NIR) spectroscopy provides fast, accurate and non-

destructive way to obtain chemical composition [13,14]. These techniques have 

been successfully joined to computer vision systems [15,16]. NIR radiation has 

very little energy and penetrates a millimetre or so into the substance 

depending on the substance‟s surface composition and structure. Anyhow, 

phenolic compounds are mainly concentrated within the outer layer of grape 

seeds [17]. 

Near-infrared (NIR) hyperspectral imaging is a powerful technique which has 

been used in several applications in agricultural products [18-22]. In fact, it has 

been applied to grape seeds for establishing the methodology for acquiring 

images, discriminating varieties and estimating the date of sampling, but not yet 

for predicting chemical composition [23]. Hyperspectral imaging provides a 

digital image and the spectrum belonging to each pixel. Hyperspectral images 

(HSI), or hypercubes, are three-dimensional data matrix where the first two 

axes of the matrix represent the spatial coordinates, while the third axis portrays 

the spectral dimension. They usually are represented as a battery of images 

where each layer shows the reflectance at a wavelength in grey scale [24]. Due 

to the great amount of information that they include, HSI require the application 

of multivariate data analysis for data exploration. As with NIR spectroscopy, 

chemometric techniques are applied to decompose the image dataset, process 

and perform regression or classification analyses. The possibilities of 

hyperspectral imaging based on the NIR range have been illustrated developing 
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a model able to predict and classify barley kernels [25,26], predicting hardness 

in maize kernels [27], and studying enzymes activity and detecting sprout 

damage in wheat [28,29]. 

In order to minimise contributions from imaging instrument responses that are 

not related to variations in the composition of the imaged sample, preprocessing 

of spectral data is often of vital importance if reasonable results are to be 

obtained from the spectral analysis step. The most frequently used methods for 

spectral correction are multiplicative scatter correction (MSC), standard normal 

variate (SNV) and derivation. [30-33]. However, there is still no standard 

procedure to decide which spectral processing produce best results. Partial 

least squares regression (PLSR) is a procedure used to relate a large number 

of independent variables (predictors) to one (PLSR1) or few (PLRS2) response 

variables (observations) when a reduced number of cases are available. Since 

it reduces a great number of redundant information, it is very effective in 

spectral analysis [34,35]. 

The aim of this work was to evaluate the potential of NIR hyperspectral imaging 

for the evaluation of flavanols in seeds from red and white grapes during 

ripening. Hyperspectral imaging was chosen as the best option for evaluating 

reflectance spectrum in grape seeds because of their heterogeneity and 

reduced size. Measurements by bulk NIR spectroradiometry need an amount of 

sample that covers the whole spot of measurement. In this case, the seeds 

contain interstitial spaces that produce shadows affecting the spectrum 

intensity. Imaging techniques allow measuring a maximum area of sample 

without the influence of shadows. 
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2. Material and methods 

2.1 Sampling 

The grapes (Vitis vinifera L.) sampled are included under the “Condado de 

Huelva” Designation of Origin, in Southwestern Spain, harvested in 2012. One 

red variety (cv. Tempranillo) and one autochthonous white variety (cv. Zalema) 

were used. The number of samples was 18 for Zalema and 15 for Tempranillo, 

depending on the availability and harvesting times of each variety. They were 

taken twice a week from early July until postharvest mid-September. Sampling 

process was carried out at daybreak by taking a pair of berries from alternate 

grapevines, from four rows of vines, and from both sides of each row up to 

reach 2 kg of berries. In this process, the berries were taken with pedicel intact 

to slow down the berry oxidation as long as possible. Once in laboratory, one 

hundred berries were randomly taken and seeds removed, left to dry at room 

temperature for 2 hours, and frozen at −20ºC until acquisition of hyperspectral 

images and chemical analysis. Each sample was divided into three parts used 

as replicates ((18+15)×3=99 samples). Two of these replicates were allocated 

to the calibration set and the other sample to the prediction set. 

