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A B S T R A C T

The complexity and diversity of the technologies involved in the Internet of Things (IoT)
challenge the generalization of security solutions based on anomaly detection, which should
fit the particularities of each context and deployment and allow for performance comparison.

In this work, we provide a flexible architecture based on building blocks suited for detecting
anomalies in the network traffic and the application-layer data exchanged by IoT devices in
the context of Smart Home. Following this architecture, we have defined a particular Intrusion
Detector System (IDS) for a case study that uses a public dataset with the electrical consumption
of 21 home devices over one year. In particular, we have defined ten Indicators of Compromise
(IoC) to detect network attacks and two anomaly detectors to detect false command or data
injection attacks. We have also included a signature-based IDS (Snort) to extend the detection
range to known attacks. We have reproduced eight network attacks (e.g., DoS, scanning) and
four False Command or Data Injection attacks to test our IDS performance. The results show that
all attacks were successfully detected by our IoCs and anomaly detectors with a false positive
rate lower than 0.3%. Signature detection was able to detect only 4 out of 12 attacks. Our
architecture and the IDS developed can be a reference for developing future IDS suited to
different contexts or use cases. Given that we use a public dataset, our contribution can also
serve as a baseline for comparison with new techniques that improve detection performance.

. Introduction

In the past decade, the Internet of Things (IoT) has experienced significant growth in several domains, such as Industry 4.0 [1],
mart Cities [2], or Smart Homes [3]. But this success has also raised new security challenges, including designing software
rchitectures and security models that address cyber threats in all IoT layers (e.g., application, network, middleware, sensing,
tc.) [4]. The heterogeneity of devices, vulnerabilities, and technologies involved in the IoT challenges the adoption of generic
yber security solutions [5,6], advising the customization of defensive systems to specific domains and applications.

The context of this work is Smart Home. Undoubtedly, there is a growing presence and usage of smart devices within home.
onnected homes have become pervasive today as people demand the comfort and functionalities of smart devices such as smart
peakers, smart TVs, surveillance webcams, or smart plugs, to name a few. But the practicality of such devices does not come without
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Fig. 1. Main elements and networks in a smart home generic environment.

isk as, with billions of users, smart devices have become one of the most lucrative targets for cyber criminals [7]. According to [8],
here are an estimated 175 million smart homes worldwide, and 40.8% of them have at least one device vulnerable to cyber attacks
hat put the whole home in danger. Indeed, an estimated 35% of US broadband households dealt with a data security incident in
021. A compromised smart device not only threatens domestic life in many ways [9] but also enables hackers to use the home
etwork resources to turn it into a botnet to launch a cyber-attack on national infrastructures. A notable example is the rooftop
olar power system installed in millions of residential buildings worldwide and its interconnection with the smart grid generation
omain [10,11]. Thus, due to its impact on domestic life and global security, there is a clear need for detecting cyber attacks in the
ontext of a smart home [12,13].

Intrusion Detection Systems (IDS) are central for detecting security incidents in any organization [14], including the home. IDS
re commonly deployed in the target environment, monitoring the events occurring in the hosts or network, analyzing them for signs
f possible incidents. Unfortunately, there is no widely accepted reference architecture for a smart home (albeit a comprehensive
roposal can be found in [15]), and authors tend to use high-level examples such as in [16] or [17]. However, for tractability, we
rovide in Fig. 1 a non-exhaustive smart home reference scenario based on the authors’ observation.1

A smart home may include several IoT devices that can be classified as (a) sensors, for periodic monitoring of a variable
e.g., temperature, fan speed), (b) actuators, that receive commands to accomplish an action (e.g., turn on a light, close a door), or
c) both (e.g., smart plug). Typically, users have devices from different manufacturers, each operating in a particular manner. Most
ouseholds use WiFi (IEEE 802.11) or Zigbee (IEEE 802.15.4) as wireless communication technology [18]. Zigbee devices typically
equire a Zigbee Coordinator/Gateway for Internet connectivity (e.g., Philips Hue Bridge). Before operation, smart devices need
n initial setup to configure, at least, their wireless connection and cloud-platform credentials, which is commonly done through
smartphone app offered by the manufacturer (e.g., Mi Home). Once configured, devices communicate with their provider’s IoT

latform, generally, through a proprietary protocol. Most devices provide a web/mobile application that allow users to track the
evice’s state and provide access to the device’s functionality. Some manufacturers also provide a token or credential-based API
e.g., API-Tuya) so that users can write code to manage their smart devices. With different apps managing different devices, one
an recur to a Home Server (e.g., Home Assistant) to centralize the management of multiple devices in a local database, enabling
ross-platform automation flows via providers’ REST APIs. The Home Server can also directly communicate with devices (e.g., Shelly,
onoff) using standard protocols such as HTTP or MQTT. In this work, we assume the existence of a home server.

In a home environment such as the one described above, having an IDS in place to monitor signs of attacks is both crucial and
hallenging. And, although IDS have been around for decades in organizational contexts [19] (including IoT [20]), the development
f IDS suited for smart homes still remains as an open research challenge [9,18]. Several reasons can be argued for this, but an
vident impairment is the wide diversity of smart devices and technologies found in households, which challenges IDS design and
eployment and translates to a wide attack surface [9,15,16]. This work aims to contribute to the challenge of developing IDS suited

1 The reader is referred to [12,13] for a more complete list of technologies.
2
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for smart homes by suggesting a reference IDS architecture that can be adapted to house-specific devices, technologies and threats.
We also provide a case study for guidance. In our case study, we develop a customized IDS to detect common attacks in a scenario
based on a public dataset. More specifically, the main contributions of this paper are:

• The analysis of current IDS proposals for smart home in light of the challenges identified in the literature.
• The definition of a flexible and modular architecture that can serve as a reference to design and implement IDS customized

for a particular household’s smart devices and threats.
• The realization of a particular IDS based on our architecture suited for detecting attacks in a smart home scenario produced

from a public dataset.
• A comprehensive performance analysis of every component of the IDS designed using an in-house attack dataset (publicly

available).

Our contributions can be used in two ways: (a) as a reference for designing defensive systems suited to different scenarios or
ttacks, (b) as a baseline to test new anomaly detection techniques or indicators that improve the performance of the defensive
ystem (since we use a public dataset).

The remainder of the paper is as follows. Section 2 provides a review of attacks applicable to smart homes and the IDS suggested
n the scientific literature to detect these attacks, emphasizing the differences between our proposal and existing solutions. Section 3
escribes our generic reference architecture, which is used in the design of a IDS for a case use in Section 4. In Section 5 we provide a
omprehensive performance evaluation of the IDS implemented. Section 6 shows the main limitations of this work. Finally, Section 7
oncludes the paper.

. State of the art in smart home IDSs

Smart home threats, challenges and security schemes have been addressed in the scientific literature from different perspectives.
or example, the Smart Grid research field tends to focus on vulnerabilities and threats that impact the electricity generation domain
nd the home environment is commonly restricted to the electrical consumption of devices (and not their functionality) [13]. On the
ther hand, the IoT research field also addresses IDS in smart environments with a broader scope [21,22], only sometimes relevant
o a smart home. In this paper, we restrict our analysis to a purely domestic environment.

.1. Common attacks in the smart home

Cyberattacks on smart homes may impact several cyber–physical systems such as smart plugs, lighting controllers, heating, etc.
which today can also be remotely controlled by smart speakers), although new attack surfaces are emerging regularly [15,23]. A
revalent set of attack techniques used by adversaries is:

• Scanning. Scanning attacks gather information (by probing victim infrastructure via network traffic) that can be used during
targeting. Examples of this technique in the context of a smart home can be found in [7,24–26].

• Sniffing. A technique in which adversaries may sniff network traffic to capture information about an environment, including
authentication material passed over the network. Examples of sniffing attacks in a smart home can be found in [7,17,25–31].

• Data infection. Adversaries may insert, delete, or manipulate data in a smart device or server to influence external outcomes or
hide activity. The type of modification and the impact it will have depends on the target application and process as well as the
goals and objectives of the adversary. Data infection attacks in the context of a smart home can be found in [9,17,25,26,28–32]

• Command and control (C&C). This tactic includes techniques that adversaries may use to communicate with systems under
their control within a victim network. Adversaries commonly attempt to mimic normal, expected traffic to avoid detection.
Examples of (C&C) in the context of a smart home are [7,9,17,24,25,28,30,31].

• DoS. Denial of Service attacks aim to degrade or block users’ access to targeted resources. Network DoS can be performed by
exhausting the network bandwidth services rely on. Smart Home examples can be found in [7,17,24–26,28–31,33,34].

