
Rafael Zancan Frantz
Supervised by Dr. Rafael Corchuelo

Enterprise

 Application

 Integration

An Easy-to-Maintain

Model-Driven Engineering

Approach

SERIES
PhD

TD
G

DO
C
T
O R

A L

D I S S
E R

T
A
T
IO
N

ENTERPRISE APPLICATION
INTEGRATION

###
AN EASY-TO-MAINTAIN MODEL-DRIVEN

ENGINEERING APPROACH

RAFAEL ZANCAN FRANTZ

UNIVERSITY OF SEVILLE

DOCTORAL DISSERTATION
SUPERVISED BY DR. RAFAEL CORCHUELO

FEBRUARY, 2012

First published in February 2012 by
The Distributed Group
ETSI Informática
Avda. de la Reina Mercedes s/n
Sevilla, 41012. SPAIN

Copyright c⃝ MMXII Rafael Zancan Frantz
http://www.tdg-seville.info
contact@tdg-seville.info

In keeping with the traditional purpose of furthering science, education and research,
it is the policy of the publisher, whenever possible, to permit non-commercial use and
redistribution of the information contained in the documents whose copyright they
own. You however are not allowed to take money for the distribution or use of these
results except for a nominal charge for photocopying, sending copies, or whichever
means you use redistribute them. The results in this document have been tested care-
fully, but they are not guaranteed for any particular purpose. The publisher or the
holder of the copyright do not offer any warranties or representations, nor do they
accept any liabilities with respect to them.

Classification (ACM 1998): D.1.2 [Automatic Programming]; D.1.3 [Concurrent
Programming]; D.2.6 [Programming Environments]: Integrated environment, Pro-
grammer workbench; D.2.10 [Design]: Representation; D.2.11 [Software Architec-
tures]: Domain-specific architectures, Languages, Patterns, Service-oriented architec-
ture; D.2.12 [Interoperability]: Distributed objects; D.2.13 [Reusable Software]: Do-
main engineering; H.3.4 [Systems and Software]: Distributed systems; J.6 [Computer-
Aided Engineering]: Computer-aided design.

Support: PhD scholarship granted by the Evangelischer Entwicklungsdienst e.V.
(EED). Additional support for research visit granted by the University of Seville Re-
search Programme and Intelligent Integration Factory, S.L, and for attending con-
ferences by the Spanish and the Andalusian R&D&I programmes (grants TIN2007-
64119, P07-TIC-2602, P08-TIC-4100, TIN2010-21744, TIN2008-04718-E, TIN2010-
09809-E, TIN2010-10811-E, TIN2010-09988-E, and TIN2008-04951-E).

http://www.tdg-seville.info
mailto:contact@tdg-seville.info

University of Seville

The committee in charge of evaluating the dissertation presented by Rafael
Zancan Frantz in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Software Engineering, hereby recommends

of this dissertation and awards the author the
grade .

Miguel Toro Bonilla

Catedrático de Universidad

Univ. de Sevilla

Mario Gerardo Piattini Velthuis

Catedrático de Universidad

Univ. de Castilla–La Mancha

Nieves Rodríguez Brisaboa

Catedrática de Universidad

Univ. de A Coruña

Carlos Molina Jiménez

Research Associate

Newcastle University

José Luis Arjona Fernández

Contratado Doctor

Univ. de Huelva

To put record where necessary, we sign minutes in ,
.

Enterprise Application Integration by Pedrinho, aged seven.

To Fabi.
To my parents.

To my brother and sister.

Contents

Acknowledgements . xv

Abstract . xvii

Resumen . xix

Resumo . xxi

Abstrakt . xxiii

I Preface

1 Introduction . 3
1.1 Research context . 4
1.2 Research rationale . 6

1.2.1 Hypothesis . 6
1.2.2 Thesis . 7

1.3 Collaborations . 8
1.4 Summary of contributions . 10
1.5 Structure of this dissertation . 13

2 Motivation . 15
2.1 Introduction . 16
2.2 Problems . 17
2.3 Analysis of current solutions . 20

i

ii Contents

2.4 Discussion . 23
2.5 Our proposal . 24
2.6 Summary . 27

II Background Information

3 Enterprise Integration Patterns . 31
3.1 Introduction . 32
3.2 Categories of patterns . 32
3.3 An example . 35
3.4 Summary . 36

4 Camel . 37
4.1 Introduction . 38
4.2 Exchanges . 39
4.3 Endpoints . 40
4.4 Processors . 40
4.5 Routes . 41
4.6 Error detection . 42
4.7 The Café integration solution . 42
4.8 Summary . 44

5 Spring Integration . 45
5.1 Introduction . 46
5.2 Messages . 47
5.3 Endpoints . 47
5.4 Message channels . 49
5.5 Error detection . 49
5.6 The Café integration solution . 50
5.7 Summary . 51

6 Mule . 53
6.1 Introduction . 54
6.2 Messages . 55
6.3 Endpoints . 55

Contents iii

6.4 Processors . 56
6.5 Flows . 57
6.6 Error detection . 58
6.7 The Café integration solution . 58
6.8 Summary . 59

7 Model-Driven Engineering . 61
7.1 Introduction . 62
7.2 Model-Driven Architecture . 63
7.3 Software Factories . 65
7.4 Summary . 67

III Our Approach

8 Domain-Specific Language . 71
8.1 Introduction . 72
8.2 Abstract syntax . 75

8.2.1 Integration solutions . 76
8.2.2 Processes . 76
8.2.3 Ports and links . 77
8.2.4 Tasks and slots . 79
8.2.5 Datatypes . 80

8.3 Concrete syntax . 81
8.4 General-purpose toolkit . 81
8.5 Summary . 82

9 Software Development Kit . 91
9.1 Introduction . 92
9.2 The framework layer . 92

9.2.1 Messages . 92
9.2.2 Tasks . 94
9.2.3 Ports . 95
9.2.4 Processes . 96
9.2.5 Adapters . 97
9.2.6 The Runtime System . 98

iv Contents

9.3 The general-purpose toolkit layer . 103
9.4 Summary . 105

10 Model-to-text Transformations . 107
10.1 Introduction . 108
10.2 Transforming processes . 108
10.3 Transforming ports . 109
10.4 Transforming tasks . 110
10.5 Transforming communicators . 111
10.6 Generating the starter . 112
10.7 Summary . 113

11 Error Detection in Integration Solutions 115
11.1 Introduction . 116
11.2 The Meta-information database . 118
11.3 The Event Handler . 120
11.4 The Error Detector . 125

11.4.1 Finding correlations . 125
11.4.2 Finding the artefacts involved in a correlation 126
11.4.3 Finding sub-correlations . 128
11.4.4 Finding failing rules . 129
11.4.5 Verifying correlations . 132

11.5 Complexity analysis . 133
11.5.1 On the implementation . 134
11.5.2 Handling events . 134
11.5.3 Detecting errors . 135

11.6 Fault tolerance experiments . 137
11.6.1 Experimentation patterns . 137
11.6.2 Experimentation parameters and variables 141
11.6.3 Experimentation results . 143

11.7 Summary . 149

12 Case Studies . 153
12.1 Introduction . 154
12.2 Café . 155

12.2.1 The software ecosystem . 156

Contents v

12.2.2 Solution . 156
12.2.3 Error detection rules . 157
12.2.4 Experimental results . 158

12.3 Unijuí University . 159
12.3.1 The software ecosystem . 159
12.3.2 Solution . 160
12.3.3 Error detection rules . 161
12.3.4 Experimental results . 162

12.4 Huelva’s County Council . 163
12.4.1 The software ecosystem . 164
12.4.2 Solution . 164
12.4.3 Error detection rules . 166
12.4.4 Experimental results . 166

12.5 Travel Search . 168
12.5.1 The software ecosystem . 168
12.5.2 Solution . 168
12.5.3 Error detection rules . 169
12.5.4 Experimental results . 171

12.6 Travel Booking . 172
12.6.1 The software ecosystem . 172
12.6.2 Solution . 173
12.6.3 Error detection rules . 174
12.6.4 Experimental results . 174

12.7 An experiment using JBI adapters . 176
12.8 Summary . 177

IV Final Remarks

13 Conclusions . 181

Bibliography . 187

vi Contents

List of Figures

1.1 Overall picture of our contributions . 11
1.2 Timeline of our contributions . 12

3.1 Processing order items individually (from Hohpe and Woolf [54]) . . 35

4.1 Conceptual model of Camel . 38
4.2 Café integration solution designed with Camel 43

5.1 Conceptual model of Spring Integration . 46
5.2 The Café integration solution designed with Spring Integration 50

6.1 Conceptual model of Mule . 54
6.2 The Café integration solution designed with Mule 58

7.1 Abstraction levels in the Model-Driven Architecture 64
7.2 Abstraction of a Software Factory . 66

8.1 Conceptual map of our Domain-Specific Language 72
8.2 Typical integration solution designed with Guaraná DSL 74
8.3 Main constructors of Guaraná DSL . 75
8.4 Partial view of Guaraná DSL’s general-purpose toolkit 82
8.5 The Enquirer pattern . 86
8.6 The Normaliser pattern . 87
8.7 The Scatter-Gather pattern . 88
8.8 The Claim Check pattern . 88
8.9 The Message Bridge pattern . 88

9.1 Packages of which our framework is composed 92

vii

viii List of Figures

9.2 Message model . 93
9.3 Task model . 94
9.4 Port model . 95
9.5 Process model . 97
9.6 Adapter model . 98
9.7 Task-based runtime model . 98
9.8 Initialising the Runtime System . 99
9.9 Creating and starting monitors . 100
9.10 Creating and starting workers . 101
9.11 Executing a WorkUnit . 102
9.12 Task model in the toolkit . 103
9.13 Adapter model in the toolkit . 104

11.1 Abstract view of the monitor for error detection 116
11.2 Sample integration solutions . 118
11.3 Model of the Meta-information database . 119
11.4 Textual syntax for error-detection rules . 119
11.5 Syntactic sugar for error-detection rules . 119
11.6 Sample error-detection rules . 120
11.7 Model of the Event Handler . 121
11.8 Sample work graph . 123
11.9 Model of Error Detector . 124
11.10 Sample correlation . 127
11.11 Artefacts involved in a correlation . 128
11.12 Correlation that does not satisfy a rule due to excess of bindings . . 130
11.13 Sub-correlation that causes a rule to fail due to lack of bindings . . . 131
11.14 The Pipeline pattern . 137
11.15 The Dispatcher pattern . 138
11.16 The Merger pattern . 138
11.17 The Request-Reply pattern . 139
11.18 The Splitter pattern . 139
11.19 The Aggregator pattern . 140
11.20 Experimental results for the Pipeline pattern . 140
11.21 Experimental results for the Dispatcher pattern 142
11.22 Experimental results for the Merger pattern . 144
11.23 Experimental results for the Request-Reply pattern 146
11.24 Experimental results for the Splitter pattern . 148

List of Figures ix

11.25 Experimental results for the Aggregator pattern 150

12.1 The Café integration solution . 157
12.2 Error detection rules for the Café solution . 158
12.3 Experimental results for the Café solution . 159
12.4 The Unijuí University integration solution . 161
12.5 Error detection rules for the Unijuí University solution 162
12.6 Experimental results for the Unijuí University solution 163
12.7 The Huelva’s County Council integration solution 165
12.8 Error detection rules for the Huelva’s County Council solution 166
12.9 Experimental results for the Huelva’s County Council solution 167
12.10 The Travel Search integration solution . 169
12.11 Error detection rules for the Travel Search solution 170
12.12 Experimental results for the Travel Search solution 171
12.13 The Travel Booking integration solution . 173
12.14 Error detection rules for the Travel Booking solution 174
12.15 Experimental results for the Travel Booking solution 175
12.16 Experimental results for the Café solution using JBI adapters 176

x List of Figures

List of Tables

2.1 Maintainability measures of Camel, Spring Integration, and Mule . . 21
2.2 Maintainability measures of Guaraná . 25

8.1 Concrete syntax . 81
8.2 Router tasks . 83
8.3 Modifier tasks . 84
8.4 Transformer tasks . 85
8.5 Stream dealer tasks . 85
8.6 Mapper tasks . 86
8.7 Communicator tasks . 86
8.8 Composite tasks . 87
8.9 Configuration patterns . 89

11.1 Notation used in our error-detection complexity analysis 133

xi

xii List of Tables

List of Programs

11.1 Algorithm to handle events . 122
11.2 Algorithm to detect errors . 124
11.3 Algorithm to find correlations . 126
11.4 Algorithm to find the artefacts involved in a correlation 127
11.5 Algorithm to find sub-correlations . 128
11.6 Algorithm to find failing rules . 129
11.7 Algorithm to verify correlations . 132

xiii

xiv List of Programs

Acknowledgements

Knowledge is in the end based on acknowledgement.
Ludwig J.J. Wittgenstein, Austrian philosopher (1889–1951)

T
he first stone of big projects perpetuate dates and people. My per-
sonal project for this PhD started on the 6th of September, 2006. This
day, my wife and I contacted Dr. José Miguel Toro Bonilla by sending
him an e-mail message regarding working on our doctorates at his

University. We did not know this professor before, so we were quite anxious
about his reply. We knew that this, apparently simple, reply could change our
future. Quickly José Miguel made the necessary contacts to give us a positive
reply. Two days after, we got a “We’ll be pleased to welcome you aboard!”
message from professor Dr. Rafael Corchuelo, today my supervisor. Since that
day, Rafael spared no effort to help us to realise this project. Therefore, I am
deeply thankful for the opportunity and help these two professors in the “Old
World” gave us the opportunity to make our dreams in the “New World”
come true. In a special manner, I would like to thank Rafael for his patience,
support, and dedication during this learning period in Seville, Spain. I could
not forget to thank my colleagues from the “TDG family” for their support
and friendship.

I am also deeply thankful for the PhD scholarship granted by the Evange-
lischer Entwicklungsdienst e.V. (EED) and all the other support received from
them, without which this project would not have been possible. Last, but not
least, I would like to thank the external reviewers, namely: Dr. Vitor Manuel
Basto Fernandes (Instituto Politécnico de Leiria, Portugal), Dr. Domenico Talia
(Università della Calabria, Italy), Dr. Fernando Moreira (Universidade Por-
tucalense, Portugal), Dr. Pavol Mederly (Slovak University of Technology in

xv

xvi Acknowledgements

Bratislava, Slovakia), Dr. Rita Francese (Università degli Studi di Salerno,
Italy), Dr. Schahram Dustdar (Vienna University of Technology, Austria),
Dr. Hongji Yang (De Montfort University, United Kingdom), and Dr. Maria
Ganzha (University of Gdańsk, Poland).

Abstract

T he beginnings of all things are small.
Marcus T. Cicero, Roman philosopher (106 BC – 43 BC)

T
ypical companies rely on their software ecosystems to support and
optimise their business processes. Software ecosystems are com-
posed of many applications that were not usually designed taking in-
tegration into account. Enterprise Application Integration provides

methodologies and tools to design and implement integration solutions. The
Enterprise Application Integration community has adopted the catalogue of
integration patterns proposed by Hohpe and Woolf as a cookbook to design
and implement integration solutions. Furthermore, there are a few software
tools to help software engineers devise enterprise application integration solu-
tions that are based on integration patterns. Some companies are interested in
adapting these software tools to support their domain-specific tools to specific
contexts.

In this dissertation, our research hypothesis is that the current software
tools are not so easy to maintain as expected, thus increasing the costs of these
adaptation process. Our goal in this dissertation is to support the thesis that it
is possible to devise a domain-specific language and a set of domain-specific
tools to design and implement Enterprise Application Integration solutions
that are easier to maintain than the current software tools. Our core contribu-
tion consists of a Domain-Specific Language that software engineers can use to
represent the models they design for their integration problems at a high-level
of abstraction; a Software Development Kit that can be used to implement and
run integration solutions; transformations that allow for the automatic transla-
tion of models into code; and a monitoring system that allows to detect possi-
ble errors during the execution of an integration solution. Our research results

xvii

xviii Abstract

indicate that our proposal is easier to maintain than the current tools. To eval-
uate and demonstrate the viability of the contributions in this dissertation, we
present five case studies to which we applied our proposal. The results in this
dissertation have been transferred to a spin-off and have been published as
three journal papers, seven conference papers, and three workshop papers.

Resumen

El inicio de todas las cosas es pequeño.
Marcus T. Cicero, Fi lósofo Romano (106 AC – 43 AC)

E
s común que las empresas necesiten sus ecosistemas software para
dar soporte y optimizar sus procesos de negocio. Los ecosistemas
software están compuestos por muchas aplicaciones que no han sido
diseñadas teniendo en cuenta la integración. El campo de estudio co-

nocido como Integración de Aplicaciones Empresariales proporciona metodo-
logías y herramientas para diseñar e implementar soluciones de integración.
La comunidad de Integración de Aplicaciones Empresariales ha adoptado el
catálogo de patrones de integración, propuesto por Hohpe y Woolf, como un
estándar base para el diseño e implementación de soluciones de integración.
Por desgracia, hay pocas herramientas para ayudar a los ingenieros a desarro-
llar soluciones de integración de aplicaciones empresariales basadas en dichos
patrones. Algunas empresas tienen interés en adaptar dichas herramientas pa-
ra dar soporte a sus herramientas específicas de dominio en contextos especí-
ficos.

Nuestra hipótesis de partida en esta tesis doctoral es que las herramientas
actuales no son tan fáciles de mantener como sería deseado, lo que incrementa
los costes involucrados en el proceso de su adaptación. Nuestro objetivo con
esa tesis doctoral es probar la tesis de que es posible desarrollar un lenguaje
específico de dominio y un conjunto de herramientas especificas de dominio
para dar soporte al diseño e implementación de soluciones de Integración de
Aplicaciones Empresariales que sean más fáciles de mantener que las herra-
mientas actuales. Nuestra principal aportación está constituida por un Len-
guaje Específico de Dominio (DSL) que permite a los ingenieros software re-
presentar con un alto nivel de abstracción sus modelos diseñados para los pro-

xix

xx Resumen

blemas de integración; un Kit de Desarrollo de Software (SDK) que se puede
usar para implementar y ejecutar las soluciones de integración; transformacio-
nes que permiten transformar de forma automática los modelos a código; y un
sistema de monitorización que permite detectar posibles errores que ocurran
durante la ejecución de una solución de integración. Nuestros resultados de
investigación indican que nuestra propuesta es más fácil de mantener que las
herramientas actuales. Con el objetivo de evaluar y demostrar que las contri-
buciones en esa tesis doctoral son viables, se presentan cinco casos de estudio
a los que hemos aplicado nuestra propuesta. Los resultados presentados en
esa tesis doctoral han sido transferidos a una spin-off y han resultado en tres
publicaciones en revistas, siete en conferencias y tres en talleres.

Resumo

O início de todas as coisas é pequeno.
Marcus T. Cicero, Fi lósofo Romano (106 AC – 43 AC)

G
eralmente as empresas precisam utilizar os seus ecossistemas de
software para apoiar e aperfeiçoar os seus processos de negócio.
Ditos ecossistemas são compostos de muitas aplicações, normal-
mente concebidas sem levar em conta sua possível integração. O

campo de estudos conhecido como Integração de Aplicações Empresariais
proporciona metodologias e ferramentas para a concepção e a implementação
de soluções de integração. A comunidade de Integração de Aplicações Em-
presariais adotou o catálogo de padrões de integração, proposto por Hohpe
e Woolf, como um guia para a concepção e a implementação de soluções de
integração. Porém, infelizmente, existem poucas ferramentas para ajudar os
engenheiros de software no desenvolvimento de soluções de integração de
aplicações empresariais, tendo como base esses padrões. Algumas empresas
têm interesse em adaptar essas ferramentas com o objetivo de construir as suas
próprias, focando em contextos específicos.

Nesta dissertação, nossa hipótese é a de que as ferramentas atuais, ao con-
trário do que delas se espera, não têm uma manutenção fácil, aumentando-se,
assim, os custos envolvidos no processo de sua adaptação. Nosso objetivo
com esta dissertação é provar a tese de que é possível desenvolver uma lin-
guagem de domínio específico e um conjunto de ferramentas de domínio es-
pecífico para apoiar a concepção e a implementação de soluções de Integração
de Aplicações Empresariais cuja manutenção seja mais fácil do que a das fer-
ramentas atuais. Nossa principal contribuição consiste: em uma Linguagem
de Domínio Específico (DSL) que permite aos engenheiros de software repre-
sentar, com um alto nível de abstração, os seus modelos para os problemas

xxi

xxii Resumo

de integração; em um Kit de Desenvolvimento de Software (SDK) que pode
ser usado para implementar e executar soluções de integração; em transfor-
mações que automaticamente permitem levar os modelos a código; em um
sistema de monitoramento para detectar erros que podem ocorrer durante a
execução de uma solução de integração. Nossos resultados de pesquisa indi-
cam que a nossa abordagem tem manutenção mais fácil do que a das ferra-
mentas atuais. A fim de avaliar e de demonstrar que as contribuições nesta
dissertação são viáveis, apresentamos cinco estudos de caso nos quais apli-
camos a nossa proposta. Os resultados apresentados nesta dissertação foram
transferidos para uma spin-off e resultaram em três publicações em periódi-
cos, sete em congressos e três em seminários.

Abstrakt

Der Beginn aller Dinge ist klein.
Marcus T. Cicero, Römischer Philosoph (106 v.Chr – 43 v.Chr)

T
ypische Unternehmen bedürfen ihrer Software Ökosysteme bei der
Unterstützung und Optimierung ihrer Geschäftsvorgänge. Softwa-
re Ökosysteme bestehen aus mehreren Anwendungen, die üblicher
Weise nicht darauf ausgelegt sind, Integration zu berücksichtigen.

Unternehmensanwendungsintegration (UAI) stellt Methoden und Werkzeu-
ge für Design und zur Implementierung von Integrationslösungen zur Ver-
fügung. Die Gemeinschaft der Unternehmensanwendungsintegration nahm
den von Hohpe und Woolf vorgeschlagenen Katalog von Integrationsstan-
dards als Rezeptbuch für die Erarbeitung und Implementierung von Lö-
sungen. Zudem stehen den Softwareingenieuren einige auf Integrationsstan-
dards beruhende Softwarewerkzeuge für Lösungen zur Unternehmensan-
wendungsintegration zur Verfügung. Einige Unternehmen haben Interesse
daran, diese domainspezifische Softwarewerkzeuge an spezielle Kontexte an-
zupassen.

In der vorliegenden Arbeit besteht unsere Hypothese darin, dass die der-
zeitigen Softwarewerkzeuge nicht so einfach wie erwartet aufrecht zu erhal-
ten sind und damit die Kosten dieses Anpassungsprozesses steigern. Unser
Ziel in dieser Forschungsarbeit ist es, die These zu untermauern, dass es mög-
lich ist, eine domänespezifische Sprache und eine Palette von domänespezi-
fischen Werkzeugen zu empfehlen, um Lösungen für unternehmerische Inte-
grationsanwendungen zu entwerfen und zu implementieren, die einfacher zu
unterhalten sind als die herkömmlichen Softwarewerkzeuge. Unser Haupt-
beitrag besteht in einer domänespezifischen Sprache, die Softwareingenieu-
re benutzen können, um die Modelle darzustellen, die sie für ihre Integra-

xxiii

xxiv Abstrakt

tionsprobleme auf einem hohen Abstraktionsniveau entwerfen; ein Softwa-
reentwicklungsbausatz, der benutzt werden kann, um Integrationslösungen
zu implementieren und laufen zu lasssen; Veränderungen, die automatische
Umwandlung von Modellen in Codes ermöglichen; und ein Überwachungs-
system, das es erlaubt, mögliche Fehler in der Anwendung einer Integrations-
lösung zu erfassen. Unsere Forschungsergebnisse deuten darauf hin, dass un-
sere Vorschläge einfacher als die herkömmlichen Werkzeuge zu unterstützen
sind. Um die Machbarkeit der hier vorgestellten Beiträge zu evaluieren und
zu demonstrieren, unterbreiten wir fünf Fallstudien, auf die wir unsere Vor-
sätze anwanden. Die Ergebnisse in der vorliegenden Doktorarbeit wurden in
ein spin-off transferiert und wurden in drei Zeitschriften, sieben Konferenz-
papers und drei Workshoppapers veröffentlicht.

Part I

Preface

Chapter 1

Introduction

T he journey of a thousand miles
begins with a single step.

Chinese proverb

O
ur goal in this dissertation is to report on our work to create a
set of domain-specific tools that help design, implement, and de-
tect errors in Enterprise Application Integration solutions. In this
chapter, we first introduce the context of our research work in

Section §1.1. Section §1.2 presents the hypothesis that has motivated it and
states our thesis. Section §1.3 introduces the collaborations we have conducted
throughout the development of this dissertation. Section §1.4 summarises our
main contributions. Finally, Section §1.5 describes the structure of this disser-
tation.

3

4 Chapter 1. Introduction

1.1 Research context

Typical companies run software ecosystems [78] that consist of many ap-
plications that support their business activities. Frequently, new business pro-
cesses have to be supported by two or more applications, and the current
business processes may need to be optimised, which requires interaction with
other applications. However, it is common that these applications were not
designed with integration concerns in mind, i.e., they do not provide a pro-
gramming interface. As a result, the interaction is not always a trivial task,
and has to be carried out in most cases by means of the resources that belong
to the applications, such as their databases, data files, messaging queues, and
user interfaces.

Recurrent challenges are to make the applications inter-operate with each
other to keep their data synchronised, offer new data views, or to create new
functionalities [54]. In this context, many companies rely on Enterprise Service
Buses to develop their integration solutions, since they provide the necessary
technology to integrate disparate applications by means of exogenous work-
flows [15, 24]. An integration solution is deployed to the software ecosystem
as a new application that provides its users with a high-level view of the inte-
grated applications with which they can interact.

Unfortunately, applications are not usually easy to integrate due to many
reasons, e.g., the technologies on which they rely are different, their program-
ming interfaces are not compatible from a semantic point of view, or they
might not provide a programming interface at all, which is the case of many
web applications, legacy systems, and off-the-shelf software. Additionally, in-
tegration solutions must take four important constraints into account [110],
namely: first, the resources and the programming interfaces of the applica-
tions being integrated should not be modified at all since a change might se-
riously affect or even break other business processes; second, they must keep
running independently from each other since they were designed originally
without taking integration concerns into account, i.e., no additional coupling
must be introduced; third, the integration solution should interfere as less as
possible with the normal behaviour of the integrated applications; finally, inte-
gration must be performed on demand, as new business requirements emerge
and require support from Information Technology [17].

Integration solutions can be classified regarding whether they aim at the
integration of functionality or data. In the former group there are two types
of integration, namely: Enterprise Application Integration and Business-to-

1.1. Research context 5

Business Integration. The latter group includes other three types of inte-
gration, namely: Enterprise Information Integration, Extract, Transform and
Load, and Mashup. In the following paragraphs we describe each type.

Enterprise Application Integration focuses on providing methodologies
and tools to integrate the many heterogeneous applications of typical com-
panies’ software ecosystems. In the past few years, the application integration
community has been driven by the use of patterns to solve integration prob-
lems. This has motivated a rapid growing of pattern-oriented open-source
tools, such as Camel [58], Spring Integration [30], and Mule [27]. Enterprise
Application Integration aims to keep a number of applications’ data in syn-
chrony or to develop new functionality on top of them, in a way that appli-
cations do not have to be changed and are possibly minimally or not affected
by the integration solution [54]. From the application viewpoint, they are not
aware that they take part of an integration solution.

Business-to-Business Integration is similar to the Enterprise Application
Integration, except that the former does not limit the applications to belong to
the same company, but aims to integrate applications from software ecosys-
tems that belong to different companies. Although this seems a small dif-
ference, there are two major concerns, namely: first, typical applications in a
company’s software ecosystem are not open to the outside world; second, the
infrastructure to communicate applications in different ecosystems involves
using public networks in which security, reliability, of quality of service are
major concerns [98].

Enterprise Information Integration allows to develop integration solutions
that provide a homogeneous and on-line view of the data handled by a num-
ber of applications involved. Over this view, software engineers can execute
operations using a declarative language that allows them to query and mod-
ify data in the integrated applications. An important difference between En-
terprise Application Integration and Enterprise Information Integration is that
there are not any data flows to keep the applications synchronised in the latter,
but a global view of data. Similarly to Enterprise Application Integration, this
type of integration deals with applications from the same software ecosystem.

Extract, Transform and Load is similar to the Enterprise Information Inte-
gration. The difference is that the views are off-line. Therefore, this type of in-
tegration requires a persistent database in which the data that is extracted from
the integrated applications can be stored for further processing. It is common
that the data that are extracted from the applications need to be transformed
into a canonical schema defined by the off-line view. An off-line view is more

6 Chapter 1. Introduction

appropriate than an on-line view in situations in which the operations to be
executed on the view require a high workload, so that executing them off-line
does not affect the performance and possibly the behaviour of the original
applications. In this type of integration, the persistent databases are usually
referred to as Warehouses [89] or Data Marts [7], depending on whether they
store company-wide data or focus only on a department, customers, or sales,
to mention a few examples.

Mashups became very popular in the last years and aim to develop new
applications by composing web services [72]. Mashups differ from the previ-
ous types of integration in that they can only integrate services that provide
a programming interface, i.e., they have to provide a programming interface
that allows to interact with the service [72]. The original goal of Mashups
was to provide end-users with ability to develop new views that integrate
a set of web services. This made Mashups very popular and several com-
panies released their technologies for Mashups, such as Yahoo Pipes [113],
IBM Mashup Centre [57], WSO2 Mashup Server [112], SAP Rooftop [56], and
Jackbe Presto [60].

In this dissertation we focus on Enterprise Application Integration from
a Model-Driven Engineering perspective. Model-Driven Engineering is the
driving force behind many current Software Engineering proposals that at-
tempt to solve complex problems at a high-level of abstraction. For this rea-
son, models are promoted as first-class citizens in every phase of the software
development process; automatic code generation allows to transform these
models into executable code.

1.2 Research rationale

In this section we present the hypothesis that has motivated our research
work in the context of Enterprise Application Integration, and state our thesis,
which we prove in the rest of the dissertation.

1.2.1 Hypothesis

Integration is expensive, but necessary as new applications sprout out.
Usually, most of the functionalities and information involved in maintain-
ing an existing business process or creating a new one can be found within

1.2. Research rationale 7

a company’s software ecosystem. The reuse of these resources within the
ecosystem contributes to reducing software development costs and deploy-
ment time [5, 6, 68, 88].

Unfortunately, according to Weiss [111], the cost of integration is usually
5–20 times the cost of developing new functionalities. Development compa-
nies incur these high costs when they face their work using general-purpose
languages and tools like Java and its accompanying workbenches, instead of
using languages and tools that are specifically tailored towards solving inte-
gration problems. Software Engineers are responsible for devising these lan-
guages and tools. Domain-specific languages are intended to provide con-
structs by means of which a problem can be described at an abstraction level
that is close to the conceptual level; later, the models expressed using these
languages can be transformed automatically into low-level technologies.

Proposals like Camel, Spring Integration, and Mule provide domain spe-
cific languages for Enterprise Application Integration. Unfortunately, they do
not focus on a specific context within this domain, e.g., e-commerce, health
systems, financial systems, or insurance systems, to mention a few. Each such
context requires constructs to deal with standards and recommendations like
RosettaNet [96], HL7 [52], SWIFT [106], and HIPAA [51]. As a conclusion, if
a provider of integration solutions wishes to specialise in a specific context, it
makes sense that they try to refine Camel, Spring Integration, and Mule to deal
with the previous standards and recommendations. We focus on open-source
proposals because they are currently very used in the market. Unfortunately,
they do not seem so easy to maintain.

As a conclusion, we formulate the following hypothesis:

Companies rely on software ecosystems to support their business pro-
cesses. There is an increasing need to integrate disparate resources
within these software ecosystems. Companies that provide Enterprise
Application Integration solutions need domain-specific tools that are
easy to maintain in order to develop their customised tools for integra-
tion.

1.2.2 Thesis

The Model-Driven Engineering discipline [100] heralds the idea that con-
structing software building on high-level models helps reduce development

8 Chapter 1. Introduction

and maintenance costs [108].

Common open-source tools were not designed at a high-level of abstrac-
tion, but they were more sort of grown from source code contributed by a
variety of programmers world-wide. This has resulted in poor design that
seems to be difficult to maintain.

As a conclusion, we formulate the following thesis:

It is possible to devise a domain-specific language and a set of domain-
specific tools to develop Enterprise Application Integration solutions
within the context of Model-Driven Engineering with better mainte-
nance measures than the state-of-the-art proposals in this field.

1.3 Collaborations

Throughout the development of this dissertation, several collaborations
were conducted. Not only allowed these collaborations to gather feedback
about our research results, but they also resulted in joint publications, knowl-
edge transfer to the industry, and lots of interesting discussions, as well. In
the following, we provide additional information about each collaboration.

• Newcastle University (United Kingdom): A research visit was paid to
The Distributed Systems Research Group of the School of Computing
Science from the 9th of February until the 3rd of April, 2009. The goal
was to research on fault tolerance applied to Enterprise Application
Integration. This collaboration resulted in the following publications:
[21, 37–39, 41–43].

• University of Leicester (United Kingdom): A research visit was paid
to the Department of Computer Science of the School of Mathematics
& Computer Science from the 4th of October until the 9th of Decem-
ber, 2009. The focus was on presenting our research results, gathering
feedback from a group of researchers working on Domain-Specific Lan-
guages, and delving into other aspects of our work.

• Polytechnic Institute of Leiria (Portugal): A research visit was paid to the
Computer Science and Communication Research Centre from the 10th of
October until the 16th of November, 2011. The focus was on presenting

1.3. Collaborations 9

our research results, researching on how our work can be used to sup-
port the design and implementation of integration solutions in the con-
text of the integration problems tackled by the hosting group, applying
the techniques for optimisation used by the hosting group to Guaraná,
gathering feedback from a group of researchers working on Enterprise
Application Integration, and delving into other aspects of our work.

• Federal University of Rio Grande do Sul (Brazil): Two workshops were
held to present research results of both the Brazilian and Spanish re-
search groups. The first workshop was held in Brazil and the second
in Spain. The work carried out during this collaboration, allowed us
to prepare a proposal for a joint research project. Furthermore, a stu-
dent from the Federal University of Rio Grande do Sul has started her
master’s studies, in which she is currently researching on a novel Run-
time System that can support the execution of our proposal on Java tuple
spaces. Preliminary results are presented in [104].

• Intelligent Dialogue Systems, S.L. (Spain): This company works on the
development of interactive virtual assistants. We transferred partial re-
sults on our Domain-Specific Language to them, so that their software
engineers could try it to design models for an integration problem at
their business domain. This work allowed them to visualise their inte-
gration solution at a higher-level of abstraction, instead of at code level
as they were used to. Furthermore, it allowed us to have feedback that
helped to improve our Domain-Specific Language. Our results were
published in [22, 36].