 

2.2 Hyperspectral image analysis 

The system comprised a Xenics® XEVA-USB InGaAs camera (320 × 256 pixels; 

Xenics Infrared Solutions, Inc., Leuven, Belgium), a spectrograph (Specim 

ImSpector N17E Enhanced; Spectral Imaging Ltd., Oulu, Finland) covering the 

spectral range between 884 and 1717 nm (spectral resolution of 3.25 nm), two 
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70W tungsten iodine halogen lamps (Prilux®, Barcelona, Spain) used as light 

source, a mirror scanner (Spectral Imaging Ltd., Oulu, Finland), and a computer 

system. HSI were recorded using a 50 Hz frame rate and an exposure time of 9 

ms using the instrument acquisition software SpectralDAQ 3.62 (Spectral 

Imaging Ltd., Oulu, Finland). From the acquired HSI, it was observed that the 

first and the last twenty bands of the image had a high level of noise, thus not 

being useful for spectral data extraction. Therefore, images were cropped to the 

spectral range of 950-1650 nm with a total of 215 bands. 

A „white reference‟ image (W, 100% reflectance) was acquired from a white  

Spectralon® ceramic tile (Labsphere Inc., North Sutton, USA), and a „dark 

reference‟ image (B, 0% reflectance) was obtained with the light source off and 

the mirror scanner completely covered with its opaque cap. The white and dark 

„reference‟ HSI were used to correct the raw images (R0) in order to obtain a 

relative reflectance image (R) according to the following equation: 

BW

BR
R




 0       (1) 

For segmentation of HSI, a method based on forward stepwise discriminant 

analysis was applied with the software Statistica 8.0 [36]. Image processing, 

spectral processing and statistical treatment were carried out using MATLAB 

R2012b [37]. A flowchart of the image processing and spectral treatment used 

in this study is schematized in Figure 1. 
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2.3 Chemical analysis 

Each sample was split into two fractions subjected to different extractions. For 

the exhaustive extraction, grape seeds were freeze-dried and ground to obtain 

a homogeneous powder for extraction. One gram of seed powder was extracted 

with ten millilitres of methanol:water (75:25), sonicated (15 minutes) and 

centrifuged (15 minutes), repeating the extraction process twice more. The 

methanolic extracts were combined and finally made up to 50 mL with 

methanol. For the extraction in wine-like medium, two grams of intact grape 

seeds were macerated in 50 mL of model wine solution (4 g·L-1 tartaric acid, 

12.5% ethanol, adjusted at pH 3.6 with NaOH 0.5 M) during 72 h [38]. 

Flavanols spectrophotometric analysis of both extractions was carried out 

following a modification of Vivas et al. [39]. Ten or twenty microlitres of total 

extraction or wine like medium extracts were mixed with 190 or 180 μL of 

methanol respetively and 1 mL of DMACA reagent. The DMACA reagent was 

prepared immediately before use, containing 0.1% (w/v) DMACA (4-

dimethylaminocinnamaldehyde) in a mixture of HCl:methanol (1:10, v/v). The 

analyses were performed in triplicate on an Agilent 8453 UV-visible 

spectrophotometer (Palo Alto, USA), equipped with diode array detection 

(DAD), measuring absorbance at 640 nm  and using a calibration curve of (+)-

catechin (Sigma-Aldrich, St. Louis, USA) for quantification. The aforesaid 

extract volumes were appropiately modified when the concentration was outside 

the linear range of the calibration curve. All results were expressed as mg of 

catechin equivalents per gram of grape seed. 
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3. Results and discussion 

3.1 Segmentation by discriminant analysis 

A set of reflectance spectra belonging to seeds and background was collected 

as input data set. The forward stepwise discriminant analysis included 

sequentially three wavelengths, 1216, 1392, and 1147 nm for discriminating the 

region of interest from the background. Figure 2 shows the average spectra 

belonging to seeds and background (a homogeneous surface composed of 

polyethylene) and highlights the selected bands. The algorithm of segmentation 

saved all the masks of segmentation and they were visually supervised for 

ensuring the suitability of the proposed method. 

