
I. INTRODUCTION

Graph states �1,2� are fundamental in quantum informa-
tion, especially in quantum error correction �3–5� and
measurement-based quantum computation �6�. Graph states
also play a fundamental role in the study of entanglement.
Two quantum states have the same entanglement if they are
equivalent under stochastic local operations and classical
communication �SLOCC�. For n=3, there are six classes un-
der SLOCC �7�. For n�4 the number of classes under
SLOCC is infinite and is specified by an exponentially in-
creasing number of parameters. However, if we focus on
graph states of n�27 qubits, then the discussion becomes
simpler. On one hand, every two graph states which are
SLOCC equivalent are also equivalent under local unitary
�LU� operations �8�. On the other hand, previous results sug-
gest that, for graph states of n�27 qubits, the notion of LU
equivalence and local Clifford equivalence �LC equivalence�
coincide. The “LU⇔LC conjecture” states that “every two
LU-equivalent stabilizer states must also be LC equivalent.”
Ji et al. proved that the LU⇔LC conjecture is false �9�.
However, the LU⇔LC is true for several classes of n qubit
graph states �10,11� and the simplest counterexamples to the
conjecture are graph states of n=27 qubits �9�. Indeed,
Ji et al. “believe that 27 is the smallest possible size of coun-
terexamples of LU⇔LC.” In this paper we assume that de-
ciding whether or not two graph states of n�27 qubits have
the same entanglement is equivalent to deciding whether or
not they are LC equivalent.

The aim of this paper is to solve the following problem.
Given an n-qubit graph state with n�9 qubits, decide which
entanglement class it belongs to just by examining some of
the state’s intrinsic properties �i.e., without generating the
whole LC class�. The solution to this problem is of practical
importance. If one needs to prepare a graph state �G� and
knows that it belongs to one specific class, then one can
prepare �G� by preparing the LC-equivalent state �G�� requir-
ing the minimum number of entangling gates and the mini-

mum preparation depth of that class �see �1,2,12�� and then
transform �G�� into �G� by means of simple one-qubit unitary
operations. The problem is that, so far, we do not know a
simple set of invariants which distinguishes between all
classes of entanglement, even for graph states with n�7
qubits.

The classification of graph states’ entanglement has been
achieved, up to n=7 qubits, by Hein, Eisert, and Briegel
�HEB� �1� �see also �2�� and has recently been extended to
n=8 qubits �12�. The criteria for ordering the classes in
�1,2,12� are based on several entanglement measures: the
minimum number of two-qubit gates required for the prepa-
ration of a member of the class, the Schmidt measure for the
n-partite split �which measures the genuine n-party entangle-
ment of the class �13��, and the Schmidt ranks for all bipar-
tite splits �or rank indexes �1,2��. The problem is that this set
of entanglement measures fails to distinguish between in-
equivalent classes �i.e., between different types of entangle-
ment�. There is already an example of this problem in n=7:
none of these entanglement measures allows us to distin-
guish between the classes 40, 42, and 43 in �1,2�. A similar
problem occurs in n=8: none of these entanglement mea-
sures allows us to distinguish between classes 110 and 111,
between classes 113 and 114, and between classes 116 and
117 in �12�. Therefore, we cannot use these invariants for
deciding which entanglement class a given state belongs to.
Reciprocally, if we have such a set of invariants, then we can
use it to unambiguously label each of the classes.

Van den Nest, Dehaene, and De Moor �VDD� proposed a
finite set of invariants that characterizes all classes �14�.
However, already for n=7, this set has more than 2�1036

invariants which are not explicitly calculated anywhere, so
this set is not useful for classifying a given graph state. In-
deed, VDD “believe that �their set of invariants� can be
improved—if not for all stabilizer states then at least for
some interesting subclasses of states” �14�. Moreover, they
state that “it is likely that only �some� invariants need to be
considered in order to recognize LC equivalence” �14� and
that “it is not unlikely that there exist smaller complete lists
of invariants which exhibit less redundancies” �14�. In this
paper we show that, if n�8, then four invariants are enough
to recognize the type of entanglement.*adan@us.es
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The paper is organized as follows. In Sec. II we introduce
some basic concepts of the graph state formalism and review
some of the results about the invariants proposed by VDD
that will be useful in our discussion. In Sec. III we present
our results and in Sec. IV our conclusions.