• Intelligent Integration Factory, S.L. (Spain): This company provides ser-
vices, including the design and implementation of Enterprise Applica-
tion Integration solutions. We have chosen this company as a bridge that
allows us to validate and transfer the research results from this doctoral
thesis to the industry. Not only allows us this collaboration to contribute
to the local development, but also gives us more feedback that can be
used to drive future work.

• Huelva’s County Council (Spain): The collaboration with this public ad-
ministration was conducted at their IT Department. The goal was to
use our Domain-Specific Language and Software Development Kit to
solve the integration problem introduced in Section §12.4. This work
contributed to validate our research results, and was documented in [1].

10 Chapter 1. Introduction

Our results would not have been possible without the collaboration of the
following students and professors:

• Slovak University of Technology in Bratislava (Slovakia): Bradác [11] ap-
plied the constraint programming-based method described in [75, 76] to
find and automatically generate optimal integration solutions. In this
work, our Domain-Specific Language and Software Development Kit
were studied and compared to other open source tools.

• University of Seville (Spain): Regalado [93] constructed a workbench
that was based on Microsoft DSL Tools [20]. It built on an earlier ver-
sion of our Domain-Specific Language. This was the first version of a
graphical editor for our language.

• University of Seville (Spain): Sleiman [103] took the models serialised by
the workbench constructed by Regalado [93] and proposed a runtime to
execute them that was based on Microsoft Windows Workflow Founda-
tion [13].

• University of Seville (Spain): Lobato [70] developed a new version of the
workbench that focuses on the Domain-Specific Language presented in
this dissertation. Furthermore, this version includes model-to-text trans-
formations to enable automatic code generation based on the Software
Development Kit presented in this dissertation, as well.

• University of Seville (Spain): We carried out a collaboration with Reina-
Quintero in [43] to develop an Eclipse plug-in that supports the design
and implementation of integration solutions using the Domain-Specific
Language and the Software Development Kit presented in this disserta-
tion.

1.4 Summary of contributions

To prove our thesis, we have developed Guaraná. Figure §1.1 presents an
overall picture. The metamodel of Guaraná supports a number of concepts
that software engineers can use to devise their integration solutions. Note
that the metamodel is divided into two parts, namely: a core, which supports
a subset of concepts that are assumed to be useful across a wide range of inte-
gration solutions, and a series of task toolkits, which supports subsets of tasks
that are assumed to be specific to a given domain of integration.

1.4. Summary of contributions 11

Models

used to

create

transformed

into

Java Code

Runtime

Library
Runtime

Systemdeployed

to

Core DSL

Metamodel

Task ToolboxTask ToolboxTask Toolkit

Binding

Component
Open ESB

deployed

to

Monitor

monitors

solutions in

Figure 1.1: Overall picture of our contributions.

A software engineer can use the concepts defined in the metamodel to cre-
ate his or her own models, which are specific solutions to specific integration
problems. Such models are graphical and allow to devise integration solu-
tions at a high-level of abstraction. The transformations allow to translate
Guaraná models into Java code that relies on a runtime library that provides
base classes to implement the concepts supported by the metamodel.

Note that the Java code plus the runtime library are not enough to imple-
ment an integration solution; it is also necessary a number of binding compo-
nents. Binding components implement the low-level transport protocol nec-
essary to interact with the applications being integrated. They are part of the
Java Business Integration specification, which drives the architecture of sev-
eral Enterprise Service Buses, such as the Open ESB [17, 87]. Whereas the Java
code must be compiled and deployed to the Runtime System provided by
Guaraná, the binding components must be configured and deployed to Open
ESB independently. Integration solutions deployed to the Runtime System are
monitored, to allow for the detection of possible errors.

Thus, our contributions are summarised as follows, cf. Figure §1.2:

• First, we have developed a Domain-Specific Language to design in-
tegration solutions. This language allows software engineers to de-
sign integration solutions to their problems at a high abstraction level,
which relieves them from the burden of dealing with the rather low-
level constructs provided by programming languages. Furthermore,
the language supports the well-known integration patterns largely used
by the integration community [54], and sets a common and yet sim-

12 Chapter 1. Introduction

Workshops

Journals

Conferences

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

JISBD

IWSSA/OTM

MOSE/TOOLS

JSWEB

IJCIS

CENTERIS

SERP CloudCom

SAC

IJCAT

IST

ZOCO/JISBD

JISBD

2
0

0
8

First author

Second/Third author

Fault-Tolerance

Domain-Specific Language & Transformation

Software Development Kit

Runtime System

(1.433 JCR)
JSS

(1.277 JCR)

(0.364 IF)*

Impact Factor calculated by the

SCImago Journal & Country Rank

(http://www.scimagojr.com)

*

(1.507 JCR)

Submitted for evaluation

Acceptance Rate

(65% AC)
26% AC

Core B

25% AC

Core C((

((

AC

Figure 1.2: Timeline of our contributions.

ple vocabulary for the communication in this field, as well. In the
context of this contribution, we had the following publications ac-
cepted: [22, 33, 36, 42, 43, 102].

• Second, we have developed a Software Development Kit that supports
the implementation of models designed with our Domain-Specific Lan-
guage. Its key feature is that its maintenance measures indicate that it
should be much easier to maintain than other proposals. In the context
of this contribution, we had the following publication accepted: [34]. An
extended version of our work on the Software Development Kit was also
submitted for evaluation to the Information and Software Technology
(IST) journal.

• Third, we have developed a Runtime System to execute integration solu-
tions implemented using our Software Development Kit. In the context

1.5. Structure of this dissertation 13

of this contribution, we had the following publication accepted: [35]. We
have also extended our work on the Runtime System and included it in
the article in which we describe our Software Development Kit.

• Fourth, an Eclipse-based workbench was developed to help design in-
tegration solutions using our Domain-Specific Language by means of a
graphical editor. Furthermore, model-to-text transformations were at-
tached to this workbench, thus providing software engineers with auto-
matic code generation scripts to transform their models into executable
integration solutions that rely on our Software Development Kit and are
executed on our Runtime System. In the context of this contribution, we
had the following publication accepted: [43].

• Fifth, we have developed a monitoring system to provide integration
solutions with error monitoring. This system monitors integration solu-
tions running on our Runtime System. We deal with a subset of faults,
including failure to read from or write to a resource, missing messages,
structural, and deadline errors. In the context of this contribution, we
had the following publication accepted: [37–42].

1.5 Structure of this dissertation

This dissertation is organised as follows:

Part I: Preface. Comprises this introduction and Chapter §2, in which we mo-
tivate our research work and conclude that current software tools for
Enterprise Application Integration do not seem as easy to maintain as
they are expected to.

Part II: Background Information. Provides information about the software
tools and technologies that are related to our research context. In Chap-
ter §3, we introduce the well-known enterprise application integration
patterns, which remain in the bases of our research work. In Chapter §4,
we describe Camel, which is the software tool provided by the Apache
Software Foundation. In Chapter §5, we describe Spring Integration,
which is the software tool provided by VMware Inc. In Chapter §6,
we describe Mule, which is the software tool provided by MuleSoft Inc.
In Chapter §7, we give an introduction to Model-Driven Architecture
and Software Factories, which are two technological approaches within
Model-Driven Engineering.

14 Chapter 1. Introduction

Part III: Our Approach. Reports on the core contributions we made with this
dissertation. This part starts at Chapter §8, with a report on the Domain-
Specific Language we have developed to design integration solutions.
In Chapter §9, we report on a Software Development Kit, which can be
used to implement and run integration solutions. In Chapter §10, we in-
troduce the transformations that can be used to automate the process of
code generation. In Chapter §11, we report on our proposal to monitor
and detect errors in integration solutions. In Chapter §12, we present
five case studies in which we have used our Domain-Specific Language,
Software Development Kit, transformations, and the fault tolerance pro-
posal to demonstrate their viability.

Part IV: Final Remarks. Concludes this dissertation and highlights a few fu-
ture research directions in Chapter §13.

Chapter 2

Motivation

T he great tragedy of Science: the slaying of
a beautiful hypothesis by an ugly fact.

T homas H. Huxley, English biologist (1825–1895)

A
lthough it is possible to use current tools to design and implement
Enterprise Application Integration solutions, it is still necessary to
provide domain-specific tools that are easy to maintain in order to
customise them for a specific context. Our goal in this chapter is to

introduce a set of measures that can be used as an indicator of how maintain-
able a tool is, present the values calculated for each measure, and to motivate
the need for tools with a good architecture that facilitates customising them
for specific contexts. It is organised as follows: in Section §2.1, we introduce
the chapter; in Section §2.2, we describe the fifteen most usual maintainability
measures; in Section §2.3, we present the values calculated for each measure
in the tools we have analysed; in Section §2.4, we discuss on the reasons why
we think that current tools are not as maintainable as they should, and report
on the results of the maintainability measures regarding our proposal; finally,
Section §2.6 summarises the main ideas in this chapter.

15

16 Chapter 2. Motivation

2.1 Introduction

Companies rely on applications to support their business activities. Fre-
quently, these applications are legacy systems, packages purchased from third
parties, or developed at home to solve a particular problem. This usually re-
sults in heterogeneous software ecosystems, which are composed of applica-
tions that were not usually designed taking integration into account. Integra-
tion is necessary, chiefly because it allows to reuse two or more applications
to support new business processes, or because the current business processes
have to be optimised by interacting with other applications within the soft-
ware ecosystem. Enterprise Application Integration provides methodologies
and tools to design and implement integration solutions. The goal of an En-
terprise Application Integration solution is to keep a number of applications’
data in synchrony or to develop new functionality on top of them, so that ap-
plications do not have to be changed and are not disturbed by the integration
solution [54].

In the last years, several tools have emerged to support the design and
implementation of integration solutions. Hohpe and Woolf [54] documented
many patterns found in the development of integration solutions. Camel,
Spring Integration, and Mule are the most popular open-source tools that pro-
vide support for some of these integration patterns. Camel provides a fluent
API [31] that software engineers can use programmatically or by means of a
graphical editor. In both cases, the integration solution is implemented using
a Java, Scala, or XML Spring-based configuration files. Spring Integration was
built on top of the Spring Framework container, and provides a command-
query API [31]. This tool can be used programmatically or by means of a
graphical editor. Integration solutions are implemented using either Java code
or an XML Spring-based configuration file. The architecture of Mule got inspi-
ration from the concept of enterprise service bus. Software engineers count on
a command-query API [31] to use this tool programmatically, or a workbench
to design and implement integration solutions using a graphical editor. Inte-
gration solutions are implemented using either Java code or an XML Spring-
based configuration file. In earlier versions, Mule supported a limited range
of integration patters; version 3.0 resulted in a complete re-design whose fo-
cus was on supporting the majority of integration patterns. As of the time of
writing this dissertation, Camel, Spring Integration, and Mule are at version
2.7.1, 2.0.3, and 3.1, respectively. In the rest of the dissertation, we implicitly
refer to these versions.

The Model-Driven Engineering discipline promotes models as first-class

2.2. Problems 17

citizens in every phase of the software development process [100]. Counting
on this discipline, software engineers can devise solutions to their problems
at a proper abstraction level, without having to deal with the rather low-level
constructs provided by programming languages, and the process of code gen-
eration from models can be automated [9]. In recent versions, Camel, Spring
Integration, and Mule have included support to raise the level of abstraction
by means of graphical domain-specific languages that can be used in their vi-
sual editors, and they have introduced a number of mechanisms to automate
code generation. However, as we discuss later in this chapter, Camel, Spring
Integration, and Mule do not seem to be so easy to maintain. Consequently,
it is still necessary to research on devising easier-to-maintain tools to support
the design and implementation of integration solutions, which is our purpose
in this dissertation.

2.2 Problems

Although it is commonly agreed that maintaining software means chang-
ing it, there does not seem to be a consensus on the different types of mainte-
nance. In this dissertation, we use the classification proposed by IEEE [59],
according to which maintenance can be corrective, perfective, or adaptive.
Corrective maintenance aims to repair a software system to eliminate faults
that might cause the system to deviate from its normal processing. Perfective
maintenance aims to modify a software system to improve the performance
of its current functionalities or even to improve its maintainability. Adaptive
maintenance focuses on adapting a software system to make it usable in a new
execution environment or business context.

In this dissertation, we are interested in adaptive maintenance, which is
very important for companies that need to build their own tools building on
existing tools. Many companies rely on open-source tools that can be adapted
to a specific context within their business domain. For example, a company
that develops Enterprise Application Integration solutions may need tools that
focus on specific contexts such as e-commerce, health systems, financial sys-
tems, and insurance systems to meet standards and recommendations like
RosettaNet [96], HL7 [52], SWIFT [106], and HIPPA [51], respectively.

It is not new that how a software system was designed and implemented,
has an impact on its maintenance costs [8, 28, 61, 101]. In both design and
implementation, software engineers need to pay attention to readability, un-

18 Chapter 2. Motivation

derstandability, and complexity. The resulting models and source code must
be easy to read and understand, because it is very common that the people
who work on them shall not maintain them. The complexity of the algorithms
should be kept low, not only for performance reasons, but because it makes it
easier for a software engineer to follow their execution flows and debug them.
Thus, to reduce the costs involved in the adaptation of a software system to
a specific context, it is very important that the software system was designed
taking into account issues that have a negative impact on maintenance.

How costly a software tool is to be maintained depends on a variety of
properties. The Software Engineering community uses a number of measures
proposed by Chidamber and Kemerer [16], Henderson-Sellers [50], Martin
[73], and McCabe [74] to have an overall idea of how difficult maintaining
a system can be. Below, we describe the fifteen most usual such measures:

NOP: Number of packages that contain at least one class or interface. This
measure can be used as an indicator of how much effort it is required
to understand how packages are organised; note that this provides the
overall picture of the design of a system [26]. The greater this value, the
more effort shall be required.

NOC: Number of classes. This and the following measure (NOI) can be used
as indicators of how much effort shall be required to understand the
source code of a software system. The grater this value, the more difficult
it is to understand a software system.

NOI: Number of interfaces.

NOH: Number of immediate children classes of a class. This measure can
be used as an indicator of the potential impact that a class may have
in a software system if it is modified [16]. The greater this value, the
greater the chances that the abstraction defined by the parent class is
poorly designed.

LOC: Number of lines of code, excluding blank lines and comments. In gen-
eral, the greater this value, the more effort shall be required to maintain
a software system.

NOM: Number of methods in classes and interfaces. This measure can
be used as an indicator for the potential reuse of a class. According
to Lorenz and Kidd [71], and Chidamber and Kemerer [16], a large num-
ber of methods may indicate that a class is likely to be application spe-
cific, limiting the possibility of reuse.

2.2. Problems 19

NPM: Number of parameters per method. This measure can be used as an in-
dicator of how complex it is to understand and use a method. According
to Henderson-Sellers [50], the number of parameters should not exceed
five. If it does, the author suggest that a new type must be designed to
wrap the parameters into a unique object. The greater this value, the
more difficult it is to understand a method.

WMC: Weighted sum of the McCabe cyclomatic complexity [74] for all meth-
ods in a class. This measure can be used as an indicator of how difficult
understanding and then modifying the methods of a class shall be [16].
The greater this value, the more effort is expected to maintain a class.

DBM: Depth of nested blocks in a method. This measure can be used as an
indicator of how expensive debugging a piece of code can be. According
to Henderson-Sellers [50], this value should not exceed five. If it does,
the author suggests that the method should be broken into other meth-
ods. The greater this value, the more complex an algorithm is.

LCM: Lack of cohesion of methods. In this context, cohesion refers to the
number of methods that share common attributes in a class. It is cal-
culated with the Henderson-Sellers LCOM* method [50]. A low value
indicates a cohesive class; contrarily, a value close to one indicates lack
of cohesion and suggests that the class might better be split into two or
more subclasses because there can be methods that should probably not
belong to that class.

MLC: Number of lines in methods, excluding blank lines and comments. Ac-
cording to Henderson-Sellers [50], this value should not exceed fifty. If it
does, the author suggests to split this method into other methods to im-
prove readability and maintainability. The greater this value, the more
difficult it is to understand and maintain a method.

AFC: Afferent coupling. This measure is defined as the number of classes out-
side a package that depend on one or more classes inside that package.
The greater this value, the more complex maintenance becomes because
there are more dependencies between classes [73, 83, 115]. Furthermore,
larger values of afferent coupling can be used as an indicator that the
package is critical for the software system and then maintenance in this
package must be performed carefully not to introduce problems in the
dependent classes.

EFC: Efferent coupling. This measure is defined as the number of classes in-
side a package that depend on one or more classes outside the package.

20 Chapter 2. Motivation

The greater this value, the more likely that maintenance shall have an
impact on a package [73, 83, 115].

ABS: Degree of abstractness of a software system. This measure can be used
as an indicator of how customisable a software system is [73]. The
greater this value, the easier to customise the software system.

MCC: The McCabe cyclomatic complexity. This measure can be used as an in-
dicator of how complex the algorithm in a method is. According to [74],
this value should not exceed ten. The greater this value, the more diffi-
cult it is to maintain a piece of code.

2.3 Analysis of current solutions

We have calculated the maintainability measures regarding the core imple-
mentation of Camel, Spring Integration, and Mule, i.e., we do not take into ac-
count the code required to implement the adapters that are required to interact
with the applications being integrated. We do not consider this code because it
is peripheral and, more often than not, comes from other open-source projects
that are maintained separately. Table §2.1 summarises the results.

The architecture of the tools we have analysed is organised into several
packages: 54 in Camel, 32 in Spring Integration, and 124 in Mule. Although
Mule has more than double as many packages as Camel, they have approxi-
mately the same total number of classes in their packages. Nevertheless, there
are cases in which the maximum number of classes in a package reaches 96

in Camel, 58 in Spring Integration, and 51 in Mule. These values show that
Camel has almost double as many classes in a package as Spring Integration or
Mule. The same happens regarding the number of interfaces. Consequently,
Camel has the highest standard deviation and mean values per package re-
garding both, classes and interfaces, which has an impact on the understand-
ability of its packages. Spring Integration is the only tool that has a low value
for the standard deviation regarding the number of interfaces.

The maximum number of immediate children classes of a class also varies
very much: 69 in Camel, 11 in Spring Integration, and 28 in Mule. If con-
sidered the mean and the standard deviation values per class, Camel has the
highest values, which indicates that the abstraction defined by parent classes
tend to be poorly designed. Other values that are impressive for these tools
are regarding the total number of lines of code, which is very high in every

2.3. Analysis of current solutions 21

Measure Total Mean Dev. Max Total Mean Dev. Max Total Mean Dev. Max

NOP 54 - - - 32 - - - 124 - - -

NOC 730 13.52 19.55 96 269 8.41 10.52 58 733 5.91 7.40 51

NOI 140 2.59 9.07 58 40 1.25 1.84 9 209 1.69 3.28 18

NOH 493 0.68 3.77 69 147 0.55 1.54 11 337 0.46 1.82 28

LOC 62,439 - - - 14,929 - - - 67,090 - - -

NOM 7,015 9.61 15.36 192 1,431 5.32 5.60 39 5,158 7.04 10.23 129

NPM - 0.93 1.05 11 - 1.13 0.94 9 - 0.92 1.07 19

WMC 12,903 17.68 27.37 346 2,628 9.77 11.27 68 10,537 14.38 21.92 262

DBM - 1.37 0.79 8 - 1.44 0.86 6 - 1.43 0.87 8

LCM - 0.29 0.35 1 - 0.22 0.33 0.94 - 0.23 0.34 1.33

MLC 34,839 4.52 8.15 141 8,264 5.65 9.59 110 35,989 6.16 10.99 180

AFC - 30.63 89.34 542 - 12.69 26.65 146 - 22.90 56.25 493

EFC - 12.54 17.83 87 - 8.44 9.84 55 - 6.22 6.76 38

ABS - 0.15 0.21 1 - 0.27 0.25 1 - 0.33 0.33 1

MCC - 1.67 2.06 46 - 1.80 2.04 30 - 1.80 2.01 33

Camel Spring Integration Mule

NOP = Number of packages; NOC = Number of classes; NOI = Number of interfaces;
NOH = Number of immediate children classes of a class; LOC = Number of lines of code;
NOM = Number of methods in classes and interfaces; NPM = Number of parameters per
method; WMC = Weighted sum of the McCabe cyclomatic complexity for all methods in a
class; DBM = Depth of nested blocks in a method; LCM = Lack of cohesion of methods;
MLC = Number of lines in methods, excluding blank lines and comments; AFC = Affer-
ent coupling; EFC = Efferent coupling; ABS = Degree of abstractness of a software system;
MCC = The McCabe cyclomatic complexity.

Table 2.1: Maintainability measures of Camel, Spring Integration, and Mule.

tool, chiefly for Camel and Mule. These tools are 62, 439 and 67, 090 lines of
code respectively, contrarily to 14, 929 in Spring Integration.

When analysing the methods in classes and interfaces, we found that
Camel has 7, 015 methods compared to the 1, 431 and the 5, 158 found for
Spring Integration and Mule, respectively. Most probably, the difference
amongst Spring Integration and the other tools is because it has less than
a half the number of classes and interfaces of Camel and Mule. The values
that stand out are the maximum number of methods per class/interface cal-
culated in Camel and Mule, which are 192 and 129 respectively, contrarily to
39 in Spring Integration. If we look at the maximum number of parameter per
method, it is also impressive how large it is, chiefly in Camel and Mule: 11 and
19 respectively. Spring Integration has a maximum of 9 parameters. These val-
ues indicate that some classes in these tools are likely too application specific,
with a limited possibility to be reused; furthermore, this makes some of their

22 Chapter 2. Motivation

methods difficult to understand, chiefly in the case of Camel and Mule.

The weighted method complexity calculated also demonstrates a high cy-
clomatic complexity within classes, chiefly for Camel and Mule. In these tools,
the total weighted method complexity was 12, 903 and 10, 537, respectively.
For Spring Integration, the cyclomatic complexity is 2, 628, which is not so
high when compared to Camel and Mule. Nevertheless, not only the total cy-
clomatic complexity is high, but also the mean, the standard deviation, and
the maximum. Camel, Spring Integration, and Mule have maximum values of
346, 68, and 262, respectively. The depth of nested blocks in a method is sim-
ilar in every tool. If we consider the mean and maximum values, Camel has
1.37 and 8, Spring Integration has 1.44 and 6, and Mule has 1.43 and 8, respec-
tively. Similarly, the mean and the maximum values for the lack of cohesion of
methods is similar in every tool. Camel has 0.29 and 0.35, Spring Integration
has 0.22 and 0.33, and Mule has 0.23 and 0.34. Counting the number of lines
of code inside methods, we found Camel has a total number of 34, 839, Spring
Integration has 8, 264, and Mule has 35, 989, which if compared to the total
number of lines of code, represents 0.55%, 0.55%, and 0.53% of these values,
respectively. It means there are many attributes declared in classes. The max-
imum value calculated demonstrate that there are some methods with until
141 lines of code in Camel, 110 in Spring Integration, and 180 in Mule. These
values indicate more effort might be necessary to maintain and understand
the methods in these tools.

Regarding the coupling of classes, the values for the afferent and efferent
coupling in every tool are very high. Camel has the highest value for the affer-
ent coupling, followed by Mule and then Spring Integration, with a mean of
30.63, 12.69, and 22.90, respectively. It is also very impressive the standard de-
viation, chiefly for Camel and Mule, which have 89.34 and 56.25, respectively.
The maximum values are also very high, being 542 for Camel, 146 for Spring
Integration, and 493 for Mule. These values suggest that much attention must
be paid when performing maintenance in the classes of a package. The mean
for the efferent coupling varies from 12.54 in Camel and 8.44 in Spring Inte-
gration, to 6.22 in Mule. The maximum values are not so impressive as for the
afferent coupling, but they are still very high. In Camel, the maximum effer-
ent coupling is 87; in Spring Integration, it is 55; in Mule it is 38. These figures
suggest that the classes inside a package have a large number of dependencies
on outside classes and maintenance has to be done carefully; as a conclusion,
the impact on maintenance should not be neglected at all.

The values for the degree of abstractness indicates that Camel is the less

2.4. Discussion 23

abstract tool. The mean value for Camel is 0.15, followed by 0.27 for Spring
Integration, and 0.33 for Mule. The results indicate that these tools are not
so easy to customise, chiefly Camel because its mean value is very low. The
values calculated for the McCabe cyclomatic complexity indicate that there
are cases in which they are extremely high. This is indicated by the maximum
values, which reach 46, 30, and 33 in Camel, Spring Integration, and Mule,
respectively. Consequently, they are also very complex tools, which may have
a serious impact on their maintenance.

From the analysis of the fifteen maintainability measures, it follows that the
tools we have analysed may have problems regarding maintenance, chiefly
adaptive maintenance, which is our main concern in this dissertation.

2.4 Discussion

In the literature, there are several references to assessing the maintainabil-
ity of open-source tools [64, 97, 99, 114, 116–118]. There is a great evidence that
open-source tools need to improve their maintainability. Below, we report on
a few issues that have an impact on the maintainability of open-source tools:

• The majority of the open-source tools are developed by a heterogeneous
community of software engineers, who share common interests.

• Current software engineers involved in a project and new software en-
gineers that join that project, mostly have only the source code and the
archives of the project’s mailing list as a source of information. Further-
more, it is not so easy to read this information, find, and understand the
relationships amongst the concepts involved in the architecture of a soft-
ware system [23]. The idea of contributing with an open-source project is
much more associated with writing code than with writing documenta-
tion. The lack of documentation may lead to different interpretations of
the same architecture, thus degrading the quality of new contributions
and consequently having a deleterious impact on maintainability.

• Open-source development is usually code-centric instead of model-
centric. By models we mean a graphical representation of the architec-
ture using well-known modelling languages, such as the Unified Mod-
elling Language; by code, we mean the source code written using a
general-purpose programming language, such as Java. Sometimes it is

24 Chapter 2. Motivation

possible to find sketches with informal descriptions of the software sys-
tem or part of its architecture. However, they do not frequently reflect
the current state of the software system and its actual architecture. They
are intended to give an overview of the software system, its functional-
ities, or to describe part of the architecture to end-users, not to software
engineers that contribute to the open-source tool. Thus, they are not use-
ful and reliable to describe the architecture of a software system, which
is essential for a software engineer that aims to maintain a tool.

• Although in most open-source projects there is a person or a group of
people who are responsible for managing the contributions made by the
community involved in the project, not every contribution is checked.
Furthermore, along the life-cycle of a software tool, the same piece of
code may have been modified by several software engineers with differ-
ent levels of expertise. This may lead to situations in which code with
quality below the expected standards is introduced in the source code of
a tool [99]. This kid of contributions certainly may have an impact on
readability, understandability, and the complexity of the architecture.

• The evolution of open-source tools is driven by community require-
ments [114]. There are requirements that can cause an important impact
on the architecture of a tool, which makes it difficult to embrace them in
a short time. The majority of open-source projects rely on software engi-
neers that contribute to them during their leisure time rather than work
time [114]. Thus, it may take more time to discuss and find the best so-
lution to a problem in a short time. Consequently, it is not uncommon
that modifications or even workarounds are done to temporarily accom-
modate the new requirements, leaving for the future main releases the
proper and correct maintenance in the architecture.

As a conclusion, it is not surprising that the maintenance measures of
Camel, Spring Integration, and Mule are so disappointing. This motivates the
need for researching on how to develop a software tool with a better design,
which can provide better values for each maintainability measure.

2.5 Our proposal

We have developed a new software tool to support the implementation of
Enterprise Application Integration solutions. We refer to this tool as Guaraná.

2.5. Our proposal 25

Measure Total Mean Dev. Max Total Mean Dev. Max
NOP 18 - - - -52 - - -
NOC 79 4.39 3.09 11 -498 -4.89 -9.39 -57.33
NOI 9 0.50 0.76 2 -121 -1.34 -3.97 -26.33
NOH 59 0.75 2.05 10 -267 0.19 -0.33 -26
LOC 2,878 - - - -45,275 - - -
NOM 369 4.67 4.61 24 -4,166 -2.65 -5.79 -96
NPM - 1.20 1.04 4 - 0.20 0.02 -9
WMC 498 6.30 6.30 37 -8,191 -7.64 -13.88 -188.33
DBM - 1.24 0.74 4 - -0.18 -0.10 -3.33
LCM - 0.14 0.27 0.91 - -0.11 -0.07 -0.19
MLC 1,748 4.72 6.43 54 -24,616 -0.72 -3.14 -89.67
AFC - 6.94 14.33 47 - -15.13 -43.08 -346.67
EFC - 4.17 2.81 11 - -4.90 -8.66 -49
ABS - 0.54 0.35 1 - 0.29 0.08 0
MCC - 1.35 0.91 8 - -0.41 -1.13 -28.33

Guaraná Deltas with respect to other software tools

NOP = Number of packages; NOC = Number of classes; NOI = Number of interfaces;
NOH = Number of immediate children classes of a class; LOC = Number of lines of code;
NOM = Number of methods in classes and interfaces; NPM = Number of parameters per
method; WMC = Weighted sum of the McCabe cyclomatic complexity for all methods in a
class; DBM = Depth of nested blocks in a method; LCM = Lack of cohesion of methods;
MLC = Number of lines in methods, excluding blank lines and comments; AFC = Affer-
ent coupling; EFC = Efferent coupling; ABS = Degree of abstractness of a software system;
MCC = The McCabe cyclomatic complexity.

Table 2.2: Maintainability measures of Guaraná.

As of the time of writing this dissertation, Guaraná is at version 1.3.0. Its
design provides better values for maintainability measures, which suggests
that our proposal is more maintainable and thus easier to adapt to a specific
context than Camel, Spring Integration, or Mule. Table §2.2 summarises the
results.

The architecture of Guaraná is organised into 18 packages, and the max-
imum number of classes in a package is no more than 11. Furthermore,
Guaraná provides no more than 9 interfaces in these packages. The standard
deviation calculated for the number of classes and interfaces per package is
very low, 3.09 and 0.76, respectively. Note that, for the total number of pack-
ages, the delta indicates that Guaraná has 52 packages less than the other soft-
ware tools. The difference respect to the other software tools is even greater
when considering the deltas for the number of classes and for the number of
interfaces, which are −498 and −121, respectively. These values indicate that
maintenance in Guaraná is not expected to be difficult. The maximum number

26 Chapter 2. Motivation

of immediate children classes of a class is no more than 10, with a mean of 0.75
per package. These values situate Guaraná with a delta of −267 respect to the
other software tools. These values indicate that the abstraction defined by the
parent class is well designed in Guaraná. The implementation of Guaraná has
a total number of 2, 878 lines of code, which correspond to 45, 275 less lines of
code than the other software tools.

We have analysed the methods in classes/interfaces and found that
Guaraná has in total 369 methods, with a maximum number of 24 methods
per class/interface, and no more than 4 parameters per method. When com-
paring Guaraná to the other software tools, the deltas reveal that Guaraná has
4, 166 less methods, and if we look at the maximum number of parameter per
method it has 9 less parameters. These values indicate that classes in Guaraná
are expected to be more reusable and its methods not so difficult to under-
stand. The weighted method complexity calculated indicates a low cyclomatic
complexity within classes of Guaraná. The total weighted method complexity
is 498, the mean and the standard deviation were 6.30, and the maximum is
37. The delta for the other software tools reveal that Guaraná has 8, 191 less
total weighted method complexity and a standard deviation of 13.88 less as
well. The depth of nested blocks in a method in Guaraná has a mean of 1.24, a
standard deviation of 0.74, and a maximum of 4. If we consider the maximum
value in Guaraná, it is 3.33 less than in other software tools. Regarding the lack
of cohesion of methods, values are very low in Guaraná. It presents a mean of
only 0.14, which reveals that the other software tools have a delta of −0.11 in
average with respect to Guaraná. Counting the number of lines of code inside
methods, we found Guaraná has a total number of 1, 748, which, if compared
to the total number of lines of code in Guaraná, represents 0.61% of this value.
Furthermore, there is no method with more than 54 lines of code, being the
average 4.72 lines of code per method. The other software tools have 24, 616

more method lines of code, and if we consider the maximum number of lines
of code per method, they have 89, 67 more lines than in Guaraná. These values
indicate that classes are expected to be easier to understand and maintain.

Regarding the coupling of classes, the values for the afferent and effer-
ent coupling in Guaraná are not very high. The afferent coupling has values
6.94, 14.33, and 47 as mean, standard deviation, and maximum, respectively.
The efferent coupling has values 4.17, 2.81, and 11 as mean, standard devia-
tion, and maximum, respectively. The average afferent and efferent coupling
in Guaraná are 15.13 and 4.90 less than in other software tools, respectively.
These values suggest that the classes in Guaraná do not have a high number of
dependencies and maintenance is expected to be easy. The values for the de-

2.6. Summary 27

gree of abstractness, indicate Guaraná has a mean value of 0.54, which situates
Guaraná is 0, 29 in average more abstract than the other software tools. These
values suggest that it shall not be complicated to customise Guaraná. The val-
ues calculated for the McCabe cyclomatic complexity have indicated that the
maximum value is 8, which situates Guaraná with 28.33 less complexity than
other software tools. These values indicate the architecture in Guaraná is well
designed and maintenance is expected to be easy.

2.6 Summary

In this chapter, we have reported on the fifteen most usual measures that
can be used as an indicator of how maintainable a software tool is. We have
calculated these measures for Camel 2.7.1, Spring Integration 2.0.3, and Mule
3.1. The resulting values indicate that these tools do not seem so easy to main-
tain, which complicates adapting them to a specific context. We have pre-
sented some reasons that we believe may be behind this lack of maintainabil-
ity. Furthermore, we have used the same measures to analyse our proposal
and demonstrate that it is possible to develop another tool that seems to be
easier to maintain and thus to customise for a specific context.

28 Chapter 2. Motivation

Part II

Background Information

Chapter 3

Enterprise Integration Patterns

To understand is to perceive patterns.
Sir Isaiah Berlin, British social & political theorist (1909–1997)

T
he enterprise application integration patterns documented by Hohpe
and Woolf have been adopted as a cookbook for developing integra-
tion solutions. In this chapter, we first provide an overview of these
author’s work in Section §3.1. Section §3.2 presents the main cate-

gories of integration patterns they have documented. Section §3.3 illustrates
how to combine the integration patterns. Finally, Section §3.4 summarises the
chapter.

31

32 Chapter 3. Enterprise Integration Patterns

3.1 Introduction

An important contribution to the field of Enterprise Application Integra-
tion was done by Hohpe and Woolf [54] by means of their book on integration
patterns. In this piece of work, the authors documented several patterns that
software engineers can use to develop their integration solutions. These pat-
terns revolve around the concept of message, which is an abstraction of an
envelop that can be used to transfer data from an application into another,
and even to invoke their functionality. Integration solutions that are based
on messaging allows for asynchronous communication between applications,
which makes them loosely coupled.

