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Abstract 

In a previous paper [Phys. Fluids, vol. 6, 2676 
(1994)], the authors derived four l-D models (Lee, 
Cosserat, averaged, and parabolic models) for slen- 
der axisymmetric liquid jets from the Navier-Stokes 
equations. The error of these l-D models was calcu- 
lated for small perturbations, in the absence of elec- 
tric field. Here, we extend the linear error analysis 
to both perfectly insulating liquid jets in a tangential 
electric field and perfectly conducting liquid jets in a 
radial electric field. The accuracy of these models for 
studying the breakup, when nonlinear effects are no 
longer negligible, is also tested in the absence of elec- 
tric field. A comparison of numerical 3-D solutions 
with results from l-D models is made. A formulation 
of the energy conservation in l-D models allows iden- 
tifying and correcting a numerical instability of the 
averaged model near the breakup. It also explains 
why the Cosserat model overestimates the breakup 
time for moderate or large viscosity. Good agreement 
between l-D and 3-D numerical results is found. 

Introduction 

A liquid jet emerging with large velocity from a circu- 
lar nozzle of radius R always breaks up into droplets, 
owing to the destabilizing effect of surface tension 
for long wavelengths. Since the capillary force is the 
driving one, the surface tension y of the liquid-air in- 
terface and the radius of the jet R are used to make 
variables nondimensional. We consider jets whose 
mean velocity is large compared to the capillary ve- 
locity, but small enough so that the surrounding gas 
has a negligible effect. In such a case, the liquid jet 
can be studied from a reference system moving with 
the same velocity as the liquid. The influence of the 
emergence velocity is then negligible [l]. From this 
point of view, a perturbation periodic in time in the 
nozzle is seen as a spatially periodic perturbation in 
an infinitely long liquid jet. 

In the absence of electrical forces, the breakup time 
as well as the size of the droplets depend on the com- 

petition among capillary, viscous and inertia forces 
present in the Navier-Stokes equations and the asso- 
ciated boundary conditions. The only number that 
determines the neutral stability boundary of the liq- 
uid jet is the nondimensional wave number k of the 
perturbation, since an axisymmetric perturbation in- 
creases the surface of the cylindrical jet for k > 1. 
Therefore, the jet is unstable for 0 < k < 1 [2]. 
In this work, only axysimmetric perturbations will 
be considered. Viscosity has no effect on the sta- 
bility, but it has a marked effect on the dynamics. 
The nondimensional number that accounts for the 
strength of the viscous stress relative to  the cap- 
illary pressure is known as the Ohnesorge number, 
C = p / ( p y R ) l l 2 ,  where p and p are the density and 
viscosity of the liquid. The larger is C ,  the larger is 
the breakup time of the jet. 

The difficulty of solving the Navier-Stokes equations 
with free-surface boundary conditions in three di- 
mensions (3-D), even in the axisymmetric case, has 
lead to a great effort in simplifying the formulation. 
Several authors have proposed one-dimensional (1- 
D) models based on the large-slenderness approxi- 
mation, i.e. the wavelength of the perturbation di- 
vided by R is large (see [3] and [4] for references). In 
terms of k, the liquid jet is slender if k is small. The 
variables of these l-D models only depend on the ax- 
ial variable z and the time t ,  so that the analytical 
and computational effort is greatly reduced. The au- 
thors have derived and generalized two well known 
l-D models (Lee [5] and Cosserat [6] models) and 
other two new ones (averaged and parabolic models 
[3]) from the Navier-Stokes equations. Before using 
these models with confidence, it is indispensable to  
test them against available 3-D results. 

The linear analysis of the infinite jet subjected to  
small initial perturbations is useful to  determine the 
size of the resulting droplets. Typically, this size 
is inversely proportional to the most unstable wave 
number kmax. The linear analysis also gives an esti- 
mate of the breakup time, which is inversely propor- 
tional to the growth rate amax of the most unstable 
perturbation. This estimate is very good in prac- 
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Figure 1: Scheme of an infinite, conducting liquid jet in a 
radial electric field. 

tice, since the amplitude of the perturbation is small 
during almost all the time until the breakup. The 
comparison of 3-D and 1-D linear results is very sat- 
isfactory for all models in the absence of electric field, 
especially for the averaged and parabolic models [3]. 

Here, we will extend the comparison of 3-D and 1-D 
linear results to two configurations with electric field: 
a perfectly conducting liquid jet in a radial electric 
field and a perfectly insulating liquid jet in a longi- 
tudinal electric field. In both cases, the dispersion 
relation is modified by adding an electric-pressure 
term to the capillary-pressure term [7, 81. 