• Spoofing. Adversaries may force a device to communicate through an adversary-controlled system so they can collect
information or perform additional actions. Examples of this technique in a smart home can be found at [7,9,17,25–31].

• Web attacks. An attacker may take advantage of a weakness in an Internet-facing web-server running at any smart device
or home server using software, data, or commands in order to cause unintended or unanticipated behavior. Examples of this
attack in a smart home can be found in [17,28,31].

The interested reader can find in [9] an excellent and up-to-date taxonomy of cyber threats in smart homes, attack vectors, and
mpact on the systems, domestic life and emotional consequences.

.2. IDS in the context of smart home: challenges and related works

As stated earlier, detecting cyber incidents in connected homes is a challenging endeavor [35] and one requirement frequently
ound in the literature is to monitor the home network for signs of attacks [7,17]. IDS are key for this task.

IDS have been extensively studied in the literature [36]. IDS systems can be broadly categorized into two groups: Signature-
ased Intrusion Detection System (S-IDS) and Anomaly-based Intrusion Detection System (A-IDS) [19]. Whilst S-IDS are based on
3
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Table 1
IDSs suggested for smart home.
Work Method1 Location (arch) Data input Validation

[41] A-IDS Local (centralized) Network Empirical
[42] A-IDS Local (centralized) Network (flows) Empirical
[38] S-IDS Local (centralized) Network Simulation
[43] A-IDS Local + cloud Network (flows) Simulation
[40] A/S-IDS Local (centralized) Logs Empirical
[44] A-IDS Local (centralized) Network (flows) Empirical
[45] A-IDS Local (centralized) Network (flows) Empirical
[46] A-IDS Local (centralized) Network (flows) Simulation
[47] A-IDS Local (centralized) Network (flows) Empirical
[39] A/S-IDS Local + cloud Network (cloud) Empirical
[48] A-IDS Local (centralized) Network (flows) Empirical
[49] A-IDS Local (centralized) Network (flows) Simulation

pattern-matching techniques and can only detect known attacks, A-IDS are based on deviation from a model of normality and can
notice 0-day attacks, which makes both techniques complementary. IDS can also be classified according to whether they monitor
the network or host events (e.g., logs).

A plethora of IDS systems have been proposed in several application domains (including IoT [22]), but, to the best of our
nowledge, only those in Table 1 have been proposed explicitly for smart home. Most of these IDS use anomaly-based detection
echniques (A-IDS) over statistics on network traffic (flows) [37], although signature-based detection systems have also been
roposed to a lesser extent either as standalone system [38,39], or in combination with A-IDS [39,40].

The comparison of the proposals in Table 1 is challenging due to their differences in techniques, scenarios, attacks, and validation
rocesses. However, they can be analyzed in light of the following challenges identified in [50,51] for IDS development in the

context of IoT:

• Feasible data collection. IDS placement, architecture and local home network technologies should be considered. Changes to
the standard behavior of network devices should not be required.

• Attack detection range and technique variants. IDS should detect a wide range of attack types. Variants of each attack technique
should ideally be considered.

• Reproducibility. The work should be reproducible by other researchers to assess IDS performance. Validation should ideally
include real-life public datasets.

• Privacy. User data privacy should be preserved.
• Alert management. A mechanism should regulate IDS alerts sent to the user (i.e., ideally, few alerts and significant). Alerts

should provide enough information to investigate the incident.
• Generalizable. The detection schemes should be generic and usable in scenarios different from the study.
• Computationally feasible. Anomaly-based techniques should be executable in real-time and avoid scalability issues.

Table 2 reviews the IDSs listed in Table 1 in light of the previous challenges. The conclusions could be summarized as follows:

• Data collection is frequently partial in the home network (e.g., only WiFi traffic) or unspecified [38,49], or it requires the
modification of the standard behavior of network electronics [41,42,45,46].

• The attack types detected are different on each work, ranging between 2 and 4, being DoS the most prevalent type. Some
works address network attacks (e.g., DoS, scanning) [41,45] while other address application-level attacks (e.g., False Command
Injection) dependent of specific devices [48,49]. The number of techniques variations tested is generally low (2 in the best
case).

• Some works pose constraints that prevent the application of their IDS in different scenarios (e.g., due to the use of
vendor-specific APIs [40,48] or protocols [49]).

• Few works (only [39,41,46,49]) provide enough information to be replicated.
• Privacy issues are not generally addressed. Although if IDS data input and output are stored or handled locally, the need for

privacy could be relaxed (if there is no third-party involvement).
• Few works (only [39,40]) include some scheme for alert management or discuss computational performance.

So it can be concluded that the intrusion detectors proposed for smart home in Table 1 fall short in fulfilling some of the previous
challenges.

2.3. Originality

We believe that covering all the previous challenges would exceed the typical design of a single IDS. For this reason, our approach,
rather than simply proposing a new IDS, is to provide a modular and flexible architecture that can be taken as a reference for the
development of IDS suited to the challenges and specific scenario found in each house in terms of suitable detectors and deployment
4

architecture. Most related works, however, focus exclusively on the techniques for attack detection.
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Table 2
Related works comparison (IDS challenges).

Challenge This paper Related works

[41] [42] [38] [43] [40] [44] [45] [46] [47] [39] [48] [49]

Feasible data
collection

Centralized
architecture
(flows have to
be aggregated
into a device)

WiFi traffic is
collected at the
(modified) AP

Traffic is
collected at the
providers’
gateway (to be
modified)

Unspecified Traffic is
collected at the
home/IoT
gateway (to be
modified), cloud
components are
needed

Devices data is
gathered from
third-party
providers API,
cloud components
are required

It requires
collective
communications
between smart
homes. RPis are
used to route
traffic
(bandwidth
impact)

WiFi traffic is
collected at the
(modified) AP

The home router
has to support
SDN, and a
local PC must
implement a
SDN controller

Centralized
architecture
(flows have to
be aggregated
into a device)

Traffic collection
techniques are
not specified,
cloud components
(SIEM) are
needed

The home router
has to support
SDN, and a
local PC must
implement a
SDN controller

Unspecified

Attack detection
capability

6 categories (see
Table 4)

3 categories
(DoS, Scanning,
Spoofing)

2 categories
(Dos, E-DoS)

Attacks already
detected by
Snort/Suricata/Bro
rules

Unspecified 3 categories
(False Command
Injection, DoS,
Spoofing)

Unspecified 3 categories
(Scanning, DoS,
Spoofing)

4 categories
(Scanning, DoS,
Spoofing, Web
Attacks)

No Unspecified 2 categories
(False command
injection, web
attacks)

3 categories
(False command
injection, DoS,
energy)

Detecting
different attack
techniques

Up to 4 variants At least 2
variants

At least 2
variants

Unspecified Unspecified No (APP-layer
dependent)

Unspecified Up to 2 variants Yes 2 variants Unspecified Attacks are
dedicated to a
single device:
Philips Hue

Unspecified

Validation and
reproducibility

Yes Yes Missing resources
and information

Non-representative
dataset, missing
information

Missing resources
and information

Missing resources
and information

Missing resources
and information

Missing resources
and information

Yes Missing resources
and information

Yes Missing resources
and information

Yes

Privacy Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified

Alerts
management

Yes No No No No Yes No No No No Yes No No

Generalizable
models

Partial (see
limitations)

Supervised
techniques
require data
labeling.

Yes Yes Yes Dependent on
manufacturers
API, rules are
scenario-
dependent

Yes Yes Packet headers
features are
scenario-
dependent

Yes Rules are
scenario-
dependent

Limited to
Phillips Hue
devices

Limited to
MQTT, BACnet
and Modbus
protocols

Feasible
computational
resources

Yes Unspecified Unspecified Yes Unspecified Unspecified Unspecified Unspecified Unspecified No Yes Unspecified Unspecified

Limitations • Centralized
architecture
(flows
aggregation,
single point of
failure)
• Anomaly-based
data module
might require
periodical
training

• Access point
needs
modifications
• Only WiFi
smart devices
are tested
• Lacks
computational
performance
analysis
• It requires
periodical
training and
data labeling
(supervised ML)

• Provider’s
gateway needs
modifications
• Limited to
network attacks
(N-IDS)
• Lacks
computational
performance
analysis

• Proposed
scenario is not
particularized to
a smart-home
scenario
• It provides a
comparison
between popular
S-IDS software
(not a new
architecture)
• Datasets are
not particular to
a smart-home
scenario
• Limited to
network attacks

• Unclear
characterization
of anomalous
traffic and attack
coverage
• Access point
or IoT gateways
require
modifications
• It relies on
cloud
infrastructure
(privacy concern)