The integration patterns documented by Hohpe and Woolf can be consid-
ered as the first-step to establish a common vocabulary within the Enterprise
Application Integration community, which is expected to result in domain-
specific languages. Unfortunately, the patterns are described at a rather high
conceptual level. Each one was given a name, a description of the context in
which it can be used, and a description of how to solve a specific problem.

This catalogue of patterns has inspired important software tools that are
currently available in the market of Enterprise Application Integration solu-
tions. In the following sections we, introduce the main categories of integra-
tion patterns and give an example of how to use some patterns together.

3.2 Categories of patterns

In their book, Hohpe and Woolf documented sixty five integration patterns
that were classified into six categories, namely: message construction, messag-
ing channels, message routing, message transformation, messaging endpoint,
and system management. Integration solutions developed using these pat-
terns also follow the architectural pattern Pipes and Filters [44]. The pipes are
supported by messaging channels and the filters by the remaining categories
of integration patterns. Below, we describe each category.

Message Construction: Messages are containers of data that flow inside
an integration solution. Roughly speaking a message consists of two parts,
namely: a header and a body. The header holds meta-data about the data that

3.2. Categories of patterns 33

is carried in the body; it is the body that is expected to be modified, trans-
formed, and routed through an integration solution.

The integration patterns in this category document the different types of
messages that a software engineer may need to create, not only to transfer
data amongst applications, but also to invoke functionalities, and send no-
tifications. Furthermore, they document how to create messages to support
request-reply communications and deal with situations in which a message
must not be processed further since it can be considered stale.

Messaging Channels: Channels are part of the messaging infrastructure
used to support the development of an integration solution, such as Java
JMS [95] or Microsoft MSMQ [92]. They are used as resources to/from which
messages can be written/read in total asynchrony. The writer and the reader
can be either the applications being integrated or the integration solution. Sim-
ply put, a channel is a logical address that software engineers have to config-
ure according to the adopted messaging infrastructure. A channel can be used
by a single integration solution or can be shared by two or more solutions.
Each messaging infrastructure may provide different types of channels and
different configurations.

The integration patterns in this category document the use of channels
for one-to-one and one-to-many communications, the setting up of a request-
reply communication, how to restrict the type of messages a channels can re-
ceive, how to connect an application to the messaging system, how to deal
with invalid messages or messages that have no readers, how to connect dif-
ferent channels in different messaging infrastructures, and so on.

Message Routing: Message routing comprises a set of integration patterns
that allow to change the route of a message within an integration solution. The
decision to which route a message has to go is usually made according to its
contents. For this reason, the integration patterns have to inspect the body of
a message; however, depending on the needs they can inspect the header as
well. Some patterns can be configured with external contents, which are used
to perform the routing of a message as well. An important characteristic of
this kind of integration patterns is that they do not modify the contents of any
messages.

The integration patterns in this category document how to route a message
to a single or multiple destinations, how to define fixed or dynamic routing

34 Chapter 3. Enterprise Integration Patterns

policies, how to process individually each element from a list hold by a mes-
sage, how to combine the results of individual processing of related messages
so that they can be processed as a whole, how to remove unwanted messages
from the workflow of an integration solution, and so on.

Message Transformation: When integrating applications, it is not usual that
they use the same data model. Thus, the differences in data models usually
require to transform the contents of messages from one format into another,
so that they can be understood and processed by the applications that receive
them. In addition to these application-specific data models, integration solu-
tions may involve other applications that adopt standardised formats that are
independent from an specific application, such as RosettaNet [96], HL7 [52],
SWIFT [106], and HIPPA [51].

The integration patterns in this category document how applications that
have different data models can be integrated, how data from one application
can be sent to another application if the original message does not contain the
required data, how to simplify the contents of a message, how to process mes-
sages that have equivalent contents but are represented in different formats,
how to minimise dependencies when integrating applications that use differ-
ent data models, how to create message formats that are independent from
any specific application, and so on.

Messaging Endpoint: Since the applications in a software ecosystem are not
usually designed with integration concerns in mind, it is not likely that they
can send and/or receive messages. Therefore, software engineers have to de-
velop messaging endpoints, which are pieces of code that interface an appli-
cation and the integration solution, so that both can exchange messages. This
piece of code has to be external to the application, since software engineers
should preserve the applications unmodified.

The integration patterns in this category document several ways to inter-
face an application and the integration solution to support communicating
with one another. This may include interfaces that allow to compete for read-
ing data from an application, to be selective when reading data, to provide an
event-driven or a pooling communication type, to provide transactional sup-
port between an application and the integration solution, to map objects into
messages, and so on.

3.3. An example 35

Figure 3.1: Processing order items individually (from Hohpe and Woolf [54]).

System Management: Operating an integration solution that is running in
production is a challenging task. An integration solution may process thou-
sands or even millions of messages exchanged amongst several applications
that may have their state changed by every message. Furthermore, there can
be performance bottlenecks not only in the integration solution, but also in the
applications being integrated due to the communication with the integration
solution. To make things even more challenging, the parts involved in an inte-
gration solution communicate asynchronously, may be distributed within the
software ecosystem, and may fail.

The integration patterns in this category document different ways to man-
age an integration solution. They document how to detect if a building block
is failing, how to debug them, how to inspect a message without affecting its
regular processing, how to track messages, and so on.

3.3 An example

Processing orders is a very common task. In some cases, every item from
an order has to be processed individually because, because they are served
by different inventories. Figure §3.1 depicts the workflow and the integration
patterns involved to check the availability of order items using Hohpe and
Woolf’s original notation.

36 Chapter 3. Enterprise Integration Patterns

The order processing starts by reading new orders from the NEW_ORDER
channel and ends by writing messages with information regarding their avail-
ability to the INVENTORY_STATUS channel. Every message with a new order has
to be split into individual messages, each of which must contain only one item;
the resulting messages are written to the NEW_ORDER_ITEM channel. Software
engineers have to route the messages to the Widget Inventory or the Gadget
Inventory depending on their contents. The messages with items that do
not belong to any of these inventories, are routed to the INVALID_ORDER_ITEM
channel. Since the inventories have a different data model to represent an
item, messages have to be translated into the appropriate data model using
a message transformation pattern. The inventories write to the ITEM_STATUS
channel the responses regarding the availability of items. The responses that
correspond to items of the same order, including possible correlated invalid
messages, are aggregated into a single message.

3.4 Summary

In this chapter, we have introduced the main categories of integration pat-
terns that were documented by Hohpe and Woolf [54]. Each category deals
with a group of conceptual patterns that software engineers can use to develop
their integration solutions. We also reported on an example that provides an
overall idea of some integration patterns and Hohpe and Woolf’s original no-
tation.

Chapter 4

Camel

T hink like a wise man,
but communicate in plain language.

William B. Yeats, Irish dramatist & poet (1865–1939)

C
amel is an open-source tool that is provided by Apache Software
Foundation to support the design and implementation of Enter-
prise Application Integration solutions building on integration pat-
terns. In this chapter, we first provide an overview of this tool in

Section §4.1. Section §4.2 presents the building block used to wrap the mes-
sages that flow in an integration solution. Section §4.3 introduces the building
blocks that are used to connect applications from the software ecosystem to the
integration solution. Section §4.4 describes the building blocks that execute
business integration logic in a workflow. Section §4.5 describes the building
blocks that are necessary to design and implement the workflows. Section §4.6
introduces how errors are detected by Camel. Section §4.7 shows the design of
the Café case study using the graphical notation of Camel. Finally, Section §4.8
summarises the chapter.

37

38 Chapter 4. Camel

Figure 4.1: Conceptual model of Camel.

4.1 Introduction

Camel [58] is a Java-based software tool that aims to provide an integration
framework with a fluent API [31] to support the design and implementation of
Enterprise Application Integration solutions based on integration patterns. It
was designed to be used by means of a Java- or a Scala-based domain-specific
language, or by means of declarative XML Spring-based configuration files.
The Java-based domain-specific language approach is the most popular in
the Camel community. Camel is an open source tool that is hosted by the
Apache Software Foundation. FuseSource is the company that provides prod-
ucts based on Camel, which includes a commercial version of Camel, a web-
based graphical editor, and an Eclipse-based IDE with a graphical editor.

Central to the Camel architecture are the concepts of exchange, endpoint,
processor, and route. The conceptual model in Figure §4.1 shows these con-
cepts and their relationships. Exchanges are containers of messages. They
flow inside an integration solution and carry messages from one processor
to another. The messages contain data that endpoints read/write from/to

4.2. Exchanges 39

the applications available inside a software ecosystem, from one processor
to another. Processors execute atomic integration tasks on messages and are
chained in routes, which represent complex integration tasks.

4.2 Exchanges

Exchanges are building blocks that wrap inbound and outbound messages.
Every exchange must be set to a message exchange pattern, which can be ei-
ther one-way or request-response. The former indicates that the integration
solution does not produce a response at the end of the workflow. On the
contrary, the latter pattern indicates that the integration solution returns a re-
sponse. Processors consider the inbound message in the exchange for their
processing. The result of the processing can be stored back in the inbound
message or as an outbound message. If a processor stores a message in the
outbound message of an exchange, Camel transfers the outbound message
to the inbound message before passing the exchange to the next processor in
the workflow. At the end of the workflow, if an exchange holds an outbound
message and it is set with a request-response pattern, then Camel uses this
outbound message to produce a response; otherwise, if the pattern is set to
one-way, the outbound message is thrown away.

Messages have a header, a body, and attachments. The header contains
meta-data information that is associated with the message, which is an arbi-
trary piece of data that can be used during the processing of a message. Head-
ers are implemented as a map that stores data in the form of name-value pairs,
which are referred to as attributes. The body allows to store the main data con-
tents of a message. Both, header and body can be read or modified at any time
during the workflow. Attachments allow messages to carry additional data
that goes through the solution without further processing.

Similarly to messages, exchanges also have a header. The difference with
regard to a message header is that it aims to store global-level data. This infor-
mation is available to all processors in the integration solution, independently
from the inbound and outbound messages an exchange wraps. Camel uses
this header to store information about the protocol being used to read the data
in the corresponding message from an application, such as the encoding type,
address, security permissions, and data that is related to service-level agree-
ments. Note that when a processor creates a message, it does not contain the
headers or the body of the message from which it originates unless the soft-

40 Chapter 4. Camel

ware engineer copies them explicitly. We provide additional details about pro-
cessors in Section §4.4. Any Exception that occurs during the processing of a
message is captured by Camel and stored in the exchange, so that information
is available to be used in error recovery.

4.3 Endpoints

Endpoints are building blocks used at the beginning and the endings of
the integration solution workflow. They are used to connect applications
from the software ecosystem to the integration solution. Endpoints are cre-
ated from components, which are responsible for implementing the low-level
transport protocol necessary to read/write data from/to a particular resource.
Camel provides an extensive list with more than 80 different types of com-
ponents, including components for files, databases, e-mail systems, queues,
enterprise java beans, remote method invocations, Amazon’s simple storage
service, HL7, LDAP, RSS, HTTP, and SIP.

Every endpoint provides an interface that allows to create consumers and
producers of messages from/to endpoints. They provide a high-level interface
that software engineers can use to perform read/write operations; however
the semantics of these operations depend on the type of component used to
create the endpoint.

When a consumer uses an endpoint to read from an application, it creates
an exchange to wrap a message that contains the input data, adds information
about the resource to the header of the exchange, and feeds the exchange into
the route. There are two types of consumers, namely: event-driven, which
provide an interface on which clients can invoke methods, and polling con-
sumers, which are consumers that have to poll an application periodically to
gather data from it, e.g., a folder or a database. A producer, receives an ex-
change and writes the inbound message to the application.

4.4 Processors

Processors represent the processing units inside the workflow of an inte-
gration solution. They are building blocks that can transform and route ex-
changes in a workflow. Transformers are processors that change the payload

4.5. Routes 41

from one format to another. Routers are applied to change the trajectory of
messages in the workflow based on a user-defined criterion.

Threads are a particular type of processor. They are used to define a pool
of threads in a certain point in the workflow to enable concurrency from this
point onwards. The processors after this point are executed using threads from
this thread pool. Camel allows software engineers to use this strategy to speed
up the performance of the integration solution in those parts of the workflow
that consume more system processing. Unfortunately, using a threads pro-
cessor breaks transaction boundaries, i.e., if such a processor is used, then
transactions are not preserved.

4.5 Routes

Routes represent workflows inside integration solutions. Roughly speak-
ing, a route is composed of a consumer, zero or more chained processors, and
one or more producers. Every exchange a consumer creates is processed by
the chain of processors preceding the target producers. If a route does not in-
clude any processor, then the route implements a simple bridge pattern [54]
that reads data from an application and writes it to other(s).

The Camel context has a global view of the types of components avail-
able, the endpoints and routes that are created, and it is responsible for man-
aging the execution of routes, i.e., it acts as the Runtime System of Camel.
Every route involved in an integration solution has to be registered to the con-
text, differently from the endpoints and components, which are automatically
managed by the context. Although an integration solution can have several
routes, every route is independent from each other, which means they can
only exchange data by means of endpoints. In this case a producer from a
route writes to an endpoint from which a consumer of another route reads.

Consumers are executed with their own pool of threads provided by
Camel. By default, the same thread that is allocated to execute a consumer
executes the whole into which it feeds messages. In this scenario, at the end of
the route, if the exchange has a request-response message exchange pattern, a
response is returned to the application that has activated the consumer. This
response is given back using the same thread that has executed the consumer
and consequently the whole route is executed synchronously. In scenarios in
which a route includes a threads processor, when the execution of the work-

42 Chapter 4. Camel

flow reaches it, the remaining execution can be as follows: a) if the current
exchange has a one-way message exchange pattern, the current thread is re-
leased and the execution follows with a new thread; b) if the current exchange
has a request-response message exchange pattern, the current thread remains
blocked until the new thread finishes the processing of the remaining route.
When this happens, the blocked thread is used to return a response to the
particular application that has activated the consumer, unless the consumer’s
endpoint allows for asynchronous request-response.

4.6 Error detection

In Camel, when an exchange cannot be processed, an exception is raised.
Camel provides software engineers with two mechanisms to detect errors. The
first uses try-catch constructors, which have to surround the code that can po-
tentially fail. The second is more sophisticated and allows to configure an er-
ror handler based on a redelivery strategy and a dead letter channel, to which
exchanges that have failed and cannot be redelivered are moved. By default, a
dead letter channel is just a logger of errors, but it can be configured as a queue
that stores exchanges that have failed, so that they can latter be read from this
queue. An error handler can be configured on a global or per-route basis. At
the global level, it gets the exceptions from every route, applies the same re-
delivery strategy, and uses the same dead letter channel independently from
the route. Contrarily, if configured at the route level, the error handler allows
for different redelivery strategies and dead letter channels.

4.7 The Café integration solution

Figure §4.2 shows the design of the Café case study using Camel’s graphi-
cal notation. Cf. Section §12.2 for further information on this case study.

The integration solution was implemented using five routes that commu-
nicate by means of internal queues. The workflow starts at route (a). In this
route, endpoint (1) is used to read orders from queue direct:orders. Ev-
ery order is passed on to splitter (2), which breaks them up and generates
new messages for every drink item in the order. The new messages that con-
tain the drinks are written to the internal queue direct:drinks by means of
endpoint (3). Route (b) was designed to read messages from direct:drinks,

4.7. The Café integration solution 43

(a)

(b)

(c)

(d)

(e)

(1) (2) (3)

(4)

(5)

(6) (7)

Figure 4.2: Café integration solution designed with Camel.

and, based on their contents, its recipient list routes messages whether to
seda:coldDrinks or seda:hotDrinks internal queues. Recall that every route
has always a producer endpoint, however in this route they are not shown in
the graphical notation because the Java beans that implement the recipient list
routing policy also act as producers by writing their response directly to the
seda:coldDrinks and seda:hotDrinks queues. Routes (c) and (d) execute in
parallel. They read messages from the seda:coldDrinks and seda:hotDrinks
queues, respectively. The communication with the cold and hot baristas is
done by means of endpoints (4) and (5), respectively. Their responses are
sent to the direct:preparedDrinks internal queue, which is then the input
for route (e). This route has an aggregator that aggregates all drink items from
the same order into a single list, which is sent to endpoint (6). This endpoint
builds a delivery message for the list of items, which is sent to endpoint (7), so
that delivery messages are written to an application.

44 Chapter 4. Camel

4.8 Summary

In this chapter, we have introduced Camel, which is an open-source Java-
based software tool provided by the Apache Software Foundation to support
the design and implementation of Enterprise Application Integration solu-
tions. Furthermore, we have described the concepts of exchange, endpoint,
processor, and route, and how these concepts are related one to each other.
These are the most relevant concepts in the architecture of Camel. We also
gave an introduction to how Camel deals with errors that can be occur during
the processing of an exchange. We have also reported on how to model the
Café case study using Camel. The implementation is carried out by means
of a fluent API, and can be assisted by an Eclipse-based IDE with a graphical
editor.

Chapter 5

Spring Integration

T he limits of my language are the limits of my world.
Ludwig J.J. Wittgenstein, Austrian philosopher (1889–1951)

S
pring Integration is an open-source tool supported by VMware Inc.,
and extends the Spring Framework to support the design and imple-
mentation of Enterprise Application Integration solutions based on
integration patterns. In this chapter, we first provide an overview of

this tool in Section §5.1. Section §5.2 presents the building block used to wrap
data that flows and is processed in an integration solution. Section §5.3 intro-
duces the building blocks that execute business integration logic in a work-
flow, and allow to interact with the applications from the software ecosystem.
Section §5.4 describes the building blocks used to transfer data inside an in-
tegration solution. Section §5.5 introduces how errors are detected by Spring
Integration. Section §5.6 shows the design of the Café case study using the
graphical notation of Spring Integration. Finally, Section §5.7 summarises the
chapter.

45

46 Chapter 5. Spring Integration

Figure 5.1: Conceptual model of Spring Integration.

5.1 Introduction

Spring Integration [30] is a Java-based software tool built on top of the
Spring Framework container. It aims to extend this framework to support the
design and implementation of Enterprise Application Integration solutions.
Following the philosophy of Spring Framework, Spring Integration promotes
the use of XML Spring-based files to configure integration solutions, although
it is also possible to use Spring Integration as a command-query API [31].
Spring Integration is an open source tool that includes an Eclipse-based IDE
with a graphical editor. The tool is led and supported by SpringSource, a divi-
sion of company VMware Inc. VMware does not commercialise an enterprise
version of Spring Integration, instead they use individual Spring Integration
components in their commercial tools, such as vFabric RabbitMQ and vCenter
Orchestrator.

The architecture of integration solutions implemented with Spring Integra-
tion have to follow the Pipes-and-Filters design pattern [44]. In this pattern,
messages flow through several independent processing units (filters) that are
communicated by means of channels (pipes). Messages are implemented with
a building block with the same name, filters are implemented with endpoints,
and pipes are implemented with message channels, cf. Figure §5.1.

5.2. Messages 47

5.2 Messages

Messages wrap data that flows and is processed in an integration solu-
tion. Spring Integration defines a general interface for messages that aims to
provide access to the header and the payload of a message. The header al-
lows software engineers to add/read meta-data information associated with
the message, and is implemented as a map that stores data in the form of
name-value pairs, which are referred to as attributes. There is not a limit for
the number of attributes neither a limit for the size of the meta-data stored in
an attribute; however, once a message has been created its header cannot be
changed, since it is immutable. The payload allows to store the contents of a
message, which can be read and modified within the workflow. Although the
API of Spring Integration is based on the command-query style, it provides a
fluent API [31] to create messages.

There are two implementations for the message interface, namely: generic
message and an error message. The former represents regular messages that
flow in an integration solution in normal conditions, whereas the latter rep-
resents messages that are created by Spring Integration when an error occurs
during the processing of a regular message. To report eventual errors, generic
messages are configured, by default, with a general error channel to which
error messages are sent. This configuration can be changed by software en-
gineers, so that error messages can be redirected to a different channel. We
provide additional details about channel types in Section §5.4. Error messages
are only created by Spring Integration and the difference between this type of
message and a generic message is that the payload of the former must have
an object of class Throwable, whereas the latter may have an arbitrary object
of an arbitrary type.

5.3 Endpoints

Endpoints are building blocks that read, process, and write messages. They
must always be connected to at least a source or a target channel. Roughly
speaking endpoints can be grouped into message or channel-oriented end-
points. Message-oriented endpoints focus on performing a task on a message,
possibly changing its contents. Endpoints in this group can be classified as
transformers, filters, routers, or service activators.

48 Chapter 5. Spring Integration

Transformer endpoints aim to change an inbound message by transform-
ing its payload from one format into another (e.g., from an XML document
into a String), or by adding or removing contents to/from it. Filters apply
a filtering policy, usually taking into account attributes in the header or the
body, to evaluate whether a message can continue in the workflow of an inte-
gration solution or it has to be dropped. Routers are used to decide to what
channel(s) an inbound message should be written, to aggregate or split mes-
sages. Service activators are a very generic type of endpoint. They aim to wrap
an arbitrary object as a service, so that messages in the workflow can be arbi-
trarily processed. A source channel is used to send messages to the service,
and if the service returns a value, this is done by means of a target channel.

Channel-oriented endpoints focus on providing support to bridge the com-
munication between applications and integration solutions, or provide func-
tionality to access the internal channels of an integration solution. Endpoints
in this group can be classified as channel adapters, message gateways, or
polling consumers. Channel adapters are responsible for reading/writing
data from/to a particular type of resource. Their interface provides soft-
ware engineers with a layer of abstraction on top of the low-level transport
protocols necessary to read/write. Spring Integration provides several types
of channel adapters, including files, databases, queues, web services, FTP
servers, remote procedure calls, remote objects, HTTP servers, instant messag-
ing systems, and social networks protocols. Message gateways aim to commu-
nicate with applications, however, they are used to provide a proxy that appli-
cations can use to push data to the integration solution. This endpoints enable
clients to work with objects instead of messages, since they can push objects to
the endpoint and the message gateway is responsible for wrapping them into
messages and write the results to the appropriate channels, or vice-versa.

Endpoints can write messages to a target channel, independently from the
type of channel and how messages are transferred by the channel. Contrar-
ily, reading messages depends on how messages are transferred. Roughly
speaking, they can be transferred synchronously or asynchronously. Channels
transfer messages synchronously by default, which means that messages are
read by and endpoint as they are written by the previous endpoint. Pooling
consumers come into the picture when a channel that transfers messages asyn-
chronously is used. In this case a polling consumer endpoint is necessary to
check the channel for new messages. As long as endpoints are communicated
by synchronous channels, they are executed in the same thread; contrarily,
endpoints that communicate by means of asynchronous channels can execute
on different threads. In the latter case, the thread associated with the endpoint

5.4. Message channels 49

that writes the message to the asynchronous channel is released immediately
after the endpoint completes the writing operation.

5.4 Message channels

Channels are responsible for transferring messages between endpoints. By
default channels do not put any restriction on the messages they transfer, how-
ever they can be configured to accept messages with only certain type(s) of
payload. If a message with another type is received, then Spring Integration
attempts to convert the payload to an acceptable type using a conversion ser-
vice, either built-in or user-defined. If no conversion service is configured or
the conversion fails, an Exception is thrown. Every channel can also define
zero or more interceptors. Channel interceptors allow to intercept messages
that are read or written a channel without altering the workflow. This is an
interesting approach for debugging and monitoring integration solutions.

Message channels can be classified along two axes: whether they deliver
messages to a unique endpoint or not, and whether they are synchronous or
not. Depending on the number of readers, message channels can be classified
into point-to-point channels, in which there is a unique reader, and publish-
subscribe channels, in which there can be an arbitrary number of readers. Syn-
chronous channels require a writer and a reader to be ready simultaneously
so that a message can be transferred through them; depending on whether the
writer and the reader execute on the same thread or not they can be further
classified into direct channels and rendezvous channels. Asynchronous chan-
nels, on the contrary, decouple the thread that writes a message to them from
the thread that reads a message from them. Asynchronous channels may be
unbounded or bounded, and they can optionally deliver their messages using
a user-defined priority criterion.

5.5 Error detection

Endpoints can raise an exception during the processing of a message.
Spring Integration allows software engineers to configure an error-channel
attribute to an endpoint. Thus, when an exception is raised, the Spring Inte-
gration detects this exception, wraps it with an ErrorMessage, and sends the
ErrorMessage to a channel configured to receive the errors. If there is not such

50 Chapter 5. Spring Integration

(3)(2)(1)

(9)
(4)

(7)

(8)

(5)

(6)

(10)

Figure 5.2: The Café integration solution designed with Spring Integration.

channel, then an exception is thrown in the code and software engineers have
to capture them with a traditional Java try-catch block in the Java source code.

5.6 The Café integration solution

Figure §5.2 shows the design of the Café case study using Spring Integra-
tion’s graphical notation. Cf. Section §12.2 for further information on this case
study.

The workflow of this integration solution starts at message gateway (1).
This endpoint allows to receive orders from external resources and writes
them to channel (2), which is used to transfer the orders to the next endpoint,
a splitter. The splitter breaks them up and generates new messages for ev-
ery drink item in the order. Channel drinks (3) is used to transfer these new

5.7. Summary 51

messages to router (4), which has to inspect every message in order to route
them either to the cold drinks channel (5) or to the hot drinks channel (6).
These channels are used to communicate with service activators (7) and (8),
which then interact with external Java beans that implement the baristas that
are responsible for preparing the cold and hot drinks. The responses from the
baristas are sent to channel (9), which acts as a merger for the flow. Endpoint
(10) is an aggregator that builds deliveries by aggregating all drink items from
the same order into a new message. The last endpoint is a channel adapter
used to write messages to an external resource.

5.7 Summary

In this chapter, we have introduced Spring Integration, which is an open-
source Java-based software tool provided by VMware Inc. to support the de-
sign and implementation of Enterprise Application Integration solutions. Fur-
thermore, we have described the concepts of message, endpoint, and message
channel, and how these concepts are related to one another. These are the
most relevant concepts in the architecture of Spring Integration. We also gave
an introduction to how Spring Integration deals with errors that can be occur
during the processing of a message. We have also reported on how to model
the Café case study using Spring Integration. The implementation is carried
out by means of a command-query API, and can be assisted by an Eclipse-
based IDE with a graphical editor.

52 Chapter 5. Spring Integration

Chapter 6

Mule

Language shapes the way we think,
and determines what we can think about.

Benjamin L. Whorf, American linguist (1897–1941)

M
ule is an open-source tool provided by MuleSoft Inc. to support
the design and implementation of Enterprise Application Inte-
gration solutions based on integration patterns; it builds on the
concept of enterprise service bus. In this chapter, we first pro-

vide an overview of this tool in Section §6.1. Section §6.2 presents the building
block used to wrap data that flows and is processed in an integration solution.
Section §6.3 introduces the building blocks that are used to connect applica-
tions from the software ecosystem to the integration solution. Section §6.4
describes the building blocks that execute business integration logic in a work-
flow. Section §6.5 describes the building blocks necessary to design and im-
plement the workflows. Section §5.5 introduces how errors are detected by
Mule. Section §6.7 shows the design of the Café case study using the graphi-
cal notation of Mule. Finally, Section §6.8 summarises the chapter.

53

54 Chapter 6. Mule

Figure 6.1: Conceptual model of Mule.

6.1 Introduction

Mule [27] is a Java-based software tool whose architecture is inspired by
the concept of enterprise service bus. It aims to support the design and im-
plementation of Enterprise Application Integration solutions based on inte-
gration patterns. It was designed to be used by means of a command-query
API [31] or declarative XML Spring-based configuration files. The latter seems
to be the most popular and recommended approach by the Mule commu-
nity. Mule is open source and provides a community version that includes
an Eclipse-based IDE with a graphical editor. A commercial enterprise ver-
sion is also available and maintained by MuleSoft Inc., which supports the
Mule project.

Central to the Mule architecture are the concepts of message, endpoint,
processor, and flow. Figure §6.1 shows a conceptual model that describes the
relationships amongst these concepts and other elements around them. Mes-
sages encapsulate the data that endpoints read/write from/to the applications
available within a software ecosystem. On reading data, the corresponding
message can be processed by a series of processors that, in the end, write them
to one or more applications.

6.2. Messages 55

6.2 Messages

Data that flows in a Mule integration solution are wrapped into messages.
Every message has a header that allows software engineers to add/read meta-
data information associated with the message. The header is implemented as
a map that stores data in the form of name-value pairs that are referred to as
attributes. There is not a limit to the number of attributes neither a limit to
the size of the meta-data stored in an attribute. The main data contents of a
message is stored in its payload, which holds an Object. Different from the
header, data in the payload can be read and modified during the processing
of a message in a workflow. Additional data that is not usually intended to be
processed, but needs to be kept in order to produce an output message, should
be carried as attachments. Messages also define an exception element to hold
an exception that occurred during the processing of the message, so that this
information is available to be used in error recovery.

6.3 Endpoints

Endpoints represent inbound and outbound points in an integration pro-
cess. They correspond to a specific instance of a connector. Connectors ab-
stract away from the technical details to deal with low-level transport pro-
tocols, which carry out the interactions with a particular type of resource.
The most common types of transport protocols are supported by Mule, which
provides a list of connectors that range from connectors to files, databases,
queues, web services, to connectors for social networks, cloud infrastructures,
and business process management systems. Endpoints provide software en-
gineers with a unique interface to read/write messages from/to a variety of
applications. By default, Mule creates a pool of threads for every endpoint, so
that an endpoint can handle several read/write operations at the same time.

Both endpoints and connectors have properties that software engineers can
use to configure them. Generally, this configuration is a tradeoff. A connector
can be configured mixing properties regarding reading or writing operations,
so that it is not necessary to have different connectors for each operation. Thus
the kind of use (read/write) depends on the endpoint that uses it. On the con-
trary, it is necessary to configure an independent endpoint for each operation,
although they can share the same connector. Although this way of configu-
ration seems intuitive, it constraints the reuse of a connector. The reason is

56 Chapter 6. Mule

that if the connector is configured for both operations, it must have informa-
tion about the applications from which it has to read or write and is tightly
coupled with the applications. Thus, to make connectors more reusable, it is
necessary to configure independent connectors for each operation and take
the information about the applications to the corresponding endpoints.

Software engineers can also configure processors to execute specific tasks
inside endpoints. We provide additional details in Section §6.4. These tasks
are intended to transform a message from a resource-specific format to a
canonical format that is specific to an integration process, or to filter unwanted
messages. In situations like these, the use of such processors aims to separate
the wrapping logic for a particular resource from the integration process logic.

Endpoints support two kinds of message exchange patterns, namely one-
way and request-response. The former indicates that the endpoint does not
return a response when the message that has been read or written has been
completely processed by the integration process. On the contrary, the latter
pattern indicates that the endpoint returns a copy of the current outbound
message. Not every endpoint supports both kinds of patterns, instead the
support is constrained by the type of the connector that is used by the end-
point. For example, file connectors only support the one-way message ex-
change pattern, however HTTP connectors support both message exchange
patterns (request-response by default).

6.4 Processors

Processors are building blocks that receive messages and do some process-
ing with them. Every processor implements a small, atomic integration task
taking into account the header, the payload, and/or the attachments of a mes-
sage. Processors can be chained together to implement complex tasks that
require several different types of processing on a message.

The processors supported by Mule can be organised into: transformers,
filters, routers, enrichers, components, and loggers. Transformers are proces-
sors that change the payload from one format to another; filters can selectively
filter some messages out of a workflow; routers are applied to change the tra-
jectory of messages in a workflow based on a user-defined criterion; enrichers
are used to add contents from external sources to a message; components al-
low to wrap Objects to re-use functionality; finally, loggers write messages to

6.5. Flows 57

a log system. Every category also provides a general implementation that can
be extended and customised by software engineers according to their needs.

Transformers and filters are quite common in integration solutions, which
is the reason why Mule allows to configure global transformers and filters.
This is interesting in situations in which the same kind of transformation or
filter can occur several times in the same or even in different workflows.

There are many processor types that are fully-configured by default. This
is common for very simple tasks chiefly in the transformers category, such as
the transformation from an Object into its XML representation, from a byte
array to an Object, or from String to Object. However, other processors in
these categories as well as in the filters, routers, and enrichers categories, can
have their integration logic modified by means of scripting languages. The
language used depends on the type of message: one can use XPath for XML
messages, or OGNL, JXPath or Groovy for Java objects.

6.5 Flows

Flows in Mule are used to implement integration processes. They chain
together endpoints, processors, and other sub-flows. A flow includes one in-
bound endpoint, zero or more processors, zero or more outbound endpoints,
and an optional exception strategy. Flows that do not include a processor,
implement a pass-through integration process that simply moves data from a
source to a target (in this case, we assume that the flow includes an outbound
endpoint). If a flow does not include an outbound endpoint, then the inbound
endpoint must be configured with a request-response message exchange pat-
tern or use a component processor that interacts with an external resource
to write messages out of the flow. The exception strategy receives messages
whose processing has failed.

As soon as a read operation terminates in an endpoint, the thread on which
it runs is released. Then, the inbound message is made available to the first
processor in the flow by means of an internal queue. By default, messages
are processed synchronously in the chain of processors that compose a flow;
therefore Mule defines a pool of threads to be used by these processors, as
well. Software engineers can change this default processing model used in
flows by defining asynchronous scopes that embrace all the flow or only part
of it. Asynchronous scopes are sub-chains in which every processor in the

58 Chapter 6. Mule

(1)

(5)

(3)

(4)

(6) (7)(2)

Figure 6.2: The Café integration solution designed with Mule.

chain runs in a different thread. Similarly to inbound endpoints, messages are
made available to outbound endpoints by means of an internal queue.

Sub-flows are re-usable flows; the key is that they do not include end-
points; when they are invoked, the calling flow passes the current message
to the sub-flow, waits for the response from it and then resumes processing. If
the calling flow is executed synchronously, then the same thread running the
calling flow runs the processors of the sub-flow for that message; otherwise
the calling flow thread pool is shared with the sub-flow.

6.6 Error detection

In Mule, if a message cannot be processed, an exception is raised. Mule
allows to configure an exception strategy object at the processor and/or flow
levels. Thus, when Mule detects an exception, it logs it, adds it to the message
that has failed, and forwards the message to the exception strategy object.
An exception strategy is configured to use an OutboundEndpoint, so that the
message can be stored into a resource, such as a queue or database.

6.7 The Café integration solution

Figure §6.2 shows the design of the Café case study using Mule’s graphical
notation. Cf. Section §12.2 for further information on this case study. As of

6.8. Summary 59

the time of writing this dissertation, the graphical editor is in beta version and
does not provide support for some integration patterns.

