Rough Shapley functions for games with a priori unions

M. Basallote?®, J.M. Gallardo?®, C. Herndndez-Mancera® and A. Jiménez-Losada®
aDepartment of Applied Mathematics 11, ETSI, University of Seville, Spain

ABSTRACT

A family of allocation rules for cooperative games with a priori unions is introduced
in this paper. These allocation rules, which will be called rough Shapley values,
are extensions of the well-known Shapley value for classical cooperative games. The
family of rough Shapley values, which is constructed by using rough sets to describe
different cooperative options, includes several of the extensions of the Shapley value
found in the literature. We prove that the rough Shapley values are the allocation
rules for games with a priori unions that satisfy some reasonable properties.
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1. Introduction

The theory of cooperative games with transferable utility studies situations in which a
group of agents cooperate to obtain some profit. One of the main goals of this theory
is to provide fair allocation rules for distributing the profit among the agents. The
Shapley value [17] is the most commonly used allocation rule. But the use of the
Shapley value requires symmetry in the relationships between the agents. However,
there are often special alliances or incompatibilities which condition the way in which
the agents interact. These situations require specific models. The model on which this
article is based is that of cooperative games with a priori unions, introduced by Owen
[13] in 1977, which is focused on the study of cooperative situations where there are
prior group alliances between agents. Such alliances are described by partitions in the
agent set. Owen’s model has been generalized using other types of structures, such
as coalition configurations [1], proximity relations [5] or colored graphs [12]. Owen
obtained and characterized a value for games with a priori unions. This value extends
the Shapley value in the sense that in the particular case that there are no previous
alliances, it is equal to the Shapley value. Since 1977, multiple extensions of the Shapley
value have been obtained for games with a priori unions (see, for instance, [2,3,11]).
Besides, modifications of the Shapley value for a priori unions were given by Brink
and Dietz [4] and by Gongalves-Dosantos and Alonso-Meijide [8].

Regarding Owen’s model for cooperative games with a priori unions, the reasons for
the formation of prior groups can be various, such as interests related to the game itself,
external interests, family or friendship relationships or geographical proximity. It is at
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this point that the motivation for the present paper arises. It seems reasonable that
the nature of the previous alliances will influence how players from different coalitions
cooperate. Thus, a group may act coercively (this is the case of the situations studied in
[9]), preventing its members from cooperating unless the entire group participates, or
it may be indifferent, or it could even encourage its members to cooperate with other
agents, as long as the whole group benefits from such cooperation. These different
behaviors should affect the allocation rule. In order to formally describe the different
possible behaviors of the prior groups, we propose to use rough sets, introduced by
Pawlak [14] in 1982. In each set of agents (coalition) we will consider the partition
induced by the prior groups, and then we will use some coefficients to describe the
behavior of the sets in this partition. In game theory, rough sets have been used mostly
in non-cooperative games (see, for instance, [10]). In cooperative games, Polkowski
[15] used them to estimate the worths of certain coalitions in games with incomplete
information. In this paper we use rough sets to obtain a family of values for cooperative
games with a priori unions. These values are extensions of the Shapley value. The
method that we use is constructive and it allows a parametric description of the
values in the family, similarly to how Radzik and Driessen [18] describe a family of
solutions for standard cooperative games. Besides, we introduce a new approach to
obtain solutions for cooperative games with a priori unions, in the sense that we do
not use a model based on a two-step negotiation.

This paper is organized as follows. In Section 2 we recall some preliminaries con-
cerning cooperative games and games with a priori unions. In Section 3 we present an
axiomatic description of a family of extensions of the Shapley value for games with
a priori unions. In Section 4, another family of extensions of the Shapley value is de-
scribed. In this case the description is not axiomatic. Instead, this family is obtained
by applying the Shapley value to a parametric modification of the underlying game
taking into account the a priori unions. Finally in Section 5 we show the equivalence
between the families obtained in Sections 3 and 4.

2. Games with a priori unions

Let N be a finite set with |[N| = n. A cooperative game on N is defined by a char-
acteristic function v : 2 — R where 2% is the set of all subsets of N and v () = 0.
The elements of N are called players, the subsets S C N coalitions and v (S) is the
worth of S, that is, the collective payment that the players in .S would obtain if the
cooperate. We denote by GV the family of cooperative games with set of players N.
The set of games G is a real vector space with dimension 2" — 1 if we consider the
operations v +w and av with v,w € GV and a € R given by (v+w)(S) = v(S) +w(S)
and (av)(S) = av(S) for every S C N. If T € 2V \ {0} the unanimity game of T is the
game ur € GV defined by ur (S) = 1if T C S and ur (S) = 0 otherwise. Unanimity
games form a basis of GV, that is, every game v € GV can be written as

v = Z A%”T, (1)

{TCN:T#0}

where the numbers A%, are called the Harsanyi coefficients of v. Player ¢ € N is said
to be null in v € GV if v(S) = v(S \ {i}) for every S C N. If # is a permutation
of N then we denote i = 6(i) for each i € N and 6S = {6i : i € S} for each
S C N.If v € GV then the permuted game is the game v € GV with 6v(6S) = v(S)



for every S C N. A payoff vector for a game v € GV is any vector z € R™. The
component z; is interpreted as the payment of player i € N. A value on GV is a
function fV : GN — RY, which assigns a payoff vector fV(v) to each game v € GV,
The best-known value for cooperative games is the Shapley value [17], ¢". For each
game v € GV the payoff of a player i € N is defined by

(s —1)l(n—s9)!
n! ’

oY (W)= Y A (S) —u(S\{i})], with 7} = (2)

{SCN:ieS}

where s = |S|. The Shapley value satisfies the following properties: (S1) efficiency: if
v € GV, then Y,y oY (v) = v(N); (S2) linearity: if v,w € GV and a,b € R, then
oV (av + bw) = ag™ (v) + bp™ (w); (S3) null player property: if i € N is a null player
for v € GV, then ¢ (v) = 0; (S4) symmetry: if 6 is a permutation of N and v € G¥,
then ¢p) (6v) = ¢ (v) for every i € N. Notice that symmetry implies equal treatment
of symmetric players, that is, if i,7 € N, v € G and v(S U {i}) = v(S U {j}) for all
S C N\ {i,j}, then ¢;(v) = ¢;(v). These properties characterize the Shapley value,
that is, ¢ is the unique value on GV that satisfies linearity, efficiency, null player
property and symmetry. A solution function for cooperative games is a mapping f
that assigns a value f¥ on GY for each finite set N. The Shapley function is the
solution function ¢ that assigns to each finite set of players N the Shapley value on
N.If v € GN and N’ C N, then the game v € GV’ is the characteristic function v
restricted to 2V'. The Shapley function satisfies this property: (S5) if N is a finite
set of players and i € N is a null player in v € GV, then gbév(v) = ¢§V\{z} (v) for all
je N\{i}.