• Restricted to
network attacks
• Lacks
computational
performance
analysis

• It relies on
providers’ IoT
platform APIs
• It relies on
cloud
infrastructure
(privacy concern)

• Context-driven,
it is unable to
detect network
attacks
• Lacks of
computational
performance
analysis

• Smart-homes
collaborate each
other for threat
detection (privacy
concern)
• A device is
required to route
all the analyzed
traffic, so
bandwidth might
be reduced

• Limited to
network attacks
• Lacks
computational
performance
analysis

• Access point
needs
modifications
• Only WiFi
smart devices
are tested
• Limited to
network attacks
• Lacks
computational
performance
analysis

• Some network
devices must
support SDN
• One of the
chosen datasets
(NSL-KDD) might
not be
representative for
smart-home
scenarios
• Chosen features
are scenario-
dependent
• Lacks of
computational
performance
analysis

• Centralized
architecture
(flows
aggregation,
single failure
point)
• Only valid for
DoS attacks
• The testbed
IDS was not
able to operate
in real-time

• It relies on
cloud
infrastructure
(privacy concern)

• Validation
lacks some key
metrics
(performance,
tested attacks)

• Some network
devices have to
support SDN or
OpenFlow
• Lacks of
computational
performance
analysis
• Testbed limited
to Philips Hue
devices

• Restricted to
three protocols
(it relies on
app-layer
features)
• Lacks
computational
performance
analysis

We also create a case study where we design and develop an IDS that follows our architecture and is customized to a particular
ase based on a public dataset with the electrical consumption of 21 devices in a smart home. The main differences between our IDS
nd those in Table 1 are shown in Table 2. In summary, our design focuses on anomaly detection techniques and is complemented
y signature detection. We detect up to 6 types of attacks and up to 4 technique variants. Our system has the potential for alert
anagement, including event correlation and classification of attacks. Finally, the input datasets used are public. As such, our work

an be replicated or even improved by new variants suggested by the scientific community.

. Proposed architecture

In this section, we provide a high-level reference architecture for a smart home IDS. This architecture should be generic, modular
nd flexible to allow one to adapt it to the specific requirements and resources available on each particular scenario. The modules
escribed in this section will be refined and elaborated on in the case study presented in Section 4.

The system architecture is illustrated in Fig. 2 and encompasses four main modules:

• Network-level module. This module behaves as a Network Behaviour Analysis (NBA) system [14]. As such, it examines
statistics on network traffic to identify unusual traffic flows, such as denial of service (DoS) attacks, certain forms of malware
(e.g., backdoors), or policy violations (e.g., a home system providing network services to external systems). These events apply
to most smart devices despite their functionality. A pre-requisite of this module is that network traffic from smart devices is
collected and aggregated in the home network as it constitutes its data input.2 The module takes a packet capture -pcap- file
with the collection of IP packets sent or received by the smart devices during a period and carries out the following operations:

2 In a reference environment like shown in Fig. 1, these packets can be captured using the port mirror feature of Ethernet switches assuming that a Home
5

erver is in place.
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Fig. 2. Proposed IDS architecture.

1. Flows export. Generate the IP flows report related to the IPs under scrutiny (other IPs can be filtered). A common
standard for this task is IP flow information export (IPFIX) [52]. If available, Deep Packet Inspection (DPI) can enhance
this characterization.3

2. Time-series generation. The flows exported are processed to obtain statistics on network traffic. These statistics could
be generic (e.g., overall number of ARP messages in the subnet) or device-specific (e.g., number of external IPs that
requested a connection with a particular smart device). Since traffic flows are refreshed periodically, these statistics
conform to time series related to generic network aspects or to specific devices.

3. Anomaly Detection. Each time series featured becomes the input to an indicator of compromise (IoC) designed to detect
unusual behavior of a certain property. Each IoC generates an event after the detection of an anomaly. Several IoCs are
defined in the literature revised in Section 2, and statistical methods are good candidates for online operation due to
their simplicity [21]. However, the design of each IoC (i.e., feature and detection technique) will depend on the specific
local scenario and the attacks one wants to detect. The next section provides a set of IoCs designed for our case study.

• Application-level module. This module behaves as a host-based IDS, monitoring the data exchanged between each smart
device and the Home server during operation, seeking the discovery of anomalies produced by attacks such as False Command
Injection or Data Manipulation.
The input data source of this module is the historic dataset stored in the Home Server which can be accessed via API or directly
from the database server. Detecting anomalies at this level requires learning a behavioral model that should be trained with
real-life data, which implies that this should be a highly specialized module (i.e., on a per-device basics). A wide range of
detection techniques [21,53,54] could be used for the design of this module that, in general, will examine the historic data
from a smart device for anomalies with its past (device anomaly) or with respect to similar devices (group anomaly). Given
the variability of the behavior over time, and the fact that anomalies may not be attacks but simply data errors or device
malfunctioning [54], this module might show a high rate of false alarms, which should be considered in the design of the
detector’s point of operation and also in the correlation module.

• Signature-based IDS module. Conversely to the two previous modules, based on anomaly detection, this module is based
on signature detection. Signature-based IDS (Snort, Suricata, Bro, ..) can be used in the context of smart home [55] to detect
known attacks with a lower rate of false positive, complementing the job of anomaly detection at a lower computational cost.

• Correlation module. This module combines the events generated by the three previous modules and generate the alarms
to be reviewed by a Security Operation Center (SOC) or the IDS operator (e.g., homeowner). Correlation allows one to
gain knowledge from the events detected and reduce the number of alerts generated to a few significant ones (i.e., those
likely to be attacks [56]). This is particularly important in a home environment where users may lack technical expertise.
The alarms should include enough information to investigate the event and determine if further action is necessary. Some
appropriate actions could be: ignoring the alarm, classifying the alarm as a false positive and exerting corrective actions

3 Deep Packet Inspection (DPI) can: (a) enrich flows with extra information of interest (e.g., operating system fingerprint, geolocation, etc.); (b) parse the
6

pplication-level dialog exchanged between IoT devices and the server (if the packets were not encrypted).
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Table 3
Dataset devices.
Device ID Description

B1 North Bedroom
B2 Master/South Br
BM Basement Plugs&Lights
CD Clothes Dryer
CW Clothes Washer
DN Dining Room Plugs
DW Dishwater
EB Electronics Workbench
EQ Security/Network
FG Kitchen Fridge
FR HVAC/Furnace
GR Garage
HP HeatPump
HT Instant Hot Water Unit
OF Home Office
OU Outside Plug
TV Ent TV/PVR/AMP
UT Utility Room Plug
WO Wall Oven
WH Whole-House Meter
UN Unmetered Loads

to avoid future notifications in similar circumstances (e.g., re-training or modification of the configuration), or accepting the
alarm but changing the period of transmission of similar alarms. This module is also responsible for filtering unwanted alarms.

On design choices The generic reference architecture in Fig. 2 can be used for designing IDSs adapted to specific contexts. Local
decisions include the following aspects:

• Architecture. The number of modules in place and the IDS software architecture (e.g., distributed or centralized). For example,
a distributed architecture could run each module in separate hardware, improving scalability.

• Network-level module. Design of the set of IoCs suited to the attacks to be detected.
• Application-level module. Design of anomaly detection techniques suited to each smart device profile, attacks to detect, and

available data.
• Signature-based IDS. Selection of software and ruleset in place.
• Correlation. Design of correlation directives and alarm messages according to the potential events generated by the modules

in place.

Finally, note that our reference architecture is also limited in some aspects (see Section 6) that could also impact design decisions.

4 Case study: IoT smart home

In this section, we design and implement an IDS for a particular context determined by a public dataset that includes the electrical
power consumption of 21 devices in a smart house [57]. This process will provide insight into the previous modules and their
adaptation to a particular scenario.

4.1 Context

The context of this case study is determined by the Almanac of Minutely Power dataset (AMPds) [57], which contains 524 544
registers collected from April 1st, 2012, to March 31st, 2013 (one year) and includes 11 measurements at one-minute intervals for
21 appliances that are being used in a house. As such, it could be seen as 21 smart power meters, each monitoring a different home
device. Table 3 shows the list of devices monitored.

However, this public dataset does not provide sufficient information to fully apply our reference architecture as it lacks a local
scenario with networks and elements such as those shown in Fig. 1. For this reason, we create a hypothetical scenario, like the one
shown in Fig. 3, that would produce a dataset similar to AMPds. In our scenario, each power meter sends a message every minute
to a central data acquisition server (Home Server in Fig. 3) with a timestamp and the values of 11 variables related to the electrical
consumption of a device (e.g., timestamp, voltage, real power, reactive power, etc.). The acquisition server stores this data in a
MySQL database which is accessible to the IDS.