The workflow of this integration solution starts at file endpoint (1), which
reads orders. Orders taken by processor (2) are split and generate new mes-
sages for every drink item. Then, the dispatcher processor (3) inspects every
message in order to route them either to the Barista Cold Drinks (4) or to
the Barista Hot Drinks (5). In this integration solution, processors (4) and
(5) are interfaces that allow to invoke the business logic that implement the
baristas. The outbound messages from these processors represent drinks that
are prepared and then can be aggregated back into an order to which they
correspond. Since the current version of the graphical editor does not support
aggregators, we provide a ready-to-use aggregator, we have implemented the
aggregation business logic in a separate Java class that is interfaced using pro-
cessor (6). Finally, file endpoint (7) is used to deliver messages.

6.8 Summary

In this chapter, we have introduced Mule, which is an open-source Java-
based software tool provided by MuleSoft Inc. to support the design and im-
plementation of Enterprise Application Integration solutions. Furthermore,
we have described the concepts of message, endpoint, processor, and flow,
and how these concepts are related one to each other. These are the most rele-
vant concepts in the architecture of Mule, which is inspired by the concept of
enterprise service bus. We also gave an introduction to how Mule deals with
errors that can be occur during the processing of a message. We have also re-
ported on how to model the Café case study using Mule. The implementation
is carried out by means of a command-query API, and can be assisted by an
Eclipse-based IDE with a graphical editor.

60 Chapter 6. Mule

Chapter 7

Model-Driven Engineering

T he purpose of science is not to analyse or
describe but to make useful models of the world.

Edward de Bono, Maltese psychologist (1933–)

T
he Model-Driven Engineering discipline has been changing the way
how software systems are built. It promotes models as first-class citi-
zens in all phases of the software development process. In this chap-
ter, we first provide an overview of this discipline and two possible

approaches to carry it out in Section §7.1. Section §7.2 introduces the Model-
Driven Architecture approach proposed by the Object Management Group.
Section §7.3 presents Software Factories, which is the approach proposed by
Microsoft Corporation. Finally, Section §7.4 summarises the chapter.

61

62 Chapter 7. Model-Driven Engineering

7.1 Introduction

The field of Software Engineering is involved in a paradigm shift that has
important consequences on how software engineers construct and evolve sys-
tems. Central to this change is the Model-Driven Engineering discipline [100],
which promotes models as first-class citizens in every phase of the software
development process. Models are abstractions that allow software engineers
to focus on the relevant aspects of a software system while ignoring de-
tails that are irrelevant. Behind this discipline is the idea to raise the level
of abstraction of the overall development process, to capture systems as a
collection of reusable models, to separate business logic descriptions from
a particular platform implementation, and to automate the implementation
phase [9, 49, 63, 69, 100]. There are several approaches to Model-Driven En-
gineering, including the Model-Driven Architecture [79] and Software Facto-
ries [47].

The Model-Driven Architecture was proposed by the Object Management
Group and relies on their standard modelling languages to represent software
systems using models at different levels of abstraction, and standard trans-
formation languages to generate executable systems from these models. In
this approach, UML [86] is the recommended language to represent the mod-
els, QVT [85] is the recommended language to write transformations between
models at the same or different level of abstraction, MOF Model to Text [81] is
the language used to generate executable code from a model, and, XMI is the
recommended language to serialise models.

Software Factories was proposed by Microsoft Corporation and aims to in-
tegrate well-established areas of Software Engineering, such as product line
families, domain-specific languages, frameworks, and patterns, into a new
methodology and a set of tools that software engineers can use to develop
software [47]. Software Factories does not target an architecture based on lev-
els of abstraction or the use of standard languages. In fact, their adoption is
up to the software engineers. To realise Software Factories, Microsoft provides
a set of tools that build on .NET and Visual Studio [91]. IBM is another com-
pany that bets on Software Factories, but they target the Java platform and
WebSphere [94].

In recent years, the use of domain-specific languages in the software indus-
try is increasing very fast. Many authors argue that domain-specific languages
bring important advantages over general-purpose languages, e.g., they help
raise the level of abstraction by providing language constructs that are very

7.2. Model-Driven Architecture 63

close to the problem domain, they are smaller, easier for software engineers
to learn and use, they are more expressive, they increase productivity, quality,
and maintainability [4, 29, 31, 45, 107, 109]. The Software Factories approach
is guided by the development and use of domain-specific languages. In the
Model-Driven Architecture approach, although it focuses on the use of UML,
which is a general-purpose language, it also gives the possibility to work with
domain-specific languages. In such a case, the domain-specific languages are
defined either as extension to UML, which are referred to as profiles [46], or as
extensions to the MOF language [80]. As a result, the new language conforms
to either the UML or the MOF syntax.

The Model-Driven Architecture focuses on applying Model-Driven Engi-
neering to the design and implementation phases of the software development
process. It provides a conceptual framework that software engineers can fol-
low to generate software from models. Software Factories aims to support
every phase of the software development process, by providing a methodol-
ogy that integrates well-known areas in Software Engineering. Although they
are different approaches, they can be complementary [19, 82]. In the following
sections we provide additional details on each approach.

7.2 Model-Driven Architecture

The Model-Driven Architecture approach promotes the construction of
software systems building on a set of inter-related views, at the same or dif-
ferent levels of abstraction. These views allow software engineers to separate
business-oriented decisions from software design and implementation deci-
sions. Each view corresponds to a model that describes the whole or a part
of a system, with a focus on relevant details for that view. A model can be
used as a source to produce other model(s) at the same or different level(s) of
abstraction [77]. A typical situation within the same level of abstraction is to
perform model refactoring, which aims to produce a new model with a bet-
ter quality without changing the observable behaviour in the source model.
When a model is used to produce other model(s) at a different level of ab-
straction, the target model includes more or less details regarding how it is
implemented using a specific technology.

Transformation rules are written using transformation languages. Al-
though QVT and MOF Model to Text are recommended by the Object Man-
agement Group, several other languages have gained importance in this field,

64 Chapter 7. Model-Driven Engineering

Platform-Specific Model

Executable Code

Platform-Independent Model

Computation-Independent Model

Figure 7.1: Abstraction levels in the Model-Driven Architecture.

such as ATL [62], MOFScript [84], and XSLT [65]. Rules and models are taken
as input by transformation engines, which are responsible for producing other
model(s) or the corresponding executable code. A transformation rule con-
sists of a description of how one or more source elements can be transformed
into one or more target elements. France and Bieman [32] classified transfor-
mations into two types: horizontal and vertical. The former corresponds to
a transformation in which the source and target models are within the same
level of abstraction; in the latter, the source and target models are at differ-
ent levels of abstraction. Figure §7.1 shows the abstraction levels and their
relationship.

The Model-Driven Architecture defines three levels of abstraction on top of
the executable code of a software system, namely: computation-independent
model, platform-independent model, and platform-specific model.

The computation-independent model is the highest level of abstraction.
Models at this level aim to describe the main abstractions and functionalities

7.3. Software Factories 65

involved in a particular business domain. Business decisions shall not be in-
fluenced by an specific information technology, and shall use languages that
provide constructs that are very close to the abstractions of the business do-
main. The resulting models are also referred to as domain models. An ex-
ample of domain model can be the specification of which applications shall
be integrated and which information they shall exchange to support a new
business process.

A platform-independent model shall be obtained from the refinement of
a computation-independent model. At this level of abstraction, models are
refined to describe the operations, structure, and behaviour of a software sys-
tem [10]. Information technology abstractions such as databases, communi-
cation channels, software patterns, component interfaces, and data structure,
are introduced. However, there is not a commitment to a particular imple-
mentation technology. Models shall remain neutral, so that they keep soft-
ware systems preserved from changes to the underlining technology, and can
be reused several times to generate different platform-specific models [66, 79].

Platform-specific models are the lowest level of abstraction on top of
the executable code. Models are obtained from the refinement of platform-
independent models. Models at this level are bound with specific implementa-
tion technologies, such as a vendor specific database (e.g., Oracle, SQL Server,
PostgreSQL, and so on), a communication protocol (e.g., HTTP, IIOP, RMI, and
so on), or an application framework (e.g., Java EE, .NET, and so on). Conse-
quently, the operations, structure, and behaviour in the models must include
details on how they can be implemented in the chosen technologies. Transfor-
mations model-to-text are used to obtain an skeleton or a complete executable
system from these models in a target general-purpose programming language.

7.3 Software Factories

Software Factories has been promoted as an approach towards to mass
customisation of software [3, 47]. As a result, Software Factories targets a spe-
cific business domain in which a product line can be abstracted. A product
line consists of a family of software artefacts that share core assets, including
an architectural framework [18]. These assets can be systematically reused to
reduce software development costs and shorten the time to market [67]. In
Software Factories, the concept of asset includes configuration files, source
code files, localisation files, build scripts, deployment manifests, test case def-

66 Chapter 7. Model-Driven Engineering

Product A Product B Product C

Family members

Family factory

Schema Template
materialises

produces

Figure 7.2: Abstraction of a Software Factory.

initions, models, transformations for automatic artefact generation, domain-
specific languages, libraries, frameworks, patterns, how-to help pages, train-
ing material, and sample codes. During the life-cycle of a software factory, ad-
ditional common assets can be identified across multiple products, and added
to the factory.

Roughly speaking, Software Factories are organised into factory schema
and factory template, cf. Figure §7.2.

A software factory schema is the meta-data of the factory, i.e., it provides
only a description of the factory and its contents. These descriptions also
document the relationships amongst assets and includes guidelines regarding
when and how they have to use these assets. The documentation of a relation-
ship between two assets can include, for example, information on how to map
an asset onto another. Furthermore, these descriptions can document which
other assets shall be affected when changing a particular asset. Guidelines are
valuable assets since they agglutinate much knowledge on how to do things
in the best way. Thus, they are very important, chiefly for junior engineers,
who can follow them, and senior engineers, who can refine the guidelines
with their experience. Every asset has its roots on the business requirements
of the product line family, which is also part of the schema. Descriptions in
the schema can be divided into fixed and variable. The former represents as-
sets that are reused exactly as they are in every product member of the family;
the latter, allows for customisation to accommodate the particularities of each
product.

7.4. Summary 67

Software factory templates are the materialisation of the schema into a set
of actual artefacts and tools that are packaged and delivered to software en-
gineers. These artefacts and tools have to be installed and integrated into the
software development environment of the development team, so that actual
software can be produced and delivered to clients. Thus, templates can be seen
as a way to configure a domain-specific development environment to produce
software with a uniform architecture, promote the reuse of domain assets, pro-
mote the automation of error-prone and recurrent tasks, to increase software
quality, and reduce the costs involved in software production [47, 67].

7.4 Summary

In this chapter, we have introduced the Model-Driven Engineering disci-
pline, which is changing the way how software engineers construct and evolve
systems. Furthermore, we have described two approaches to carry out this
discipline, namely: Model-Driven Architecture and Software Factories. The
former was proposed by the Object Management Group and relies on their
standard modelling languages to represent software systems using models at
different levels of abstraction. The latter, was proposed by Microsoft Corpo-
ration and aims to integrate well-established areas of Software Engineering
into a new methodology and a set of tools that software engineers can use to
develop software.

68 Chapter 7. Model-Driven Engineering

Part III

Our Approach

Chapter 8

Domain-Specific Language

T he function of modelling is to arrive at descriptions that are useful.
Richard W. Bandler & John Grinder, American authors (1950– & 1940–)

W
e describe our Domain-Specific Language to design integration
solutions in this chapter. Section §8.1 introduces the concepts
with which we deal to model integration solutions. Section §8.2
describes the abstract syntax of our language. Section §8.3

presents the graphical concrete syntax to represent the building blocks of our
language. Section §8.4 introduces a general-purpose toolkit to support the de-
sign of integration solutions. Finally, Section §8.5 summarises the chapter.

71

72 Chapter 8. Domain-Specific Language

composed of

can be

either
co

m
pose

d o
f

works

on stores

integrates

composed of

interact

with

communicate

through

interact

with
can be

either

Solution

Processes

Wrapping

Process

Orchestration

Process

Applications

Ports

Exit Port

Entry Port

SlotsTasks

Binding Components

Application Layer

Messages

read or

write

read or

write

process

Routers

Modifiers

Transformers

Stream Dealers

Mappers

Communicators

Task Toolkit

Link

App. Link

Integ. Link

can be

either

transfers

Interslots

special

case of

Figure 8.1: Conceptual map of our Domain-Specific Language.

8.1 Introduction

In this chapter, we describe our Domain-Specific Language, to which we
refer to as Guaraná DSL. This language allows software engineers to design
integration solutions using a graphical and very intuitive concrete syntax. Fur-
thermore, Guaraná DSL can be used as a common and yet simple vocabulary
for communicating in this field.

Figure §8.1 presents a conceptual map in which we introduce the concepts
with which we deal to model integration solutions. The root concept is solu-
tion, which represents a collection of processes that co-operate to integrate a
number of applications.

Processes serve two purposes, namely: there are processes that allow to
wrap applications and processes that allow to integrate them. The former are
reusable processes that endow an application with a message-oriented appli-
cation programming interface that simplifies interacting with it. Implement-
ing such a wrapping process may range from using a JDBC driver to interact
with a database to implementing a scrapper that emulates the behaviour of
a person who interacts with a user interface [22]. Orchestration processes,
on the contrary, are intended to orchestrate the interactions with a number of
wrapping processes and other orchestration processes.

8.1. Introduction 73

Processes rely on tasks to perform their wrapping or their orchestration ac-
tivities. Simply put, a process can be viewed as a message processor. A mes-
sage is an abstraction of a piece of information that is exchanged and trans-
formed across an integration solution. The structure of messages depends
completely on the integration solutions in which they are involved.

Guaraná DSL provides a general-purpose task toolkit, which contains
a collection of tasks that provide the foundations for many other special-
purpose task toolkits for different integration contexts, such as RosettaNet-
oriented tasks in business-to-business contexts [96], HL7-oriented tasks in
health contexts [52], SWIFT-oriented tasks in financial contexts [106], or
HIPAA-oriented tasks in insurance contexts [51], to mention a few. In Fig-
ure §8.1, we illustrate the main categories of tasks in the general-purpose task
toolkit; cf. Section §8.4 for a comprehensive description.

Note that our proposal does not preclude several tasks (including several
instances of the same task) from executing in parallel. This makes it impossible
for tasks to communicate directly to each other. Instead, they communicate
indirectly by means of slots. A slot acts as a buffer in-between tasks, i.e., they
allow a task to output messages that shall be processed asynchronously by
another task.

Java Business Integration is an specification of a pluggable architecture of
services [17] to which several Enterprise Service Buses have adhered, such
as the Open ESB [90]. Typical Enterprise Service Buses provide so-called
adapters, which are used to interact with the applications being integrated.
In Java Business Integration, adapters are referred to as binding components.
The binding components implement the low-level transport protocol neces-
sary to carry out this interaction. There are many types of binding components
available nowadays, which allow the integration solutions to connect to al-
most any existing application in a software ecosystem. The catalogue includes
binding components for databases, local files, FTP, SOAP/HTTP, RSS, SMTP,
RMI/IIOP, JMS, HL7, LDAP, DCOM, XMPP, SMPP, SNPP, S3, and so on. Our
Domain-Specific Language allows to reuse the large catalogue of binding com-
ponents provided by Open ESB.

Processes use ports to communicate with each other or with the applica-
tions involved in an integration solution. Simply put, the purpose of a port
is to abstract away from the details required to interact with a binding com-
ponent, which, in turn, abstracts away from the details required to interact
with an application within the software ecosystem or another process. Bind-
ing components are used by means of a special kind of task, referred to as

74 Chapter 8. Domain-Specific Language

Software

Ecosystem

Integration

Solution

Integration Link

App 1

X

Orchestration

Process 1

Orchestration

Process 2

Wrapping

Process 1

Wrapping

Process 2

Wrapping

Process 3

Entry PortExit Port

Application Link

App 2

X

App 3

X

Figure 8.2: Typical integration solution designed with Guaraná DSL.

communicator. The interaction with an application occurs at one or more lay-
ers, i.e., data layer, data access layer, business logic layer, and user interface
layer. Ports can be either entry or exit ports, depending on whether they were
designed to read messages from a process or an application, or to write mes-
sages to them.

Note that ports usually need to transform the messages they transfer,
which implies that they are composed of tasks, as well. This means that they
also need slots to help their tasks work as much asynchronously as possible.
Another subtle implication is that there must be a slot to communicate a task
in a port to a task in the process to which the port belongs. We refer to such
slots as interslots.

Figure §8.2 shows, from an abstract point of view, a typical integration
solution that was designed using the Guaraná DSL. The integration solution
is composed of three wrapping processes that interact with the applications
in the software ecosystem, and two orchestration processes that implement
the integration business logic to be executed. In this integration solution, the
workflow processes messages that are read from App1 and App2 and writes the
results to App3.

8.2. Abstract syntax 75

Figure 8.3: Main constructors of Guaraná DSL.

8.2 Abstract syntax

This section describes the part of our metamodel, aka abstract syntax, that
is related to the core domain-specific language. This metamodel conforms
to the Eclipse Modelling Framework [105], so that it can be used exactly as
it is to develop domain-specific workbenches using Eclipse-based technolo-
gies. The constraints in the metamodel were validated using the Dresden OCL
Toolkit [25] to ensure they conform to the Object Constraint Language specifi-
cation. Figure §8.3 provides an overall picture to guide the reader through the
following subsections.

76 Chapter 8. Domain-Specific Language

8.2.1 Integration solutions

Solution is the root class of our metamodel, and it represents an integra-
tion solution. A Solution has a name property, which is used for documen-
tation purposes only, and consists of one or more Processes, one or more
Applications, and one or more Links. A Solution must fulfill the following
invariants:

context Solution
inv: applications->isUnique(name)
inv: processes->isUnique(name)
inv: links->isUnique(name)

They state that the names of the applications, processes and links must be
unique. Note, however, that an application and a process may have the same
name, since there are no chances to mistake them.

8.2.2 Processes

Class Process represents either a wrapping or an orchestration process.
A Process is composed of at least one EntryPort, at least one ExitPort, at
least one Task, and at least two Slots. A Process has to fulfill the following
invariants:

context Process
inv: tasks->union(entryPorts.tasks->union(exitPorts.tasks))->

isUnique(name)
inv: slots->isUnique(name)
inv: entryPorts->union(exitPorts)->isUnique(name)
inv: tasks->select(oclIsKindOf(Communicator))->size() = 0
inv: let interslots: Set(Slot) = slots->select(s: Slot |

not self.tasks->includes(s.source) and
self.tasks->includes(s.target) or
self.tasks->includes(s.source) and
not self.tasks->includes(s.target)) in
interslots->size() = self.entryPorts->size() +

self.exitPorts->size()

These invariants state that tasks, slots and ports must have unique names,
that a process cannot contain any tasks of kind Communicator because these

8.2. Abstract syntax 77

tasks are specific to ports, and that there can be only one interslot per port.

To understand the first invariant, recall that both processes and ports can
contain tasks, and they all must have different names. Thus, for each process,
we need to calculate the set of tasks of which it is directly composed, union
the set of tasks in its entry and exit ports.

Note, however, that the invariant regarding slots is slightly different, since
we do not need to calculate the slots of a process, union the slots of its entry
and exit ports; instead, we can simply write slots->isUnique(name). The
reason is that, at least in theory, interslots belong to both a process and a port;
unfortunately, EMF does not allow to model such situations. The only solution
is that property slots holds all of the slots involved in a process, including the
slots in its entry and exit ports.

The last invariant also deserves an explanation. It states that there can only
be one slot connecting the tasks that are contained in a port to the tasks that
are contained in the corresponding process, i.e., there can be at the most one
interslot per port. The most difficult part of the invariant is the identification
of interslots: they are calculated as the set of slots whose source task is not
included in the set of tasks of which a process is directly composed, but the
target is, or vice-versa. Note that if a source or a target task in a slot does not
belong to a process itself, it must belong to one of its ports, which implies that
the original slot is actually an interslot.

8.2.3 Ports and links

Ports are composed of tasks and slots, that get connected by Links; these,
in turn, can be either ApplicationLinks, which connect Applications to
Ports, or IntegrationLinks, which connect EntryPorts to ExitPorts. Recall,
however, that the inability to represent interslots as shared objects prevented
us from modelling the slots of which a port is composed as a proper con-
tainment property. Instead, we need to calculate the slots of which a port is
composed by means of a derivation, namely:

context Port::slots: Set(Slot)
derive:
tasks->collect(outputSlots)->

union(tasks->collect(inputSlots))

78 Chapter 8. Domain-Specific Language

Another derivation is property link; recall that every port must be con-
nected to a link so that messages can be transferred. Links can be seen as an
abstract communication mechanism. The problem is that links should belong
to both an integration solution and some of its ports, which is not possible.
This is the reason why property link is also derived, namely:

context Port::link: Link
derive:
let appLink: Link = ApplicationLink.allInstances()->

any(port = self) in
let intLink: Link = IntegrationLink.allInstances()->

any(source = self or target = self) in
if not appLink.oclIsUndefined() then

appLink else intLink
endif

Note that the derivation is defined in class Port. This is the reason why the
formula tries to find both an application and an integration link whose port is
the current context; depending on whether the port is actually connected to an
application or to a process, either appLink or intLink shall not be undefined.

Furthermore, ports must fulfill the following invariants:

context Port
inv: tasks->isUnique(name)

context EntryPort
inv: tasks->one(oclIsKindOf(Communicator))
inv: tasks->one(oclIsKindOf(InCommunicator))

context ExitPort
inv: tasks->one(oclIsKindOf(Communicator))
inv: tasks->one(oclIsKindOf(OutCommunicator))

The previous invariants state that the tasks in a port must have
unique names, that an EntryPort must have one Communicator of kind
InCommunicator, and that an ExitPort must also have one Communicator of
kind OutCommunicator. Whilst the former kind of communicator is used to
read messages from a binding component, the latter is used to write messages
to the binding component.

There is a final invariant: we do not allow for ‘looping’ processes, i.e.,

8.2. Abstract syntax 79

processes in which a port is connected to another port in the same process.
To avoid this kind of anomaly, we introduced the following invariant in our
metamodel:

context IntegrationLink:
inv: not (source.process = target.process)

8.2.4 Tasks and slots

Every task has a name, a set of inputs, a set of outputs, and an
executionBody. Both inputs and outputs are connected to slots at run time
and hold messages; the execution body is a piece of Java code that implements
the activities that must be carried out. Inside the execution body, a software
engineer may have access to the messages held in the inputs and outputs.

Every task must fulfill the following invariants:

context Task
inv: inputs->union(outputs)->isUnique(n: Name | n)
inv: inputSlots->collect(s: Slot | s.relatedInput) = inputs
inv: outputSlots->collect(s: Slot | s.relatedOutput) = outputs

These invariants state that both inputs and outputs must have unique
names, that no input or output can be disconnected from a slot, and that no
input or output is connected to more than one slot. Note that every slot has a
property called relatedInput and a property called relatedOutput; they indi-
cate to which task inputs and outputs they are connected, respectively. Thus,
our invariants require that the set of related inputs of the input slots must co-
incide with the set of inputs of every task; similarly, the set of related outputs
of the output slots must coincide with the set of outputs of every task. To-
gether, these invariants guarantee that every input or output is connected to
one and only one slot.

Every slot must fulfill the following invariants:

context Slot
inv: not (target = source)
inv: target.inputs->includes(relatedInput)
inv: source.outputs->includes(relatedOutput)
inv: let sourceProcess: Process = Process.allInstances()->

any(p: Process | p.tasks->union(p.entryPorts.tasks)->

80 Chapter 8. Domain-Specific Language

union(p.exitPorts.tasks)->includes(self.source)) in
let targetProcess: Process = Process.allInstances()->

any(p: Process | p.tasks->union(p.entryPorts.tasks)->
union(p.exitPorts.tasks)->includes(self.target)) in

sourceProcess = targetProcess

These invariants state that every slot must connect different tasks, that they
must be properly connected to the inputs and outputs of the corresponding
tasks, and that they cannot connect tasks in different processes. Note that the
association between Process and Slot is not backwards navigable because of
the problem to model interslots; this implies that we need to calculate explic-
itly the process to which the source and the target tasks of every slot belong.
To calculate it, we need to iterate over the whole set of process instances to
find a process whose tasks, union the tasks of its entry and exit ports contain
the source or the target task of every slot.

8.2.5 Datatypes

In the metamodel, we refer to a number of datatypes, namely:

Name: This type represents a subset of Java identifiers. It is repre-
sented as a String that satisfies the following regular expression:
[a-zA-Z_]([a-zA-Z_0-9])*.

HostName: This type represents a subset of DNS host names. It is rep-
resented as a String that satisfies the following regular expression:
[a-zA-Z0-9\-]{1,62}((\.[a-zA-Z0-9\-]{1,62})+\.[a-zA-Z]{2,6})?.

JndiName: This type represents a subset of JNDI names. It is repre-
sented as a String that satisfies the following regular expression:
[a-zA-Z_@$]([a-zA-Z_@$0-9])*(/[a-zA-Z_@$0-9]+)*.

PositiveInteger: This type represents 16-bit positive integers. It is repre-
sented as an int within the following range: minInclusive = 0 and
maxInclusive = 65534.

They allow us to constraint some properties of the metamodel that need to
be copied verbatim by our transformations.

8.3. Concrete syntax 81

Icon Class Icon Class

X Application IntegrationLink

Process ApplicationLink

EntryPort Slot

ExitPort Task

Table 8.1: Concrete syntax.

8.3 Concrete syntax

Table §8.1 shows the concrete syntax we use to represent the classes pro-
vided by our abstract syntax. Since tasks are provided in toolkits that are not
part of the core language, the symbol that we depict in Table §8.1 to represent
them is generic. (cf. Section §8.4 for a complete description of our general-
purpose toolkit.) Note the small rounded connectors on the sides of the icon;
they represent the inputs and the outputs. Slots are connected to tasks using
these rounded connectors. Note that the syntax regarding processes and ports
is abbreviated, i.e., this is the syntax used to hide the details; they both are
containers, which implies that they can be represented making it explicit their
internal structure, as well.

8.4 General-purpose toolkit

In the previous sections, we have dealt with tasks in an abstract manner.
In this section, we provide an insight into a general-purpose toolkit that ac-
companies Guaraná DSL. Figure §8.4 sketches the abstract classes that help
classify concrete tasks according to their intended semantics, namely: routers,
which do not change the state of the messages they process, but route them
through a process, cf. Table §8.2; modifiers, which help add or remove data
from messages, but do not alter their schemata, cf. Table §8.3; transformers,
which help transform one or more messages into a new message with a dif-
ferent schema, cf. Table §8.4; stream dealers, which allow to compress, cipher,
or encode messages, cf. Table §8.5; mappers, which change the format of the
messages they process, e.g., from a stream of bytes into an XML document,

82 Chapter 8. Domain-Specific Language

Figure 8.4: Partial view of Guaraná DSL’s general-purpose toolkit.

cf. Table §8.6; and communicators, which are used to interact with binding
components, cf. Table §8.7.

The general-purpose toolkit supports several integration patterns [54].
Whereas most of them are supported by a single task, others are supported
by means of the composition of tasks or by means of the configuration of pro-
cesses, ports, and tasks, cf. Table §8.8 and §8.9, respectively.

8.5 Summary

In this chapter, we have described the abstract and concrete syntax of our
Domain-Specific Language to design Enterprise Application Integration so-
lutions at a high-level of abstraction. Furthermore, we have introduced a
ready-to-use general-purpose toolkit that supports the most common integra-
tion patterns to design integration solutions.

8.5. Summary 83

Notation Task Description

Correlator Analyses inbound messages and
outputs sets of correlated ones.

Merger Merges messages from different in-
put slots into one output slot.

Resequencer Reorders messages into sequences
with a pre-established order.

Filter Filters out unwanted messages.

IdempotentTransfer Removes duplicated messages.

Dispatcher Dispatches a message to exactly
one slot.

Distributor Distributes messages to one or
more slots.

Replicator Replicates a message to all of the
output slots.

SemanticValidator Validates the semantics of a mes-
sage.

CustomRouter Allows for routing a message ac-
cording to custom semantics.

Table 8.2: Router tasks.

84 Chapter 8. Domain-Specific Language

Notation Task Description

Slimmer Removes contents from the body of
a message according to a static pol-
icy.

ContextBasedSlimmer Removes contents from the body of
a base message according to a dy-
namic policy that is provided by a
context message.

ContentEnricher Adds static contents to the body of
a message.

ContextBasedContentEnricher Adds dynamic contents from a con-
text message to the body of a base
message.

HeaderEnricher Adds static contents to the header
of a message.

ContextBasedHeaderEnricher Adds dynamic contents from a con-
text message to the header of a base
message.

HeaderPromoter Promotes a part of the body of a
message to its header.

HeaderDemoter Demotes a part of the header of a
message to its body.

CustomModifier Allows to modify the header and
body of a message according to cus-
tom semantics.

Table 8.3: Modifier tasks.

8.5. Summary 85

Notation Task Description

Translator Transforms the body of a message
from one schema into another.

Splitter Splits a message that contains re-
peating elements into several mes-
sages.

Aggregator Constructs a new message from
several messages produced previ-
ously by a Splitter.

Chopper Breaks a message into two or more
messages.

Assembler Constructs a new message from
two or more messages.

X CrossBuilder Constructs a new message that con-
tains the cartesian product of all in-
bound messages.

CustomTransformer Allows for transformation of a mes-
sage according to custom seman-
tics.

Table 8.4: Transformer tasks.

Notation Task Description

Zipper Compresses a message.

Unzipper Decompresses a message.

Encrypter Encrypts a message.

Decrypter Decrypts a message.

Encoder Encodes a message.

Decoder Decodes a message.

Table 8.5: Stream dealer tasks.

86 Chapter 8. Domain-Specific Language

Notation Task Description

Stream2XML Maps a stream of bytes onto an
XML message.

XML2Stream Maps an XML message onto a
stream of bytes.

Table 8.6: Mapper tasks.

Notation Task Description

InCommunicator Used in ports to read messages.

OutCommunicator Used in ports to write messages.

Table 8.7: Communicator tasks.

Base msg

 enrichedBase msg

Request msg Response msg

......

Base msg

Request msg Response msg

Base msg

 enriched
... ...

Composite enquirer

Equivalent pattern

App

App

Figure 8.5: The Enquirer pattern.

8.5. Summary 87

Messages in a

canonical format

Messages in

different formats

Messages in

different formats

Messages in a

canonical format

Composite normaliser

Equivalent pattern

Figure 8.6: The Normaliser pattern.

Notation Task Description

Enquirer Takes a base message and uses a
pair of request-response messages
to enrich it with the contents from
the response message. This pat-
tern appears frequently when solic-
iting information from an applica-
tion. Figure §8.5 shows how it is
implemented.

Normaliser Takes messages in different formats
and uses a set of translator tasks
to transform them into a canonical
format. Figure §8.6 shows how it is
implemented.

Table 8.8: Composite tasks.

88 Chapter 8. Domain-Specific Language

App4

App3

App2

App1

Figure 8.7: The Scatter-Gather pattern.

...

data to store

data to process

Figure 8.8: The Claim Check pattern.

App1 App2

Figure 8.9: The Message Bridge pattern.

8.5. Summary 89

Pattern Description

Scatter-Gather Gathers information from multiple
assets using the same request mes-
sage. All responses are used to as-
semble a unique message that is re-
turned as response message to the
original request. Figure §8.7 shows
how it is implemented.

Claim Check Temporarily reduces the contents
of a message that goes through an
integration workflow. This pattern
uses an external persistent store.
Figure §8.8 shows how it is imple-
mented.

Message Bridge Synchronises two different assets
so that messages available on one
of them are also available on the
other. Figure §8.9 shows how it is
implemented.

Table 8.9: Configuration patterns.

90 Chapter 8. Domain-Specific Language

Chapter 9

Software Development Kit

Design is not just what it looks like and feels like.
Design is how it works.

Steve P. Jobs, American businessman & inventor (1955–2011)

T
his chapter is devoted to present our Software Development Kit that
supports software engineers to implement integration solutions. Sec-
tion §9.1 provides an introduction to the Software Development Kit.
Section §9.2 describes the layer in our Software Development Kit that

implements the abstractions in our Domain-Specific Language. Section §9.3
presents our general-purpose toolkit, which provides a ready-to-use imple-
mentations of building blocks, such as tasks and adapters. Finally, Section §9.4
summarises the chapter.

91

92 Chapter 9. Software Development Kit

Figure 9.1: Packages of which our framework is composed.

9.1 Introduction

This chapter describes our Software Development Kit, to which we refer
to as Guaraná SDK. Guaraná SDK is the Java-based software tool that we pro-
vide to implement Enterprise Application Integration solutions based on inte-
gration patterns. It was designed to be used by means of a command-query
API [31]. This tool is composed of two layers, namely: framework and toolkit.
The former provides a number of classes and interfaces that implement the
abstractions of our Domain-Specific Language, and the latter extends some
abstractions in the framework to provide a general-purpose toolkit, ready-
to-use implementations of building blocks, such as tasks and adapters. By
framework we mean a layer that provides abstract and concrete implementa-
tions and is able to execute them.

9.2 The framework layer

In this section, we describe the framework layer. Figure §9.1 provides an
overview of this layer by showing the six packages of which it is composed.
In the following subsections we describe each package.

9.2.1 Messages

Messages are used to wrap the data that is manipulated in an integration
solution. They are composed of a header, a body and one or more attachments,
cf. Figure §9.2.

9.2. The framework layer 93

Figure 9.2: Message model.

The header includes custom properties and the following pre-defined
properties (not shown in Figure §9.2): message identifier, correlation identi-
fier, sequence size, sequence number, return address, expiration date, mes-
sage priority, message type, and list of ancestors. The message identifier is
represented using an immutable universally unique identifier value of 128-
bits, which is automatically assigned to every message when they are created.
The correlation identifier holds the identifier of another message to which the
current message is correlated. Sequence size and sequence number are used to
identify a message in a sequence of messages so that they can be grouped. The
expiration date allows to set a deadline after which a message is considered
outdated for further processing. The message priority is an enumerated value,
namely: lowest, low, normal (default), high, and highest. The message type
is an enumerated value that indicates whether the message represents a com-
mand, an event (default), a request, or a response. A command message aims
to invoke an operation at its destination without expecting any responses; an
event message is used for asynchronous notification purposes and carries data
that keeps applications up to date; a request message is similar to a command
message, however it always expects a reply that is a response message. The
list of ancestors allows to track which messages originate from which ones;
this is important in order to find out which messages have been processed as
a whole, and from a so-called correlation.

The body holds the payload data, and its type is defined by the template
parameter in the message class. Attachments allow messages to carry extra
pieces of data associated with the payload, e.g., an image or an e-mail mes-
sage. Data in the attachments are not intended to be processed, which is not

94 Chapter 9. Software Development Kit

Figure 9.3: Task model.

a shortcoming at all; bear in mind that messages are defined by the users, so
they can freely decide which information is stored in the body and which in-
formation is carried forward as attachments. Simply put, an attachment is a
piece of data that is required to build the resulting messages of an integration
solution, but not necessary during its processing.