Owen [13] introduced games with a priori unions. Starting from the idea that in
a cooperative situation some players are more likely to act together than others, he
considered prior alliances in the set of players. An a priori unions structure or partition
is a family P of disjoint nonempty sets of players, namely a partition of a certain set
N(P) = Ugep A In our case N = N(P). Each element A € P is called a union or
group and it is interpreted as a set of players with common interests. A partition P
is individualist if |A| = 1 for all A € P, and it is globalist if |P| = 1. A coalitional
solution function is a mapping f that assigns a value f7 on G to each partition P. In
particular, all solution functions are coalitional solution functions which do not take
into account the partition, that is, f7(v) = f¥ (v) if N(P) = N(P') = N. Owen [13]
described a two-step method to obtain a coalitional solution function, which turned
out to be an extension of the Shapley function. Let P = {44, ..., A,,} be a partition
and v € GV. Let us denote M = {1,...,m}. The quotient game vp € GM for v is given
by vp(Q) = v (N(P?)) for all Q C M where P9 = {4,:q € Q}. Foreach SC A€ P
we define the restricted partition Pg = (P \ {A}) U {S}. A game w, € G4 for each
q € M is now introduced as wgy(S) = d)é\/[ (vpg) for all S C A,. Finally, the Owen
function is defined as the coalitional solution function v where for every partition P,
ve GV and i€ N,

WP (0) = ¢} (wy), (3)

where A, is the group in P such that i € A;. In both globalist and individualist
partitions the Owen function and the Shapley function coincide, that is, ¥¥ (v) =
¢V (v) for all v € GV. The Owen value ¥ satisfies (S1-S3) but not (S4). The Owen
function has two main criticisms: it satisfies the null player (thus denying a reasonable



payoff to any null player that is part of a coalition with at least one non-null player)
and the equal treatment to the individualist partition and the globalist partition (it
does not differentiate between these two extreme cases).

3. Coalitional Shapley functions

Several extensions of the Shapley value for games with a priori unions have been
studied in the literature [2-4,8,11]. Not all of them retain the essence of the Shapley
value. For example, extensions have been defined that are not linear or that provide
only group payoffs (not individual ones). With the idea of describing a family of
coalitional solution functions, we propose an axiomatic definition that ensures that we
maintain fundamental properties of the Shapley value. In addition, we have searched
for axioms that are satisfied by the majority of extensions of the Shapley value for
games with a priori unions introduced in the literature.

We propose the following axioms for a coalitional solution function f.
EFFICIENCY. If P is a partition and v € G¥, then Zflp(v) =v(N).

1€EN
LINEARITY. If P is a partition, a,b € R and v,w € GV, then f7(av+bw) = af¥ (v) +
bfF (w).

Let P be a partition. A permutation 6 over N is P-compatible if 6A € P for all
AeP.

COMPATIBLE SYMMETRY. If 6 is a permutation P-compatible over N for a partition
P, then f].(0v) = fF(v) for all v € GV.

Observe that compatible symmetry implies equal treatment of symmetric players
i,7 € N in v if 4,5 are in the same group, in the sense that f7(v) = ff(v) (this is
called intracoalitional symmetry in [7]). Let P be a partition. The set A € P is said to
be a null group for v € GV if any i € A is a null player for game v. The following axiom
is a slight modification of the property of independence of null coalitions introduced
in [7].

NULL GROUP PROPERTY. Let P be a partition. If A € P is a null group for v € GV
then

0 ificA
P — ) )
fi(0) { fiP\A(U), otherwise.

If we take an individualistic partition then the axioms above correspond to the
classical axioms (S1-S4) of the Shapley value plus condition (S5).

Definition 3.1. A coalitional solution function is said to be a coalitional Shapley
function if it satisfies efficiency, linearity, compatible symmetry and null group prop-
erty.

The Shapley function and the Owen function are examples of coalitional Shapley
functions. Other examples are the values introduced in [11] and [3]. The proportional
Shapley value introduced in [2] is not a coalitional Shapley function since it is not
linear. Later we will show that there are more coalitional Shapley functions.

In the following section we present a constructive method that allows to obtain a
family of coalitional Shapley functions. With this method we will achieve the following:



e A parametric description of the family, similar to the description obtained by
Radzik and Driessen [18] for a family of solutions for standard cooperative games.

e A new approach to obtain solutions for games with a priori unions, which is not
based on a two-step negotiation.

e A way of modeling the attitude of the groups in the negotiation.

4. Rough Shapley functions

In the approach proposed by Owen [13] to obtain a solution for games with a priori
unions, two assumptions stand out: 1) in order to determine the collective payoff of a
prior coalition, all the prior coalitions must act en bloc, and 2) in order to determine
the payoff of each player in a prior coalition, the rest of the prior coalitions must act
en bloc. Therefore, if the partition of N is P = {4, ..., A, }, the only coalitions that
matter in Owen’s model are those of the form A;, U... U A;, , UFE where £ C Aj.
The rest of the coalitions are totally ignored. This, in addition to entailing loss of
information, seems somewhat arbitrary, since it presupposes certain attitudes of the
players towards coalition formation. Our goal is to introduce a broader model that
allows to consider a range of attitudes of the players, and in which Owen’s model is a
particular case. Thus, in this paper, in order to obtain a coalitional Shapley value, we
will have to somehow describe how partitioning affects coalition gains.

4.1. Rough versions of a game with a priori unions

We propose to use rough set theory [14] in the context of cooperative games with a
priori unions. Let P be a partition and N = N(P). If S C N then the interior and
the closure of S in P are, respectively,

S = U A and S= U A. (4)

{AeP:ACS} {AeP:ANS#0}

Coalition S is said to be crisp if S = S, that is, if it is the union of groups in the
partition. Any non-crisp coalition is called a rough coalition.

Suppose that the players in a coalition S intend to cooperate. If S is crisp, then it
is clear all the players in S can cooperate without any restrictions and the players in
N\ S will play no role. If S is not crisp, then the situation is different, since the players
in S that are not in S do not have complete freedom to cooperate within S, since they
are in prior groups which are not contained in .S, and, therefore, the players in these
groups could impede their cooperation. In this case, following rough set theory, we will
use the lower approximation (i.e., the interior) and the upper approximation (i.e., the
closure) of S, and we will use some coefficients to express the payment achievable by
coalition S (taking into account the a priori union structure) as a linear combination
of the payments (ignoring the a priori union structure) of the coalitions in the interval
[5,5] = {R: S C R C S}. The coefficients of this linear combination will be denoted

o, for each R € (S, 5]. The set of all coefficients will be o = {(a}%) : S C N}.

In this way we can consider a new game v® as

Re[S,5]

v (S)= Y aju(R) ()



for each S C N. It is clear that this construction is too general, and that we need to
require conditions on the coefficients 0‘%

Definition 4.1. Let P be a partition of a finite set N. A rough coefficient for P is
a set of real numbers o = {(O‘%)Re[é‘,g} 18 C N} that, for any A € P, satisfies the
following three conditions:

1) Sharpness: a4 = 1.

2) Invariance: ap 4 = o, for all S C N\ A and R € [S, S].

3) Completeness: if SC N\ A, Re[S$,5]and S C T C SU A, then

T _ S
Z Qrur = @R-

Le(0,A]

The family of rough coefficients for P is denoted by RC*. For each o € RC? and
v € GV, the game v® defined by (5) will be called a-rough version of v .

For any partition, the family of rough coefficients is nonempty, since we can take
ag =1 for all S C N and the rest of numbers equal to zero. This rough coefficient is
called the crisp coefficient and it is denoted by 6. It is clear that v® = v for any coop-
erative game v € G. Moreover if P is individualistic then the only rough coefficient
is the crisp coefficient and hence the only rough version of the game is itself.