Even more important is to  test the validity of 1-D 
models near the breakup, when nonlinear effects take 
place. In that regime, it is not clear that the slen- 
derness hypothesis holds. Here, a comparison with 
3-D solutions in the absence of electric field is made. 

Conducting jet with radial electric field 

Figure 1 shows how a cylindrical outer electrode is 
put in order t o  induce a dc radial electric field on the 
jet. In this case, the nondimensional number that 
evaluates the electric pressure relative to the capil- 
lary pressure is x = ~~iS~ / [yRln~(R , , / I1 ) ] .  The ef- 
fect of Roe/R is negligible when it is large, which 
is usually the case. The 1-D linear results have 
been tested using the exact (3-D) solution given by 
Melcher [9] and Saville [lo]. We will concentrate in 
the most unstable modes of the jet, which are the 
most interesting ones. For a fixed value of I C ,  the error 
is not expected to increase with x, since the electric 
term is the same for both 1-D and 3-D equations. 
However, the most unstable mode moves towards 
shorter wavelengths (kmax increases) as x increases. 
This implies larger errors in amax and IC,,, for the 
1-D models. To see how well they behave, we have 
computed the relative error in amax against C for 
,; = 3.2. This is an unfavorable situation, difficult to 
reach in experiments [9]. The only model with large 
error for small viscosity is the more simple viscous 
Lee model. Its relative error is damax = 20%. The 
Cosserat model, which is typically worse for moder- 
ate or large viscosity, gives hamax 21 6%. The aver- 

Figure 2: Scheme of an infinite, insulating liquid jet in a lon- 
gitudinal electric field. 

aged and parabolic models have errors under 4% for 
all C, which are typically within experimental error. 
For smaller x, the error diminishes. 

Insulating jet with tangential electric field 

Figure 2 shows a possible configuration of electrodes 
so as to  induce a dc electric field tangential to  the 
interface of the jet. Dielectric liquids behave as per- 
fectly insulating under an ac electric field whose fre- 
quency is much larger than the inverse of the charge 
relaxation time (the permittivity divided by the con- 
ductivity of the liquid) and the capillary time [ll]. 
Now the nondimensional number that evaluates the 
electric pressure relative to the capillary pressure is 
x = E ~ E ~ R / ~ ,  where EO is the electric field far from 
the liquid. The relative permittivity, also has an 
influence on the stability and dynamics of the jet. 
We have extended the 3-D inviscid linear analysis 
of Nayyar and Murty [12] to viscous liquids [8] in 
order to  test 1-D linear results. The effect of the 
electric field is now stabilizing, contrary to the con- 
ducting case: the modes that grow faster move to  
larger wavelengths when x increases. In terms of 1- 
D errors, this means that 1-D results improve when 
applying an electric field. For a typical oil (er = 3) 
with x = 1, the error of the averaged and parabolic 
models are always under 0.01%. The Lee model un- 
derestimates amax in 0.6% for C small, while the 
Cosserat model overestimates it in 0.08% for moder- 
ate viscosity. 

Breakup: 1-D numerical method 

The linear analysis cannot provide the shape of the 
interface ( r  = F ( z , t ) )  when the jet breaks up. 
In fact, it cannot predict the appearance of small 
droplets, called satellites, when C is small [13]. This 
is a non-linear phenomenon. Ashgriz and Tsamopou- 
10s [ 141 have computed numerically the breakup of an 
infinite liquid jet of almost inviscid (C = 0.005) and 
very viscous (C = 10) liquid jets, for several values 
of k. We use these data for testing the accuracy of 
1-D models. 

We have implemented a very efficient numerical 
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method for solving the four 1-D models mentioned 
above. The partial derivative equations are of or- 
der up to four in z and one in time. The spatial 
discretization has been made through a Galerkin fi- 
nite element method, based in the Hermite interpo- 
lation. For the resulting system of ordinary differ- 
ential equations in time, we have chosen an implicit 
predictor-corrector method with variable time step. 
The predictor is an Adams-Brashforth scheme and 
the corrector is the trapezoid rule. Only for the first 
four first steps, we have used the more dissipative im- 
plicit Euler method as corrector, initiated with the 
explicit Euler method as predictor. This guarantees 
the smoothness of the initial conditions without in- 
creasing appreciably the temporal error. The result- 
ing system of nonlinear algebraic equations is solved 
by the Newton method, which involves the inversion 
of a jacobian matrix. This task is carried out very 
efficiently by an LU method that takes advantage of 
the block-diagonal form of the matrix. The computa- 
tional effort is small: each run takes about a minute 
in a personal computer. 