Messages implement two interfaces so that they can be serialised and com-
pared, respectively. Serialisation is required to deep copy, to persist, and
to transfer messages; comparison enables the integration solution to process
them according to their priority.

9.2.2 Tasks

This package provides the foundations to implement domain-specific tasks
in specialised toolkits, cf. Figure §9.3. Roughly speaking, a task models how
a set of inbound messages must be processed to produce a set of outbound
messages, e.g., routing the inbound messages, modifying them, transform-
ing them, performing time-related actions, stream-oriented actions, mapping
them to/from objects, or reading and writing messages, to name a few cate-
gories that are supported by the toolkit introduced in Section §9.3.

Tasks communicate indirectly by means of slots to which they have ac-
cess by means of so-called gateways. A slot is an in-memory priority buffer
that helps transfer messages asynchronously so that no task has to wait until
the next one is ready to start working. Gateways act like a connection point
between a slot and a task, by providing an interface to add/take messages
to/from slots.

9.2. The framework layer 95

Figure 9.4: Port model.

Tasks become ready to be executed according to a time criterion or a slot
criterion. In the former case, a task becomes ready to be executed periodically,
after a user-defined period of time elapses since it became ready for the last
time; in the later case, it becomes ready every time there is a new message
available in every input slot. Note that becoming ready for execution just
implies that the task is flagged so that the Runtime System can assign a thread
to execute it; this does not entail that the task produces a set of outbound
messages, but that it can examine its input slots and perform an action if the
appropriate messages are found. For instance, a merger is a task that reads
messages from two or more slots and merges them into one slot; this task can
transfer messages as they are available. Contrarily, a context-based content
enricher is a task that reads a base message and a context message from two
slots and uses the later to enrich the former; note that this task becomes ready
to perform its enrichment action when the base and the context messages are
simultaneously available.

Both slots and tasks are observable objects, which means that they can no-
tify other objects of changes to their state; in addition, tasks are observer ob-
jects since they monitor slots.

9.2.3 Ports

Ports abstract processes away from the communication mechanism in an
inter-process communication or in the communication of the integration solu-
tion with an application, cf. Figure §9.4.

96 Chapter 9. Software Development Kit

Note that every port must be associated with a process, and that we dis-
tinguish between entry and exit ports. The former are ports that allow to read
messages from an application or another process; the latter are ports that allow
to write a message to a process or an application.

Internally, ports are composed of tasks and one of them must be a com-
municator. Communicators are the tasks that allow to actually read or write a
message, namely: in communicators are used to read a message in raw form
a process or application; contrarily, out communicators are used to write a
message in raw form to a process or an application. By raw form, we mean a
stream of bytes that is understood by the corresponding process or an applica-
tion. Inside ports, communicators interact with a pipeline of stream-oriented
tasks, which also includes a mapper task. An in communicator passes ev-
ery message read on to the pipeline; contrarily, an out communicator receives
messages from the pipeline to write them. The pipeline is used as a pre-
/post-processor that decrypts/encrypts, decodes/encodes, or unzips/zips
this stream of bytes. The pipeline in an entry port ends with a mapper task
that transforms the resulting stream of bytes into a message; the pipeline in
an exit port begins with a mapper that transforms a message into a stream of
bytes.

Note that ports also have a so-called inter-slot. We use this term to refer to
the slots that allow the last task in an entry port to send messages to the first
task in a process or the last task in a process to send messages to the first task
in a port.

The ITaskContainer interface defines an interface every container of tasks
must implement. It basically allows to add, remove, get, search, and count
tasks. In addition, this interface extends the Observer Java interface so that a
container centralises notifications received from its internal tasks. This feature
is important because containers can then be notified about tasks that are ready
to be executed. Not only implement ports the ITaskContainer, but they are
also observable elements, i.e., they can both observe and produce notifications.

9.2.4 Processes

Processes are the central processing units in an integration solution,
cf. Figure §9.5. They are composed of ports and tasks, implement inter-
face ITaskContainer, and extend class Observable. The reason why pro-
cesses are observable is that they are just an abstraction that helps organise

9.2. The framework layer 97

Figure 9.5: Process model.

groups of tasks that co-operate to achieve a goal; from the point of view of
the Guaraná SDK, they are just a container that reports which of their tasks
are ready for execution to an external observer. A process may have several
observers, e.g., to log or to monitor its activities; however, the most important
one is a Runtime System, which we describe in the following section.

Processes serve two purposes, namely: there are processes that allow to
wrap applications and processes that allow to orchestrate a workflow. The for-
mer are reusable processes that endow an application with a message-oriented
API that simplifies interacting with it. Implementing such a wrapping process
may range from using a JDBC driver to interact with a database to implement-
ing a scrapper that emulates the behaviour of a person who interacts with a
user interface. Orchestration processes, on the contrary, are intended to or-
chestrate the interactions with a number of services, wrapping processes, and
other orchestration processes. Independently from their role, processes are
composed of ports and tasks.

9.2.5 Adapters

This package provides the foundations to implement adapters in spe-
cialised toolkits, cf. Figure §9.6. Adapters are the piece of software that im-
plements the low-level communication protocol that is necessary to interact
with the processes or applications involved in an integration solution. The
framework layer provides two interfaces to describe the operations used by
ports to read and write messages.

98 Chapter 9. Software Development Kit

Figure 9.6: Adapter model.

Figure 9.7: Task-based runtime model.

9.2.6 The Runtime System

The model of our Runtime System is presented in Figure §9.7. Scheduler
is the central class since its objects are responsible for coordinating all of the
activities in an instance of our Runtime System. Note that this class is not a
singleton since we do not preclude the possibility of running several instances
concurrently. At runtime, a scheduler owns a work queue, a list of workers,
and three monitors.

The work queue is a priority queue that stores work units to be processed.
A work unit has a reference to a task and a scheduled execution time before
which it cannot execute. Note that class Task is abstract, which means that
our Runtime System is not bound with a particular set of tasks; this allows

9.2. The framework layer 99

Figure 9.8: Initialising the Runtime System.

to create specific-purpose task toolkits that can be plugged into the Runtime
System. Usually, the scheduled execution time of a work unit is set to the
current time, which means that the corresponding task can execute as soon as
possible; if it is set to a time in future, then the corresponding task is delayed
until that time has elapsed. This is very useful to implement tasks that need
to execute periodically, e.g., a communicator that polls an application every
minute.

Class Worker extends the standard Thread class, i.e., objects of this class
run autonomously. Each worker is given a reference to the work queue, from
which they concurrently poll work units to process.

The monitors gather statistics about the usage of the memory, the CPU, and
the work queue. The memory monitor registers information about both heap
and non-heap memory; the worker monitor registers the user- and the system-
time worker objects have consumed; and, the queue monitor registers the size
of the queue and the total number of work units that have been processed.
Monitors were implemented as independent threads that run at regular inter-
vals, gather the previous information, store it in a file, and become idle as soon
as possible.

Schedulers are configured using a simple XML file with information about
the number of workers, the files to which the monitors dump statistics, the fre-
quency at which they must run, and the logging system used to report warn-

100 Chapter 9. Software Development Kit

Figure 9.9: Creating and starting monitors.

ings and errors. Figure §9.8 shows the sequence of operations involved in the
initialisation of a scheduler. The first operation loads the configuration file and
analyses it; then, the logging system is started, and a work queue is created.

Note that engines are not started when they are created. It is the user who
must decide when to start them using the start operation. This operation
causes the invocation of two other operations, namely: startMonitors and
startWorkers. The former starts the monitors that have been activated in the
configuration file, cf. Figure §9.9, and the later creates and starts the workers.

Figure §9.10 shows the sequence of operations required to create and start
the workers. Note that they are started asynchronously by invoking operation
start. The business logic of a worker is defined inside its doWork operation.
This operation implements a loop that enables the workers to poll the work
queue as long as the scheduler is not stopped. When a work unit is polled,
the worker first checks its scheduled execution time; if it has expired, then the

9.2. The framework layer 101

Figure 9.10: Creating and starting workers.

task can be executed immediately; otherwise, the work unit is delayed until
the deadline expires. Note that this strategy allows workers to keep working
as long as there is a task ready to be executed.

Processing a work unit requires invoking operation execute on the associ-
ated task, which first packages the input messages and then invokes operation
doWork, which depends completely on the task toolkit being used. Then, the
task writes its output messages to the appropriate slot, which in turn noti-
fies the tasks that read from them. These tasks then determine if they become
ready for execution or not; in the former case, the tasks notify the container to
which they belong. Containers of tasks propagate every notification they re-
ceive to the scheduler. For every task notification that the scheduler receives,
it creates a new work unit and appends it to the work queue, cf. Figure §9.11.

102 Chapter 9. Software Development Kit

Figure 9.11: Executing a WorkUnit.

9.3. The general-purpose toolkit layer 103

Figure 9.12: Task model in the toolkit.

9.3 The general-purpose toolkit layer

The framework provides two extension points, namely: Task and Adapter.
We have designed a core toolkit that provides extensions to deal with a variety
of tasks that support the majority of integration patterns in the literature [54],
and provide active and passive adapters that enable the use of several low-
level communication protocols.

This toolkit provides extensions to the Task class, cf. Figure §9.12. In the
following descriptions we use term schema to refer to the logical structure of
the body of a message. It may range from a DTD or an XML schema to a Java
class. The first level of extension is composed of additional abstract classes
that are intended to make it explicit several categories of integration patterns,
namely:

Router: a router is a task that does not change the messages it processes at all,
but routes them through a process. This includes filtering out messages
that do not satisfy a condition or replicating a message, to mention a few
tasks in this category.

Modifier: a modifier is a task that adds data to a message or removes data
from it as long as this does not result in a message with a different
schema. This includes enriching a message with contextual information

104 Chapter 9. Software Development Kit

Figure 9.13: Adapter model in the toolkit.

or promoting some data to its headers, to mention a few examples in this
category.

Transformer: a transformer is a task that translates one or more messages into
a new message with a different schema. Examples of these tasks include
splitting a message into several ones or aggregating them back.

StreamDealer: a stream dealer is a task that deals with a stream of bytes and
helps zip/unzip, encrypt/decrypt, or encode/decode it.

Mapper: a mapper is a task that changes the representation of the messages it
processes, e.g., from a stream of bytes into an XML document.

Communicator: a communicator is a task that encapsulates an adapter. Com-
municators serve two purposes: first, they allow adapters to be exported
to a registry so that they can be accessed remotely; second, a communica-
tor can be configured to poll periodically a process or application using
an adapter.

There is a package associated with every of the previous tasks. They pro-
vide a variety of specific-purpose implementations in each integration pattern
category, cf. Section §8.4.

In the previous section, we mentioned that ports use communicators to
communicate with other processes or applications. As we mentioned before,
they rely on adapters, which can be either active or passive, cf. Figure §9.13.

9.4. Summary 105

An active adapter allows to poll the process or application with which it in-
teracts periodically; contrarily, a passive adapter aims to export an interface
to a registry, so that other applications or processes can interact with it. Note
that entry and exit ports can be implemented using either active or passive
adapters.

The active package is divided into two packages to provide implemen-
tations that are based on the JBI and RMI protocols, respectively. Note that
supporting JBI adapters allows to plug Guaraná SDK into a variety of ESBs;
for example, our reference implementation is ready to be plugged into Open
ESB [90]. This, in turn, allows Guaraná SDK processes to have access to a vari-
ety of applications in current software ecosystems, including files, databases,
web services, RSS feeds, SMTP messaging systems, JMS queues, DCOM
servers, and so on. The rmi package provides several implementations that
are intended to be used to interact with an RMI-compliant server.

9.4 Summary

In this chapter, we have described Guaraná SDK, which is our software
tool to implement Enterprise Application Integration solutions designed with
our Domain-Specific Language. The architecture of this tool is organised into
two layers, namely: framework and toolkit. The former provides a number of
classes and interfaces that implement the abstractions of our Domain-Specific
Language, whereas the latter extends some abstractions in the former to pro-
vide concrete adapters and tasks that support several integration patterns.

106 Chapter 9. Software Development Kit

Chapter 10

Model-to-text Transformations

T he universe is transformation.
Marcus Aurelius, Roman Emperor (121–180)

O
ur aim in this chapter is to report on the transformations we have
devised to translate models that were described with our Domain-
Specific Language into executable Java code that uses our Software
Development Kit. Section §10.1 introduces our work and the lan-

guage used to devise the transformations. Section §10.2 describes how we
transform processes. Section §10.3 presents how ports are transformed. Sec-
tion §10.4 introduces the transformation of tasks. Section §10.5 describes how
communicators are transformed. Section §10.6 describes how to generate a
starter Java class that allows to run the integration solution in our Runtime
System. Finally, Section §10.7 summarises the chapter.

107

108 Chapter 10. Model-to-text Transformations

10.1 Introduction

In this chapter, we report on the transformations we have devised to trans-
late models described with our Domain-Specific Language into executable
Java code that uses our Software Development Kit. We have devised model-
to-text transformations using the MOFScript language [84]. The resulting code
shall be executed in our Runtime System. The reason for using MOFScript
is that our research group had already experience on working with this lan-
guage.

Unfortunately, the original transformations are very verbose, which makes
them not appropriate to be shown here. In the sequel, we have resorted to
a simplified notation in which the executable code is enclosed within angle
brackets; the remaining text is assumed to be copied verbatim.

10.2 Transforming processes

This transformation is executed on every process, and it produces a Java
class that includes slots, tasks, entry and exit ports declarations, plus a con-
structor that initialises them all. The transformation is as follows:

1: package ⟨Process.name⟩;
2: ⟨Import classes⟩
3: public class ⟨Process.name⟩ extends Process {
4: ⟨Slots declaration⟩
5: ⟨Tasks declaration⟩
6: ⟨EntryPorts declaration⟩
7: ⟨ExitPorts declaration⟩
8:
9: public ⟨Process.name⟩() {

10: ⟨Slots initialisation⟩
11: ⟨EntryPorts initialisation⟩
12: ⟨ExitPorts initialisation⟩
13: ⟨Tasks initialisation⟩
14: }
15: }

Line §1 declares a package with the name of the process being transformed;
the classes that correspond to the ports shall also be placed within this package

10.3. Transforming ports 109

to avoid name clashes with other ports in other processes.

At line §2, the transformation constructs the import statements required to
have access to the classes the Runtime System provides. Line §3 declares the
class for the process, which extends the Process class provided by the Run-
time System. Inside this class, lines §4–§7 introduce a number of attributes
that shall reference the slots, tasks, and ports of which the process being trans-
formed is composed. Lines §9–§14 provide a constructor.

Note that none of the previous declarations or initialisations are difficult,
since they just need to iterate over the appropriate properties of a model and
output Java declarations or initialisations. The only part that requires a little
more explanation is the transformation to initialise ports and tasks. Here we
report on the former; the latter is complex enough to deserve a new section.

What follows is the transformation to initialise the entry ports:

1: ⟨Process.entryPorts->forEach(p: EntryPort) {⟩
2: ⟨p.name⟩ = new ⟨p.name⟩();
3: addPort(⟨p.name⟩);
4: ⟨}⟩

The loop at line §1 iterates over the collection of entry ports of a process.
At line §2, it outputs a new statement to create a port; recall that every port
results in a class with the same name. The following line binds the port and
the process to which it belongs by means of the corresponding interslot. The
transformation of exit ports is equivalent.

10.3 Transforming ports

This transformation is executed on each port independently, and it results
in a Java class that includes slot and task declarations, plus a constructor that
initialises them all. The transformation is as follows:

1: package ⟨Process.name⟩;
2: ⟨Import classes⟩
3: public class ⟨Port.name⟩ extends ⟨Port.getTypeName()⟩ {
4: ⟨Slots declaration⟩
5: ⟨Tasks declaration⟩
6:

110 Chapter 10. Model-to-text Transformations

7: public ⟨Port.name⟩() {
8: ⟨Slots initialisation⟩
9: ⟨Communicator initialisation⟩

10: ⟨Tasks initialisation⟩
11: }
12: }

Lines §1 and §2 introduce the package declaration and import the classes
that are required. In the class declaration at line §3, the operation getTypeName
is used to discover the parent class. Lines §4 and §5 declare an attribute per
slot and task, respectively. Lines §8–§10 inside the constructor deal with the
initialisation of the previous declarations. Recall that every port must have a
communicator so that it can interact with the corresponding binding compo-
nent. These tasks are dealt with by the Runtime System like any other task;
however, they must be initialised in a way that deviates from the rest. We
report on how to initialise tasks and communicators in following sections.

10.4 Transforming tasks

We have grouped tasks into five groups. The following transformation
illustrates how to initialise tasks that have several inputs and several outputs.
The rest of the groups, except for communicators and a few other tasks, are
special cases of this general case.

1: ⟨Task.name⟩ = new ⟨Task.getTypeName()⟩
2: ("⟨Task.name⟩", ⟨Task.inputs.size()⟩, ⟨Task.outputs.size()⟩) {
3: @Override
4: public void doWork(Exchange e) {
5: ⟨Task.executionBody⟩
6: }
7: };
8: ⟨Bind input slots⟩
9: ⟨Bind output slots⟩

10: addTask(⟨Task.name⟩);

Note that we create anonymous classes to initialise tasks. Each concrete
task is derived from a class that is provided by a toolkit, which is, in turn,
discovered by means of a call to operation getTypeName. As a consequence,
we need to override the doWork operation only.

10.5. Transforming communicators 111

The transformation at line §5 writes the execution body inside this oper-
ation. Lines §8 and §9 deal with binding the input and output slots to the
corresponding inputs and outputs of this task. Finally, line §10 adds the task
that has been initialised in the previous lines to the enclosing port or process.

10.5 Transforming communicators

Transforming a communicator is different from transforming other tasks
because they have to interact with binding components. Next, we present the
transformation that deals with InCommunicators in entry ports:

1: ⟨Communicator.name⟩ = new InCommunicator(
2: "⟨Communicator.jndiName⟩",
3: "⟨Communicator.host⟩",
4: ⟨Communicator.portNumber⟩);
5: ⟨Bind output slot⟩
6: setCommunicator(⟨Communicator.name⟩);

InCommunicators are published as remote objects in an RMI registry so that
they can be invoked by binding components. This is the reason why the con-
structor gets a JNDI name which identifies the communicator inside the reg-
istry, as well as the host name and the port number where the RMI registry is
running. Line §5 binds the single slot connected with this communicator to its
output. Finally, line §6 sets the communicator to the enclosing entry port.

OutCommunicators are a little more cumbersome since they need to invoke
binding components to write messages. The script to transform them is as
follows:

1: Properties props = new Properties();
2: props.setProperty("java.naming.factory.initial",
3: "com.sun.enterprise.naming.SerialInitContextFactory");
4: props.setProperty("java.naming.factory.url.pkgs",
5: "com.sun.enterprise.naming");
6: props.setProperty("java.naming.factory.state",
7: "com.sun.corba.ee.impl.presentation.rmi.JNDIStateFactoryImpl"
8:);
9: props.setProperty("org.omg.CORBA.ORBInitialHost",

10: "⟨Communicator.host⟩");

112 Chapter 10. Model-to-text Transformations

11: props.setProperty("org.omg.CORBA.ORBInitialPort",
12: "⟨Communicator.portNumber⟩");
13:
14: ⟨Communicator.name⟩ = new OutCommunicator(
15: "⟨Communicator.name⟩",
16: new JbiExitResourceAdapter("⟨Communicator.jndiName⟩", props)
17:);
18: ⟨Bind input slot⟩
19: setCommunicator(⟨Communicator.name⟩);

Note that one can have access to a binding component as if it were a regular
EJB. This is why lines §1–§12 set up a Properties object with most of the
properties required to configure a connection with an EJB. Line §14 initialises
the out communicator, which requires to create a JbiExitResourceAdapter;
this object implements an adapter to connect to a binding component given
its JNDI name and the previous properties. Later, the out communicator is
bound to its input slot in line §18 and it is registered with the enclosing exit
port in line §19.

10.6 Generating the starter

The previous transformations deal with creating the classes that implement
the processes and the ports of which an integration solution is composed.
These are the pieces that now need to be put together by means of the fol-
lowing starter transformation:

1: package ⟨Solution.name⟩;
2: ⟨Import classes⟩
3: public class ⟨Solution.name⟩ {
4: public static void main(String[] args) {
5: Runtime r = new Runtime(⟨number of threads⟩);
6:
7: ⟨processes->forEach(p: Process) {⟩
8: Process ⟨p.name⟩ = new ⟨p.name⟩();
9: ⟨p.name⟩.setTaskStateMonitor(r);

10:
11: Collection<Port> ⟨p.name+"Ports"⟩ =
12: ⟨p.name⟩.getAllPorts();
13: for (Port pt: ⟨p.name+"Ports"⟩) {

10.7. Summary 113

14: pt.setTaskStateMonitor(r);
15: }
16: ⟨}⟩
17: r.start();
18: }
19: }

Line §5 instantiates the Runtime System with a given number of threads.
The loop in lines §7–§16 iterates over every process in the model, initialises
an instance, and binds it to the Runtime System we have created previously
by means of operation setTaskStateMonitor; furthermore, the ports are re-
trieved and registered with the Runtime System, as well. Registering a pro-
cess or a port with a Runtime System allows it to have access to their tasks
and slots and to initialise its internal data structures. Finally, the Runtime
System is started at line §17. The generated Java code from all model-to-text
transformations is ready to be compiled and executed on the Runtime System.
Software engineers only need to configure a number of binding components,
in Open ESB; they shall be used to communicate with the applications being
integrated.

10.7 Summary

In this chapter, we have presented a set of model-to-text transformations
that allows to automatically translate models that are described with our
Domain-Specific Language into Java code that uses of our Software Develop-
ment Kit. We have provided scripts for transforming processes, ports, tasks,
communicators, and generating a starter Java class that allows to run the inte-
gration solution in our Runtime System.

114 Chapter 10. Model-to-text Transformations

Chapter 11

Error Detection in Integration
Solutions

It is possible to fai l in many ways . . .
whereas succeeding is possible only in one way.

Aristotle, Philosopher (384 BC – 322 BC)

I
n this chapter, we describe our proposal to endow integration solutions
with a monitor that enables the detection of errors. Section §11.1 pro-
vides an overview of the architecture of our monitoring system. Sec-
tion §11.2 describes the Meta-information database shared by all of the

stages of the fault-tolerance pipeline. Section §11.3 reports on the subsystem
used to manage events. Section §11.4 describes the subsystem that analyses
them, detects, and notifies possible errors. Section §11.5 presents the time
complexity analysis of our algorithms. Section §11.6 shows the results of the
experiments we have conducted considering six well-known patterns that lie
at the core of most real-world integration solutions. Finally, Section §11.7 sum-
marises the chapter.

115

116 Chapter 11. Error Detection in Integration Solutions

Event

Handler

Monitor

events updates reads

Meta-information

reads

Work Graph

reads

Error

Detector

Work Queue

takes
updates

notifications

updates

Figure 11.1: Abstract view of the monitor for error detection.

11.1 Introduction

Integration solutions are inherently distributed; they are thus vulnerable to
a variety of errors that can have an impact on their normal behaviour. Errors
are due to faults, which can be either permanent, e.g., due to a software de-
fect, or transient, e.g., due to a resource that is temporarily unavailable. Errors
that are not dealt with properly are perceived as failures by end users [2, 14].
Fault-tolerance proposals aim to help keep systems delivering their function-
ality in spite of faults. Typically, they can be modelled as a pipeline that goes
through the following stages: event reporting, error monitoring, error diag-
nosing, and error recovering. The event reporting stage deals with reporting
whether a port was able to handle a message or not. In the error monitor-
ing stage, events are stored and analysed to find correlations that shall later
be checked for validity. When an error is detected, a notification is created
and sent to the error diagnosing stage, whose aim is to identify the cause of
the error, the messages and the parties involved. The error recovering stage
attempts to execute recovery actions to help the system compensate for the
existence of faults and the occurrence of errors.

In this dissertation we focus on the error monitoring stage. We describe
our approach to provide integration solutions with a monitor that enables the
detection of errors. Our failure semantics include errors when reading from or

11.1. Introduction 117

writing to a resource, structural, and deadline errors. Our proposal is sketched
in Figure §11.1. It relies on a so-called Meta-information database that stores
meta-information about the integration solutions being monitored, e.g., which
processes and ports are involved in an integration solution. Note that this
database is external to the monitor since it aims to be shared with other stages
of the fault-tolerance pipeline.

The monitor itself is composed of two subsystems and two databases,
namely: Event Handler, Error Detector, Work Graph and Work Queue. The
Event Handler handles events that inform about a port reading or writing a
message, either successfully or unsuccessfully. It uses the events to build a
graph structure that is stored in the Work Graph database; this graph keeps
track of the messages processes exchange and their parent-child relationships.
The Error Detector analyses this graph to find and verify correlations. A
correlation is represented as a graph that has a single connected component
that represents a subset of messages that are correlated to each other [55]. The
Work Queue database is used as an intermediate buffer that allows the Event
Handler and the Error Detector to work in total asynchrony. Every time the
Event Handler processes an event, it stores a piece of information in the Work
Queue database; this information instructs the Error Detector to analyse the
Work Graph database at a specific point in time in order to find the correla-
tion in which a specific message is involved. To verify correlations, the Error
Detector builds on both built-in and user-defined rules; the former allows to
detect communications or deadline errors; the latter allows to detect structural
errors that depend on the semantics of a given process or integration solution,
i.e., correlations that lack messages or have more messages than expected. The
only assumption we make is that the clock resolution of the monitor is enough
to distinguish between every two messages that are read or written in a row;
in other words, we can distinguish between multiple events that involve the
same message at the same port. In practice, this is not a shortcoming since
current clock resolutions are in the order of nanoseconds, whereas reading or
writing to a port usually requires much more time.

It is common that integration solutions share processes, which makes them
overlap or even include others. Figure §11.2 shows the design of two inte-
gration solutions that we shall use throughout this chapter to illustrate our
proposal. In this example, there are two overlapping integration solutions,
namely: Solution1, which integrates applications App1 and App2 by means of
processes Prc1 and Prc2, and Solution2, which integrates applications App3,
App4 and App2 by means of processes Prc3 and Prc2. Note that process Prc2
is shared by both integration solutions.

118 Chapter 11. Error Detection in Integration Solutions

App 3

App 2

Prc 3 Prc 2
P5 P7 P3 P4

App 1
API Prc 1

P1

P2

Solution 1

Solution 2

App 4

P6

Figure 11.2: Sample integration solutions.

In the following sections we describe the subsystems and databases that
comprise our approach.

11.2 The Meta-information database

In this section, we report on the meta-data we use to represent the infor-
mation our proposal requires about the artefacts it monitors, i.e., solutions and
processes. This meta-data are stored in the Meta-information database. We
do not provide details on how this database is managed since this is a typi-
cal information system with an interface that can be used by administrators
to register, unregister, or list information about the integration solutions be-
ing monitored. Instead, we focus on the meta-data it stores, whose model is
presented in Figure §11.3, and provide a few hints on our implementation.

Our monitoring system assumes that an integration solution is composed
of at least one process, and every process must have at least two ports with
different directions (Direction::ENTRY or Direction::EXIT). Every artefact,
port, or rule has a name that identifies it uniquely. In addition, artefacts have
a time out, which denotes the maximum time they can consume to process a
set of correlated messages, and a set of rules that helps verify the correlations
in which they are involved.

Rules are central to our proposal. Figure §11.4 presents the syntax we use

11.2. The Meta-information database 119

Figure 11.3: Model of the Meta-information database.

V

Atoms declaring the input Atoms declaring the output

P [n ..m] & P [n ..m] ... P [n ..m]1 2 k k1 2 P [n ..m] & P [n ..m] ... P [n ..m]k+1 k+2 k+qk+1 k+2 k+q1 2 k k+1 k+2 k+q

Figure 11.4: Textual syntax for error-detection rules.

P[] = P[1 .. Integer.MAX_VALUE]+

P[] = P[0 .. Integer.MAX_VALUE]*

P[] = P[0..1]?

P[] = P[n..n]n

a)

b)

c)

d)

Figure 11.5: Syntactic sugar for error-detection rules.

to write them textually. They are composed of two groups of atoms that are
separated by an arrow. Atoms at the left hand side declare the input of the
rule, whereas atoms at the right hand side declare the output of the rule, i.e.,
if the number of messages at the left hand side atoms occurs, then it is ex-
pected that the specified number of messages in the atoms at the right hand

120 Chapter 11. Error Detection in Integration Solutions

R5 = P1[1] V P4[*]

Solution1

Solution2

P5[1] & P6[1] P4[+] VR6 =

R1 = P1[1] P2[?] V

R2 = P3[1] P4[+] V

P5[1] & P6[1] P7[2..4] VR3 =

Prc1

Prc2

Prc3

P5[1] & P6[0] P7[1] VR4 =

Figure 11.6: Sample error-detection rules.

side. Each atom is of the following form: P[min..max], where P refers to a port
name, and min and max are natural numbers that represent the minimum and
the maximum number of messages that are allowed at port P in a given corre-
lation. For the sake of brevity, we use the common syntactic sugar depicted in
Figure §11.5.

Figure §11.6 presents a few rules for the artefacts in the sample integration
solutions we introduced in Figure §11.2. For instance, Rule R1 is associated to
process Prc1 and involves entry port P1 and exit port P2; it states that a given
correlation is valid if there is one message at port P1 and zero or one correlated
message at port P2. Similarly, Rule R6 is associated to Solution2; it states that
a given correlation is valid if there is one message at port P5, one correlated
message at port P6, and one or more correlated messages at port P4.

11.3 The Event Handler

Figure §11.7 depicts the model we have devised for the Event Handler.
Roughly speaking, it handles events that inform about a port reading or writ-
ing a message, either successfully or unsuccessfully. The events are used to
build a graph that is maintained incrementally in the Work Graph database.
This graph records information about the messages being exchanged in an in-
tegration solution and their parent-child relationships, i.e., which messages
originate from which ones, for example, after executing split and merge op-
erations. In addition, the Event Handler updates the Work Queue database in
order to schedule the activation of Error Detector.

11.3. The Event Handler 121

Figure 11.7: Model of the Event Handler.

Events can be of type Reception, which are notified from ports that read
data from an application (either successfully or unsuccessfully) and ports that
fail to read data from application or integration links, Shipment, which are no-
tified from ports that write information (either successfully or unsuccessfully),
and Transfer, which are notified from ports that succeed to read data. Every
event has a target binding and zero, one, or more source bindings. We use
this term to refer to the data contained in an event, namely: the instant when
the event happened, the name of the port, the identifier of the message read or
written, and a status, which can be either Status::OK to mean that no problem

122 Chapter 11. Error Detection in Integration Solutions

1: to handle(in e: Event) do

2: p = find the process to which a port

3: called e.target.portName belongs

4: in the Meta-information database

5: s = find all integration solutions to which p belongs

6: in the Meta-information database

7: notBefore = e.target.instant + max(s ∪ {p}).timeOut

8: g = WorkGraph.getInstance()

9: q = WorkQueue.getInstance()

10: add e.target to g.nodes

11: add e.target with priority notBefore to q

12: for each binding b in e.sources do

13: r = new Edge(parent = b, child = e.target)

14: add r to g.edges

15: end for

16: end

Program 11.1: Algorithm to handle events.

was detected, Status::RE to mean that there was a read error, or Status::WE
to mean that there was a write error. Recall that the only assumption we make
is that the clock resolution of the monitor is enough to distinguish between
every two messages that are read or written consecutively. Thus, we assume
that no confusion regarding the same message being read from or written to
the same port may happen.

The Event Handler is implemented as a single method that handles every
type of events. The algorithm for this method is presented in Program §11.1.
It gets an event e as input and proceeds as follows: it first finds the process
to which the event refers and the integration solutions to which this process
belongs. Then, it computes the earliest time at which the Error Detector
should analyse the target binding, which is the instant when the message in
the target binding was read or written plus the maximum time out involved;
this is a safe deadline that guarantees that every artefact should have enough
time to process the corresponding correlation. Note that the time we calculate
(notBefore) is just a hint to be interpreted as “the Error Detector should not
analyse that binding before this time”; obviously, the sooner the binding is
analysed after this time has passed, the better, but it is not a real-time require-

11.3. The Event Handler 123

 59, P5, Q1, OK

n11

 64, P6, Q2, OK

n12

 25, P3, M2, OK

n6

 45, P4, M3, OK

n8

e5

 1, P1, M1, OK

n1

14, P2, M2, OK

n4

e1

e4

31, P3, X3, OK

n7

 6, P5, X1, OK

n2

 8, P6, X2, OK

n3

 21, P7, X3, OK

n5

e2

e3

e5

48, P1, Z1, OK

n9

53, P2, Z2, OK

n10

e7

e8

 67, P3, Z2, OK

n13

Work Graph

Work Queue

...n1

101

n2

107

n3

109

n4

115

n5

122

n6

126

Figure 11.8: Sample work graph.

ment. The algorithm then fetches both the Work Graph and the Work Queue
instances and adds the target binding to them both; then, it iterates over the
source bindings, if any, and adds then to the Work Graph together with an edge
to link them to the target binding.

Figure §11.8 illustrates a graph that results from executing the previous al-
gorithm on a series of bindings regarding the sample system in Figure §11.2.
Ellipses denote bindings and arrows denote edges that connect parent bind-
ings to their corresponding child bindings. For instance, n1 is the parent bind-
ing of n4, and the latter is the parent of n6, which is in turn the parent of n8.
Inside each binding we represent the instant, the port name, the message id,
and the status, respectively. A snapshot of the Work Queue is also presented in
this figure.

124 Chapter 11. Error Detection in Integration Solutions

Figure 11.9: Model of Error Detector.

1: to detectErrors() do

2: q = WorkQueue.getInstance()

3: repeat

4: b = fetch minimum of q (waiting if necessary)

5: c = findCorrelation(b)

6: verifyCorrelation(c)

7: for each binding b in c.nodes do

8: remove b from q

9: end for

10: end repeat

11: end

Program 11.2: Algorithm to detect errors.

11.4. The Error Detector 125

11.4 The Error Detector

The model of the Error Detector is presented in Figure §11.9, and the
algorithm to detect errors is presented in Program §11.2.

The Error Detector executes a never-ending loop in which it fetches en-
tries from the Work Queue, finds the correlations in which the corresponding
bindings are involved, and then verifies them to find possible errors. Recall
that each binding in the Work Queue is scheduled to be processed not before a
given time; this implies that this algorithm may need to block for some time
when the earliest binding is scheduled to be analysed after the current mo-
ment. After a correlation is verified, its bindings are removed from the Work
Queue, since analysing them again would not result in new correlations.