The network-level module requires collecting and aggregating traffic from the power meter devices as it uses a pcap file as input.
Thus, we have fabricated the network traffic that would have produced the dataset AMPds in our scenario, assuming that the MQTT
7

application protocol was in place. For this, we have generated the sequence of packets according to the timestamp of each register in
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Fig. 3. Scenario in our case study.

Table 4
Testbed attacks.

ID Sub-technique Attack Type MITRE ID Command/Description Destination

AT1 TCP SYN flooding DoS Network T1499.001 hping3 -p <port> -S –flood
<ip_target>

Server

AT2 DDoS Network T1498.001 hping3 -rand-source –d
<data_size> <ip_target> -p
<port> –flood

Server

AT3 ICMP scan Scanning Network T1595.001 nmap -sO <ip>/<mask> LAN
AT4 ARP scan Network T1595 nmap -sn <ip>/<mask> LAN
AT5 Service scan Network T1595.002 nmap -sV <ip> Server
AT6 ARP Cache Poisoning Sniffing Network T1557 arpspoof -i <interface> -t

<ip_target> <ip_gw>
IoT device or router

AT7 Brute Force Credential access Network T1110.001 hydra -l <username> -P
<path_to_wordlist> <IP> -t
<number_of_threads> ssh

Server

AT8 Command and Control Remote access software Network T1219 hping3 -S <ip_ext> -p
<port_service>

IoT device

AT9 False Data Injection Data manipulation Device T1565 One variable from a device (voltage)
has nonsense values (double than
regular)

Server

AT10 False Command
Injection

Data manipulation Device T1565 The device active power is set to
always ON during 24 h

Server

AT11 False Command
Injection

Data manipulation Device T1565 The device active power is randomly
chosen between 0 and 2𝑃𝑚𝑎𝑥

Server

AT12 False Command
Injection

Data manipulation Device T1565 The device is switched OFF during 24
h (E-DoS, false command...)

Server

the database.4 The packets generated were collected in a pcap file with tcpdump. The tool used for this process is available in [58].
This module’s first task is to generate and export IPFIX traffic flows every 5 min from the pcap file. We used Tranalyzer [59] for
this task, activating the DPI feature. The pcap file and its associated IP flows for the first three months of data used in this paper
are available in [58].

So, our IDS operates offline (rather than in real-time) using the previously mentioned datasets: AMPds as input for the
application-level module, and the fabricated pcap as input for the network-level and signature-based modules.

4.2 Attacks considered

We have generated a set of attacks launched by an internal attacker to test the IDS performance. We believe internal adversaries
can be a common case in smart homes when one IoT device or the Home Server has been compromised. Table 4 shows the list of
attacks considered and their implementation method. The attacks can be classified according to the target and method as:

• Generic network attacks (AT1-8). These attacks have been carried out using the commands stated in Table 4 from a PC running
Kali Linux. For testing, the packets produced with each attack have been captured and integrated in the corresponding pcap
file (see above).

• Device-specific application-level attack (AT9-12). These attacks have been realized by data manipulation (i.e., changes in the
data from the AMPds dataset). Additionally, AT11 was implemented eliminating the device network traffic.

The pcap files with the attacks generated can be downloaded from [58].

4 To speed up the process, we escalated the timestamp value in the database so that the entire year could be produced in about 30 h.
8
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Table 5
IoCs designed for network-level module.
ID Description Detector Context

IoC1 Total ARP request D1 G
IoC2 Total ARP response D1 G
IoC3 Total different destination IP addresses D2 G
IoC4 Total different TCP ports D1 G
IoC5 Total different source IP addresses D1 G
IoC6 Total number of flows D1 G
IoC7 Total number of ssh flows (DPI) D1 G
IoC8 Total ICMP flows D1 G
IoC9 Total number of ARP response-total number of ARP requests D1 G
IoC10 Time between flows initiated by a source IP address D3 I

4.3 Design of the anomaly-based IDS

In this section, we carry out a design that follows the generic architecture from Section 3 and is geared toward detecting the list
f attacks from Table 4.

.3.1 Network-level module: IoC design
This module should detect network attacks (AT1-8) and the ‘‘power off’’ device attack (AT12) as they impact network traffic.

his requires the definition of a set of indicators of compromise (IoC) that examine the properties of the traffic flows. Regarding
his, some common attacks (e.g., DoS) could be detected by a sudden increase in network traffic flows. Others, such as scanning,
ould be related to the variability over time of ARP/ICMP packets or TCP ports. Given the periodic nature of the traffic in this
articular scenario, it would also be interesting to monitor variations in the flows periodicity for each device, which could inform
s about a device-off problem. The previous considerations, along with the definitions of attacks AT1-8 and AT12 (Table 4), led us
o define the set of IoCs shown in Table 5. For each IoC, we describe the type of technique used to generate the alarm (see below).

As stated earlier, since flow reports are generated periodically (default is 5 min), the property examined by each IoC can be
reated over time as a time-series over which we can detect outliers using well-known techniques [60]. The types of detectors used
or this are:

• D1: Moving average with a sliding window of size 𝑊 (10 in our experiments). An anomalous event will be triggered if the
difference between the current value and the moving average is greater than 𝐾 times the standard deviation of the entire
series.

• D2: Similar to D1 but considering the absolute value of the last sample.
• D3: Exponential Weighted Moving Average (EWMA) and the standard deviation of the entire series of values. The parameters

used are the threshold multiplier (𝐾), the window used for the standard deviation (𝑊 ) (the value used for 𝛼 is derived from
𝑊 as shown in (1)), and the constant to increase the threshold (𝐶).

𝛼 = 1 − exp (− ln (2) ∕𝑊 ) (1)

An alarm will be produced if the current value is less than EWMA minus 𝐾 times the standard deviation minus 𝐶; or if it is
greater than EWMA plus 𝐾 times the standard deviation plus 𝐶.

The context of IoC1-9 is global –Type G– (i.e., we aggregate the flow reports for all IP/mac) but IoC10 is defined for each IoT
evice individually –Type I–.

.3.2 Application-level module design
This module is geared toward detecting abnormal data sent by each IoT device (i.e., power meter in our case study). Abnormal

ata may be caused by false command or data injection attacks such as AT9-11. For this task, we have designed two simple anomaly
etectors that leverage the nature of the data produced by power meters:

1. Detector of incoherent variable value: PCA+Q. The rationale behind this detector is that the 11 variables included on each
register are somewhat related. For example, a device’s active power depends on the Voltage, current intensity, and power
factor. Therefore, if one sensor sends an erroneous value (due to malfunction or malicious manipulation), such as in AT 9, it
could be detected. The detection method is based on Q residuals over Principal Component Analysis (PCA) [61]. During the
training phase, we find the maximum value of the sample residual (𝑄𝑚𝑎𝑥). In contrast, during the detection phase, we flag
an anomaly if the residual found for that sample, 𝑄(𝑠), holds the following condition:

𝑄(𝑠) > 𝐾 ⋅𝑄𝑚𝑎𝑥, (2)

where 𝐾 is a parameter that controls the detection sensibility. The interested reader can find in Appendix A more details on
9

how we implemented this detector.
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Fig. 4. Figures obtained after training for devices TV (top) and B2 (bottom).

2. Detector of device’s temporal mismatch: K-NN. This detector is based on the assumption that, to some extent, a device’s
active power exhibits a similar daily pattern. This hypothesis does not necessarily holds for every device in the dataset. Still,
it let us develop a simple but effective method to find power consumption anomalies in some IoT devices. Our technique is as
follows. During the training phase, we examine the device’s hourly active power over 24 h, collecting the values (𝑡𝑖𝑚𝑒, 𝑝𝑜𝑤𝑒𝑟)
for that device as shown in Fig. 4 (red color). Obviously, the more frequent values show up as more dense areas: for example,
if a device is always off between 1 and 4 am, the power values will always be 0 in that range. We aim to evaluate if a new
sample (𝑡𝑖𝑚𝑒, 𝑝𝑜𝑤𝑒𝑟) is close enough to the behavior learned during the training phase using a binary classifier based on
K-NN.
To discriminate anomalies, we establish a collection of abnormal reference points that conform to a grid (uniformly spaced in
time –steps of 30 min– and value –steps of 5% of the variable range). We suppress the grid points closer (according to K-NN)
to the normal values learned during training to establish a clear separation between normal and abnormal points. Finally,
during the detection phase, for every new sample (𝑡𝑖𝑚𝑒, 𝑝𝑜𝑤𝑒𝑟), we classify it as normal or not by measuring the euclidean
distance to the K (3) nearest neighbors. If the three neighbors are points of the grid, we classify it as abnormal and, otherwise,
normal.
Fig. 4 shows the figure obtained after training for the devices TV (top) and B2 (bottom). It can be observed that sometimes
it is easy to find a periodic pattern (e.g., TV is always off at certain hours of the day) which can be the case for some
smart-home IoT devices. Other times, however, although less periodic, it can provide insight into common power patterns
over time ranges such as is the case with B2.
The two detectors designed in this module are suited to our particular dataset. There is a plethora of other anomaly detection
techniques for detecting anomalies in the application-level data [53,62]. But, as stated in Section 1, the final techniques
developed should ideally be adapted on each case to the particular dataset and attacks under consideration.