Our aim now is to justify the conditions in Definition 4.1. The following proposition
shows that the a-rough versions of cooperative games are the games v® which do not
modify either the payments of crisp coalitions or the character of null players which
are contained in null groups.

Proposition 4.2. Let P be a partition of a finite set N. The numbers a =
{(O‘%)Re[é R S C N} form a rough coefficient if and only if, for every cooperative
game v € GV, the following conditions hold:

1) v*(S) = v(S) for every crisp coalition S C N,
2) ifi € A€ P and all players in A are null players in v, then i is null in v®.

Proof. Firstly we will take a rough coefficient a and prove that the conditions above
are satisfied.

1) If S is crisp then S is a union of groups, that is, S = A; U... U Ay with
Ajq,..., A, € P. By sharpness, o/gi = 1. By invariance, it follows that o’} 772 =
1. Successively applying the invariance property we obtain that ag = 1. Since
(S, 5] = {S}, we have v*(S) = a$v(S) = v(9).

2) Suppose that A € P and all players in A are null players in v. f T' = {iy, ..., i} C
A, then, for all R C N,

v(R) = v(RU{i1}) = v(RU{i1,d2}) = - - = v(RU{i1, ..., ip—1}) = v(RUT). (6)
Let S,T C N be such that S C N\ A and T'C A. We will prove that

v*(SUT) =0vY(9). (7)



We can suppose that 7' is nonempty. If 7' = A then A C S _U A and hence we have
[SUA,SUAl={RUA: R¢€I[S,5]}. For each R € [5, 5] we have a3’4 = a5
by the invariance property of a, and also v(RU A) = v(R) by (6). Therefore,

Y(SUA) = Y apfiv(RUA) = > afu(R) =v*(S).
Re[$,5] Re[$,5)

Now we consider T' # A. In this case, we obtain the interval
[SUT,SUT)={RUL:RelS,5], L0 A}

By completeness, each R € [S’ , 5] satisfies Y Lel0,A] a%diz = 0413%. We also have
that v(RU L) = v(R) by (6). Therefore,

v (SUT) = Z Z apFv(RUL) = Z v(R) Z apt
Re[$,5) Le[0,A] Re[S$,5] Le(0,A]
= > v(R)af=v*(9).

Re[S,5)

Finally we take i € A and we prove that ¢ is a null player in v*. Let S C N\ {i}.
If we apply (7) to the pair (S\ A4, (SNA)U{i}) and also to the pair (S\ A4,SNA),
we obtain

V(S U{i}) = v(S\ A) = v*(8).

Now let o = {(a%)Re[é,é] : S C N} be such that conditions 1 and 2 described in

the proposition are satisfied. Let us prove that « is a rough coefficient.

Take A € P.

Since A is crisp, we have, by condltlon 1, that u%(A) = ua(A) = 1. Besides, by
definition, u%(A) = au (A) = a4. We conclude that o satisfies sharpness.

Now consider S C N\ A and § # 5" C A. We aim to check that if R € [S, S], then

Z ARl = o (8)
Le[s’,5"]

We will proceed by induction on d(R) = |S| — |R|. We will use the unanimity game
up. Notice that all players in A are null players in ug.

BASE CASE. If d(R) =0 (i.e., R = S) we take the game ug. By condition 2 all players
in S’ are null players in ug. From (6) and definition (5) we obtain

Z agy =u(SUS) = ul(S) = ad.
Lels',8)

INDUCTIVE STEP. Suppose that (8) is true for d(R) < k. Let us check that then it is
true for d(R) = k. If we calculate u%(SUS’) and u%(S) and take into account (6) and



condition 2, we obtain

Z Z agily, = uR(SUS") = uf(S) = Z . (9)

R'€[R,S] Le[S",9) R'€[R,S]

For each R’ € [R,S]\ {R} we have that d(R’) < k and we can apply the induction
hypothesis. Therefore, > Le[$.81] S, = af,. From this and (9) we conclude that

Sus’
Z QRUL = O‘R

LelS',9]

We have proved (8). Now, if we apply this equality to $' = A then [$", 5] = {A} and
we obtain invariance. And if we apply (8) to S’ € [0, A] \ {0, A} then [S’, 5] = [0, A]
and, by taking T'= S U S’, we obtain completeness.

O

4.2. The magic cube of a rough coefficient

In this section we will identify a rough coefficient with a magic cube. Then we will
solve the system of equations that determines a rough coefficient. This will give us
information about the dimension of the family of rough coefficients.

Let N = {1,...,n} and P = {4;,...,An}. We assume that we have a coalition
Sas S =S5 U---US, where S, C A; is a nonempty subset in each group'. The
completeness condition says

S S\Sk
Q) ym = ) m
Z Up:1,p¢k T,UR p=1,p#£k T,
RCA,

forany k =1,...,mand T, C A, withp = 1,...,m, p # k. In a similar way, using again
the completeness property,

aS\quQ Sq — aS\quQuk Sq
Useq TaVR Useo Ta
RCA,

for all nonempty @ C {1,...,m}, with k ¢ @ and with cardinality |Q| < m — 1. If
|Q] = m — 1, namely Q = {1,..,m} \ {k}, then we actually have

Z a(Z)UR =1

RCA,

Thus we obtain a magic cube structure. Figure 1 shows this idea with three groups.
We use the notation a%IRQRg to represent a%luRzum with R, C Ay for k =1,2,3.
We aim to calculate the dimension of the set of rough coefficients. We will solve
the linear system formed by the conditions of the definition of rough coefficient for a
given coalition S. Invariance implies again that we can assume S = S;U---U Sy, with
() # Sk C Ay for every k = 1,...,m. Let |Ax| = ax and consider a; < -+ < ay,. Our
unknowns are the coefficients oz% with R C N. For this goal, we will describe the system

11f S, = A}, for some k then the invariance condition implies that this group can be removed.



S\S: S\S:
o« i

> S\S
@ o 56

- xS
S\S3 o S\ ¢ e
X a0 adz i £ v
. e . u
s s s\, i ya ,‘ /
4100 Qpa,6 0 Cao i L

H \Ss S L LS\Ss P
e S S\, L) a4, L <
Apa,ds X gay o)

I 1 e
............ s S\S; | s
............. Wy SN 4}?
1 1
e e Lo
o S\ESD_ (52
[ i)
S\(5,USz)_ _S:
a TR = oG
(5\52 5\S;
00, 04, &@
2 s
£ . 8 U
// 'l U
L
- S\(S2US3) _ o S > —— S\S5 S\S3 " u @ S\(51US2)_ ocs S\Sy
A, %4y g/ = 0 o A;~ Ya s | ===
S Q)
S S\S. Y s T
a N\ o oy | mm = af S oy 1 %
i . 4 ' | &
1 ) . :
1
4 1
I Al S\S.
1 —— e - —
- 5%, ©oas
S\(51US. s. S\S, 5\s; |7
o M ,423=°‘A§<_“m; - o2 /

o 5‘\(51u53: qu,
Figure 1. 3D rough magic cube.

as a matrix using the following orders for unknowns and equations. We consider each
family 24% ordered by the size and the labels. For example, if A, = {1,2,3} then we
take the order in 241: {0, 1,2,3,12,13,23, A;}. The unknowns are ordered as follows.
First we set a subset of A1, then one of Ay, and so on until we reach A,, where we
traverse all subsets of it using the above internal order in 24=. We repeat the process
by changing the element fixed in A,,_1, later with A,,_2 an so on until A;. Let’s look
at the idea in the three-group example. In this case, we go through the faces in the
cube that face us (those of the direction A;) from the bottom towards us; in each face,
from the left column to the right; and, in each column, from top to bottom:

S S S S S S S S
Qe > CPPA52 > XPAL07 - XPAL Az - XALPBr - XA DA - YA ALDr ) YA Ay Ay

The number of unknowns is 2X+=1 %, We order the equations transversely to the
unknowns. First we put the equations running through A; with the other groups with
fixed coalitions (again taking into account the internal order of the groups). Then the
ones that run through As and so on. For example, in the figure the first equations are



s s _ S\S2
Qggp T T a0 = Yo

s .8
QU pas T T ¥4 4,4,
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“oag T T Wayas T YAy

S S _ S\S2
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= XAy A

S S _ S\S3
Apg Tt 2Gpa, = Yo

S s _ S\S3
Qage Tt Aaya; = Ya,

S S _ S\S3
o Tt XA 04, = Yagp

S s _ S\Ss
Qa0 T T QA A4, = YA,

The number of equations is ) ;" ; 22 p=1.p2+ % For each k = 1,...,m—1 we consider the
identity matrix I of size 29+ Tan (particularly I,,, = [1]). Now, for each k = 1,...,m
we define a sequence of blocks:

HY =

[T - - -9ar Ig], Hi’ =

p—1
Hk

. .9ak—p

p—1
Hk

for p=1,....,k — 1. The extended matrix of the system of equations is described in m

zones as follows

r S\S1
.9

S\ Sy
XAy Ay,

S\S%
a@“.ik@

Hm!

L XAy Ay

10




Doing a zoom to see the identities of the first block we have

S\S1
Q.
I I
S\S1
aA2”‘A77L
5%
)
HY 0 0 :
S\ S
YpAz A,
0 H)Y 0
0 0 Hg .
5\ S
aAlAB"'Afn
S\ Sy,
Qg
k—2 .
Hy 0 0
S\ Sk
awAZ' kAn'L
0 Hf? 0
k—2
0 0 Hy LS\SE
Ai- —kA7n
S\Sm
Qg0
0 0 :
S\ Sm
FPAz Ay
0 Hp—2 0
m—2 X
0 0 Hpy \Sr

11

a
AyrAp 1




Do rowsy = rowsy — H,f_Q Trowsq,

_ S\5 ;
Qg
n :
S\S1
AV Bagh, AV
2 1
Qyg — ZRQAQ ApRp...0
0 —HY —HY —HY :
S\ Sa S\S1
XAz Ay, T ZRQAQ QRA5-Ap,
0 HY 0
0 0 HY
S\S2
QA Aq Ay,
S\ S\51
Ay ZRCAk 0 R0
k—2 k—2 k—2
0 —Hf —Hf —Hf
S\ Sy _ 1
D= DAz _pAm ZRQAk Az Ry Am
0 Hf? 0
k—2 .
0 0 Hf s\ss
YAy Am
S\Sm S\S1
ap.g" ~ 2RCAn Y. 0R
0 —HP"2 | _gm=2 | _gm—?
S\Sm S\S1
OAg Ay~ DSRCAm XAz Ay 1R
0 H 2 0
0 0 Hm—2 S\S3
L QAL Apy 1 .

We solve 292 1Tan unknowns, those with the form ozg*‘

12

_,» in the first zone of the



matrix. The k-zone is transformed by the following operations

S\ S S\{S1,5k} b
Ayl — %p
k—2 k—2
—Hy —Hy :
S\ Sk _ S\{S1,Sk}
a@A2“>kAm aAz"‘kaAm
k—2
Hy 0
k—2
0 H LS\
L A g Am _
r S\ S S\{S1,5k}
2RCA; YRoo ~ Y0
0 0 :
S\ Sk S\{S1,5k}
2 RCAL YRAG A T VAge A
k—2
Hp 0
k—2
0 Hy S\Sy
L YAy A
I 0 0 0 ]
S\ S
«a
_ 1}0---0
H/lj 2 0 {1}
k—2 .
0 H S,
L aAl“‘—kA'm, |
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The systems is reduced to

_ S\ Sa -
8%
1}0---0
|| oo | O
0 HY :
S\ Sa
QYA Ag A,
aS :gk
1}0---0
at o |
D =
k—2
0 Hy \Ss
QA1 pAm
aS :Srn
1}0---0
HT'r;;L—Q 0 { }
m—2 .
0 Hy NS
L YAy Ay

If we repeat the process m times we get to solve a set of unknowns in the form
S with g =1,...,m.

see (g kee e

Remark 1. The conclusion we draw from solving this system is that, when looking
for a rough coefficient, a subset of numbers with the form

o (10)

KB gy ke ok

with ¢ = 1,...,m are determined by its properties. This fact will be used in Section 5.

4.3. The concept of Rough Shapley function

If we fix a partition and a rough coefficient, we can obtain a value by taking the
Shapley value of the rough version of each game.

Definition 4.3. Let P be a partition of N and a rough coefficient & € RCT. The
a-Shapley value is defined as ¢*%(v) = ¢(v®) for all v € GV.

In order to obtain a coalitional function we must associate a value to each partition.
But we will require some conditions, which are presented below.

Definition 4.4. Consider a family of rough coefficients o = {a(P)}p, one for each
partition P, satisfying

14



e Symmetry. If P is a partition and 6 is a permutation of N, then azg))(H(P)) =

S
az.(P).
e Reduction. If P is a partition, A € P and S C N\ A, then a3 (P\{A}) = a3(P).

The rough Shapley function defined by « is the mapping ¢“ that assigns to each
partition P the value ¢7*P) on GV.

The condition of symmetry means that the coefficients are independent of the label-
ing of the players. The condition of reduction means that the coefficients are inherited
from any partition P to partitions contained in P.

For simplicity of notation, when a family of coefficients a and a partition P are
fixed we will write « instead of a(P).

Notice that the classic Shapley function is a rough Shapley function. Indeed, if
for each partition P we consider the crisp coefficient 9, it is clear that {d}p satisfies
symmetry and reduction. Besides, ¢7% = ¢ for any partition P. The classic Shapley
value is a rough solution that does not take into account the structure of groups.

5. Relation between both families of Shapley functions

Theorem 5.1. Rough Shapley functions are coalitional Shapley functions.

Proof. Consider a rough Shapley value ¢ where « is a family of rough coefficients.
Our goal is to prove that ¢® is a coalitional Shapley function.
1) Efficiency. The Shapley value is efficient (S1), so for any partition P and v € GV,

Dol w) =D oM (1) = v (N) = v(N),

i€EN 1EN

where the last equality follows from the fact that IV is crisp and Proposition 4.2.
2) Linearity. The property follows from the linearity of the Shapley value (S2) and the
fact that for any partition P, games v,w € GV and a,b € R

(av + bw)® = av® + bw®.