 

3.2 Exploratory Analysis of Spectra 

Figure 3 shows the mean and standard deviation spectra regarding the variety 

of grape seeds. It also shows the spectra after applying the transformations 

Log(1/R), SNV treatment, and second derivative, treatments that yielded the 

best results in prediction analyses. It can be seen that seeds from white and red 

grapes have different reflectance intensities along some wavelength regions, 

although with the same pattern. 

Before the quantitative analysis, principal component analysis (PCA) was used 

as unsupervised pattern recognition technique in order to get information about 

the latent structure of the spectral matrix. This method provided not only 

information related to spectral outliers and the distribution of samples in the 

newly-created space but also was an important source of knowledge with which 

to evaluate the suitability of prediction set used in PLSR. For detecting possible 
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outliers, Hotelling‟s T2 statistic was used as a measure of the multivariate 

distance of each sample from the centre of the data set [40]. Regarding the 

spectral features of each sample, this test rejected 4 of the 99 samples 

considering a confidence level of 95%. Using the spectral data of the remaining 

samples (without outliers), PCA was applied again in order to ensure the 

representativeness of the prediction set in the generated multivariate space. 

PC1, PC2, and PC3 explained 98.61%, 1.18%, and 0.10% of the total variance 

respectively. PC1 was influenced by the time in an extensively manner. Figure 

4a shows PC1 and its evolution over time. At every date, spectra from 

Tempranillo seeds had higher scores than Zalema ones. Moreover, this 

dependency seemed stronger for Tempranillo, being its slope higher. Figure 4b 

shows the scatterplot of scores for PC2 and PC3. Generally, Tempranillo seeds 

presented positive scores for PC2 while Zalema seeds presented negative 

ones. Furthermore, it can be observed that samples belonging to prediction set 

were uniformly distributed among calibration set samples. These results are in 

agreement with results previously reported [23]. 

 

3.3 Quantitative analysis 

Flavanols content decreased during the grape ripening regardless the variety 

and type of extraction. The methanol extract flavanols ranged from 4.28 to 

34.26 mg·g-1 of grape seed. The flavanols from the extracts obtained using like-

wine solution ranged from 0.12 to 7.21 mg·g-1 of grape seed. Table 1 shows a 

brief resume of the aforementioned results. It must be highlighted that high 

standard deviations were due to the evolution during ripeness instead of errors 
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of measurements. Although it was not the goal of this work, extractability of 

each sample was evaluated as the fraction of flavanols extracted by the model 

solution with respect to the exhaustive extraction. The extractability also 

decreased during ripening, being about 25% at the first stages and about 5% in 

the last ones. 

Results of chemical analyses were used as dependent (Y) variables and the 

matrix of processed spectra was used as the independent (X) variables in the 

PLSR. The statistical parameters of the final calibration equations are shown in 

Table 2. For extractions with methanol and considering all samples as a unique 

data set, R2 was 0.73 for calibration and 0.75 for prediction. The RMSEC and 

RMSEP were 4.01 and 3.86 mg·g-1 of grape seed respectively. Results for 

predicting flavanols extracted by like-wine solution had R2=0.82 for calibration 

and R2=0.85 for prediction. In this case, RMSEC and RMSEP were 0.92 and 

0.88 mg·g-1 of grape seed respectively. Since cultivar was a determining factor 

in the preliminary exploratory analysis, the PLSR were repeated for each variety 

individually. Because of this, results in Tables 1 and 2 are also broken down 

into varieties. As it was expected, coefficients of determination increased while 

RMSEC and RMSEP decreased. 