In the following subsections, we discuss the sub-algorithms on which the
Error Detector relies. In Subsection §11.4.1, we present our algorithm to find
the correlation in which a binding is involved; we then report on a number of
ancillary sub-algorithms, namely: an algorithm to find the artefacts that are
involved in a given correlation, cf. Subsection §11.4.2, an algorithm to find the
sub-correlation that corresponds to a given artefact, cf. Subsection §11.4.3; and
an algorithm to find the subset of sub-rules according to which a correlation is
invalid, cf. Subsection §11.4.4; the previous algorithms are used to implement
the algorithm to verify a correlation, which we present in Subsection §11.4.5.

11.4.1 Finding correlations

The Error Detector provides a method called findCorrelation whose al-
gorithm is presented in Program §11.3. It gets a binding as input and calcu-
lates the correlation in which it is involved. The main loop navigates from the
binding that is passed as a parameter to all of the bindings that are reachable
from it, either directly or transitively, and to all of the bindings from which it
can be reached, either directly or transitively. In other words, it implements a
breadth-first search to calculate the expansion of a node in a graph [48].

For instance, if algorithm findCorrelation is invoked on bindings n1, n4,
n6, or n8 in Figure §11.8, it then would return the correlation in Figure §11.10.

126 Chapter 11. Error Detection in Integration Solutions

1: to findCorrelation(in b: Binding): Correlation do

2: result = new Correlation(nodes = ∅, edges = ∅)
3: g = WorkGraph.getInstance()

4: q = ∅
5: add b to q

6: whilst q <> ∅ do

7: d = take a binding from q

8: add d to result.nodes

9: cs = (children of d in g) \ result.nodes

10: add cs to q

11: for each c in cs do

12: h = new Edge(parent = d, child = c)

13: add h to result.edges

14: end for

15: ps = (parents of d in g) \ result.nodes

16: add ps to q

17: for each p in ps do

18: h = new Edge(parent = p, child = d)

19: add h to result.edges

20: end for

21: end whilst

22: return result

23: end

Program 11.3: Algorithm to find correlations.

11.4.2 Finding the artefacts involved in a correlation

A correlation may involve several artefacts. This situation is very common
since typical integration solutions involve several processes, some of which
may be shared. This implies that an event that is reported from a port may
result in a binding that actually involves several artefacts.

The Error Detector provides a method called findArtefactsInvolved
whose algorithm is presented in Program §11.4. It gets a correlation as in-
put and returns a set of artefacts. The main loop of this method iterates over
the set of bindings in the correlation that is passed as a parameter. In each
iteration, it firsts finds the processes that own the ports from which the cor-

11.4. The Error Detector 127

 25, P3, M2, OK

n6

 45, P4, M3, OK

n8

e5

 1, P1, M1, OK

n1

14, P2, M2, OK

n4

e1

e4

Figure 11.10: Sample correlation.

1: to findArtefactsInvolved(in c: Correlation): Set(Artefact) do

2: result = ∅
3: for each binding b in c.nodes do

4: p = find the process to which a port

5: called b.portName belongs in

6: the Meta-information database

7: s = find the integration solutions to which

8: process p belongs in

9: the Meta-information database

10: add s ∪ {p} to result

11: end for

12: return result

13: end

Program 11.4: Algorithm to find the artefacts involved in a correlation.

responding events were reported, and the integration solutions in which they
are involved. The loop simply adds all of these artefacts to the result, and then
returns the whole collection.

For instance, if we invoke method findArtefactsInvolved on the corre-
lation in Figure §11.10, the following artefacts involved would be returned:
Solution1, Solution2, Prc1, and Prc2, cf. Figure §11.11.

128 Chapter 11. Error Detection in Integration Solutions

1: to findSubCorrelation(in c: Correlation,

2: in a: Artefact): Correlation do

3: p = find all ports of artefact a in the Meta-information database

4: b = find all bindings b in c.nodes such that binding b.portName

5: belongs to p.portName in the Meta-information database

6: e = find all edges x such that {x.source, x.target} ⊆ b

7: return new Correlation(nodes = b, edges = e)

8: end

Program 11.5: Algorithm to find sub-correlations.

Solution1

Solution2

Prc2

 25, P3, M2, OK

n6

 45, P4, M3, OK

n8

e5

Prc1

 1, P1, M1, OK

n1

14, P2, M2, OK

n4

e1

e4

Figure 11.11: Artefacts involved in a correlation.

11.4.3 Finding sub-correlations

By sub-correlation, we refer to a subset of a correlation in which the ports
involved belong to a given artefact. Note that there are not any structural dif-
ferences between correlations and sub-correlations: they are both represented
as graphs. In the sequel, we write sub-correlation wherever we wish to em-

11.4. The Error Detector 129

1: to findFailingRules(in c: Correlation,

2: in a: Artefact): Set(Name) do

3: result = ∅
4: for each rule r in a.rules do

5: for each atom t in r.atoms do

6: n = count bindings b in c.nodes

7: such that b.portName == t.port.name

8: if n <= t.min or n >= t.max then

9: add r.name to result

10: end if

11: end for

12: end for

13: return result

14: end

Program 11.6: Algorithm to find failing rules.

phasise that there is a single artefact from which all of the events represented
in a correlation were reported.

The Error Detector provides a method called findSubCorrelation
whose algorithm is presented in Program §11.5. It gets a correlation and an
artefact as input and returns a sub-correlation. The algorithm first finds which
ports belong to the artefact, and then finds all of the bindings in the correla-
tion whose ports are in the previous set; to create the resulting sub-correlation
we just need to find the whole collection of edges that connect the previous
bindings.

For instance, Figure §11.11 shows all of the sub-correlations we can find
in the correlation in Figure §11.10. The dotted boxes indicate the boundary of
each sub-correlation.

11.4.4 Finding failing rules

The Error Detector provides a method called findFailingRules that
takes a sub-correlation and an artefact as input and returns a set of names
that denote the rules associated with the artefact that need to be satisfied to

130 Chapter 11. Error Detection in Integration Solutions

n1 n4 n6 n8 n20

not before

nowdeadline

 1, P1, M1, OK

n1

 25, P3, M2, OK

n6

14, P2, M2, OK

n4

 45, P4, M3, OK

n8

75, P2, M2, OK

n20

Solution1

e1

e4

e5

e17

Figure 11.12: Correlation that does not satisfy a rule due to excess of bindings.

declare the correlation valid.

The algorithm to the findFailingRules method is presented in Pro-
gram §11.6. It iterates through the collection of rules that are associated with
a given artefact, and then through their atoms. The algorithm basically counts
the number of bindings in the given sub-correlation that corresponds to events
that were reported from the ports to which each atom refers; if this count does
not lie within the limits that the atom specifies, then the corresponding rule
does not validate the correlation and can thus be added to the result of the
algorithm.

11.4. The Error Detector 131

n1 n4 n6

not before

nowdeadline

 1, P1, M1, OK

n1

 25, P3, M2, OK

n6

14, P2, M2, OK

n4

Solution1

e1

e4

Figure 11.13: Sub-correlation that causes a rule to fail due to lack of bindings.

Figures §11.12 and §11.13 illustrate the two situations in which a correla-
tion is considered invalid due to a failing rule. The left side of the figures rep-
resents the sub-correlation being analysed, whereas the right side represents
the times at which events were reported; now represents the instant at which
the analysis is performed, and deadline the latest time at which a correlation
is expected to be produced (see more on this below); not before represents
the time not before which the initial binding in a correlation can be analysed.
Consider, for example, rule R1 for artefact Solution1, which was introduced in
Figure §11.6; it states that zero or one correlated bindings are expected at port
P2 for each binding at port P1. Note that in the sub-correlation in Figure §11.12
there are two correlated bindings at port P2, namely n4 and n20, which causes
rule R1 to fail due to excess of bindings. Contrarily, in Figure §11.13 the sub-
correlation contains less bindings than expected.

132 Chapter 11. Error Detection in Integration Solutions

1: to verifyCorrelation(in c: Correlation) do

2: artefacts = findArtefactsInvolved(c)

3: for each artefact a in artefacts do

4: s = findSubCorrelation(c,a)

5: status = for all binding b in s, b.status == Status :: OK

6: earliestInstant = minimum of s.nodes.instant

7: latestInstant = maximum of s.nodes.instant

8: deadline = earliestInstant + a.timeOut

9: isValid = (latestInstant <= deadline) and

10: (status == true) and

11: findFailingRules(s,a) <> a.rules

12: if not isValid then

13: n = new Notification(artefactName = a.name,

14: correlation = c)

15: send n to the next fault-tolerance stage

16: end if

17: end for

18: end

Program 11.7: Algorithm to verify correlations.

11.4.5 Verifying correlations

Verifying (sub)correlations is one of the central tasks of the Error
Detector. A sub-correlation can be either valid or invalid. It is valid if all of
its bindings have status Status::OK, at least one rule does not fail to validate
it, and the messages to which it refers where read or written within a given
deadline; otherwise, it is invalid. The deadline refers to the time when the
first message in a correlation was read or written plus the time out of the cor-
responding artefact. Recall that each artefact is associated with a time out that
represents the maximum time it is expected to produce a correlation, cf. Fig-
ure §11.3.

The Error Detector provides a method called verifyCorrelation to per-
form this task. The algorithm to this method is presented in Program §11.7.
It takes a correlation as input and if the current correlation is invalid, then
it produces a notification. The algorithm first calculates the artefacts in-
volved in the correlation and iterates through them to find their corresponding

11.5. Complexity analysis 133

Notation Meaning

s Maximum number of integration solutions to which a process can
belong.

u Maximum number of source bindings in an event.

b Maximum number of bindings in a correlation.

c Maximum number of child bindings of a given binding.

p Maximum number of parent bindings of a given binding.

r Maximum number of rules associated with an artefact.

t Maximum number of atoms in a rule.

a Maximum number of artefacts involved in a correlation.

n Number of entries in the Work Queue.

Table 11.1: Notation used in our error-detection complexity analysis.

(sub)correlations; each sub-correlation is checked for validity according to the
definition in the previous paragraph. (Sub)correlations that are found invalid
are transformed into notifications that are sent to the following fault-tolerance
stage so that they can be diagnosed.

11.5 Complexity analysis

In this section, we analyse our proposal and characterise its complexity.
It can deal with an arbitrary number of processes and integration solutions,
but we assume that there is a sensible upper bound; this does not amount to
loss of generality since the number of artefacts of which a company’s software
ecosystem is composed must necessarily be finite.

Table §11.1 summarises the notation we use in this section. Our analysis
proves that our proposal is computationally tractable since handling events
runs in O(1) time and detecting errors runs in O(logn) time for a given soft-
ware ecosystem. This makes the proposal theoretically appealing since it is
logarithmic on the size of the Work Queue database, which is expected not to
be monotonically increasing or decreasing, but to grow and shrink as time
progresses. Our experiments support this conjecture, cf. Section §11.6.

134 Chapter 11. Error Detection in Integration Solutions

11.5.1 On the implementation

The Meta-information database is a simple set of data. None of our
queries involve joining information from other databases. In our prototype
we use a hash function to index the entries of the Meta-information database,
and we have implemented maps from port names onto processes, processes
onto integration solutions, and so on. The space required by this design is
proportional to the number of artefacts, ports, and rules. As a conclusion, it is
possible to retrieve information from the Meta-information database in O(1)
time.

The Work Queue database relies on a Brodal [12] priority queue, which al-
lows to insert entries or retrieve the next to be analysed in O(1) time, whereas
removing an entry takes O(logn) time, where n denotes the size of the queue.

11.5.2 Handling events

We first report on the complexity of the algorithm to handle events, and
prove that it is computationally tractable because it runs in constant time for
a given software ecosystem.

Theorem 11.1 Algorithm handle in Program §11.1 terminates in O(s+u) time.

Proof Handling an event involves finding a process using a port name and the
integration solutions to which this process belongs. Finding this information
can be accomplished in O(1) time in our implementation (lines §3 and §5).
The computation of the maximum time out can be accomplished in O(s) time
(line §7). Getting the Work Graph and the Work Queue instances can be accom-
plished in O(1) time (lines §8 and §9). Lines §10 and §11 add the target bind-
ing to the Work Graph and to the Work Queue databases, respectively, which
can also be accomplished in O(1) time. The loop in lines §12–§15 iterates u

times at most. Lines §13 and §14 can be implemented in O(1) time since they
just create an object and add it to a set. As a conclusion, the algorithm handle
terminates in O(s+ u) time. 2

Corollary 11.1 In a given software ecosystem, there must be an upper bound
to s + u because the number of integration solutions in a company’s software
ecosystem is finite, which in turn implies that there is an upper bound to the
number of source bindings in an event. As a conclusion algorithm handle
terminates in O(1) time in a given software ecosystem.

11.5. Complexity analysis 135

11.5.3 Detecting errors

We now analyse the complexity of the algorithm to detect errors. Note that
this algorithm does not terminate, since it is a never ending loop. In this case,
the complexity refers to the complexity of an iteration of this loop.

Theorem 11.2 Every iteration of Algorithm detectErrors in Program §11.2
terminates in O(b (1+ c+ p+ a+ logn) + a r t) time.

Proof In each iteration, the algorithm first fetches an entry from the Work
Queue database, which is accomplished in O(1) time in our implementation,
cf. Section §11.2 (line §4). According to Theorems §11.3 and §11.4 below,
lines §5 and §6 run in O(b (c+p)) and O(b+a (b+r t)) time, respectively. The
loop in lines §7–§9 iterates b times at most; in each iteration, line §8 removes
a binding from the Work Queue database, which is accomplished in O(logn)
time. As a conclusion, each iteration of Algorithm detectErrors terminates in
O(1+b (c+p)+b+a (b+ r t)+b logn) = O(b (1+ c+p+a+ logn)+a r t))
time. 2

Corollary 11.2 In a given software ecosystem, b, c, p, a, r, and t are constants
because there is an upper limit to the number of artefacts a company runs. As
a conclusion, each iteration of Algorithm detectErrors terminates in O(logn)
time in a given software ecosystem.

Next, we analyse the complexity of Algorithm findCorrelation.

Theorem 11.3 Algorithm findCorrelation in Program §11.3 terminates in
O(b (c+ p)) time.

Proof The loop in lines §6–§21 iterates b times at most. In each iteration, the
algorithm executes two inner loops. The first one, iterates c times at most and
the operations inside terminate in O(1) time since they just involve creating
objects and adding them to a set. Similarly, the second one iterates p times at
most and the operations inside also terminate in O(1) time. As a conclusion,
Algorithm findCorrelation terminates in O(b (c+ p)) time. 2

Now, we analyse the complexity of Algorithm verifyCorrelation.

Theorem 11.4 Algorithm verifyCorrelation in Program §11.7 terminates in
O(b+ a (b+ r t)) time.

136 Chapter 11. Error Detection in Integration Solutions

Proof The algorithm first calculates the number of artefacts involved in a given
correlation, which terminates in O(b) time according to Theorem §11.5 below
(line §2). It then executes a loop that iterates a maximum of a times (lines §3–
§17). In each iteration, it first needs to find a number of sub-correlations, which
terminates in O(b) time according to Theorem §11.6 (line §4); then, it calculates
the status, the earliest instant, and the latest instant, which requires iterating
a maximum of b times (lines §5–§7); calculating the deadline can be accom-
plished in O(1) time (line §8), but determining if a sub-correlation is valid
involves executing algorithm findFailingRules, which runs in O(r t) time
according to Theorem §11.7 below. Lines §12–§16 run in O(1) time since they
just require creating an object and sending it to another stage. As a conclusion,
Algorithm verifyCorrelation terminates in O(b+ a (b+ r t)) time. 2

In the following theorems, we analyse the complexity of the three sub-
algorithms on which verifyCorrelation relies.

Theorem 11.5 Algorithm findArtefactsInvolved in Program §11.4 termi-
nates in O(b) time.

Proof The loop at lines §3–§11 iterates b times at most. Lines §5–§10 can be
implemented in O(1) time, cf. Section §11.2. As a conclusion, finding the
artefacts involved in a given correlation terminates in O(b) time. 2

Theorem 11.6 Algorithm findSubCorrelation in Program §11.5 terminates in
O(b) time.

Proof The algorithm first finds the ports that belong to a given artefact, which
can be accomplished in O(1) time (line §3). It then finds the bindings in a
correlation whose port belongs to the previous set, which requires iterating
through the bindings in the correlation (line §3); this requires O(b) time in the
worst case. Finally, the algorithm finds the edges that connect the previous
bindings, which also requires O(b) time (line §6), and creates an object in O(1)
time (line §7). As a conclusion, Algorithm findSubCorrelation terminates in
O(1+ 2 b) = O(b) time. 2

Theorem 11.7 Algorithm findFailingRules in Program §11.6 terminates in
O(r t) time.

Proof The loop at lines §4–§12 iterates a maximum of r times, and the in-
ner loop at lines §5–§11 iterates t times at most. As a conclusion, Algorithm
findFailingRules runs in O(r t) time. 2

11.6. Fault tolerance experiments 137

P0 Q0

I0 O0

Qn-2

In-2 On-2

Q1

I1 O1

C0
L0 Ln-3

S 0

L1 Ln-2

Qn-1

In-1 On-1

Figure 11.14: The Pipeline pattern.

11.6 Fault tolerance experiments

We have conducted a series of experiments to evaluate our proposal in the
laboratory. We implemented them on top of a discrete event simulation layer
that allowed us to run the experiments in simulated time. We ran the experi-
ments on a machine equipped with a four-core Intel Xeon processor running
at 3.00 GHz, and had 16 GB of RAM, Windows Server 2008 64-bit, and the Java
Enterprise Edition 1.6 installed.

In the following sections, we first provide additional details on the pat-
terns that we have used in our experiments and then on the experimentation
parameters; later, we draw our conclusions about the experimental results we
gathered.

11.6.1 Experimentation patterns

We set up six well-known patterns that lie at the core of most real-world in-
tegration solutions, namely: pipeline, dispatcher, merger, request-reply, split-
ter, and aggregator [54]. In the sequel, we use term producer to refer to the
process or application that produces the messages that are fed into a pattern;
similarly, we use term consumer to refer to the process or application that con-
sumes the messages that the pattern produces. Furthermore, we use variable
n to refer to the total number of processes involved in each pattern.

In the pipeline pattern, messages flow from a producer to a consumer in
sequence: the messages a process produces are consumed by the next pro-
cess in the pipeline, cf. Figure §11.14. There is a single producer and a single
consumer, i.e., changes to n have an impact on the number of intermediate
processes only. In other words, 2n events are reported to the monitor per mes-
sage the producer feeds into the pattern. The number of events depends on

138 Chapter 11. Error Detection in Integration Solutions

P0 Q0

I0 O0

Qn-1

In-1 On-1

Q1

I1 O1

C0
L 0

Cn-2
Ln-2

S0

Sn-2

Figure 11.15: The Dispatcher pattern.

P0 Q0

I0 O0

Pn-2 Qn-2

In-2 On-2

C0

L0

S0

Sn-2

Ln-2

In-1 On-1
Qn-1

Figure 11.16: The Merger pattern.

the number of ports a message goes through in the pattern, each port notifies
an event.

In the dispatcher pattern, there is a process that routes the messages it pro-
duces to only a specific consumer, cf. Figure §11.15. Note that changes to n

have an effect on the number of consumers, not on the number of producers,
which is one. That is, 4 events are reported to the monitor per message the
producer feeds into the pattern.

The goal of the merger pattern is to gather messages from several produc-
ers and route them to a unique consumer, cf. Figure §11.16. Changes to n

have an impact on the number of producers, not on the number of consumers,
which is one. Note that 4 events are reported to the monitor per message a
producer feeds into the pattern.

In the request-reply pattern, there are a number of processes that require a
service from another process, cf. Figure §11.17. Changes to n have an effect on

11.6. Fault tolerance experiments 139

P0

Q0

I0 O0

Pn-2

Qn-2

I2(n-2)

Qn-1

O1
C0

L0

L2(n-2)

S0

L1I1

Cn-2

O2(n-2)

O2(n-2)+1
I2(n-2)+1

L2(n-2)+1

I2(n-1)

O2(n-1)

Sn-2

Figure 11.17: The Request-Reply pattern.

P0 Q0

I0
O0

Qn-1

In-1 O2n-3

Q1

I1
C0

L 0

Cn-2
Ln-2

S0

Sn-2

On-1

On-2

Figure 11.18: The Splitter pattern.

the number of client processes that send requests to the single server process.
Every message fed into the pattern results in 6 events that are reported to the
monitor.

The splitter pattern has a process that splits the messages it receives from
a producer into two or more messages, each of which carries a piece of the
original message to a different consumer, cf. Figure §11.18. Note that changes
to n have an effect on the number of consumers, not on the number of produc-
ers, which is one. That is, 2(n − 1) + n events are reported to the monitor per
message the producer feeds into the pattern.

In the aggregator pattern, there is a process that aggregates messages from
different producers into a single message, which is made available to a unique
consumer, cf. Figure §11.19. Changes to n have an impact on the number of
producers, not on the number of consumers, which is one. Note that 2(n−1)+
n events are reported to the monitor per message delivered by the pattern.

140 Chapter 11. Error Detection in Integration Solutions

P0 Q0

I0 O0

Pn-2 Qn-2

In-2 On-2

C0

L0

S0

Sn-2

Ln-2

In-1
On-1

Qn-1

I2n-3

Figure 11.19: The Aggregator pattern.

99

99.2

99.4

99.6

99.8

100

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Handle Event

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3 4 5 6 7 8 9 10 11 12 13 14 15

S
iz

e

Number of pocesses

Queue Size

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.20: Experimental results for the Pipeline pattern.

11.6. Fault tolerance experiments 141

2

2.5

3

3.5

4

4.5

5

5.5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

h
o

u
rs

)

Number of processes

Time Spent on Queue

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

1000

1100

1200

1300

1400

1500

1600

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Detect Error

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.20: Experimental results for the Pipeline pattern (Cont’d).

11.6.2 Experimentation parameters and variables

Each experiment consisted of running an instance of a pattern with a fixed
number of processes (n) and a fixed mean message production rate (t); we
varied n in the range 3..15 processes, and t in the range 100..1000 milliseconds,
with increments of 100 milliseconds. In total, we ran 130 experiments for each
pattern to draw our conclusions.

We sampled the production rate from a negative exponential with param-
eter t. Similarly, we sampled both the time to transmit messages and the time

142 Chapter 11. Error Detection in Integration Solutions

99

99.2

99.4

99.6

99.8

100

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Handle Event

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

0

100,000

200,000

300,000

400,000

500,000

3 4 5 6 7 8 9 10 11 12 13 14 15

S
iz

e

Number of processes

Queue Size

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.21: Experimental results for the Dispatcher pattern.

each process took to produce a correlation from a negative exponential with
parameter 250 milliseconds; the time out of every artefact was set to 5 minutes.
We carried out additional experiments with other values for these parameters
and found that they did not have an impact on the conclusions. Each experi-
ment was run for a duration of 24 hours.

In each experiment, we measured: the time to handle an event (THE), the
size of the Work Queue (QS), the time each binding spent in the Work Queue
after it was scheduled to be analysed (TSQ), and the time the detectError
algorithm took to perform each iteration of its main loop (TDE). In the sequel,

11.6. Fault tolerance experiments 143

2

2.5

3

3.5

4

4.5

5

5.5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

h
o

u
rs

)

Number of processes

Time Spent on Queue

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

1000

1100

1200

1300

1400

1500

1600

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Detect Error

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.21: Experimental results for the Dispatcher pattern (Cont’d).

we report on the averaged values of these variables after discarding a few
outliers using a method based on the well-known Chevischev inequality.

11.6.3 Experimentation results

Figures §11.20, §11.21, §11.22, §11.23, §11.24, and §11.25 present the results
we have gathered regarding variables THE, QS, TSQ, and TDE for each of the
patterns we presented before.

144 Chapter 11. Error Detection in Integration Solutions

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Handle Event

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

3 4 5 6 7 8 9 10 11 12 13 14 15

S
iz

e

Number of processes

Queue Size

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.22: Experimental results for the Merger pattern.

The time to handle events (THE) remains low in all of the experiments,
and the changes to n or t do not seem to have an impact on it. According to
Theorem §11.1, the time to handle an event depends on the maximum number
of integration solutions to which a process can belong and on the maximum
number of source bindings in an event, which are fixed constants for a given
ecosystem. In Corollary §11.1, we argued that there is an upper bound to these
figures, and we concluded that the time to handle events might be considered
O(1) in practice. The experiments corroborate this idea, since THE seems to be
totally independent from n or t in practice; note that it varies largely, but in a
short interval to which there seems to be a clear upper bound in every case.

11.6. Fault tolerance experiments 145

2

3

4

5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

h
o

u
rs

)

Number of processes

Time Spent on Queue

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

1000

1100

1200

1300

1400

1500

1600

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Detect Error

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.22: Experimental results for the Merger pattern (Cont’d).

The size of the Work Queue (QS) is important insofar is has an impact on the
memory footprint (the larger the queue the more memory is consumed) and
the time required to complete an iteration of Algorithm detectErrors (recall
that this algorithm removes all of the bindings that are correlated with the
binding being analysed from the Work Queue, which requires O(|QS|) time).
It depends on the number of events reported in each experiment. In most
cases, it behaves linearly with respect to the number of processes with a slope
that depends on the mean message production rate (it decreases as this pa-
rameter increases). The only exception is the dispatcher pattern, in which QS

seems to be a constant that depends on the mean message production rate

146 Chapter 11. Error Detection in Integration Solutions

99

99.2

99.4

99.6

99.8

100

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Handle Event

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

3 4 5 6 7 8 9 10 11 12 13 14 15

S
iz

e

Number of processes

Queue Size

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.23: Experimental results for the Request-Reply pattern.

only. The reason for this behaviour is that changes to n do not have an impact
on the number of events that are reported. Note that every new process in
the pipeline pattern contributes with 2 additional events, new processes in the
merger pattern contribute with 4 additional events, and new processes in the
request-reply pattern contribute with 6 additional events. Contrarily, adding
a new process to the dispatcher pattern does not contribute with new events.
The reason is that adding a new consumer implies that there is a new process
that competes for the messages the producer feeds into the pattern; in other
words, the events are reported from different sources, but the total number of
events remains constant.

11.6. Fault tolerance experiments 147

2

3

4

5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

h
o

u
rs

)

Number of processes

Time Spent on Queue

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

1000

1100

1200

1300

1400

1500

1600

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Detect Error

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.23: Experimental results for the Request-Reply pattern (Cont’d).

Variable TSQ is the most relevant to draw our conclusions. Recall that
this variable measures the time a binding spends in the Work Queue after it is
scheduled to be analysed by the Error Detector. The length of the time spent
in the queue does not affect the correct functionality of the monitor. However,
generally speaking, the less time, the better since this implies that errors shall
be detected, diagnosed, and recovered as soon as possible. Our experiments
prove that TSQ seems to behave logarithmically in the number of processes
in all cases, except for the dispatcher pattern, in which it behaves constantly.
This implies that a change to the number of processes does not usually have
a significant impact on the time bindings spend in the Work Queue. Neither

148 Chapter 11. Error Detection in Integration Solutions

99

99.2

99.4

99.6

99.8

100

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Handle Event

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

3 4 5 6 7 8 9 10 11 12 13 14 15

S
iz

e

Number of processes

Queue Size

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.24: Experimental results for the Splitter pattern.

does the mean message production rate seem to have a negative impact on
this variable, which is, obviously, a good piece of news.

Regarding the time to detect errors (TDE), we proved that it behaves log-
arithmically in the size of the Work Queue, cf. Theorem §11.2. This theoretical
result is promising as long as the size of the Work Queue does not increase
monotonically, as we conjectured in Section §11.5. Our results support this
conjecture since variable TDE ranges in the order of seconds in all of our ex-
periments, even in the case of heavily-loaded scenarios with 15 processes and
a message production rate of 100 milliseconds.

11.7. Summary 149

2

2.5

3

3.5

4

4.5

5

5.5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

h
o

u
rs

)

Number of processes

Time Spent on Queue

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

1000

1100

1200

1300

1400

1500

1600

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Detect Error

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.24: Experimental results for the Splitter pattern (Cont’d).

11.7 Summary

In this chapter, we have reported on a monitor that receives information
about the messages that are read or written at each port and uses them to
build a graph that keeps record of the messages exchanged within an integra-
tion solution. We have designed and implemented the algorithms to analyse
this graph and detect potential errors introduced when messages are read and
written by ports. Furthermore, we have analysed our proposal from a theoret-
ical point of view and the results have been corroborated in the laboratory.

150 Chapter 11. Error Detection in Integration Solutions

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Handle Event

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

3 4 5 6 7 8 9 10 11 12 13 14 15

S
iz

e

Number of processes

Queue Size

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.25: Experimental results for the Aggregator pattern.

11.7. Summary 151

2

3

4

5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

h
o

u
rs

)

Number of processes

Time Spent on Queue

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

1000

1100

1200

1300

1400

1500

1600

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of processes

Time to Detect Error

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 11.25: Experimental results for the Aggregator pattern (Cont’d).

152 Chapter 11. Error Detection in Integration Solutions

Chapter 12

Case Studies

Knowing is not enough; we must apply.
Willing is not enough; we must do.

Johann W. von Goethe, German Novelist (1749–1832)

A
pplying our proposal to real-world case studies was very impor-
tant to verify it and prove that it is viable. Section §12.1 introduces
the case studies on which we have worked to prove that our re-
sults are practical and can be used to solve real-world problems.

We provide additional details in Sections §12.2 – §12.6. Section §12.7 reports
on additional results that we gathered in an experiment in which we run one
of the case studies using JBI binding components. Finally, Section §12.8 sum-
marises the chapter.

153

154 Chapter 12. Case Studies

12.1 Introduction

We have worked on five case studies to which we have applied our pro-
posal in the laboratory to verify its viability. Every case study was designed
using our Domain-Specific Language and implemented using our Software
Development Kit. The first case study is Café, which is an illustrative inte-
gration problem used by the Enterprise Application Integration community
to demonstrate and compare integration tools; the following two case studies
are based on real-world integration problems found at Unijuí University (Ijuí,
Brazil) and at Huelva’s County Council (Huelva, Spain); finally, we have im-
plemented two well-known case studies in the literature to illustrate the inte-
gration of the applications involved in the scenarios of searching and booking
flights and hotels for a travel.

We have conducted a series of experiments to evaluate the previous in-
tegration solutions on our Runtime System. We used mock adapters, i.e.,
adapters implemented in memory that simulate the functionality of a real-
world adapter and not on external software. The mock adapters allowed us
to save the processing time required by the real-world adapters based on JBI,
which have proven to have a non negligible impact on the consumption of
CPU time, cf. Section §12.7. Furthermore, by using mock adapters the execu-
tion of the integration solutions depend only on our Runtime System, and not
on other external software. In each experiment we measured the following
variables:

Consumption of CPU Time per Thread: This variable measures the average
CPU times that the integration solution has consumed to process all of
the messages of an experiment. Note that we measured CPU time per
thread, i.e., the actual time the available threads took to process the
workload, including user and operating system time. To measure this
variable, we run every integration solution with a fixed message pro-
duction rate, a varying the number of threads (t), and a varying number
of messages (m). We introduced a 60-second delay between every two
experiments. The message production rate considered was one message
every 5 milliseconds, we varied t in the range 1, 2, 4, 6, 8 threads, and m

in the range 20, 000, 40, 000, 60, 000, ... , 200, 000 messages. In total, we
ran a total of 125 experiments for each integration solution to draw our
conclusions on this variable.

Pending Messages: This variable measures the number of messages that had
not been processed yet right after the message production finishes. The

12.2. Café 155

experiments conducted to measure this variable consisted of running an
integration solution with a fixed number of messages per experiment, a
varying number of threads (t), and a varying message production rate (r)
to simulate heavily-loaded scenarios. We introduced a 60-second delay
between every two experiments. The total number of messages in each
experiment was 100, 000, we varied t in the range 1, 2, 4, 6, 8 threads, and
r in the range 200, 400, 600, ... 3, 000 messages per second. In total, we ran
375 experiments for each integration solution to draw our conclusions on
this variable.

We ran these experiments on a machine that was equipped with an Intel
Core i7 with four physical CPU threads that run at 2.93 GHz, and had 8 GB of
RAM, Windows 7 Professional Service Pack 1, and Java Enterprise Edition 1.6
64-bit installed. Each experiment was repeated 5 times and the results were
averaged in order to diminish the effects of unpredictable events in the oper-
ating system. In every experiment the body of the messages hold an actual
document in XML format. Note that the size of a message being processed by
an integration solution varies, since it is modified and transformed throughout
the workflow. Thus, we have computed the average size of the messages that
belong to a same correlation processed in an integration solution. The result is
an average message size of 1, 376.40 bytes for the Café solution, 1, 356.14 bytes
for the Unijuí University solution, 1, 317.75 for the Huelva’s County Council
solution, 1, 498.11 bytes for searching flights and hotels solution, and 1, 435.66

for the booking flights and hotels solution. (Note that this deviates largely
from other experiments in the literature in which the authors used unrealisti-
cally small message sizes.)

In the following sections, we first describe the integration problem tackled
in each case study; we then provide a solution model; next, we provide the
rules used to detect possible errors when running these integration solutions;
finally, we show the experimental results that we gathered and draw our con-
clusions.

12.2 Café

In the literature, the Coffee Shop case study (Café for short) [53] has be-
come the de facto standard to compare proposals in the integration field from
a practical point of view.

156 Chapter 12. Case Studies

12.2.1 The software ecosystem

The workflow in Café, describes how customer orders are processed in a
coffee shop. Roughly speaking, it starts by a customer placing an order to
the cashier, who then registers the order in the system and adds it to an or-
der queue. An order may include entries for hot and cold drinks, which are
prepared by different baristas. When all of the drinks that correspond to the
same order have been prepared, they are ready to be delivered by the waiter.
Every order has a tray associated to it, which is used to deliver the order to
the customer. Note that, the cashier is decoupled from the baristas, since the
orders taken from customers are placed in the queue from which baristas re-
trieve them. It allows the cashier to keep taking orders from customers even
when the baristas are backed up. Baristas do not have a complete view of the
whole set of drinks in an order, they receive individual drink requests and
when a drink is prepared the barista places it on the corresponding tray.

The goal of the integration solution is to take orders from the order queue,
send requests to the corresponding baristas to prepare the corresponding hot
and cold drinks, and notify the waiter when an order is completed.

12.2.2 Solution

Figure §12.1 presents a design for this integration case study using our
Domain-Specific Language. The integration solution is composed of one or-
chestration process that exogenously co-ordinates the four applications in-
volved. The communication with the Orders and Waiter applications is car-
ried out by means of ports that read and write messages; on the other hand the
communication with Barista Cold Drinks and Barista Hot Drinks is car-
ried out by means of a programming API that these applications export.

The workflow begins at entry port P1, which periodically reads the Orders
application log to find new customer orders. Every order results in a mes-
sage with the drinks to be prepared added to slot S1. Task T1 splits every
message into several other messages, one for each drink. Messages are now
routed by the dispatcher task T2 either towards the Barista Cold Drinks or
Barista Hot Drinks applications. Task T3 replicates messages to the Barista
Cold Drinks, so that one copy can be used to request this application to pre-
pare the drink, by means of ports P2 and P3, and the other waits for the cor-
related response that brings information about the preparation of the drink.