3) Compatible symmetry. Let P be a partition, § a P-compatible permutation and
v € GN. The symmetry property of a implies that agg = a% because #P = P. For

each 05 with S C N we have that 0T € [0S, 05] if and only if T € [S, 5], and then

00)*(0S) = > afFfu(0T) = v*(S) = 6v*(6S).
0T€[05,65]}

Since the Shapley value satisfies symmetry,
;" (00) = 83 ((60)%) = gy (Bu™) = B} (v*) = &) (v).
4) Null group property. Let P be a partition and v € G. Suppose that A € P is a

null group for v. By Proposition 4.2 all the players in A are null players in v*. If i € A,
then qﬁf’o‘(v) = ¢V (v*) = 0 by (S3). Now take i € N\ A. For each S C N\ A we have,
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by the reduction property of «, that

P8 = 3 PRI = 3 of(P\ Ap(T) = 2P (S)
1¢[5.5) 1ei55)

where [S, 5] is the same in P and P\ A because S C N \ A. Let A = {iy, e ip}. We
proved before that i1, ...,7, are null players in v*(P) By (Sh),

‘bP’a(v) _ ¢£\/(,Ua(77)) — ¢£V\{i1}(,ua(7>)) L ¢N\A(va(p))

a @ PW) = 67V w).

O]

In the following example we will show the construction of a rough Shapley function,
which will be a coalitional Shapley function different from the Owen value and from
the classic Shapley function.

Example. We aim to define a particular family of rough coefficients a. To this end,
we need a previous construction. Suppose that A is a finite set and S a nonempty set
with S C A. For all T C A we define

A _|SnT|

and h4(A, A) = hA(0,0) = 1. If we randomly (and with equal probability) choose an
element in S and then randomly (and with equal probability) choose an subset of A
that contains the element chosen, the number A4 (S, T') is equal to the probability that
the subset of A chosen is equal to T'. The following equality holds:

> S, T) =1. (11)

Te[0,A]

If |S| = s, |Al = a and p = |SNT| then

A B |SnT| 1
E:: h (S,TO o EE: |SWQVH—1‘7 “ﬂQLM—l 2{: ’SFW]W
Te[0,A] T€e[0,A] Te[0,A]

1 /s _ 1 /s
= T (p) 2= et 2 <p> !
p=0 p=1
1< <s—1> 1 5_1<3—1>
= ) Z _1)57 951 Z =1
5§28 = p—1 28 = P

where we have used two well-known combinatorial iode_ntities2. Now consider the par-
tition P = {Ay,..., A, }. For each S C N and T € [S, S], we define

ap =[] »™(SkTh),
keHp(S)

koo () =27 k() =r(20)
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where S, = SN A and Hp(S) = {k : Si # 0}. Let us prove that « is a rough
coeflicient.

Sharpness: since Hp(A,) = {p} we have that aﬁz = htr (A, A,) = 1.

Invariance: suppose that S C N\ A,. Clearly, Hp(SUA,) = Hp(S)U{p}, (SUA,), =

Ap and (SU A), = Sg with k # p. Moreover, if T € [S, 5] then T' U A, satisfies the
same properties. We have

gy = b (A A T hA (S Ti) = of.
keH»(S)

Completeness: let S C N\ A,, R € [5,5] and T € (S,S U Ap). Let T = SUK

with K € (0,A4,). Since Hp(S U K) = Hp(S) U {p} we have that, if k # p, then
(SUK) = S and (RUL)y = Ry. Besides, (SUK), = K and (RUL), = L. We have

ORI VI | GCITERER

Le[0,A,) Le[0,Ay) ke Hp (SUK)
= > (&L [ »*(SkRe)
Le[D,A,)] keHp(S)
= JI »™(SkBe) > r*(K,L)
keHp(S) Le(0,A,]
= H hAk (Sk7 Rk) — a‘ls%' = agﬁiz,
keHp(S)

where we have used (11) and invariance.

If we take the coefficient above a(P) for each partition P we obtain a family of rough
coeflicients, because, by construction, this family satisfies symmetry and reduction.
Therefore, ¢© is a rough Shapley function, and, by Theorem 5.1, a coalitional Shapley
function.

Let us calculate ¢®(v) for a particular partition P and a particular game v € G11:23},
Take P = {{1,2},{3}} and the unanimity game u3} € G123} We have that

K2 ({11, 0) = -2 ({2}, 0) = A2 ({1}, {21) = A2 ({2}, {1}) =0,

P2 ({1}, (1)) = B ({23, (21 = BB {1,2) = A0 (23, 01,2)) = 172,
Besides, by definition,
R12 0, 0) = K12 ({1,2},{1,2}) = A3 (0,0) = K ({3}, {3}) = 1.

The rough version of a game v € GV is

V(1) = o1} + 3o({1,2), 07 ({2}) = Zo({2)) + 5o({1,2)), v ({3)) = v({3)),

v({1,2)) = v({1,2), v({1,3}) = ({1, 3)+5u(N), v*({12,3}) = Ju({2,3})+ 50(N),
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In particular, u?173}({1,3}) =1, u?lyg}({Q,S}) =1/2, u?l,g}(N) =1 and u?l?g}(S) =0
otherwise. The classical Shapley value and the Owen value coincide for this game,
returning the payoff vector

N (ug13y) = (1/2,0,1/2).
It is easy to check that
9% (u1,3y) = (4/12,1/12,7/12).

Notice that ¢ does not satisfy the null player property. Indeed, ¢§(ug 3y) > 0, al-
though player 2 is null in wugy 3y. This player receives a payoff for being part of a
coalition, {1,2}, that is not irrelevant.

The following equality is a classic exercise of linear algebra that we will use in the
proof of Theorem 5.2. Let x1,x2..., Tpn, Y1, Y2, ---, Yn € R and n € N. Then,

1+ T T
Ty TaFY2 - ) ° "z
Dp=| . ) =Iw|1+> =) (12)
k=1 1 Ik
Tn Tn xn+yn

n
Moreover, D,, = x}. H Ul —i—ykDfL,l, where thl is the determinant obtained when
{1=1,1£k}
we delete row k and column k in the expression of D,,

The last result of this paper is devoted to prove that the rough Shapley functions
“almost” complete the family of coalitional Shapley functions. A partition P is said
to be a partition into large groups if |A| > 2 for every A € P. Games with a priori
large unions model situations which are interesting to analyze. For instance, the Owen
value was applied to these games to study the power in the European Parliament [6]
and in the International Monetary Fund [16].

Theorem 5.2. If f is a coalitional Shapley function then it coincides with a rough
Shapley function on partitions into large groups.

Proof. Let f be a coalitional Shapley function. Let P be a partition into large groups,
that is, |A| > 2 for all A € P. We will prove the result by induction on the cardinality
|P| of the partition.

BASE CASE, |P| = 1. Consider f restricted to the games over the globalist partition
P = {N}. Notice that in this case compatible symmetry means symmetry because all
the permutations over N are compatible with {N}. Hence, f is a value that satisfies
efficiency, linearity and symmetry (an ELS-value? following [18]). Proposition 2 in [18]
says that there is a coefficient b, for each cardinality s = 0, ...,n with by = 14, b, = 1

3Moreover, the null group property only says f{N}(0) = 0. But combining efficiency with symmetry the same
equality is achieved. Thus both families of values can be identified.
4Actually, in [18] took by = 0 but this number is not significant.
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and

0= S A beo(S) = beoro(S\ {i})].