4.3.3 Other modules
The rest of the components of our system are:
10
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• External S-IDS: we have used a popular signature-based IDS (Snort) to detect known attacks in the network traffic. We use
Talos ruleset, activating the following pre-processors: sfportscan, arpspoof and ssh. The total number of rules in place were
626. More details are provided in Section 5.4.

• Correlator: this module aims at generating a reduced number of significant alerts. Observe that a single attack may generate
events in various IoCs or be detected by the external S-IDS. However, we would like to have them aggregated into a single
alert with sufficient information to validate the attack. In our implementation, we have used the Simple Event Correlator (SEC)
engine [63]. The correlation rules infer the type of attack based on the events detected by the IoCs, application-level detectors
or S-IDS. Thus, our approach to establish the correlation rules is to perform the attacks first, and infer the correlation rules a
posteriori according to the results.

Performance evaluation

This section evaluates the system performance defined above against the attacks in our case study (see Table 4). In our
xperiments, we used the month of April in the dataset to train the models and the month of May for the validation (i.e., detection
f attacks). We also carried out prospective tests with other months obtaining similar results (Appendix D shows the results
btained using June for validation rather than May), which suggests that these pieces of the dataset suffice to illustrate the system
erformance.

.1 Performance indicators

We have used the following indicators:

• True Positive (TP): TP indicates an attack detected by at least one element (e.g., IoC). For testing the network-level module,
we inserted attacks AT1-9 and AT12 in the input pcap file at random instants within the evaluation period, verifying that
the timestamp of the event detected coincides with that of the attack inserted. For testing the application-level module, we
followed a similar procedure. A TP is considered if an anomaly is seen in the poisoned sample introduced in the dataset.

• False Positive (FP): a FP happens when an abnormal event is detected, but an attack was not inserted into the original dataset.
• True Negative (TN): TN indicates normal sample classified as normal. It is calculated by subtracting the number of FPs to the

total number of samples in the original dataset.
• False Negative (FN): FN indicates undetected attacks. It is calculated as the total number of malicious samples minus the total

number of TP.

These four basic indicators allow one to evaluate the detection performance through various metrics such as True Positive Rate
TPR) and True Negative Rate (TNR), as presented in Eqs. (3) and (4), respectively.

𝑇𝑃𝑅 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁) (3)

𝑇𝑁𝑅 = 𝑇𝑁∕(𝐹𝑃 + 𝑇𝑁) (4)

However, since performance is compared in different scenarios, and the classes normal and anomalous are clearly unbalanced,
e will use the geometric mean [64,65] as a performance indicator. This metric combines recall and specificity; hence, it is sensitive

o detection capacity and false positives. Thus, for the remainder of this paper, the IDS performance metric will be given by Eq. (5).

η =
√

𝑇𝑃𝑅 ⋅ 𝑇𝑁𝑅 (5)

5.2 Network-level module performance

To evaluate the TPR, we have carried out two tests for each attack type:

(a) Test 1: a single attack execution inserted randomly within the test period.
(b) Test 2: 100 attack executions inserted at random moments within the test period.

The second test was repeated 30 times and the results shown represent average values. Table 6 shows the results obtained for each
IoC and test (Test 2 - Test 1). As expected, attacks AT1-8 have been detected, as has AT11, which is related to traffic from the
device. Results show that the attack in Test 1 has always been detected. However, all the 100 attacks in Test 2 have not always
been detected. This can be traced back to the fact that if two attack instances are too close in time, only the first one is detected as
the detector based in MA and EWMA requires a guard period until it can be detected again, as shown in Fig. 5 UCL (Upper Control
Limit). This is why the detection rate decreases from 100% to 86% in some IoCs.

We have also examined false positives (FP) in the events detected (i.e., when no attacks were introduced in the dataset). Only
the IoC6 (number of flows) generated 21 FP. A closer look at these events revealed that they were always caused by anomalous data
series (e.g., some IoT devices not transmitting their data). An example is shown in Fig. 5. It can be noticed that the number of flows
(the black line in Fig. 5), which is usually constant over time, experience fluctuations (e.g., due to intermittent transmission of data
11

between hours 2 and 5), following an abrupt reduction from 100 to 95 (because 5 devices have not transmitted data). When these
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Fig. 5. IoC6 false positives (FP).

Table 6
Number of events detected by each IoC for each attack. Format: Test 2 (100 attacks) – Test 1 (one attack).

IoC1 IoC2 IoC3 IoC4 IoC5 IoC6 IoC7 IoC8 IoC9 IoC10

AT1 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 93 – 1 0 – 0 0 – 0 0 – 0 95 – 1
AT2 0 – 0 0 – 0 0 – 0 0 – 0 88 – 1 93 – 1 0 – 0 0 – 0 0 – 0 0 – 0
AT3 0 – 0 0 – 0 95 – 1 93 – 1 0 – 0 95 – 1 0 – 0 95 – 1 0 – 0 95 – 1
AT4 87 – 1 87 – 1 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0
AT5 0 – 0 0 – 0 0 – 0 90 – 1 0 – 0 90 – 1 0 – 0 0 – 0 0 – 0 92 – 1
AT6 0 – 0 86 – 1 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 86 – 1 0 – 0
AT7 0 – 0 0 – 0 0 – 0 92 – 1 0 – 0 92 – 1 92 – 1 0 – 0 0 – 0 96 – 1
AT8 0 – 0 0 – 0 92 – 1 92 – 1 0 – 0 40 – 1 0 – 0 0 – 0 0 – 0 100 – 1
AT9 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0
AT10 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0
AT11 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0
AT12 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 0 – 0 100 – 1

devices resume their transmission another abrupt change from 95 to 104 flows follows, which triggers the detection of anomalous
behavior. Thus, this FP is caused by disturbances in a time series that should be stable over time. As such, these disturbances are
legitimately considered a rational sign of anomaly. This applies to the other 20 FP observed. In Fig. 5 we can also see that these
anomalies also impact the limits of the control area (dotted blue line in Fig. 5), as it automatically adapts to changes, which in turn
may cause that several consecutive attacks are detected as a single one.

At any rate, since the input dataset has 8640 samples (month of May), 21 false positive would provide a True Negative Rate of
9.76% for IoC6, which seems acceptable.

.3 Application-level module performance

This module is composed of 2 detectors applied to all devices: one (PCA+Q) for detecting incoherent values in the variables
within each sample (tested with AT9), and another one (K-NN), to detect anomalies in the daily pattern of each device’s active
power (tested with attacks AT10, AT11).

5.3.1 Detector PCA+Q (attack AT9)
To emulate attack AT9 we have modified the value of device’s active power consumption at 100 random instants by replacing

the original value with another one which can be up to a 50% greater or lower. In the PCA model, we have selected two components
that explain 98% of the variance (see Appendix A). An event is triggered when a sample’s Q residual is greater than the double of
the maximum Q residual observed during training (i.e., 𝐾 = 2). As an example, we show in Fig. 6 the Q residual obtained for the
GR device in the test phase (i.e., including corrupted samples). In the plot, the red dotted line shows the limit (i.e., 2 ⋅𝑄𝑚𝑎𝑥_𝑡𝑟𝑎𝑖𝑛)
learned after training. It is visible that the corrupted samples exceed the Q limit, which enabled their detection. In our test, we
evaluated the system before and after inserting the aforementioned 100 anomalies in order to obtain FP and TP respectively.

The performance (η𝐴𝑇 9) obtained for each device is summarized in Table 7. More details (e.g., TP, TN, FP, etc.) can be found in
12

Appendix C. The overall (i.e., for all devices) average performance is 89%. It can be observed though, that the model did not work
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Fig. 6. Q statistics for device GRE.