12.2. Café 157

Waiter

Barista

Cold Drinks

Orders

Barista

Hot Drinks

S1

T1

T4

T2

T3

T5

T6

T7

P1

P2 P3

P6

P4 P5

S2

Figure 12.1: The Café integration solution.

Task T5 correlates the response from the barista with the waiting copy, and
task T6 enriches the waiting copy with the information returned by Barista
Cold Drinks. Task T4 transforms messages into the necessary request format
for the application. Messages towards Barista Hot Drinks behave symmetri-
cally. Once the drink is prepared, the messages from baristas are merged into
a single slot S2 by the merger task T7. Then, the prepared drinks are taken
from this slot and aggregated back into a single message for the order, so that
exit port P6 writes the resulting message to the Waiter application.

12.2.3 Error detection rules

Figure §12.2 shows the rules that we have designed for the Café integra-
tion solution. Rule R1 states that for every input message read at port P1,

158 Chapter 12. Case Studies

P1[1] P6[1] V

P2[1] P3[1] V

P4[1] P5[1] VR3 =

R1 =

R2 =

Figure 12.2: Error detection rules for the Café solution.

the integration solution must produce another correlated message at port P6.
Rules R2 and R3 state that for every request message to the baristas, there must
be a correlated response message. Note that we assume, that every order has
at least one item; this does not amount to loss of generality since it actually
does not make sense to place an order with zero drinks.

12.2.4 Experimental results

Figure §12.3 presents our experimental results. The consumption of CPU
time grows linearly as the number of messages m increases, independently
from the number of threads t available. We performed a linear regression
analysis and confirmed the previous claim since R2 was 0.999. Furthermore,
the graph depicted for this variable shows that the consumption of CPU time
per thread reduces considerably when adding more threads until the limit of 4
threads. Then, adding more threads apparently does not reduce the consump-
tion of CPU time per thread. The reason for this behaviour is the limit of four
physical CPU threads in the processor.

The graph depicted to show the number of pending messages, indicates
that the integration solution supports a message production rate r until 800
messages per second when using 4, 6, or 8 threads, since there are not any
pending messages when the message production finishes. A higher message
production rate r causes the integration solution to accumulate messages, in-
dependently from the number of threads with which we have experimented.
If the message production rate r ranges from 1, 600 to 3, 000, then there is not
much difference in using 1 or 8 threads. With r = 200, messages do not ac-
cumulate even if the integration solution is run with only 1 thread. If the
integration solution is run with 2 threads, no messages are accumulated until
r = 600. The behaviour is similar when using 4–8 threads, which is due to the
limit of four physical CPU threads in the processor.

12.3. Unijuí University 159

0

2

4

6

8

10

12

14

2
0

,0
0

0

4
0

,0
0

0

6
0

,0
0

0

8
0

,0
0

0

1
0

0
,0

0
0

1
2

0
,0

0
0

1
4

0
,0

0
0

1
6

0
,0

0
0

1
8

0
,0

0
0

2
0

0
,0

0
0

C
P

U
 T

im
e

 (
m

in
u

te
s)

Number of messages

Consumption of CPU Time per Thread

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

0

20,000

40,000

60,000

80,000

100,000

2
0

0

4
0

0

6
0

0

8
0

0

1
,0

0
0

1
,2

0
0

1
,4

0
0

1
,6

0
0

1
,8

0
0

2
,0

0
0

2
,2

0
0

2
,4

0
0

2
,6

0
0

2
,8

0
0

3
,0

0
0

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s

Messages per second

Pending Messages

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

Figure 12.3: Experimental results for the Café solution.

12.3 Unijuí University

This case study consists of a non-trivial, real-world integration problem
that builds on a project to enhance the functionality of the call centre appli-
cation at Unijuí University. The goal is to automate the invoicing of personal
phone calls that employees make using the University’s phones.

12.3.1 The software ecosystem

The integration solution involves five applications, namely: Call Centre,
Human Resources System, Payroll System, Mail Server, and SMS Notifier.
Each application runs on a different platform; the Human Resources System

160 Chapter 12. Case Studies

and the Payroll System are legacy systems developed in house, and the rest are
off-the-shelf software packages purchased by the University. In addition, Mail
Server provides a POP3 and a SMTP interface; the other applications were de-
signed without integration concerns in mind, which requires to interact with
them by means of their data layer. The Call Centre records every call every
employee makes from a University’s phone; it can identify who the employee
is because they have a personal access code that they have to enter before
dialling the number they wish to call. This code is used to correlate phone
calls with the information in the Human Resources System and the Payroll
System. The Human Resources System provides personal information about
the employees. Every month, the Payroll System computes the salary of ev-
ery employee, including wages, bonuses and deductions. The Mail Server and
the SMS Notifier run the University e-mail and short message system services,
respectively, and are used for notification purposes.

Every phone call registered by the Call Centre, except for toll-free calls,
must be transformed into debits in the Payroll System. Employees can be no-
tified by e-mail and/or short text message about their calls, so that they are
aware of the deduction that shall appear in their pay slip. The only assump-
tion we make is that the information registered in the Call Centre, apart from
the data of the phone calls and the personal access codes, does not include
any other information about the employees. It is the Human Resources Sys-
tem that provides this information.

12.3.2 Solution

The integration solution we have devised using Guaraná DSL is composed
of one orchestration process that exogenously co-ordinates the applications
involved in the integration solution, cf. Figure §12.4. Some ports use text files
to communicate indirectly with the Call Centre, the Payroll System, and the
SMS Notifier; we have direct access to the Human Resources System database
by means of a pair of entry and exit ports. Translator tasks were used to trans-
late messages from canonical schemas into schemas with which the integrated
applications work.

The workflow begins at entry port P1, which periodically polls the Call
Centre log to find new phone calls. Every phone call results in a message that
is added by communicator task T1 to slot S1. The body of the message holds
the polled data as stream. Every port is provided with only a single communi-
cator task, except for entry port P1 which has a mapper task. This mapper T2

12.3. Unijuí University 161

Mail Server SMS Notifier

Payroll

System

Call Centre

System

+

Human

Resources

System

T1

T3

S1

T2 T4 T5

P1

P2 P3 P4

P5 P6

Figure 12.4: The Unijuí University integration solution.

maps inbound messages onto outbound messages that conform to a canonical
XML schema that represents phone call records. Inside the process, task T3
filters out messages that have a toll-free call. Then, messages containing calls
with a cost are replicated to the Human Resources System, so that one copy
can be used to query this application, by means of ports P2 and P3. Next,
task T4 enriches the other correlated copy with the information returned by
the Human Resources System and then task T5 replicates this enriched mes-
sage to the Payroll System, the Mail Server, and the SMS Notifier. Exit
port P4 writes to the Payroll System debit orders that conform to the data
model in this application. The copies sent to the Mail Server and the SMS
Notifier go first thought filters to prevent exit ports P5 and P6 from receiving
messages without enough information (e.g., destination e-mail address and
destination phone number, respectively).

12.3.3 Error detection rules

Figure §12.5 shows the rules we have specified for the Unijuí University
integration solution, so that it is possible to detect errors during its execution.
Rule R1 states that for every input message read at port P1, the integration

162 Chapter 12. Case Studies

P2[1] P3[1] V

P4[1] & P5[?] & P6[?] P1[1] V

P2[0] & P3[0] & P4[0] & P5[0] & P6[0] P1[1] V

R1 =

R2 =

R3 =

Figure 12.5: Error detection rules for the Unijuí University solution.

solution must produce another correlated message at port P4, and zero or one
correlated messages at ports P5 and P6. Note that, if filter task (5) removes
a message from the workflow in this integration solution, there shall be no
correlated messages at ports P2, P3, P4, P5, and P6, causing rule R1 to fail. To
avoid reporting an error in such cases, we have specified rule R2. Rule R3 states
that for every request message to the Human Resources System, there must be
a correlated response message.

12.3.4 Experimental results

Figure §12.6 presents the results of our experiments. The consumption of
CPU time grows linearly as the number of messages m increases, indepen-
dently from the number of threads t available. We performed a linear regres-
sion analysis and confirmed the previous claim since the values we got for R2

were 0.994, 0.996, 0.998, 0.997, and 0.998 for 1, 2, 4, 6, and 8 threads, respec-
tively. The graph depicted for this variable shows that, as a consequence of
only having four physical CPU threads available in the processor, running the
integration solution with 6 and 8 threads does not help reduce the consump-
tion of CPU time per thread very significantly, as was the case for 1, 2, and 4

threads.

The graph depicted to show the number of pending messages indicates
that the integration solution supports a message production rate r until 1, 200
messages per second when using 6 or 8 threads, since there are not any pend-
ing messages when the message production finishes. A higher message pro-
duction rate r causes the integration solution to accumulate messages, inde-
pendently from the number of threads with which we have experimented.
Furthermore, these experiments indicate that for an r = 3, 000, there is no
much difference in using 1 or 8 threads. With r = 200, messages do not accu-
mulate even if running the integration solution with only 1 thread. In this case
study, the integration solution only starts to accumulate messages for 1 thread

12.4. Huelva’s County Council 163

0

2

4

6

8

10

12

14

2
0

,0
0

0

4
0

,0
0

0

6
0

,0
0

0

8
0

,0
0

0

1
0

0
,0

0
0

1
2

0
,0

0
0

1
4

0
,0

0
0

1
6

0
,0

0
0

1
8

0
,0

0
0

2
0

0
,0

0
0

C
P

U
 T

im
e

 (
m

in
u

te
s)

Number of messages

Consumption of CPU Time per Thread

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

0

20,000

40,000

60,000

80,000

100,000

2
0

0

4
0

0

6
0

0

8
0

0

1
,0

0
0

1
,2

0
0

1
,4

0
0

1
,6

0
0

1
,8

0
0

2
,0

0
0

2
,2

0
0

2
,4

0
0

2
,6

0
0

2
,8

0
0

3
,0

0
0

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s

Messages per second

Pending Messages

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

Figure 12.6: Experimental results for the Unijuí University solution.

with an r = 400. 2 and 4 threads allow to run the integration solution without
accumulating messages with an r = 600 and r = 1, 000, respectively.

12.4 Huelva’s County Council

This case study consists of a real-world integration problem that builds on
a project to automate the registration of new users into a unique repository
of the Huelva’s County Council. This repository contains information about
users that comes from both a local application and a web portal. It is expected
that every new user is notified and provided with his/her digital certificate by
secure e-mail.

164 Chapter 12. Case Studies

12.4.1 The software ecosystem

The integration solution involves six applications, namely: Local Users,
Portal Users, LDAP, Human Resources System, Digital Certificate Platform,
and Mail Server. Each application runs on a different platform, and, except for
the LDAP, the Digital Certificate Platform, and the Mail Server, they were not
designed with integration concerns in mind.

The Local Users is the first application developed in house; it aims to man-
age the county council information systems’ users. Note that, this is a stan-
dalone application and does not provide an authentication service. The Portal
Users is an off-the-shelf application that the web portal uses to manage its
users. In addition, a unique repository for users has been set up using an
LDAP-based application, so that it can provide authentication access control
for several other applications inside the software ecosystem. The Human Re-
sources System is a legacy system developed in house to provide personal
information about the employees. It is a part of the integration solution since
we require information like name and e-mail to compose notification e-mails.
Another application developed in house is the Digital Certificate Platform,
which aims to manage digital certificates; it was designed with integration
concerns in mind. Amongst other services, this application can be queried to
get a URL that temporarily points to a digital certificate that users can down-
load after authenticating. Finally, the Mail Server runs the Council’s e-mail
service, which is used exclusively for notification purposes.

12.4.2 Solution

The integration solution we have devised using Guaraná DSL is composed
of one orchestration process that exogenously co-ordinates the applications
involved in the integration solution, cf. Figure §12.7. Some ports use text
files to communicate with Local Users, Portal Users, and LDAP; the Human
Resources System is queried by means of its database management system;
and, the communication with the Digital Certificate Platform and the
Mail Server is performed by means of APIs. Translator tasks were used to
translate messages from canonical schemas into the schemas with which the
integrated applications work.

The workflow begins at entry ports P1 and P2, which periodically poll the
Local Users and Portal Users logs to find new users. Every port is pro-

12.4. Huelva’s County Council 165

Local Users

Portal Users

LDAP Mail Server

Human

Resources

System

+

+

Digital

Certificate

Platform

T3

T1

T2

S1

T4

T5

T7

T6

T8

P1

P2

P3 P4 P5 P6

P7 P8

Figure 12.7: The Huelva’s County Council integration solution.

vided with only a communicator task, except for ports P1 and P2 that also
have a mapper task. In both ports, every user record results in a message that
is added by the communicators to their corresponding slots. The body of the
message holds the data that has been polled as a stream. Thus, mappers T1
and T2 map the inbound messages onto outbound messages that conform to a
canonical XML schema that represents user records. Inside the process, task T3
gets messages coming from both ports and adds them to slot S1. Replicator
task T4 creates two copies of every message it gets from this slot, so that one
copy can be used to query application Human Resources System by means of
ports P3 and P4, for information about the employee who owns a user record.
Next, task T5 enriches the other correlated copy with the information returned
by the Human Resources System and then task T7 replicates this enriched mes-
sage with copies to the LDAP and the Digital Certificate Platform. The
new user record is written to the LDAP by means of exit port P7. Before query-
ing the Digital Certificate Platform, task T6 filters out messages that do
not include an e-mail address. Messages that go through task T8, which en-
riches them with the corresponding certificate. Finally, exit port P8 commu-
nicates with the Mail Server application to send the certificate and notify the
employee about his/her inclusion in the LDAP.

166 Chapter 12. Case Studies

P5[1] P6[1] V

P7[1] & P8[?] P1[1] V

P7[1] & P8[?] P2[1] V

P3[1] P4[1] V

R1 =

R2 =

R3 =

R4 =

Figure 12.8: Error detection rules for the Huelva’s County Council solution.

12.4.3 Error detection rules

Figure §12.8 shows the rules we have specified for the Huelva’s County
Council integration solution. Rule R1 states that for every input message read
at port P1, the integration solution must produce another correlated message
at port P7, and zero or one correlated message at port P8. Rule R2 is simi-
lar to rule R1, but involves port P2. Rules R3 and R4 state that for every re-
quest message to the Human Resources System and the Digital Certificate
Platform, there must be a correlated response message, respectively.

12.4.4 Experimental results

Figure §12.9 presents our experimental results. The consumption of CPU
time grows linearly as the number of messages m increases, independently
from the number of threads t available. We performed a linear regression
analysis and confirmed the previous claim since the values we got for the R2

coefficient were 0.994, 0.994, 0.996, 0.996, and 0.997 for 1, 2, 4, 6, and 8 threads,
respectively. The graph depicted for this variable shows that the consumption
of CPU time per thread reduces considerably when adding more threads until
the limit of 4 threads. This behaviour is attributed to the limit of four physical
CPU threads in the processor. This explains why adding more threads to the
integration solution, does not result in a significant reduction of the total CPU
time per thread.

The graph depicted to show the number of pending messages, indicates
that the integration solution supports a message production rate r until 800
messages per second when using 4, 6, or 8 threads, since there are not any
pending messages when the message production finishes. A higher message

12.4. Huelva’s County Council 167

0

2

4

6

8

10

12

14

2
0

,0
0

0

4
0

,0
0

0

6
0

,0
0

0

8
0

,0
0

0

1
0

0
,0

0
0

1
2

0
,0

0
0

1
4

0
,0

0
0

1
6

0
,0

0
0

1
8

0
,0

0
0

2
0

0
,0

0
0

C
P

U
 T

im
e

 (
m

in
u

te
s)

Number of messages

Consumption of CPU Time per Thread

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

0

20,000

40,000

60,000

80,000

100,000

2
0

0

4
0

0

6
0

0

8
0

0

1
,0

0
0

1
,2

0
0

1
,4

0
0

1
,6

0
0

1
,8

0
0

2
,0

0
0

2
,2

0
0

2
,4

0
0

2
,6

0
0

2
,8

0
0

3
,0

0
0

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s

Messages per second

Pending Messages

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

Figure 12.9: Experimental results for the Huelva’s County Council solution.

production rate r causes the integration solution to accumulate messages, in-
dependently from the number of threads with which we have experimented.
If the message production rate r ranges from 1, 600 – 3, 000, then there is not
much difference in using 1 or 8 threads. With r = 200, messages do not accu-
mulate even if running the integration solution with only 1 thread. If running
the integration solution with 2 threads, no messages are accumulated until
r = 600. A similar behaviour when using 4–8 threads can be observed in this
experiment, which is attributed to the limit of four physical CPU threads in
the processor.

Note that this case study and the next one are the ones that require more
CPU to complete. Note that even in these cases, our proposal is able to handle
a workload as high as 400 messages per second without getting collapsed.

168 Chapter 12. Case Studies

12.5 Travel Search

Searching for flights and hotels is a well-known integration problem in the
context of travel agency business systems. The goal is to devise an integration
solution that makes it easier searching for the most inexpensive combination
of flights and hotels for a desired travel with a limited budget, so that the
customer can decide which one he/she shall book.

12.5.1 The software ecosystem

The integration solution involves two applications, namely: Flights Façade
and Hotels Façade. Both applications have APIs that allows for querying sev-
eral flight and hotel companies, but do not allow to restricts the results by
price. Requests to the Flights Façade return information about all of the flights
it can find for a specific date, departing, and destination city. Likewise, the
Hotels Façade responds with all of the available hotels in a destination city for
a specific date. The integration solution must provide an API so that client
applications can search for flights and hotels.

12.5.2 Solution

The integration solution we have devised using Guaraná DSL is composed
of one orchestration process and two wrapping processes, cf. Figure §12.10.
The orchestration process uses a port to publish an API for searching combina-
tions of flights and hotels. The Flights Façade and the Hotels Façade appli-
cations were provided with wrapping processes that allow to query them and
remove entries that exceed the maximum affordable price for flight and hotel,
respectively. We have decided to implement this functionally outside of the
orchestration processes, so that it can be reused in other integration solutions.

The workflow begins at entry port P1. This port receives request messages
and adds them to slot S1 inside the orchestration process, from which replica-
tor task T1 gets them. The replicator creates two copies of every message; the
first copy is used to search for flights and hotels, whereas the second is used
to remove combinations of flights and hotels that exceed the total budget from
the response. Task T2 promotes the request id from the body of the message
to the header of the message, so that it can be used for correlation purposes in

12.5. Travel Search 169

Hotels

Façade

Flights

Façade

X

S1
T3T1 T2

T4

T5

T6

T7

T8

T9

P1

P2

P3

P4

P5

P6

P12

P11

P8

P7

P9

P10

P13

P14

T10

Figure 12.10: The Travel Search integration solution.

tasks T4 and T5. Prior to the correlation, the first copy is chopped by task T3
into different messages, so that tasks T6 and T7 can assemble the outbound
messages used to request all possible flights and hotels, respectively. The
wrapping process for the Flights Façade receives request messages from exit
port P3, queries the Flights Façade application by means of ports P9 and P10,
slims the responses in task T8, and, then, by means of exit port P8 writes the
responses to the orchestration process. Symmetrically, the wrapping process
for the Hotels Façade queries its corresponding application with messages
received from exit port P4. Back to the orchestration process, task T9 builds
every possible combination of flights and hotels returned by the wrapping
processes, and, finally, task T10 slims the response to ensure none of the com-
binations exceeds the maximum budget.

12.5.3 Error detection rules

Figure §12.11 shows the rules we have specified for the Travel Search in-
tegration solution, so that it is possible to detect errors during its execution.
Because this solution involves three processes, we have specified separately

170 Chapter 12. Case Studies

Orchestration processSolution

Flight Façade wrapper

P7[1] P8[1] V

P9[1] P10[1] V

Hotels Façade wrapper

P11[1] P12[1] V

P13[1] P14[1] V

P1[1] P2[1] VR1 =

P9[1] & P13[1]P1[1] VR2 =

P3[1] P7[1] VR3 =

P8[1] P5[1] VR4 =

P4[1] P11[1] VR5 =

P12[1] P6[1] VR6 =

P3[1] & P4[1]P1[1] VR7 =

R8 =

R9 =

R10 =

R11 =

Figure 12.11: Error detection rules for the Travel Search solution.

the rules involving two or more processes in the solution from the rules in-
volving a single process.

Rule R1 indirectly involves all processes in the solution, since it states that
for every input message read by the orchestration process at port P1, the inte-
gration solution must produce another correlated message at port P2. Rule R2
states that for every message read by the orchestration process at port P1,
other two correlated messages are produced at ports P9 and P13 to query the
Flights Façade and Hotels Façade, respectively. Rules R3 and R4, specify
the expected behaviour for exchanging messages between the orchestration
and the wrapping process for Flights Façade. The former rule states that for
every message written by port P3 there must be another correlated message
at port P7. The latter rule specifies the behaviour for the other way around
involving ports P8 and P5. Rules R5 and R6 are similar to rules R3 and R4
for the case of the communication between the orchestration process and the
wrapper.

Rule R7 states that for every input message read at port P1, the orchestra-
tion process must produce two correlated messages, one at port P3 and an-
other at port P4, respectively.

Rule R8 is used to check the input and output of the Flights Façade, and
states that for every message read at port P7, the wrapping process must pro-
duce another correlated message at port P8. Rule R9 states that for every re-
quest message to the Flights Façade, there must be a correlated response
message. Rules R10 and R11 are defined for the wrapping process of Hotels
Façade, and are similar to rules R8 and R9.

12.5. Travel Search 171

0
2
4
6
8

10
12
14
16
18

2
0

,0
0

0

4
0

,0
0

0

6
0

,0
0

0

8
0

,0
0

0

1
0

0
,0

0
0

1
2

0
,0

0
0

1
4

0
,0

0
0

1
6

0
,0

0
0

1
8

0
,0

0
0

2
0

0
,0

0
0

C
P

U
 T

im
e

 (
m

in
u

te
s)

Number of messages

Consumption of CPU Time per Thread

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

0

20,000

40,000

60,000

80,000

100,000

2
0

0

4
0

0

6
0

0

8
0

0

1
,0

0
0

1
,2

0
0

1
,4

0
0

1
,6

0
0

1
,8

0
0

2
,0

0
0

2
,2

0
0

2
,4

0
0

2
,6

0
0

2
,8

0
0

3
,0

0
0

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s

Messages per second

Pending Messages

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

Figure 12.12: Experimental results for the Travel Search solution.

12.5.4 Experimental results

Figure §12.12 presents our experimental results. The consumption of CPU
time grows linearly as the number of messages m increases, independently
from the number of threads t available. We performed a linear regression
analysis and confirmed the previous claim since R2 is 0.999, 0.998, 0.998, 0.998,
and 0.999, and 0.997 for 1, 2, 4, 6, and 8 threads, respectively. Furthermore,
the graph depicted for this variable shows that the consumption of CPU time
per thread reduces considerably when adding more threads until the limit of 4
threads. Then, adding more threads apparently does not reduce the consump-
tion of CPU time per thread. This behaviour is attributed to the limit of four
physical CPU threads in the processor.

The graph depicted to show the number of pending messages indicate that

172 Chapter 12. Case Studies

the integration solution supports a message production rate r until 400 mes-
sages when using 2, 4, 6 or 8 threads, since there are not any pending mes-
sages when the message production finishes. A higher message production
rate r causes the integration solution to accumulate messages, independently
from the number of threads. If the message production rate r ranges from
800 – 3, 000, then there is not much difference in using 1 or 8 threads. With
r = 200, messages do not accumulate even if running the integration solution
with only 1 thread. The results depicted in the graph indicate for all num-
bers of threads t, the resulting number of pending messages is similar. This
behaviour is due to the fact that the Travel Search integration solution uses
more tasks that depend on two or more messages, such as the correlator, as-
sembler, and slimmer. This has an impact on the time the integration solution
requires to process a request. Furthermore, this integration solution involves
three processes. The greater the number of this type of tasks and the number
of processes, the more time is required to process messages.

12.6 Travel Booking

Not only requires a travel agency an integration solution that eases the
process of searching for flights and hotels, but they also need to automate the
booking process. Thus, the goal is to devise an integration solution that takes
a travel booking request as input and books the flights and the hotel specified.

12.6.1 The software ecosystem

The integration solution involves five applications, namely: Travel System,
Invoice System, Mail Server, Flights Façade, and Hotels Façade. The Travel
System is an off-the-shelf software system that the travel agency uses to reg-
ister information about their customers and booking requests. The invoice
service runs on the Invoice System, which is a separate software system that
allows customers to pay their travels using their credit cards. The Mail Server
runs the e-mail service and is used for providing customers with information
about their bookings. The Flights Façade and the Hotels Façade represent
interfaces that allow booking flights and hotels. They both, in addition to
the Mail Server, represent applications that were designed with integration
concerns in mind. Contrarily, the Travel System and the Invoice System are
software systems that were designed without taking integration into account,

12.6. Travel Booking 173

Travel

System

Mail Server

Invoice

System

Hotels

Façade

Flights

Façade

(1) (2)

(5)

(3)

(4)

(6)

(7)

(8)

(9)

(10)

(11)

P1

P3

P2

P5

P4

Figure 12.13: The Travel Booking integration solution.

thus, the integration solution must interact with them by means of their data
layer. The only assumption we make is that every booking registered in the
Travel System contains all of the necessary information about the payment,
flight and hotel, and a record locator which uniquely identifies the booking.

The integration solution must periodically poll the Travel System for new
travel bookings, so that flights and hotel can be booked, the customer can
be invoiced and provided with a piece of e-mail with the information about
his/her travels.

12.6.2 Solution

The integration solution we have devised using Guaraná DSL is composed
of one orchestration process that exogenously co-ordinates the applications
involved in the integration solution, cf. Figure §12.13. Some ports have access
to the Travel System and the Invoice System data layers by means of files.
Translator tasks were used in the process to translate messages from canoni-
cal schemas into the schemas with which the integrated applications Invoice
System and Mail Server work.

The workflow begins at entry port P1, which periodically polls the Travel

174 Chapter 12. Case Studies

P2[?] & P3[1] & P4[1] & P5[1] P1[1] VR1 =

Figure 12.14: Error detection rules for the Travel Booking solution.

System to find new bookings. Bookings are stored in individual XML files.
For every booking, the entry port inputs a message to the process, which is
in turn added to slot S1. Task T1 gets messages from this slot and replicates
them, so that one copy is used to send the e-mail to the customer and the other
is used to prepare the invoice and the booking. The first copy goes through
filter task T2, which prevents exit port P2 from receiving messages without a
destination e-mail address. Task T3 promotes the record locator from the body
of the message to the header of the message, so that it can be used for corre-
lation purposes in tasks T5 and T6. Prior to the correlation, the second copy
is chopped by task T4 into different messages, so that one outbound message
with the payment information goes to the Invoice System and tasks T7 and T8
can assemble the messages used to book the flights and the hotel, respectively.

12.6.3 Error detection rules

Figure §12.14 shows the rules we have specified for the Travel Book inte-
gration solution, so that it is possible to detect errors during its execution.

The single rule specified for this solution states that for every input mes-
sage read at port P1, the integration solution must produce zero or one cor-
related message at port P2, and another correlated message at ports P3, P4,
and P5.

12.6.4 Experimental results

Figure §12.15 presents our experimental results. The consumption of CPU
time grows linearly as the number of messages m increases, independently
from the number of threads t available. We performed a linear regression
analysis and confirmed the previous claim since R2 is 1, 0.999, 0.998, 0.999,
and 0.998 for 1, 2, 4, 6, and 8 threads, respectively. A great reduction in the
consumption of CPU time is achieved when adding more threads until the
limit of 4 threads. Then, adding more threads apparently does not reduce the

12.6. Travel Booking 175

0
2
4
6
8

10
12
14
16

2
0

,0
0

0

4
0

,0
0

0

6
0

,0
0

0

8
0

,0
0

0

1
0

0
,0

0
0

1
2

0
,0

0
0

1
4

0
,0

0
0

1
6

0
,0

0
0

1
8

0
,0

0
0

2
0

0
,0

0
0

C
P

U
 T

im
e

 (
m

in
u

te
s)

Number of messages

Consumption of CPU Time per Thread

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

0

20,000

40,000

60,000

80,000

100,000

2
0

0

4
0

0

6
0

0

8
0

0

1
,0

0
0

1
,2

0
0

1
,4

0
0

1
,6

0
0

1
,8

0
0

2
,0

0
0

2
,2

0
0

2
,4

0
0

2
,6

0
0

2
,8

0
0

3
,0

0
0

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s

Messages per second

Pending Messages

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

Figure 12.15: Experimental results for the Travel Booking solution.

consumption of CPU time per thread, because the CPU has only four physical
threads available.

The experimental results that we obtained for the number of pending mes-
sages, indicates that this integration solution supports a message production
rate r until 800 messages when using 6 or 8 threads, since there are not any
pending messages when the message production finishes. A higher message
production rate r causes the integration solution to accumulate messages, in-
dependently from the number of threads. Furthermore, these experiments
indicate that for a very high message production rate r of 3, 000 there is no
much difference in using 1 or 8 threads. With r = 200, messages do not accu-
mulate even if running the integration solution with only 1 thread. If running
the integration solution with 2 and 4 threads, no messages are accumulated
until r = 600.

176 Chapter 12. Case Studies

0
5

10
15
20
25
30
35
40

2
0

,0
0

0

4
0

,0
0

0

6
0

,0
0

0

8
0

,0
0

0

1
0

0
,0

0
0

1
2

0
,0

0
0

1
4

0
,0

0
0

1
6

0
,0

0
0

1
8

0
,0

0
0

2
0

0
,0

0
0

C
P

U
 T

im
e

 (
m

in
u

te
s)

Number of messages

Consumption of CPU Time per Thread

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

Figure 12.16: Experimental results for the Café solution using JBI adapters.

12.7 An experiment using JBI adapters

As we mentioned in this dissertation at Chapter §8, our Domain-Specific
Language, Software Development Kit, and Runtime System allow to reuse the
catalogue of binding components provided by Open ESB. On one hand, this is
an advantage because we could design and implement our proposal without
having to spend much time at designing and implementing our own catalogue
of adapters. This approach has also helped us to concentrate efforts on the
core architecture of our proposal, since the adapters are peripheral to its main
architecture. On the other hand, our experiments have shown that it is very
expensive to design and implement integration solutions using JBI adapters.
Furthermore, the CPU time increases much because we have to run the Open
ESB server, which is responsible for managing the binding components with
which our JBI adapters have to communicate through the network.

In this section, we present the CPU times consumed by an implementa-
tion of the Café solution using JBI adapters. The times were measured using
the memory monitor available in our Runtime System. This monitor allows
to gather the CPU time consumed by an integration solution running in our
Runtime System, however the monitor cannot measure the CPU time con-
sumed by Open ESB to run the binding components. The graph depicted in
Figure §12.16, shows the results measured for the consumption of CPU time
running the Café solution using JBI adapters. The consumption of CPU time

12.8. Summary 177

grows linearly as the number of messages m increases, independently from
the number of threads t available. A similar behaviour was observed when
we ran the Café solution with mock adapters, cf. Section §12.2. The linear
growth is confirmed by a linear regression analysis we performed and the R2

coefficients we calculated for 1, 2, 4, 6, and 8 threads, which were 0.997, 0.994,
0.998, 0.998, and 0.999, respectively. The consumption of CPU time per thread
reduces significantly until 4 threads, then the results indicate the same be-
haviour as for the experiments in the other case studies regarding variable to
measure the consumption of CPU time.

12.8 Summary

In this chapter, we have reported on five case studies that introduce differ-
ent integration problems. For each of them, we have designed an integration
solution using our Domain-Specific Language. Every integration solution also
includes a number of rules to detect possible errors during its execution. Fur-
thermore, we have implemented every integration solution using our Soft-
ware Development Kit, and have executed several experiments to evaluate
their execution using our Runtime System in case studies with high work-
load.

178 Chapter 12. Case Studies

Part IV

Final Remarks

Chapter 13

Conclusions

If you can look into the seeds of time,
And say which grain will grow and which will not;

Speak then to me.
William Shakespeare, British author (1564–1616)

E
nterprise Application Integration is widely-used by companies that
aim at reusing the applications that are available within their soft-
ware ecosystems to support and optimise their business processes.
The catalogue of integration patterns proposed by Hohpe and Woolf

[54] was adopted by the Enterprise Application Integration community as a
cookbook to design and implement integration solutions. As of the time of
writing this dissertation, there are not many domain-specific software tools to
help software engineers devise Enterprise Application Integration solutions
based on integration patterns. In this dissertation we have analysed Camel,
Spring Integration, and Mule, which are three successful open-source tools.
Companies that provide Enterprise Application Integration solutions are in-
terested in software tools that can be easily adapted to focus on specific con-
texts such as e-commerce, health systems, financial systems, and insurance
systems, in which they have to meet standards and recommendations like
RosettaNet [96], HL7 [52], SWIFT [106], and HIPAA [51], respectively.

We have used fifteen of the measures proposed by Chidamber and Ke-
merer [16], Henderson-Sellers [50], Martin [73], and McCabe [74] to evaluate
the maintainability of Camel, Spring Integration, and Mule. The results that

181

182 Chapter 13. Conclusions

we obtained confirm our hypothesis that building on these software tools for
particular contexts may be costly. Throughout this dissertation, we have re-
ported on Guaraná, which is our proposal to design and implement Enter-
prise Application Integration solutions. We have used the fifteen maintain-
ability measures to evaluate Guaraná and compare it to Camel, Spring Inte-
gration, and Mule. The analysis of the results supports our thesis by indicat-
ing that Guaraná is much easier to maintain, and, consequently to adapt for
specific contexts. We have also developed five case studies to demonstrate
that Guaraná is viable to be used in real-world integration problems.

We have developed Guaraná in the context of the Model-Driven Engineer-
ing discipline. This discipline allowed us to make models first-class citizens
in the development process of integration solutions. A set of transformations
were devised to allow the automatic translation of models into code. Not only
helps this approach to reduce the time to develop an integration solution, but
also helps to isolate models from their implementation and improve the doc-
umentation of integration solutions.

Our Domain-Specific Language, which is referred to as Guaraná DSL, of-
fers a graphical notation that can be used to represent the models of integra-
tion solutions with a high-level of abstraction. Guaraná DSL defines a set of
constructs for the core abstractions involved in the design of integration solu-
tions, and a general-purpose toolkit which enhances our language with other
constructs to support most of the integration patterns by Hohpe and Woolf
[54]. Guaraná DSL can also be used by software engineers as a common and
yet simple vocabulary for communicating in this field. Ports are one of the
abstractions provided by Guaraná DSL. They are used by integration solu-
tions to interact with the applications being integrated. The current version of
Guaraná DSL includes one-way ports: entry and exit. In a scenario in which
the integration solution makes a request and waits for a response, the correla-
tion of the request and the response messages must be accomplished by using
other constructs provided by the general-purpose toolkit. The same happens
in a scenario in which the integration solution exports an interface to receive
requests and produce responses. Throughout the development of this disser-
tation, we have noticed that it would be interesting to provide two-way ports,
which internally do the required correlation automatically.