Conservation of energy in 1-D models 

When using the averaged model, a numerical insta- 
bility arises near breakup. This is more evident for 
large viscosity. We have identified and corrected this 
shortcoming through a study of the conservation of 
energy of the l-D models. The law of conservation 
of energy applied to fluids can.be expressed as 

(E, + &PIt  = -&, (1) 

where Ek and Ep are the kinetic and potential ener- 
gies, and &, is the powef dissipated by the viscous 
stresses, called dissipation function. Here, we have 
taken into account that boundary terms are zero due 
to the application of boundary conditions. 

Following Landau [15], we have calculated the 3-D 
dissipation function. Similarly, we have deduced &, 
from the equations of each l-D model. The result- 
ing expressions can be compared to the 3-D dissipa- 
tion function, provided that the velocity is expanded 
in the same way as in the derivation of l-D mod- 
els. As in the 3-D case, the Lee and Cosserat model 
have always definitely positive dissipation functions 
[4]. However, the dissipation function of the Cosserat 
model hBs an extra positive term with respect to the 
3-D expression of E,. This explains why the Cosserat 
model systematically overestimates the breakup time 
for moderate or large viscosity. 

The expression of &" of the averaged model is positive 
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Figure 3: Radius of the neck versus nondimensional time, 
for k = 0.9 and C = 0.005; according to 3-D (Ashgriz and 
Mashayek, +), Lee (. . . . . .), Cosserat and averaged (- - -), 
and parabolic (- - - - -) models. 

I I I I 

0 1 2 3 
z 

Figure 4: Shape of the interface near the breakup, for the 
same conditions as in figure 3. Solid line corresponds to 3-D 
results of Ashgriz and Mashayek. 

for small or moderate amplitudes, but it is not a per- 
fect square. Eventually, it becomes slightly negative 
in a portion of the jet before breakup. This is due 
to high-order terms not retained in the derivation of 
the model, which becomes not so small in the less 
slender zone of the jet near the breakup. However, 
this problem can be easily solved by retaining some 
high-order terms in the model that make the dissi- 
pation function definitely positive. In practice, test 
computations show that this has a negligible effect 
on the behaviour of the model until the numerical 
instability occurs. 

Breakup: l-D versus 3-D predictions 

In order to make the errors of l-D models evident, we 
have taken the less favorable wave'number ( I C  = 0.9) 
in the 3-D computations of Ashgriz and Mashayek 
[14]. For typical values of k, smaller than the latter, 
the error of l-D models is smaller. In figure 3 we 
show the evolution of the neck radius Fmin for a low- 
viscosity (C = 0.005) liquid jet. The error of the Lee 
model is significant, as was also the case for small 
perturbations [3], while the other models give a very 
accurate estimation of the breakup time. 

Figure 4 shows how well the l-D models can predict 
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Figure 5: Radius of the neck versus nondimensional time, for 
k = 0.9 and C = 10; according to 3-D (Ashgriz and Mashayek, 
+), Lee (......), Cosserat (-.-.-), averaged (- - -), and 
parabolic (- - - - -) models. 
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Figure 6: Shape of the interface near the breakup, for the 
same conditions as in figure 5. 

the shape of the interface near the breakup (owing 
to symmetry, only half the period is represented). In 
particular, they predict accurately the existence and 
the size of the satellite drop (on the left). 

Figure 5 shows Fmin versus time for the same k ,  
but now for large viscosity (C = 10). The error is 
slightly greater, as it happened in the linear analy- 
sis [3], but small compared with typical experimental 
errors. Only the Cosserat model, as discussed above, 
clearly overestimates the breakup time. 

The error in the shape of the interface is also small 
for large C, as shown in figure 6, although it is larger 
than the corresponding one for low viscosity. 

Conclusions 

In this paper, we have tested the validity of 1-D mod- 
els in predicting the evolution of perfectly conducting 
liquid jets under a radial electric field and perfectly 
insulating liquid jets under a longitudinal electric 
field. The linear analysis is encouraging, since the 
errors of 1-D models are small enough in most situ- 
ations, even in the presence of strong electric fields. 

In the absence of electric field, a comparison between 
3-D and 1-D predictions of the breaking of liquid 

jets shows that the latter can predict accurately the 
breakup time, as well as the shape of the interface 
and the volume of the resulting droplets. Future 
work will implement the breaking of liquid jets with 
electric field. 
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