Table 7
Data anomaly detection results summary.
Device PCA+Q K-NN

η𝐴𝑇 9 η𝐴𝑇 10 η𝐴𝑇 11

GR 1,00 0,99 0,94
WO 1,00 0,94 0,98
BM 1,00 0,94 0,89
UT 1,00 0,00 0,85
TV 1,00 0,98 0,86
B2 0,89 0,99 0,81
DW 1,00 0,74 0,93
B1 1,00 0,97 0,97
HT 1,00 0,98 0,80
FR 1,00 0,96 0,95
CD 1,00 1,00 0,97
OF 1,00 1,00 0,93
OU 0,00 0,56 0,53
EQ 1,00 0,39 0,85
WH 1,00 0,91 0,84
CW 1,00 1,00 0,94
DN 1,00 0,98 0,86
EB 0,00 1,00 0,96
FG 1,00 1,00 0,94
HP 1,00 1,00 1,00

for the electrical consumption of the outside plug (OU) and the electronics workbench (EB) as it did not detect anomalous values.
This can be attributed to the presence of anomalous values in the training dataset that produced a very high value of Qmax. Another
unexpected result was the number of FP obtained for B2 (see Appendix C). As with OU and EB, this is attributable to anomalous
samples in the training datasets maybe due to malfunctioning of the device. Appendix C details some examples that justify this
conclusion. If we excluded OU and EB, η𝐴𝑇 9 would have been 99.4%, with a TPR of 100% . Therefore, we can conclude that the
performance of this detector is satisfactory.

5.3.2 Detector K-NN (attacks AT10, AT11)
Our second detector is devoted to detects anomalous values on a device’s active power based on the daily pattern observed

during training. This technique is suited to detect attacks AT10 (a device is 24 h at maximum power) and AT11 (a device shows
random power values at random instants).

The results obtained for each device are shown in Table 7 (η𝐴𝑇 10 and η𝐴𝑇 11). It can be observed that, for AT10 (average η = 80%),
the average True Positive Rate (TPR) was 80.9%, whereas TNR was 99.3% (see Appendix C). The results showed that the model
seemed to be inadequate with three devices: OU, EQ and UT. After careful examination of the data associated to these devices, we
observed that their active power consumption was very erratic and residual which prevented any predictive model to be of use. If
we suppressed these devices from the performance indicators, we would have obtained a TPR of 93.1%, a TNR of 99.2% and the
performance (η) would be 95.9%. In the case of AT11 attack, the TPR scored on average 79.58% while TNR is 99.5%, having an
13
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Table 8
Snort results.
ID Sub-technique Total Alarms for each signature ID

alarms 1 22 26 82 384 469 528 10 012 342

– Clean traffic 0 0 0 0 0 0 0 0 0
AT1 TCP SYN flooding 0 0 0 0 0 0 0 0 0
AT2 DDoS 9 0 0 0 1 0 0 7 1
AT4 ICMP scan 47 0 0 1 0 23 23 0 0
AT5 ARP scan 0 0 0 0 0 0 0 0 0
AT6 Service scan 1 1 0 0 0 0 0 0 0
AT7 ARP Cache Poisoning 5 0 5 0 0 0 0 0 0
AT8 Brute Force 0 0 0 0 0 0 0 0 0
AT9 Command and Control 0 0 0 0 0 0 0 0 0

overall performance of 89%. Once again, we observe that the three aforementioned devices, OU, EQ, UT, performed worse than the
rest. If we discarded these three devices, we would have obtained a performance of 91%.

5.4 External system: Snort

We have used the network traces (pcap) as input of Snort with the following configuration:

• Preprocessors activated: sfportscan, arpspoof, ssh
• Overall number of rules: 626 (377 detection rules, 153 decoder rules, 96 preprocessor rules)
• Snort’s rules5: bad-traffic.rules, ddos.rules, dos.rules, exploit.rules, icmp-info.rules,icmp.rules, scan.rules, preprocessor.rules,

decoder.rules

The results obtained are shown in Table 8 and show that Snort, with the configuration above, was able to detect 4 out of the 12
known network attacks (AT2, AT4, AT6, AT7) in the network traces.

5.5 Computational performance

Note that the IDS operates offline in our case study, as each module has been run standalone using the necessary input files. This
section investigates the computational performance of the two main modules designed. This can be taken as a reference since the
architecture of the SID (e.g., distributed or centralized) is to be decided. The computational performance of Snort and the correlation
engine SEC (and other open-source alternatives) has been sufficiently studied in [67,68] respectively.

5.5.1 Network-level module
We have tested the computational performance of this module by measuring the use of CPU and memory during the processing

of a month of traffic (input pcap size is 533 MB) in a PC with an AMD® A10-7860k processor and 16 GB of RAM. Fig. 7 shows
the timeline of CPU usage during execution (100% represents a single CPU core). In black color, we plot the flow export process
(including DPI) while the computation of IoCs is marked in red dashed line. It can be noted that more than 95% of CPU time
was devoted to the flow exporting process. In our test, the use of RAM memory never exceeded 165MB, which seems reasonable
considering the actual hardware.

Our results show that our implementation processed 12 700 800 packets in less than 250 s. Thus obtaining a throughput of 50 803
packets per second.

5.5.2 Application-level module
Similarly, we have tested the computational performance of this module by analyzing the CPU and RAM occupation while

processing 1 month of data on the same machine. Each sample has a size of 145B (i.e., 11 json-formatted fields). Fig. 8 illustrates
the CPU usage for both detectors (PCA+Q and K-NN) executed sequentially. The results show that CPU usage is bounded between
50% and 400% (4 cores), while RAM demand is always below 162MB. Furthermore, a month-length (907 200 samples) was processed
in less than 60 s (15 120 samples per second).

The results obtained suggest that the network module implemented is more computationally demanding than the application-
level one, mainly due to the flow export and DPI processes. Thus, these tasks should be distributed for scalability in challenging
environments (i.e., several devices monitored). At any rate, the results obtained in our scenario suggest the feasibility of using our
IDS online in a centralized architecture.

5.6 Discussion

In light of the previous results, we would like to elaborate on the following points.

5 Available in [66].
14
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Fig. 7. Anomaly traffic detector CPU usage.

Fig. 8. Anomaly data detector CPU usage.

5.6.1 Detection sensibility
One can conclude that the overall performance of the IDS is acceptable for most devices and attacks tested in the case study

(η > 90%). The occasions where attacks passed unnoticed were due to abnormal values in the dataset. This does not indicate poor
data quality but simply that, differently from the academic context, real-life operational datasets are likely to include unexpected
data due, for instance, to device failures [69]. These unexpected phenomena may lead to undetected anomalies or false positives,
temporarily undermining the detection technique used.

5.6.2 Event correlation
As a summary, Table 9 shows the detector element (i.e., indicator) from our IDS that have flagged each attack in our tests

(considering the results from most of the devices). It can be observed that all attacks have been detected by at least one element.
Thus, particularly in network attacks, the set of indicators activated for each attack could be seen as a fingerprint of the attack
viewed by our IDS. As a consequence, Table 9 could be used to design the correlation directives used by the correlation engine.
For example, a service scan attack (AT6) is detected by the events generated by IoC2 and IoC9. If both events are produced in a
short time span, the correlation engine can generate a single alarm indicating the attack AT6 was caught by an anomaly. Moreover,
because we also have an external signature-based IDS that has detected the same attack, we could send a single alarm indicating that
attack AT6 has been seen by anomaly and also by signature, thus increasing the reliability of the detection. Although the correlation
rules have not been included in this work for the sake of conciseness, we have implemented the correlation directives following the
results in Table 9.

5.6.3 Comparison with other IDS
As stated in the Introduction, IDS should ideally be adapted to the target scenario. In this sense, none of the IDS used in Smart

Home from Table 1 are potentially suited to detect the application-level anomalies that led to the detection of attacks AT9-12. In
most cases, the application-level data is overlooked, so data manipulation attacks cannot be detected. Only Sikder et al. [40] consider
15
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Table 9
Experiments summary.