The Software Development Kit, which is referred to as Guaraná SDK, is
our implementation for the abstractions defined in our Domain-Specific Lan-
guage. Guaraná SDK is a software tool that can be used to implement integra-
tion solutions. It is a Java-based command query API [31]. By using our trans-

183

formation scripts, software engineers can automatically translate their models
into Guaraná SDK. The architecture of Guaraná SDK is organised into two
layers, namely: framework and toolkit. The former provides a number of
classes and interfaces that implement the abstractions of our Domain-Specific
Language, whereas the latter extends some abstractions in the former to pro-
vide concrete adapters and tasks that support several integration patterns. The
framework layer includes a Runtime System, which allows to execute integra-
tion solutions. The execution model of our Runtime System is totaly asyn-
chronous. Supporting transactions in this kind of execution models requires
more research effort. Tasks that comprise the integration workflow of integra-
tion solutions, notify they are ready to be executed when they have messages
available in all their inputs. For each execution of a task, our Runtime Sys-
tem generates a work unit and adds it to a work queue. There can be several
threads that listen to this queue and are responsible for their actual execution.
We have noticed that the Runtime System cannot guarantee that the work
units are executed homogeneously in scenarios with a very high workload.
The reason is that there can be many more work units for the first task, than
for the second one, than for the third one, and so on. Consequently, the time
required by an integration solution to process an inbound message increases
very much. It is necessary to study this problem in depth, and we believe that
some components in the current Runtime System could be replaced by the
scheduling mechanism provided by Java 5.0.

We have developed a monitoring system that aims to detect possible errors
during the execution of an integration solution. Our failure semantics include
errors when reading from or writing to a resource, structural, and deadline
errors. To evaluate this system, we have executed several experiments involv-
ing six well-known patterns that lie at the core of most real-world integration
solutions, namely: pipeline, dispatcher, merger, request-reply, splitter, and ag-
gregator [54]. The current version of the monitoring system does not detect er-
rors that can happen inside a process during the processing of a message. We
have found that this is a very frequent and thus an important error that has to
be included into our failure semantics. Furthermore, our monitoring system
should be enhanced with the capacity to observe slots inside an integration
solution, so it can detect messages that get stuck in a slot and probably shall
never be processed. A message can get stuck in situations in which it needs to
be processed together with a correlated message, which does not arrive due to
some unexpected failure. Thus another kind of failure shall be included into
our failure semantics to tackle such situations. Regarding the use of rules to
help in the process of error detection, we have noticed that software engineers
have to be careful when an integration solution uses filters, since they may

184 Chapter 13. Conclusions

remove a message from the workflow; we have noticed that it is not difficult
to misinterpret the semantics of our rules in such cases.

We have applied Guaraná to five case studies carried out. In our experi-
ments, we measured two variables: the consumption of CPU time per thread
and the number of pending messages. The results indicate that Guaraná
is viable and can be used to solve real-world integration problems. Ev-
ery case study was modelled using Guaraná DSL and implemented using
Guaraná SDK. We also provide the rules for the detection of errors in these
solutions. Guaraná was designed to be integrated with Open ESB [90], so that
we can reuse its catalogue of binding components. The binding components
implement the low-level transport protocol required to interact with appli-
cations. There are many types of binding components available nowadays,
which allow integration solutions to connect to almost every existing applica-
tion in a software ecosystem. Binding components are part of the JBI specifi-
cation. Throughout the development of this dissertation we have noticed that
the use of JBI adapters results in a very high consumption of CPU Time. The
use of JBI adapters does not have an impact on the number of pending mes-
sages, since once a message is read into the integration solution its processing
does not depend on the Open ESB anymore, but on our Runtime System. As
a conclusion, we believe that future versions of Guaraná should provide their
own adapters, so that the consumption CPU time can be reduced.

During the development of this dissertation we carried out several collab-
orations with other international and Spanish research groups. Three research
visits were paid to the Newcastle University (United Kingdom), the Univer-
sity of Leicester (United Kingdom), and the Polytechnic Institute of Leiria
(Portugal). In collaboration with the Newcastle University, we worked on
the field of fault-tolerance; at the University of Leicester, we presented our
research results and gathered feedback from a group of researchers working
on Domain-Specific Languages; at the Polytechnic Institute of Leiria, we pre-
sented our research results and worked on applying techniques for optimi-
sation to the Runtime System of Guaraná. We have also collaborated with
a research group from the Federal University of Rio Grande do Sul (Brazil),
with which two workshops were organised to present research results and to
prepare a proposal for a joint research project. With the Slovak University of
Technology in Bratislava (Slovakia), we collaborated in the context of a master
thesis that has delved into how to find and automatically generate optimal in-
tegration solutions. In Spain, we had three collaborations at the University of
Seville, in which two workbenches to support Guaraná were developed, and
a runtime based on Microsoft Windows Workflow Foundation to execute in-

185

tegration solutions designed with Guaraná was developed as well. Last, but
not least, we collaborated with two Spanish companies and a public adminis-
tration. In collaboration with the Intelligent Dialogue Systems, S.L. (Spain),
we applied partial results on our Domain-Specific Language to real-world
problems. We have collaborated with the Intelligent Integration Factory, S.L.
(Spain) to validate and transfer the research results in this dissertation to the
industry. At the Huelva’s County Council we have collaborated to apply par-
tial results of Guaraná to solve real-world problems and gather feedback.

Summing up, we have managed to devise a proposal for Enterprise Appli-
cation Integration that has proven to be useful and viable, and we have started
a number of collaborations that we hope shall help Guaraná find its way into
the industry.

186 Chapter 13. Conclusions

Bibliography

[1] A. Álvarez. A proof of concept for Guaraná DSL. Report, Huelva’s
County Council, 2011

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE Trans.
Dependable Sec. Comput., 1(1):11–33, 2004.

[3] M. Azanza, O. Díaz, and S. Trujillo. Software Factories: Describing the
assembly process. In ICSP, 2010.

[4] P. Baker, S. Loh, and F. Weil. Model-driven engineering in a large indus-
trial context: Motorola case study. In MoDELS, pages 476–491, 2005.

[5] T. G. Baker. Lessons learned integrating COTS into systems. In ICCBSS,
pages 21–30, 2002.

[6] L. D. Balk and A. Kedia. PPT: a COTS integration case study. In ICSE,
pages 42–49, 2000.

[7] C. Ballard, A. Gupta, V. Krishnan, N. Pessoa, and O. Stephan. Data
mart consolidation: Getting control of your enterprise information. IBM
Press, 2005.

[8] S. Bergin and J. Keating. A case study on the adaptive maintenance of
an Internet application. Journal of Software Maintenance, 15(4):254–264,
2003.

[9] J. Bézivin. On the unification power of models. Software and System
Modeling, 4(2):171–188, 2005.

[10] J. Bézivin, S. Hammoudi, D. Lopes, and F. Jouault. Applying MDA ap-
proach for web service platform. In Enterprise Distributed Object Com-
puting Conference, pages 58–70, 2004.

187

http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1007/978-3-642-14347-2_12
http://dx.doi.org/10.1007/978-3-642-14347-2_12
http://dx.doi.org/10.1007/11557432_36
http://dx.doi.org/10.1007/11557432_36
http://dx.doi.org/10.1007/3-540-45588-4_3
http://dx.doi.org/10.1145/337180.337187
http://www.redbooks.ibm.com/redbooks/pdfs/sg246653.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246653.pdf
http://dx.doi.org/10.1002/smr.275
http://dx.doi.org/10.1002/smr.275
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1109/EDOC.2004.10019
http://dx.doi.org/10.1109/EDOC.2004.10019

188 Bibliography

[11] P. Bradác. Model-driven enterprise application integration. Master’s
thesis, Slovak University of Technology in Bratislava, 2011

[12] G. S. Brodal. Worst-case efficient priority queues. In 7th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 52–58, 1996.

[13] B. Bukovics. Pro WF: Windows Workflow in .NET 3.0. Apress, 2007

[14] R. H. Campbell and B. Randell. Error recovery in asynchronous systems.
IEEE Trans. Software Eng., 12(8):811–826, 1986.

[15] D. Chappel. Enterprise Service Bus: Theory in practice. O’Reilly, 2004

[16] S. R. Chidamber and C. F. Kemerer. A metrics suite for object-oriented
design. IEEE Trans. Software Eng., 20(6):476–493, 1994.

[17] B. A. Christudas. Service-oriented Java business integration. Packt, 2008

[18] P. Clements and L. Northrop. Software product lines: Practices and pat-
terns. Addison-Wesley, 2001

[19] S. Cook. Domain-specific modeling and model driven architecture.
MDA Journal, pages 2–10, 2004.

[20] S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain-specific development
with Visual Studio DSL tools. Addison-Wesley, 2007

[21] R. Corchuelo, J. L. Arjona, D. Ruiz, J. L. Álvarez, R. Z. Frantz, C. Molina-
Jimenéz, I. Hernández, C. R. Osuna, A. M. Reina-Quintero, H. Sleiman,
I. Fernández, and P. Jiménez. A roadmap on integrating applications
and data on the Web. In Jornadas de Ingeniería del Software y Bases de
Datos, pages 133–142, 2010.

[22] R. Corchuelo, R. Z. Frantz, and J. González. Una comparación de ESBs
desde la perspectiva de la integración de aplicaciones. In Jornadas de
Ingeniería del Software y Bases de Datos, pages 403–408, 2008.

[23] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth. Learning from
project history: a case study for software development. In Conference
on Computer Supported Cooperative Work, pages 82–91, 2004.

[24] J. Davies, D. Schorow, S. Ray, and D. Rieber. The definitive guide to
SOA: Enterprise Service Bus. Apress, 2008

http://dl.acm.org/citation.cfm?id=313883
http://www.cs.ncl.ac.uk/publications/articles/papers/403.pdf
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/32.295895
http://www.bptrends.com/publicationfiles/01-04 COL Dom Spec Modeling Frankel-Cook.pdf
http://www.guarana-project.net/rzfrantz/publications/jisbd-2010.pdf
http://www.guarana-project.net/rzfrantz/publications/jisbd-2010.pdf
http://www.guarana-project.net/rzfrantz/publications/jisbd-2008.pdf
http://www.guarana-project.net/rzfrantz/publications/jisbd-2008.pdf
http://dx.doi.org/10.1145/1031607.1031622
http://dx.doi.org/10.1145/1031607.1031622

Bibliography 189

[25] B. Demuth. The Dresden OCL toolkit and its role in information systems
development. In Int. Conf. on Information Systems Development, pages
1–12, 2004.

[26] X. Dong and M. W. Godfrey. Understanding source package organiza-
tion using the hybrid model. In International Conference on Software
Maintenance, 2009.

[27] D. Dossot and J. D’Emic. Mule in action. Manning, 2009

[28] A. Epping and C. M. Lott. Does software design complexity affect main-
tenance effort? In NASA/Goddard 19th Annual Software Engineering
Workshop, pages 297–313, 1994

[29] J. Estublier, G. Vega, and A. D. Ionita. Composing domain-specific lan-
guages for wide-scope software engineering applications. In MoDELS,
pages 69–83, 2005.

[30] M. Fisher, J. Partner, M. Bogoevici, and I. Fuld. Spring Integration in
action. Manning, 2010

[31] M. Fowler. Domain-specific languages. Addison-Wesley, 2010

[32] R. B. France and J. M. Bieman. Multi-view software evolution: A UML-
based framework for evolving object-oriented software. In ICSM, pages
386–395, 2001.

[33] R. Z. Frantz. A DSL for enterprise application integration. International
Journal of Computer Applications in Technology, 33(4):257–263, 2008.

[34] R. Z. Frantz and R. Corchuelo. A software development kit to imple-
ment integration solutions. In 27th Symposium On Applied Computing,
2012 (To be published).

[35] R. Z. Frantz, R. Corchuelo, and J. L. Arjona. An efficient orchestration
engine for the Cloud. In IEEE International Conference on Cloud Com-
puting Technology and Science, pages 711–716, 2011.

[36] R. Z. Frantz, R. Corchuelo, and J. González. Advances in a DSL for
application integration. In ZOCO, pages 54–66, 2008.

[37] R. Z. Frantz, R. Corchuelo, and C. Molina-Jiménez. Towards a fault-
tolerant architecture for enterprise application integration solutions. In
Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems, pages 294–303, 2009.

http://svn-st.inf.tu-dresden.de/svn/dresdenocl/branches/legacy/www/downloads/pdfs/BirgitDemuth_TheDresdenOCLToolkit.pdf
http://svn-st.inf.tu-dresden.de/svn/dresdenocl/branches/legacy/www/downloads/pdfs/BirgitDemuth_TheDresdenOCLToolkit.pdf
http://dx.doi.org/10.1109/ICSM.2009.5306366
http://dx.doi.org/10.1109/ICSM.2009.5306366
http://dx.doi.org/10.1007/11557432_6
http://dx.doi.org/10.1007/11557432_6
http://dx.doi.org/10.1109/ICSM.2001.972751
http://dx.doi.org/10.1109/ICSM.2001.972751
http://dx.doi.org/10.1504/IJCAT.2008.022420
http://www.guarana-project.net/rzfrantz/publications/sac-2012.pdf
http://www.guarana-project.net/rzfrantz/publications/sac-2012.pdf
http://www.guarana-project.net/rzfrantz/publications/cloud-com-2011.pdf
http://www.guarana-project.net/rzfrantz/publications/cloud-com-2011.pdf
http://www.guarana-project.net/rzfrantz/publications/zoco-2008.pdf
http://www.guarana-project.net/rzfrantz/publications/zoco-2008.pdf
http://dx.doi.org/10.1007/978-3-642-05290-3_42
http://dx.doi.org/10.1007/978-3-642-05290-3_42

190 Bibliography

[38] R. Z. Frantz, R. Corchuelo, and C. Molina-Jiménez. An architecture to
design enterprise application integration solutions with fault tolerance
support. In VI Jornadas Científico-Técnicas en Servicios Web y SOA,
pages 51–62, 2010.

[39] R. Z. Frantz, R. Corchuelo, and C. Molina-Jiménez. Error-detection in
enterprise application integration solutions. In Conference on ENTER-
prise Information Systems, pages 170–179, 2011.

[40] R. Z. Frantz, R. Corchuelo, and C. Molina-Jiménez. A fault-tolerance
mechanism to detect errors in enterprise application integration solu-
tions. International Journal of Systems and Software, 2011 (To be pub-
lished).

[41] R. Z. Frantz, R. Corchuelo, C. R. Osuna, and C. Molina-Jiménez. Mon-
itoring errors in integration workflows. In International Conference on
Software Engineering Research and Practice, pages 598–604, 2011.

[42] R. Z. Frantz, C. Molina-Jimenez, and R. Corchuelo. On the design of
a domain specific language for enterprise application integration solu-
tions. In International Workshop on Model-Driven Engeneering, pages
19–30, 2010.

[43] R. Z. Frantz, A. M. Reina-Quintero, and R. Corchuelo. A Domain-
Specific language to design enterprise application integration solutions.
International Journal of Cooperative Information Systems, 20(2):143–
176, 2011.

[44] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Ele-
ments of reusable object-oriented software. Addison-Wesley, 1994

[45] D. Ghosh. DSLs in action. Manning Publications Co., 2011

[46] G. Giachetti, B. Marín, andÓ. Pastor. Using UML as a domain-specific
modeling language: A proposal for automatic generation of UML pro-
files. In Conference on Advanced Information Systems Engineering,
pages 110–124, 2009.

[47] J. Greenfield and K. Short. Software Factories: Assembling applications
with patterns, models, frameworks and tools. In Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 16–27, 2003.

[48] J. L. Gross and J. Yellen. Handbook of graph theory. CRC Press, 2003

http://www.guarana-project.net/rzfrantz/publications/jsweb-2010.pdf
http://www.guarana-project.net/rzfrantz/publications/jsweb-2010.pdf
http://www.guarana-project.net/rzfrantz/publications/jsweb-2010.pdf
http://dx.doi.org/10.1007/978-3-642-24355-4_18
http://dx.doi.org/10.1007/978-3-642-24355-4_18
http://dx.doi.org/10.1016/j.jss.2011.10.048
http://dx.doi.org/10.1016/j.jss.2011.10.048
http://dx.doi.org/10.1016/j.jss.2011.10.048
http://www.guarana-project.net/rzfrantz/publications/serp-2011.pdf
http://www.guarana-project.net/rzfrantz/publications/serp-2011.pdf
http://www.guarana-project.net/rzfrantz/publications/mose-2010.pdf
http://www.guarana-project.net/rzfrantz/publications/mose-2010.pdf
http://www.guarana-project.net/rzfrantz/publications/mose-2010.pdf
http://dx.doi.org/10.1142/S0218843011002225
http://dx.doi.org/10.1142/S0218843011002225
http://dx.doi.org/10.1007/978-3-642-02144-2_13
http://dx.doi.org/10.1007/978-3-642-02144-2_13
http://dx.doi.org/10.1007/978-3-642-02144-2_13
http://dx.doi.org/10.1145/949344.949348
http://dx.doi.org/10.1145/949344.949348

Bibliography 191

[49] B. Hailpern and P. L. Tarr. Model-driven development: The good, the
bad, and the ugly. IBM Systems Journal, 45(3):451–462, 2006.

[50] B. Henderson-Sellers. Object-oriented metrics, measures of complexity.
Prentice Hall, 1996

[51] Health insurance portability and accountability act home, 2011.

[52] Health level seven international home, 2011.

[53] G. Hohpe. Your coffee shop doesn’t use two-phase commit. IEEE Soft-
ware, 22(2):64–66, 2005.

[54] G. Hohpe and B. Woolf. Enterprise integration patterns: Designing,
building, and deploying messaging solutions. Addison-Wesley, 2003

[55] J. E. Hopcroft and R. E. Tarjan. Efficient algorithms for graph manipula-
tion. Communications of the ACM, 16(6):372–378, 1973.

[56] V. Hoyer, F. Gilles, T. Janner, and K. Stanoevska-Slabeva. SAP research
RoofTop marketplace: Putting a face on service-oriented architectures.
In Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems, 2009.

[57] IBM mashup center home, 2011.

[58] C. Ibsen and J. Anstey. Camel in action. Manning, 2010

[59] IEEE. IEEE standard glossary of software engineering terminology.
IEEE Computer Society, 1990.

[60] Jackbe Presto home, 2011.

[61] M. Jorgensen. An empirical study of software maintenance tasks. Jour-
nal of Software Maintenance, 7(1):27–48, 1995.

[62] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transfor-
mation tool. Sci. Comput. Program., 72(1-2):31–39, 2008.

[63] S. Kent. Model driven engineering. In Integrated Formal Methods,
pages 286–298, 2002.

[64] T. Koponen. Evaluation framework for open source software mainte-
nance. In International Conference on Software Engineering Advances,
page 52, 2006.

http://dx.doi.org/10.1147/sj.453.0451
http://dx.doi.org/10.1147/sj.453.0451
http://www.hipaa.com/
http://www.hl7.org
http://dx.doi.org/10.1109/MS.2005.52
http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1109/SERVICES-I.2009.107
http://dx.doi.org/10.1109/SERVICES-I.2009.107
http://www-01.ibm.com/software/info/mashup-center
http://standards.ieee.org/findstds/standard/610.12-1990.html
http://www.jackbe.com/enterprise-mashup
http://dx.doi.org/10.1002/smr.4360070104
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.1109/ICSEA.2006.39
http://dx.doi.org/10.1109/ICSEA.2006.39

192 Bibliography

[65] J. Kovse and T. Härder. Generic XMI-Based UML model transforma-
tions. In Object Oriented Information Systems, pages 192–198, 2002.

[66] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-based DSL
frameworks. In OOPSLA Companion, pages 602–616, 2006.

[67] G. Lenz and C. Wienands. Practical Software Factories in .NET. Apress,
2006

[68] J. Li, R. Conradi, C. Bunse, M. Torchiano, O. P. N. Slyngstad, and
M. Morisio. Development with off-the-shelf components: 10 facts. IEEE
Software, 26(2):80–87, 2009.

[69] P. F. Linington. Automating support for e-business contracts. Int. J.
Cooperative Inf. Syst., 14(2-3):77–98, 2005.

[70] D. G. Lobato. Graphical editor and code generator for Guaraná DSL 1.2.
Report, University of Seville, ETSI Informática, 2011

[71] M. Lorenz and J. Kidd. Object oriented software metrics. Prentice Hall,
1994

[72] G. D. Lorenzo, H. Hacid, H.-Y. Paik, and B. Benatallah. Data integration
in mashups. SIGMOD Record, 38(1):59–66, 2009.

[73] R. C. Martin. Agile software development, principles, patterns, and
practices. Prentice Hall, 2002

[74] T. J. McCabe. A complexity measure. IEEE Trans. Software Eng., 2(4):
308–320, 1976.

[75] P. Mederly and P. Návrat. Construction of messaging-based integra-
tion solutions using constraint programming. In ADBIS, pages 579–582.
Springer, 2010.

[76] P. Mederly and P. Návrat. Automated design of integration solutions
based on messaging. In DATAKON, pages 1–10. Springer, 2011

[77] T. Mens and P. V. Gorp. A taxonomy of model transformation. Electr.
Notes Theor. Comput. Sci., 152:125–142, 2006.

[78] D. Messerschmitt and C. Szyperski. Software ecosystemm: Understand-
ing an indispensable technology and industry. MIT Press, 2003

[79] J. Miller and J. Mukerji. MDA guide version 1.0.1, 2003.

http://dx.doi.org/10.1007/3-540-46102-7_24
http://dx.doi.org/10.1007/3-540-46102-7_24
http://dx.doi.org/10.1145/1176617.1176632
http://dx.doi.org/10.1145/1176617.1176632
http://dx.doi.org/10.1109/MS.2009.33
http://dx.doi.org/10.1142/S0218843005001122
http://dx.doi.org/10.1145/1558334.1558343
http://dx.doi.org/10.1145/1558334.1558343
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1007/978-3-642-15576-5_50
http://dx.doi.org/10.1007/978-3-642-15576-5_50
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://www.omg.org/cgi-bin/doc?omg/03-06-01

Bibliography 193

[80] Meta object facility specification version 2.0, 2006.

[81] MOF model to text transformation language version 1.0, 2008.

[82] J. Muñoz and V. Pelechano. MDA versus Software Factories. In DSDM,
2005.

[83] J. Offutt, A. Abdurazik, and S. R. Schach. Quantitatively measuring
object-oriented couplings. Software Quality Journal, 2008.

[84] J. Oldevik, T. Neple, R. Gronmo, J. Oyvind Aagedal, and A.-J. Berre.
Toward standardised model to text transformations. In European Con-
ference on Model Driven Architecture, pages 239–253, 2005.

[85] OMG. Meta object facility version 2.0 query/view/transformation spec-
ification. Technical report, OMG, 2005.

[86] UML 2.3 superstructure specification, 2010.

[87] Open ESB home, 2010.

[88] T. Pfarr and J. E. Reis. The integration of COTS/GOTS within NASA’s
HST command and control system. In ICCBSS, pages 209–221, 2002.

[89] P. Ponniah. Data warehousing fundamentals for IT professionals. Wiley,
2010

[90] T. Rademakers and J. Dirksen. Open-source ESBs in action. Manning,
2009

[91] N. Randolph, D. Gardner, C. Anderson, and M. Minutillo. Professional
Visual Studio 2010. Wrox, 2010

[92] A. Redkar, C. Walzer, S. Boyd, R. Costall, K. Rabold, and T. Redkar. Pro
MSMQ: Microsoft Message Queue Programming. Apress, 2004

[93] A. W. S. Regalado. Domain-specific languages. Master’s thesis, ETSI
Informática, 2008

[94] C. Renouf. Pro IBM WebSphere application server 7 internals. Apress,
2009

[95] M. Richards, R. Monson-Haefel, and D. A. Chappell. Java Message Ser-
vice. O’Reilly, 2009

[96] RosettaNet home, 2011.

http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/MOFM2T08/1.0/
http://ceur-ws.org/Vol-157/paper01.pdf
http://dx.doi.org/10.1007/s11219-008-9051-x
http://dx.doi.org/10.1007/s11219-008-9051-x
http://dx.doi.org/10.1007/11581741_18
http://www.omg.org/docs/ptc/05-11-01.pdf
http://www.omg.org/docs/ptc/05-11-01.pdf
http://www.omg.org/spec/UML/2.3/
https://open-esb.dev.java.net
http://dx.doi.org/10.1007/3-540-45588-4_20
http://dx.doi.org/10.1007/3-540-45588-4_20
http://www.rosettanet.org

194 Bibliography

[97] I. Samoladas, I. Stamelos, L. Angelis, and A. Oikonomou. Open source
software development should strive for even greater code maintainabil-
ity. Commun. ACM, 47(10):83–87, 2004.

[98] G. Samtani. B2B integration: A practical guide to collaborative e-
commerce. Imperial College Press, 2003

[99] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. Offutt. Main-
tainability of the Linux kernel. IEE Proceedings: Software, 149(1):18–23,
2002.

[100] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering.
IEEE Computer, 39(2):25–31, 2006.

[101] N. F. Schneidewind. The state of software maintenance. IEEE Trans.
Software Eng., 13(3):303–310, 1987.

[102] H. A. Sleiman, A. W. S. Regalado, R. Z. Frantz, and R. Corchuelo. To-
wards automatic code generation for EAI solutions using DSL tools. In
Jornadas de Ingeniería del Software y Bases de Datos, pages 134–145,
2009.

[103] H. A. Sleiman. Web application integration: An approach based on dsl
and workflow. Master’s thesis, ETSI Informática, 2008

[104] G. P. Souza and C. F. R. Geyer. Tuplebiz: Distributed tuple space with
byzantine fault-tolerance support. Technical report 365, Federal Univer-
sity of Rio Grande do Sul, 2011

[105] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
modeling framework. Addison-Wesley, 2008

[106] Society for worldwide interbank financial telecommunication home,
2011.

[107] J.-P. Tolvanen and S. Kelly. Defining domain-specific modeling lan-
guages to automate product derivation: Collected experiences. In SPLC,
pages 198–209, 2005.

[108] A. Vallecillo. A journey through the secret life of models. In Perspectives
Workshop: Model Engineering of Complex Systems (MECS), pages 1–
23, 2008.

[109] A. van Deursen and P. Klint. Little languages: Little maintenance? Jour-
nal of Software Maintenance, 10(2):75–92, 1998.

http://dx.doi.org/10.1145/1022594.1022598
http://dx.doi.org/10.1145/1022594.1022598
http://dx.doi.org/10.1145/1022594.1022598
http://dx.doi.org/10.1049/ip-sen:20020198
http://dx.doi.org/10.1049/ip-sen:20020198
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1109/TSE.1987.233161
http://scholar.tdg-seville.info/Resources/Sleiman09.pdf
http://scholar.tdg-seville.info/Resources/Sleiman09.pdf
http://www.swift.com
http://dx.doi.org/10.1007/11554844_22
http://dx.doi.org/10.1007/11554844_22
http://drops.dagstuhl.de/opus/volltexte/2008/1601
http://dx.doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5

Bibliography 195

[110] F. B. Vernadat. Enterprise integration and interoperability. In Springer
Handbook of Automation, pages 1529–1538. Springer, 2009.

[111] J. Weiss. Aligning relationships: Optimizing the value of strategic out-
sourcing. Technical report, IBM, 2005.

[112] WSO2 mashup server home, 2011.

[113] Yahoo! Pipes home, 2011.

[114] L. Yu. Indirectly predicting the maintenance effort of open-source soft-
ware. Journal of Software Maintenance, 18(5):311–332, 2006.

[115] L. Yu. Common coupling as a measure of reuse effort in kernel-based
software with case studies on the creation of MkLinux and Darwin.
Journal of the Brazilian Computer Society, 14:45–55, 2008.

[116] L. Yu, S. R. Schach, and K. Chen. Measuring the maintainability of open-
source software. In ISESE, pages 297–303, 2005.

[117] L. Yu, S. R. Schach, K. Chen, G. Z. Heller, and A. J. Offutt. Maintain-
ability of the kernels of open-source operating systems: A comparison
of Linux with FreeBSD, NetBSD, and OpenBSD. Journal of Systems and
Software, 79(6):807–815, 2006.

[118] L. Yu, S. R. Schach, K. Chen, and A. J. Offutt. Categorization of common
coupling and its application to the maintainability of the Linux kernel.
IEEE Trans. Software Eng., 30(10):694–706, 2004.

http://dx.doi.org/10.1007/978-3-540-78831-7_86
http://www-935.ibm.com/services/us/so/pdf/aligning_relationships.pdf
http://www-935.ibm.com/services/us/so/pdf/aligning_relationships.pdf
http://wso2.com/products/mashup-server
http://pipes.yahoo.com/pipes
http://dx.doi.org/10.1002/smr.335
http://dx.doi.org/10.1002/smr.335
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002008000100005&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002008000100005&nrm=iso
http://dx.doi.org/10.1109/ISESE.2005.1541838
http://dx.doi.org/10.1109/ISESE.2005.1541838
http://dx.doi.org/10.1016/j.jss.2005.08.014
http://dx.doi.org/10.1016/j.jss.2005.08.014
http://dx.doi.org/10.1016/j.jss.2005.08.014
http://dx.doi.org/10.1109/TSE.2004.58
http://dx.doi.org/10.1109/TSE.2004.58

196 Bibliography

T his document was typeset on 2012/2/3 at 12:38 using class RC–BOOK α2.12 for
LATEX2ϵ. As of the time of writing this document, this class is not publicly available
since it is in alpha version. Only members of T he Distributed Group are using it to
typeset their documents. Should you be interested in giving forthcoming public versions

a try, please, do contact us at contact@tdg-sevi lle.info

mailto:contact@tdg-seville.info

 ypical companies rely on their software ecosystems to support
 and optimise their business processes. Software ecosystems are
composed of many applications that were not usually designed taking
integration into account. Enterprise Application Integration provides

methodologies and tools to design and implement integration solutions.
The Enterprise Application Integration community has adopted the

catalogue of integration patterns proposed by Hohpe and Woolf as a
cookbook to design and implement integration solutions. Furthermore,

there are a few software tools to help software engineers devise
enterprise application integration solutions that are based on integration

patterns. Some companies are interested in adapting these software
tools to support their domain-specific tools to specific contexts.

In this dissertation, our research hypothesis is that the current software
tools are not so easy to maintain as expected, thus increasing the costs
of these adaptation process. Our goal in this dissertation is to support

the thesis that it is possible to devise a domain-specific language and a
set of domain-specific tools to design and implement Enterprise

Application Integration solutions that are easier to maintain than the
current software tools. Our core contribution consists of a Domain-

Specific Language that software engineers can use to represent the
models they design for their integration problems at a high-level of

abstraction; a Software Development Kit that can be used to implement
and run integration solutions; transformations that allow for the automatic

translation of models into code; and a monitoring system that allows to
detect possible errors during the execution of an integration solution.

Our research results indicate that our proposal is easier to maintain than
the current tools. To evaluate and demonstrate the viability of the

contributions in this dissertation, we present five case studies to which
we applied our proposal. The results in this dissertation have been

transferred to a spin-off and have been published as three journal papers,
seven conference papers, and three workshop papers.

T

	Enterprise Application Integration
	Document Lists
	Contents
	List of Figures
	List of Tables
	List of Programs

	Front Matter
	Acknowledgements
	Abstract
	Resumen
	Resumo
	Abstrakt

	Preface
	Introduction
	Research context
	Research rationale
	Hypothesis
	Thesis

	Collaborations
	Summary of contributions
	Structure of this dissertation

	Motivation
	Introduction
	Problems
	Analysis of current solutions
	Discussion
	Our proposal
	Summary

	Background Information
	Enterprise Integration Patterns
	Introduction
	Categories of patterns
	An example
	Summary

	Camel
	Introduction
	Exchanges
	Endpoints
	Processors
	Routes
	Error detection
	The Café integration solution
	Summary

	Spring Integration
	Introduction
	Messages
	Endpoints
	Message channels
	Error detection
	The Café integration solution
	Summary

	Mule
	Introduction
	Messages
	Endpoints
	Processors
	Flows
	Error detection
	The Café integration solution
	Summary

	Model-Driven Engineering
	Introduction
	Model-Driven Architecture
	Software Factories
	Summary

	Our Approach
	Domain-Specific Language
	Introduction
	Abstract syntax
	Integration solutions
	Processes
	Ports and links
	Tasks and slots
	Datatypes

	Concrete syntax
	General-purpose toolkit
	Summary

	Software Development Kit
	Introduction
	The framework layer
	Messages
	Tasks
	Ports
	Processes
	Adapters
	The Runtime System

	The general-purpose toolkit layer
	Summary

	Model-to-text Transformations
	Introduction
	Transforming processes
	Transforming ports
	Transforming tasks
	Transforming communicators
	Generating the starter
	Summary

	Error Detection in Integration Solutions
	Introduction
	The {�group protect edef T1{T1}let enc@update elax protect edef ppl{cmtt}protect edef m{m}protect edef n{n}protect xdef T1/ppl/m/sl/12 {T1/ppl/m/n/12 }T1/ppl/m/sl/12 size@update enc@update ignorespaces Meta-informationegroup } database
	The {�group protect edef T1{T1}let enc@update elax protect edef ppl{cmtt}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/12 {T1/ppl/m/n/12 }T1/cmtt/m/n/12 size@update enc@update ignorespaces Event Handleregroup }
	The {�group protect edef T1{T1}let enc@update elax protect edef ppl{cmtt}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/12 {T1/ppl/m/n/12 }T1/cmtt/m/n/12 size@update enc@update ignorespaces Error Detectoregroup }
	Finding correlations
	Finding the artefacts involved in a correlation
	Finding sub-correlations
	Finding failing rules
	Verifying correlations

	Complexity analysis
	On the implementation
	Handling events
	Detecting errors

	Fault tolerance experiments
	Experimentation patterns
	Experimentation parameters and variables
	Experimentation results

	Summary

	Case Studies
	Introduction
	Café
	The software ecosystem
	Solution
	Error detection rules
	Experimental results

	Unijuí University
	The software ecosystem
	Solution
	Error detection rules
	Experimental results

	Huelva's County Council
	The software ecosystem
	Solution
	Error detection rules
	Experimental results

	Travel Search
	The software ecosystem
	Solution
	Error detection rules
	Experimental results

	Travel Booking
	The software ecosystem
	Solution
	Error detection rules
	Experimental results

	An experiment using JBI adapters
	Summary

	Final Remarks
	Conclusions
	Bibliography