Figure 5 shows the loadings resulting of the PLSR model for total flavanols and 

it indicates the most dominant wavelengths. The spectral region between 1100-

1300 nm showed important contribution to the model loadings and is mainly 

related to the combination band of O-H symmetric and anti-symetric stretching 

vibration, the combination band of C-H aromatic second overtone, and C-H third 

overtone vibration. These can be attributed to the chemical structure of phenolic 
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compounds [41,42]. The first O-H stretching overtone contributes to spectrum at 

1400 nm, hence the moisture affects expansively to this band. In this case, the 

influence can be attributed to the loss of water that grape seeds suffer at the 

same time that flavanols develop [43]. According to Goodchild et al. [44], bands 

close to 1600 nm are attributed to condensed tannins. 

 

4. Conclusions 

The PLSR models were successfully performed to evaluate flavanols in grape 

seeds. These were able to predict the concentration of flavanols of a sample 

based on spectral features as the predictor variables with a coefficient of 

determination of R2 of 0.75 for total extractions and 0.85 for extractions with 

model wine solution. Furthermore, this coefficient reached up to 0.88 when 

varieties were considered individually. On the other hand, PCA was suitable for 

grape seeds characterization regarding the variety, proving the suitability of the 

methodology previously established. 

It is well known that in the case of agricultural products the range of the 

variability should be as large as that expected in any future samples. In this 

work, seeds from different cultivars have been collected during ripening; 

therefore this variability should be enough to develop models in a feasibility 

study. Nonetheless, a comprehensive study must be made in order to evaluate 

other factors such as different production areas, vintages and varieties, for the 

complete development of these models. Though it is not yet a substitute for 

conventional chemical analysis, it arises as an attractive alternative due to its 

simplicity and quickness. By establishing the variables that affects each cultivar, 
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this could become a reference method to assess the chemical characteristics of 

grape seeds during maturation, being very useful for vine growers and wineries. 
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FIGURE CAPTIONS 

Figure 1. Flow chart of the image processing and spectral treatment used in this 

study. 

Figure 2. Spectra of seeds and background highlighting the bands included by 

the forward stepwise discriminant analysis. 

Figure 3. Average reflectance spectra and average processed spectra of each 

variety. Shaded areas represent the standard deviation at each wavelength. 

Figure 4. (a) Dependency of PC1 with date. (b) Scatterplot of scores for PC2 

and PC3. Circles represent Zalema and squares represent Tempranillo, in turn, 

filled and unfilled marks belong to calibration and prediction sets respectively. 

Figure 5. Loadings plot for the first three PLS Factors of the regression model 

for total flavanols prediction. 



Table 1. Summary of chemical analyses for all samples and regarding the 

variety (all results were expressed as mg of catechin equivalents per gram of 

grape seed). 

  N 
Extraction 

Mean Minimum Maximum Std.Dev. 

All Samples 95 
model wine 2.26 0.12 7.21 2.22 

total 15.82 4.28 34.26 7.74 

Zalema 50 
model wine 2.54 0.38 6.48 2.40 

total 15.85 5.63 28.05 6.93 

Tempranillo 45 
model wine 1.95 0.12 7.21 1.98 

total 15.78 4.28 34.26 8.63 

 

Table 1



Table 2. Calibration and prediction results for the PLS models obtained from 

processed spectra (all results were expressed as mg of catechin equivalents 

per gram of grape seed). 

 N Extraction 
PLS 

Factors 
R

2
C RMSEC R

2
P RMSEP 

All samples 95 
model wine 3 0.82 0.92 0.85 0.88 

total 3 0.73 4.01 0.75 3.86 

Zalema 50 
model wine 2 0.83 0.98 0.85 0.92 

total 1 0.82 2.90 0.82 2.93 

Tempranillo 45 
model wine 2 0.88 0.67 0.88 0.69 

total 6 0.94 2.09 0.88 2.89 

 

Table 2
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