IoC1 IoC2 IoC3 IoC4 IoC5 IoC6 IoC7 IoC8 IoC9 IoC10 PCA+Q K-NN Snort

AT1 ✓ ✓

AT2 ✓ ✓ ✓

AT3 ✓ ✓ ✓ ✓ ✓

AT4 ✓ ✓ ✓

AT5 ✓ ✓ ✓

AT6 ✓ ✓ ✓

AT7 ✓ ✓ ✓ ✓ ✓

AT8 ✓ ✓ ✓ ✓

AT9 ✓

AT10 ✓

AT11 ✓

AT12 ✓

Table 10
PCA+Q results summary (AT9).
Device TP FP TN FN η

GR 100 22 43 078 0 1,00
WO 100 0 43 100 0 1,00
BM 100 0 43 100 0 1,00
UT 100 0 43 100 0 1,00
TV 100 0 43 100 0 1,00
B2 100 8601 34 499 0 0,89
DW 100 0 43 100 0 1,00
B1 100 0 43 100 0 1,00
HT 100 0 43 100 0 1,00
FR 100 0 43 100 0 1,00
CD 100 0 43 100 0 1,00
OF 100 0 43 100 0 1,00
OU 0 5 43 095 100 0,00
EQ 100 0 43 100 0 1,00
WH 100 0 43 100 0 1,00
CW 100 0 43 100 0 1,00
DN 100 0 43 100 0 1,00
EB 0 0 43 100 100 0,00
FG 100 0 43 100 0 1,00
HP 100 0 43 100 0 1,00

application-level information in their system Aegis+, which observes the states of the connected smart home entities (sensors and
devices) for different user activities and usage patterns and builds a contextual model to differentiate between malicious and benign
behavior. In this case, however, network traffic is disregarded (AT1-9). Furthermore, their model is based on states which is not fit
to detect the application-level attacks implemented in this work.

Finally, notice that detecting attacks based only on a standard signature-based IDS such as Snort would not have ultimately
detected all network attacks AT1-9 with the standard ruleset used in our case study.

6 Limitations

Our work rests on some assumptions, and its generalization is constrained by limitations that should be forewarned.

Architecture limitations. We believe that the main limitations and challenges of the architecture introduced in Section 3 are the
following:

• A single point must receive the traffic flows from all devices. Besides being a single point of failure (exposed to DoS attacks), this
requires gathering the network traffic from all smart devices, which can be challenging due to the network design (e.g., direct
communication between two devices on the same subnetwork might not be collected), or overload the network devices
(e.g., switch) which in turn are required to feature port mirroring or directly generate the traffic flows reports. These features
are not always present in domestic-level switches or routers. To improve scalability, the traffic collection and flow generation
could be distributed or use dedicated devices. The protection of the IDS against cyberattacks should also be considered.

• Application data collection. Gathering the application-level dialogues of heterogeneous devices can be challenging if a Home
Server is not in place or its database is not accessible. Some smart devices send messages (commonly encrypted) to their
respective vendor servers hosted on the Internet. Using the device manufacturer API to fetch state history could be tentatively
considered in such a case. Clearly, the application-level module can only be applied to smart devices from which data is
available.
16
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Fig. 9. Q statistics for device OU (first training phase).

• Undetected attacks. The network module cannot detect attacks that do not leave trace in the traffic pattern (e.g., APT).
Similarly, detecting anomalies in the application-level data can be challenging due to the need for quality device-specific
datasets and re-training [64].

DS and case study limitations. The IDS developed in our case study (Section 4) also exhibits some limitations besides those inherent
o the architecture:

• We have defined a set of detectors (IoCs in Table 4) suited to the generic network attacks listed and implemented as shown
in Table 3. Different network attacks or techniques have not been tested. Moreover, we have not collected real traffic in our
scenario but generated synthetic one from the measurements sent by the 21 smart power meters from the dataset. So, the
generalization of our results to other real-life scenarios is limited by these facts.

• Our scenario is determined by the public dataset that includes 21 electric power meters connected to different types of smart
devices. In this sense, our application-level data relates to smart devices’ electrical consumption, not functionality. This scenario
has certain advantages. For instance, the two data anomaly detectors developed are generic and applicable to any smart device
that plugs into an electric outlet despite its functionality. Thus, attacks that leave a trace in the electric consumption temporal
pattern can potentially be detected. But it also has limitations. For example, a device failure may be interpreted as an attack
or the inability to detect attacks that do not impact a smart device’s power consumption temporal pattern. Therefore, it seems
advisable to complement the two classifiers defined in our work with other device-specific anomaly detection techniques-

The previous limitations also pave the way for future research.

Conclusions and further work

We have designed a generic architecture to detect attacks in the context of a Smart Home. Our approach is purely passive, flexible,
odular, and efficient. We used one module to detect network attacks through IoCs that can be computed using traffic flow reports.
nother module has been devoted to detecting anomalies in the data exchanged by IoT applications. The latter requires the design
f specialized detectors on a per-case basis. External components, such as SIDS, can also be added. We have particularized our
rchitecture for a case use that includes common threats in the smart-home literature, defining ten simple but efficient IoCs and
wo application-level detectors. We have used a public dataset to test the performance of our system, obtaining a detection capacity
reater than 90% and an acceptable rate of false positives for most devices, being able to detect all attacks tested.

Our architecture can be adapted to suit different scenarios and attacks by including or defining new detectors, as suggested in
he literature. It can also be a reference for researchers to add new IoCs or detection modules thanks to the public dataset used.

We can identify the following potential research lines for further work.

• Data privacy. In this work, we have assumed a household context (i.e., no third party is involved in the IDS operation).
However, a different context may involve a third-party handling user data (e.g., a distributed cloud-based IDS using agents
installed in smart homes). In such a case, data privacy and security should be a concern, and communications should be
17
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Fig. 10. Q statistics for device EB (first training phase).

Fig. 11. Q statistics for device OU (second training phase).

and the alarms generated by the correlator are protected and confidential. Content security and privacy in a highly distributed
approach can also benefit from innovative approaches such as Named Data Networking [72] or trajectory mining [73].

• Exploring the bounds of attack detection through anomalies in the electric consumption of smart devices. It would be
interesting to research the circumstances under which attacks on smart devices (according to their type) are traceable through
the electrical consumption footprint of the device [74,75].

• New application-specific anomaly detection techniques that extended the range of detectable attacks to those specific to the
smart device functionality that could complement the detectors developed in this work.
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Fig. 12. Q statistics for device EB (second training phase).
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Appendix A. Residual control method

An detailed explanation of the procedure for residual control can be found in [61]. A method works as follows:

• Given the training data matrix 𝑋 with 𝑛 observations and 𝑚 correlated variables, we first normalize data to obtain a mean and
variance of 0 and 1 respectively. Then, we perform a singular value decomposition of the matrix 𝑋 which yields a new matrix
with the principal components (which in turn are a lineal combination of the variables). Thus, we can express the training
data matrix as 𝑋 = 𝑇 ⋅𝑃 𝑇 , where 𝑇 is the score matrix, and 𝑃 is the loading matrix, whose columns are eigenvectors associated
with 𝑋 covariance matrix, 𝛴 = 1

𝑛−1 ⋅𝑋𝑇 ⋅𝑋 = 𝑃Λ𝑃 𝑇 , and Λ is a diagonal matrix composed by the eigenvalues incrementally
sorted as (𝜆1, 𝜆2,….).

• When Principal Component Analysis is applied to reduce dimensionality, we only select the first 𝐴 principal components of
the matrix 𝑃 , in the spirit that these 𝐴 components describe a significant part of the covariance observed in the data. Thus,
we keep 𝑃𝐴, matrix whose dimension is 𝑚𝑥𝐴. During the test phase, whenever we have a new sample with 𝑚 variables 𝑥𝑛, we
calculate the vector of scores as 𝑡𝑛 = 𝑥𝑛 ⋅ 𝑃𝐴.

• Given that we have reduced the number of components, the estimation 𝑃𝐴 will exhibit some differences with respect to the
original sample. Indeed, the error between the sample and its estimate is 𝑒𝑛 = 𝑥𝑛 − −𝑡𝑛 ⋅ 𝑃 𝑇

𝐴 . In general terms, the residual
matrix indicates the error that is produced after reducing the number of components with respect to the original sample. The
statistics Q can be defined as 𝑄 =∣∣ (𝐼𝑚 − 𝑃𝐴𝑃 𝑇

𝐴 ) ∣∣2, and indicates the projection of a sample in the subspace of residuals,
providing a generic indicator of how well a sample suits to the PCA model.

• We use a simple method for residual control. We take those components that justify 95% of the variance. During the training
phase, we store the greatest residual value achieved 𝑄𝑚𝑎𝑥. During the test phase, we calculate the residual for each sample
and classify it as anomalous if it is K times greater than 𝑄𝑚𝑎𝑥,

Appendix B. OU and EB residual control discussion for PCA+Q

It can be observed that our model does not detect anomalous values for devices OUE 𝑦 EBE. Examining the values of Q residuals
obtained during the training stage, we observe unexpectedly high Qmax values for OU (Fig. 9) and EB (Fig. 10) of 90 𝑦 120
respectively.