{SCN:ieS}

We take, for each non-crisp coalition S, a% =0if0#AT#S8S, ag = bjs| and ag =1-
bjs|- Observe that we have constructed a rough coefficient for partition { N'}. Sharpness:
the only crisp coalitions in this partition are N and (), and b, = by = 1. Invariance:
it is true because b, = bg. Completeness: let S =), A = N and T € 2V \ {), N}. We
have

E afza%—i—bm =1=b,.
Le[0,N]

Therefore, using this rough coefficient, we obtain ¢{Vhe = FIN}

INDUCTION STEP. Suppose that f coincides with a rough Shapley value for partitions
with cardinality less than m, that is, there exists a family of rough coefficients « such
that

g7 = [P (13)

for any partition P with |P| < m.

Take a partition P = {A1,..., A }. Let N = Uy ep A = {1,...,n}. We look for a rough
coefficient a(P) = a to define f7 = ¢P.

Reduction condition implies that all the numbers a*; with SN A, =0 (or SNA, = Ag
by invariance) for k = 1, ...,m are determined by (13). Following Section 3, coefficient
o must satisfy the rough magic cube. By (10) all the numbers o with 7'N Ay = () for
some group k = 1,...,m are determined. Hence, only the numbers o with T'N Ay, # 0
and SN Ay # Ay for all K =1, ...,m are not determined.

The rough coefficient must satisfy the equations gﬁf’a(v) = fF(v) for each i € N and
game v on N. If we use the linearity axiom of f we can reduce the system to the
equations

di(ufy) = 6] *(un) = fT (um) (14)

for all i € N and H C N nonempty. Moreover, we can assume H N A, # () for
all k = 1,...,m. Indeed, if H N A, = 0 for some k = 1,...,m then, by the null group
property, fF (uy) = fZD\A’“ (ug) for any i € N\ Ay and f7 (uy) = 0if i € Ag. Therefore
the payoffs in the games are determined. The same happens with any feasible ¢¥°.
Suppose H = Ty UTy U ---T,, with T, C Ag and Ty # 0 for any k = 1,...,m. We
consider the sets Ty in H (and also in P) such that:

o T, =A;fork=1,...p (p€{0,....,m}),
o Ty # Apand |T| >1for k=p+1,....,p+q (¢ € {0,....,m — p}), and
o Tx|=1fork=p+qg+1,..,m.

Now we use the axiom of compatible symmetry for f¥ and ¢”® to reduce the number
of equalities in (14). So, we obtain the following cases:

e For k = 1,...,p : there is only one different payoff in Ay, ¢;, (ufy) = fZ;(UH),
because all the players are internal symmetric players in ug.
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e For k =p+1,...,m : there are two different payoffs in Ag, ¢;, (u$y) = fF (un)
and ¢j, (ufy) = fﬁ(uH) with i, € T} and ji € Ay \ T, because all the players in
T}, are internal symmetric players in uy and also all the players in Ay \ Tk.

So, we have five types of payoffs (one in the first kind of equations, two in the second
one, and two in the third one). We reduce (14) to p + 2(m — p) equations with the
structure

ST Aty u(S) — uf(S\ {ik )] = L (un), k=1,..m (15)
{SCN:i,eS}

> Ay [ (S) —ug(S\ )] = L (un), k=p+1,...m  (16)
{SCN:j,eS}

where

ug(S) = Z o

Re[SUH,S)

We suppose them in the following order: for each k = 1, ..., p the equation in (15) and
for every k =p+1,...,m first the equation in (15) and second the equation in (16).
We choose one player representing each group, that is, df € A forany k=1,...,m,
such that dkH eTpforallk=1,..,p+qand dkH € Ag\Ty forall k=p+q+1,..,m.
This election is feasible because the groups are large. Let

D ={af', .., dll}.

We select p + 2(m — p) unknown numbers to solve (15,16):

o fork=1,...m: aDHu{i’“H}, with il € T}, \ {d7} for equation (15),

efork=p+1,...,m: agHU{j’?}, with jH € Ay \ (T U {d}) for equation (16).

We consider these unknowns ordered like their associated equations. Let ap = |Ag|
and ty = |Ty| for k = 1,...,m. We will take into account the symmetry condition of
a in order to join equal numbers and get the structure of the matrix in Figure 2,
where we focus on the coefficients of our unknown numbers in order to study their
determinant. The explanation of how we get the different coefficients is in the Annex
of the paper. We note that some numbers Xé with [ = 1,2,3,4,5 appear in Figure 2,
whose formulation can be seen in the Annex, which are independent of the unknowns
and which are repeated in all the equations of each row of blocks. In a second step
we take out X;! with ¢ = 1,...,5 for the different rows, observe that X;! # 0 for all
k=1,...,5. We also take out the values

a.—1 t.—1 ; ae — 2
a. —
2 9 2 Y C Cy 2

from the columns of kinds 2,3,4 and 6 respectively. They are not zero because the
groups are large. The reader must take into account the element of the main diagonal
in each case. The result is Figure 3. We transform the main diagonal as
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DU}
“H

DUy - Dfufilly DM u{jl'y
Qg ay ag

ptl..ptq p+l..p+q p+q+1,.., prqg+1,....m

t.—1
—- e XgifQ . X (ac—tc)- X X,

[2vm41 = (@ = 27m4a] (s — (@6 = Dagal Brinsn = (@ = D] D = (@0 = Dfigal D = (a0 = Digal bina = (@ = Dol

x2de=1 xele= 1, X (ac—tc) - b2 x28=2 .

p+1,..,p+gq 2 2 2 2

[2”,/,",L+1 — (i = 2)7’,",L+2] [7"::l+1 —(ty — 1)7";#2] ["/'17:z+1 — (ty — 1)777:z+2] ['r’::wrl — (s — 1)7::;+2] h::url =t — 1)')’:;}+2] ['V::Hrl =t — 1)7::;+2]

X3 X301, xpte=1, X3 (ac — to)- X3 X3 =2
p+1,...p+q [ 2 2 2

V1 A n n n

b —(ap =t — 17"y [ Tm+2] [—¥ma2] [Ym+2] [~ Va2 ] V2]

Xf . X{} ac—1 . Xt-;l I,(.;l . X;] (ac —te)- Xf- Xf cICiQ .
p+qg+1,.., 2
Ve . . =7 J
i [Ym+1] [—Vhiz] [=ia] [z ] [—Ym+2 ] 70sa]
xp @2, X%t Xple— 1 X} (ac = te) - x;- xple—2,
p+q+1,.., 2 2 2 2
Jo 129241 — (a6 — 372 o] Drmaa — (@6 = 2)7maa] [rmea — (@6 = 2)7imaa] [V — (@6 — 2)vmpa] Dimaa — (@6 — 22l [V — (a6 — 27710

Figure 2. Kinds of rows and main diagonal. Step 1.