This is attributable to anomalous values in the dataset for these devices. Because Qmax observed during training was so high,
we never obtain values greater than 2 times Qmax in the contaminated samples. This can be observed in Fig. 11 and Fig. 12 (the
19
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Table 11
K-NN results for AT10.
Device TP FP TN FN TPR TNR η

GR 1423 34 41 726 17 0,99 1,00 0,99
WO 1260 0 41 760 180 0,88 1,00 0,94
BM 1349 2743 39 017 91 0,94 0,93 0,94
UT 0 1 41 759 1440 0,00 1,00 0,00
TV 1383 382 41 378 57 0,96 0,99 0,98
B2 1406 241 41 519 34 0,98 0,99 0,99
DW 792 128 41 632 648 0,55 1,00 0,74
B1 1356 78 41 682 84 0,94 1,00 0,97
HT 1379 177 41 583 61 0,96 1,00 0,98
FR 1321 56 41 704 119 0,92 1,00 0,96
CD 1440 117 41 643 0 1,00 1,00 1,00
OF 1440 92 41 668 0 1,00 1,00 1,00
OU 452 48 41 712 988 0,31 1,00 0,56
EQ 222 2 41 758 1218 0,15 1,00 0,39
WH 1199 522 41 238 241 0,83 0,99 0,91
CW 1440 120 41 640 0 1,00 1,00 1,00
DN 1396 335 41 425 44 0,97 0,99 0,98
FG 1440 116 41 644 0 1,00 1,00 1,00
HP 1440 75 41 685 0 1,00 1,00 1,00

Finally, it can be noticed an elevated number of FP obtained in B2. In Fig. 13 we show the residuals obtained during the training
tage.

It can be noticed that, besides the peaks attributable to contaminated samples, several samples exhibit anomalous values,
robably due to sensor malfunction. As such, these 8601 FP should theoretically be considered as TP since they detect anomalous
alues already in the dataset.

ppendix C. Data anomaly detectors results

This appendix presents the results obtained for some of the presented Data Anomaly Detectors. Table 10 provides a summary
f the results obtained for the PCA+Q detector for each device, indicating the number of TP, FP, TN, FN, and the performance

indicator η.
Similarly, Table 11 summarizes the results obtained for the K-NN detector for AT10, also including the TNR and TPR values.
Finally, Table 12 summarizes the results obtained for the K-NN detector for AT11.

Appendix D. Results obtained using june for validation

As stated in Section 5, system performance was also tested with different months (rather than May) to confirm that similar results
can be obtained. In this appendix, we repeat the same experiments in Section 5, but using June data for the tests. To do so, the
20

same performance indicators (TP, FP, etc.) have been considered.
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Table 12
K-NN results for AT11.
Device TP FP TN FN TPR TNR η

GR 1265 31 41 729 175 0,88 1,00 0,94
WO 1390 0 41 760 50 0,97 1,00 0,98
BM 1212 2496 39 264 228 0,84 0,94 0,89
UT 1038 1 41 759 402 0,72 1,00 0,85
TV 1078 272 41 488 362 0,75 0,99 0,86
B2 951 155 41 605 489 0,66 1,00 0,81
DW 1252 108 41 652 188 0,87 1,00 0,93
B1 1359 68 41 692 81 0,94 1,00 0,97
HT 919 139 41 621 521 0,64 1,00 0,80
FR 1291 54 41 706 149 0,90 1,00 0,95
CD 1369 76 41 684 71 0,95 1,00 0,97
OF 1243 79 41 681 197 0,86 1,00 0,93
OU 410 47 41 713 1030 0,28 1,00 0,53
EQ 1036 0 41 760 404 0,72 1,00 0,85
WH 1017 395 41 365 423 0,71 0,99 0,84
CW 1272 82 41 678 168 0,88 1,00 0,94
DN 1073 207 41 553 367 0,75 1,00 0,86
FG 1322 94 41 666 118 0,92 1,00 0,96
HP 1276 71 41 689 164 0,89 1,00 0,94

Table 13
Number of events detected by each IoC (out of 100) with alternative validation data (June).

IoC1 IoC2 IoC3 IoC4 IoC5 IoC6 IoC7 IoC8 IoC9 IoC10

AT1 0 0 0 0 0 92 0 0 0 92
AT2 0 0 0 0 90 93 0 0 0 0
AT3 0 0 90 88 0 90 0 90 0 95
AT4 89 89 0 0 0 0 0 0 0 0
AT5 0 0 0 88 0 89 0 0 0 92
AT6 0 90 0 0 0 0 0 0 90 0
AT7 0 0 0 89 0 90 90 0 0 96
AT8 0 0 89 98 0 50 0 0 0 100
AT9 0 0 0 0 0 0 0 0 0 0
AT10 0 0 0 0 0 0 0 0 0 0
AT11 0 0 0 0 0 0 0 0 0 0
AT12 0 0 0 0 0 0 0 0 0 100

Table 14
Results obtained with alternative validation data (June).

(a) AT9 results (PCA+Q) (b) AT10 results (KNN) (c) AT11 results (KNN)

Device TP FP TN FN η Device TP FP TN FN TPR TNR η Device TP FP TN FN TPR TNR η

GR 100 0 43 096 0 1,00 GR 1423 1 41 755 17 0,99 1,00 0,99 GR 1111 1 41 755 329 0,77 1,00 0,88
WO 100 0 43 096 0 1,00 WO 1260 12 41 744 180 0,88 1,00 0,94 WO 1351 12 41 744 89 0,94 1,00 0,97
BM 100 0 43 096 0 1,00 BM 1349 450 41 306 91 0,94 0,99 0,96 BM 1016 450 41 306 424 0,71 0,99 0,84
UT 100 0 43 096 0 1,00 UT 0 0 41 756 1440 0,00 1,00 0,00 UT 911 0 41 756 529 0,63 1,00 0,80
TV 100 0 43 096 0 1,00 TV 1383 369 41 387 57 0,96 0,99 0,98 TV 798 379 41 377 642 0,55 0,99 0,74
B2 100 11 074 32 022 0 0,86 B2 1406 166 41 590 34 0,98 1,00 0,99 B2 608 166 41 590 832 0,42 1,00 0,65
DW 100 0 43 096 0 1,00 DW 792 45 41 711 648 0,55 1,00 0,74 DW 1104 46 41 710 336 0,77 1,00 0,88
B1 100 1 43 095 0 1,00 B1 738 5 42 453 0 1,00 1,00 1,00 B1 1309 5 41 751 131 0,91 1,00 0,95
HT 100 0 43 096 0 1,00 HT 1379 474 41 282 61 0,96 0,99 0,97 HT 607 464 41 292 833 0,42 0,99 0,65
FR 100 0 43 096 0 1,00 FR 1321 0 41 756 119 0,92 1,00 0,96 FR 1159 0 41 756 281 0,80 1,00 0,90
CD 100 0 43 096 0 1,00 CD 1440 151 41 605 0 1,00 1,00 1,00 CD 1324 255 41 501 116 0,92 0,99 0,96
OF 100 0 43 096 0 1,00 OF 1440 14 41 742 0 1,00 1,00 1,00 OF 1102 14 41 742 338 0,77 1,00 0,87
OU 0 0 43 096 100 0,00 OU 452 133 41 623 988 0,31 1,00 0,56 OU 172 128 41 628 1268 0,12 1,00 0,35
EQ 100 0 43 096 0 1,00 EQ 222 3 41 753 1218 0,15 1,00 0,39 EQ 4 3 41 753 1436 0,00 1,00 0,05
WH 100 0 43 096 0 1,00 WH 1199 755 41 001 241 0,83 0,98 0,90 WH 612 740 41 016 828 0,43 0,98 0,65
CW 100 0 43 096 0 1,00 CW 592 251 42 353 0 1,00 0,99 1,00 CW 1170 241 41 515 270 0,81 0,99 0,90
DN 100 0 43 096 0 1,00 DN 1396 257 41 499 44 0,97 0,99 0,98 DN 827 257 41 499 613 0,57 0,99 0,76
EB 0 0 43 096 100 0,00 FG 1440 144 41 612 0 1,00 1,00 1,00 FG 1222 146 41 610 218 0,85 1,00 0,92
FG 100 0 43 096 0 1,00 HP 1440 68 41 688 0 1,00 1,00 1,00 HP 1148 68 41 688 292 0,80 1,00 0,89
HP 100 0 43 096 0 1,00

First, Table 13 represents the number of events detected by each compromise indicator (implemented in the network module),
hen randomly introducing 100 attack executions into the test period. As expected, a significant percentage of events have been
etected for AT1-8 and AT11, obtaining similar results to those obtained in Section 5. In fact, the detection rate is at least as good
s when May was used for testing.

Then, the application-level module was repeated, taking data from June. Table 14a, b and c, summarize the performance results
btained for AT9 (PCA+Q), AT10 (K-NN), and AT11 (K-NN), respectively. Again, a similar performance is obtained when compared
o the results in Appendix C.
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