. DH Uy DH Uy H g iH H g
Main d; ay ’ ay ’ o? u{sc o? o{ig'} (IIE;HU{J‘H"
b Lo.p ptl...pty p+1,..p+q p+q+1,...,m p+q+1,...m

2741 = (@b = 2)vmia] Dimar = (@6 = D] [rmrs — (@6 — Dvmaa] s — (@6 — Dol [mss — (@6 — Dol [Ym41 — (a6 = Dy o]

p+1,..,p+q
[29mr1 = (& — 2)7ma2] [Mmer = (G = Dome]l  [Ymas = (G = Dymae] Dinar = & = Dvmral s = @6 = Dvmaal Dimar = (8 = Dvimra]
ip

i i n
p+1l..p+q = [“/erl n P, n n
. ap —ty ~Vm+2 “Vm+2 T2 ~Tm+2 ez
Jb —(ap =ty — D]
p+qg+1,.. ~m
@ _n A Tm+2 -
AR 1 Ym+2 Im+2 V2l e

iy

n

p+q+1,..
prar 2241 — (@ — 3072l s — (@6 = D7l Dinrs = (@ — 2)¥inrel Piss = (@ — 20¥nre] Dmas — (@6 — 207msa] Dmss — (@5 — 2700

Jb

Figure 3. Kinds of rows and main diagonal. Step 2.
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Forb=1,...,p,

2%?%1 - vhz(ab - 2) = [’ngrl — (ap — 1)%?#2] + [’YZ@H + ’Y;Ln+2]~

Forb=p+1,...,p+ q and 1,

2731—1—1 - (t 2)'Ym+2 ['Ym+1 (ty — 1)’)’7?1-5—2] + [’Y?n-i-l =+ 7?n+2]'

Forb=p+1,...,p+ q and 7,

1
H[’%H — (ap — ty — D)vmpa] = [=mge] + HWZH + Y2l
e Forb=p+q+1,...,m and 7,
Y41 = [_’Ygl+2] + [’YZ@H + ’Y;Ln+2]~

Forb=p+4+q+1,...,m and 7,
2Ym41 — Ymg2(ab = 3) = [Ymg1 — (@ — 2)maa] + Vg1 + Y2l
Following equality (12), we obtain the determinant

(Vi1 + Vo) e

p+q
14 Z 7m+1 (ar — 1)’%4—2 i Z 7;114-1 — (tx — 1)’7?;14—2

D2m—p HP-‘rq (a _ t ) fy + ,-y ,)/’n + ,yn
k=p+1\%k k m+1 m-+2 k=p+1 m+1 m+2
p+q
4 Z 7m+2 ap — ty) —Vont2 + Y1 (ar — 2)7;}%2
ki et T Umee L Vmet T Vmye o Ymgn T Vmae

2m—p—1
(Vg1 + Yimy2)
= Dmntom [(m+ Dl + (m =0+ 1]
k p+1(ak tk)

It is easy to check that Ds,,_, = 0, because

(m+ )ympr +(m—n+ 1)y, =0.

But there is a condition on the payoffs of f7, efficiency, that we have not used. We only
needed to verify 2m — p — 1 equalities, that is, we can consider the same determinant
with one less equation and one less unknown. If there exists k with ag # t; then we
delete row k and, by (12) (it can be multiplied by aj — tx),

2m—p—2

) (Va1 T Vo)

# 0,
| (K 1.k (ab — )

k _.n
D3 p1 = Yo (ar — tk

where D’gm_p_l is the determinant obtained when we delete row and column k in
Ds,y,—p,. Now we suppose ay, =t for all k =1, ...,m. In this case

k —p—
D2m—p—1 = (7;,17,4_1 - (ak - 1)77?1—&-2)(721—5—1 + an+2)2m b 2‘
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If there is k € {1,...,m} with v}’ — (ax — 1), # 0, then we delete row k and we
get D§m_p_1 #0.If vy 1 — (ax — 1)y .0 = 0 for all k = 1,...,m, then all the groups
have the same size ay = ;.%7. But if all the groups have the same size a then am =n

and this implies a = . O
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Appendix A. Explication of Figure 2

We explain here the five different kinds of rows showed in Figure 2.

1) Consider an equation corresponding to b € {1,...,p} in (15). Take D¥ U {i} with
i ¢ Ap. Observe that if there are K symmetric (in P) coalitions S containing i
to it in the equation, then there are also (a; — 1)K symmetric S\ {i;} options

- . . DHU{s} .
to it in the equation. So, the coefficient of number o/, is

K [%?zﬂ - %7}1+2(ab - 1)] (A1)

ptq
Let X = Hak H ty H (ar —1). We look for the coefficient of the chosen

i#% k=p+1 k=p+q+1
numbers in this equation, analyzing the five kinds of numbers plus the number

corresponding to the equation.

1.1 Number a/; brutiy (we cannot apply (A1) here) It appears for all the coali-
tions equivalent by symmetry to S = D U {z }, namely

p+q

p
(lb—ll_[ Htk H ak—l

k=1  k=p+l1 k=p+q+1
o Ptq

times, and with coalitions equivalent by symmetry to S\ {is} = DT U{i{’},
namely

(“b‘l)Hak Mo 1 @-

k¥1 k=p+1 k=p+q+l

times. So, the coefficient of this number is

ap — 1
2

Xl

[2%7}1-5-1 — (ap — 2)’an+2] .

1.2 Number a ot }, with ¢ € {1,...,p} \ {b}. The quantity K of symmetric
coalitions (compatlble in P) S containing i, to D U {ifl} is

<)Hakpﬁ'tk M (-1

=p+1  k=p+q+1
k;éb’c =p =p+q

Since (A1) we get the coefficient of this number in the equation

-1

a
Xl C2 [%Tvlwrl — (ap — 1)777;L1+2} .
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1.3 Number aZHU{if}, ce{p+1,..,p+q}. We obtain in this case

( )Hak Mo I @

k=p+1  k=p+q+1
k’# k#c

Since (A1) we get the coefficient of this number

te—1 n
Xl z 9 [731-4—1 — (ap — 1)’Ym+2] .

1.4 Numbera Ol ,ce{p+1,...,p+q}. We get
p+q

K =t.(a.—t. HakHtk‘ H (ap — 1),

k=p+1  k=p+q+1
ksﬁb k#c

and then, from (A1), the coefficient of the number is

Xbl(ac - tc) ['Y;L@-s-l - (ab - 1)’721-#2] .

DHU{if}

1.5 Number o/ ,ce€{p+q+1,..,m}. It holds

p p+q m
=[la IT & II (@-.
1]27:&11) k=p+1  k=p+g+1
Since (A1) the coefficient of the number is
Xl} [7;11-4-1 — (ap — 1)’qu+2] .

1.6 Number o, DL ,ce€{p+q+1,..,m}. We get
g — 1\ £ ptq m
K:< 9 >Hak H tk H (ak—l).
k#b o

Using (A1), the coefficient of the number is

ae — 2
X1 62 [’7%-1—1 — (ap — 1)%nn+2] .

2) Consider an equation corresponding to b € {p+1, ..., p+q} in (15). Take DT U{i}
with i ¢ Tp. Observe that if there are K symmetric (in P) coalitions S containing
ip to it in the equation, then there are also (¢, — 1)K symmetric S\ {4;} options

o . . DHU{i} .
to it in the equation. So, the coefficient of number o/, is

K [Vt — Ymga(ts = 1)] (A2)
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p+q
Let X2 Hak H ts H ax — 1). We look for the coefficient of the chosen

=1 k=p+1 k=p+q+1
kb
numbers in this equation.

2.1 Number ozZHU{if}, ¢ € {1,...,p}. The quantity K of symmetric coalitions
(compatible in P) S containing i, to D7 U {3} is

( )Hak Mo I @-

k=1 k=p+1  k=p+q+1
k#c k+#b

Since (A2) we get the coefficient of this number in the equation

-1

a
XQ 02 [’Y%-H — (tp — 1)')’::1-1-2] .

2.2 Number a DFGET (we cannot apply (A2) here). It appears for all the coali-
tions equlvalent by symmetry to S = D U {i'}, namely

p+q

tb—l Hakntk H ak—l

k=1 k=p+1 k=p+q+l
k#£b

times, and with coalitions equivalent by symmetry to S\ {iy} = D* U{i{’},
namely

th—1 p+q
("3 >Hakntk M (a1
k=1 k=p+1  k=p+q+1
kb

times. So, the coefficient of this number is

ty
Xz? [2%?1-5-1 - (tb - 2)%7&2] .

DHU{iH}

2.3 Number a/; ,ce{p+1,...,p+q}\ {b}. We obtain in this case

Since (A2) we get the coefficient of this number

ote—1
2

X

[%?LH - (tb - 1)7&4—2] .
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2.4 Number a Tl ,eef{p+1,...,p+q}. We get

pt+q

K:tc(ac—tc)Ha Htk H (ap — 1),

k=1 k=p+l k=ptqtl
k#b,c

and then, from (A2), the coefficient of the number is
)(5(&0 _'tC)[743+1 _'(tb‘_'1)74h+2]'
DHU{iH}
2.5 Number o/ ,ce{p+q+1,...,m}. It holds

p+q

K= Hak Htk H (ap —1).

k=1 k=p+l k=p+q+1
k+£b

Since (A2) the coeflicient of the number is
X5 [ = (to = D] -

2.6 Numbera Tl y,ce{p+q+1,..,m}. We get

k= (", Te o 1T @-n

k=1 k=p+1 k=p+q+1
k#b k#c

Using (A2), the coefficient of the number is

ae — 2
X7 C2 (Y1 — (s — D] -

3) Consider an equation corresponding to b € {p+ 1,...,p+q} in (16). Observe that

g» & DH U {z} ifi ¢ Ap\ Tb So, number a ) only appears as S\ 7, in (16).
p+q

Let X3 Hak H (7 H (ar, —1). We look for the coefficient of the chosen

=1 k=p+l k=p+q+1
numbers in thls equation.
H - H
3.1 Number 0‘1]?1 utic }, c €{1,...,p}. The quantity of coalitions S containing i,
such that S\ {i,} was symmetric (compatible in P) to D U {il'} is

( )Hak Mo I @-

k#l k=p+1  k=p+q+1

Hence we get the coefficient of this number in the equation

3ac — 1
b 02 Vim-42-
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3.2

3.3

3.4

3.5

3.6

DHU{iH
Number o/ e}

options

,ce{p+1,...,p+q}. We have the following quantity of

<>thakﬁtk H (ap — 1).

k=p+1 = k=p+q+1
k+b,c

So we get the coefficient of this number

te—1
3
b C2 '7?n+2'

DHU{jH} o .
Number « . It appears for all the coalitions equivalent by symmetry

to S = DH U {jZ}, namely

Hak H tr H (ar — 1)

k=1 k=p+l k=p+q+l

times, and with coalitions equivalent by symmetry to S\ {iy} = DT U{j{’},
namely

p p+q
(ab—tb—l)Ha H tk H ak—l

k=1 k=p+1 k=p+q+1

times. So, the coefficient of this number is
XI? [%Trlz-qu — (ap —tp — 1)%?1-5—2] .

Number agHU{jCI‘{}, ce{p+1,....,p+q}\{b}. We get the number for S\ {7}
symmetric to D U {5} in quantity

p+q

Hak H tr H (ap, — 1),

k=1 k=p+1 k=p+q+l

and then the coeflicient of the number is

_Xb( )'7m+2
Number aD e }, ce{p+q+1,..,m}. The coefficient is
_Xt?%?zﬁ-
Number a Bt ,c€{p+q+1,..,m}. We get symmetric versions of this
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coalition as S\ {j}

Therefore the coefficient of the number is

30c — 2
b 62 YVmt2-

4) Consider an equation corresponding to b € {p+q+1,...,m} in (15). This case is
similar to 3), so let X;} = X. We comment the coefficient of the chosen numbers
in this equation.

4.1

4.2

4.3

4.4

4.5

4.6

Number aD uii}

equation is

, ¢ € {1,...,p}. The coefficient of this number in the

40c—1
b 62 %?wrz-

Number aZHU{if}, ce{p+1,..,p+q}. We have the coefficient

-1

X 2 7m+2

Number agHU{jf}, ce{p+1,..,p+q}\{b}. The coefficient of the number
is

_Xl?(ac - tc)71?1+2'
Hy{sH

Number o I }. This case is different to 3). It appears only for all the
coalitions equivalent by symmetry to S = D U {zb }, namely

p+q

ab—l Hakntk H ak—l

k=p+1 k= p—;q—i—l

times. So, the coefficient of this number is
4
Xy Ymt1-

DHU{iH} . .
Number a; ,ce{p+q+1,..,m}. The coefficient is

4. n
b Ym+2-

Number agHU{jf}, ce{p+q+1,..,m}. The coefficient of the number is

40c — 2
b 62 Vim-42-
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5) Consider an equation corresponding to b € {p+q+1,...,m} in (16). Take D¥U{i}
with @ ¢ Ay \ Tp. Observe that if there are K symmetric (in P) coalitions S

containing j, to it in the equation, then there are also (a; — 2)K symmetric

S\ {j»} options to it in the equation. So, the coefficient of number ozg Ui i

K [’7%4—1 - 'Y;L@+2(ab - 2)] (A3)

p+q
Let X5 Hak H ts H (ar —1). We look for the coefficient of the chosen

=1 k=p+l k=p+q+l
kb

numbers in this equation.

5.1 Number ozZHU{if}, ¢ € {1,...,p}. The quantity K of symmetric coalitions
(compatible in P) S containing j, to DH U {ifl} is

( )Hak ﬁ v 1] (a-1).

k=1 k=p+1  k=p+q+1
k#c kb

Since (A3) we get the coefficient of this number in the equation

a. — 1
X5 02 [’7%-1—1 — (ap — 2)’77nn+2] .

DHU{iH} .. .
5.2 Number aj; ,ce{p+1,..,p+q}. We obtain in this case

<tc>Hak Mo 11 @-v.

k=1 k=p+1 k=p+q+1
k#c k#b

Since (A3) we get the coefficient of this number
te—1
XF?CT (a1 — (ab = 2) V2] -

5.3 Number a Tulh ,ce{p+1,...,p+q}. We get

and then, from (A3), the coefficient of the number is

X;?(ac - tc) [’YZ;L@-H - (ab - 2)%7?1-1-2] .
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5.4 Number aZHU{if}, ce{p+q+1,..,m} It holds

p+q

= (a.— 1) Hakntk H (ar —1).

k=p+1  k=p+q+1
k#b,c

Since (A3) the coefficient of the number is
Xl? [777;1—&-1 — (ap — 2)'777rlz+2] .

5.5 Number afIHU{ij } (we cannot apply here (A3)). We get S symmetric to
DRy {jH} for

p+q

(lb—2 Hak Htk H ak—l

k=p+1 k= p—;q—i—l

times and as S\ {iy} in

<ab2—2>Ha Mo 1 @1

k=1 k=p+l k=p+q+l
kb

The coeflicient of the number is

ap — 2
Xp= (2 — (@ = 3)7ia) -

5.6 Numbera Uty y,ce{p+qg+1,....,m}\ {b}. We get

p+q
= (e I o 11
k=1 k=p+1 k=p+q+1
k+£b,c

Using (A3), the coefficient of the number is

a. — 2
X 62 [ 1 — (ap — 2) 7 4] -
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