II. BASIC CONCEPTS

A. Stabilizer

The Pauli group Gn on n qubits consists of all 4�4nn-fold
tensor products of the form M =�MM1 � ¯ � Mn, where
�M � ��1, � ı� is an overall phase factor and Mi is either the
2�2 identity matrix �0=1 or one of the Pauli matrices
X=�x, Y =�y, and Z=�z.

An n-qubit stabilizer S in the Pauli group is defined as an
Abelian subgroup of Gn which does not contain the operator
−1 �15�. A stabilizer consists of 2k Hermitian �therefore, they
must have real overall phase factors �1� n-qubit Pauli
operators si=�iM1

�i�
� ¯ � Mn

�i��Gn , i=1, . . . ,2k for some
k�n. We will call the operators si stabilizing operators.

In group theory, a set of elements �g1 , . . . ,gl� in a group G
is said to generate the group G if every element of G can be
written as a product of elements from �g1 , . . . ,gl�. The nota-
tion G= 	g1 , . . . ,gl� is commonly used to describe this fact,
and the set �g1 , . . . ,gl� is called the generator of G. The gen-
erator of an n-qubit stabilizer S is a subset �not necessarily
unique� �S= �g1 , . . . ,gk�, consisting of k�n independent sta-
bilizing operators, such that S= 	�S�. In this context, inde-
pendent means that no product of the form g1

a1
¯gk

ak, where
ai� �0,1� yields the identity except when all ai=0. As a
consequence, removing any operator gi from the generator
makes the generated group smaller.

By definition, given a stabilizer S, the stabilizing opera-
tors si commute, so that they can be diagonalized simulta-

neously and, therefore, share a common set of eigenvectors
that constitute a basis of the so-called vector space VS stabi-
lized by S. The vector space VS is of dimension 2q when
��S�=n−q. Remarkably, if �S�=2n, then there exists a unique
common eigenstate �	� on n qubits with eigenvalue 1, such
that si�	�= �	� for every stabilizing operator si�S. Such a
state �	� is called a stabilizer state because it is the only state
that is fixed �stabilized� by every operator of the stabilizer S.

Graph states are a special kind of stabilizer states �with
k=n� associated with graphs. It has been demonstrated that
every stabilizer state is equivalent under local complementa-
tion �defined below� to some �generally non unique� graph
state �5�.

B. Graph state

A n-qubit graph state �G� is a pure state associated to a
graph G�V ,E� consisting of a set of n vertices V= �1, . . . ,n�
and a set of edges E connecting pairs of vertices, E�V�V.
Each vertex represents a qubit. The graph G provides a math-
ematical characterization of �G�. The graph state �G� associ-
ated to the graph G is the unique n-qubit state fulfilling

gi�G� = �G�, for i = 1, . . . ,n , �1�

where gi are the generators of the state’s stabilizer group,

defined as the set �sj� j=1
2n

of all products of the generators. gi
is the generator operator associated to the vertex i, defined by

gi ª X�i�
� �i,j��EZ�j�, �2�

where the product is extended to those vertices j which are
connected with i and X�i��Z�i�� denotes the Pauli matrix
�x��z� acting on the ith qubit.

TABLE I. Stabilizer and supports for the �LC3�.

Stabilizing operators Support Weight

XZ1 s1=g1 �1,2� 2

ZXZ s2=g2 �1,2,3� 3

1ZX s3=g3 �2,3� 2

111 s4=g1g1 �0”� 0

YYZ s5=g1g2 �1,2,3� 3

X1X s6=g1g3 �1,3� 2

ZYY s7=g2g3 �1,2,3� 3

−YXY s8=g1g2g3 �1,2,3� 3

TABLE II. Weight distribution for graph states up to six
qubits.

Graph state A0 A1 A2 A3 A4 A5 A6

1 1 0 3

2 1 0 3 4

3 1 0 6 0 9

4 1 0 2 8 5

5 1 0 10 0 5 16

6 1 0 4 6 11 10

7 1 0 2 8 13 8

8 1 0 0 10 15 6

9 1 0 15 0 15 0 33

10 1 0 7 8 7 24 17

11 1 0 6 0 33 0 24

12 1 0 4 8 13 24 14

13 1 0 3 8 15 24 13

14 1 0 2 8 17 24 12

15 1 0 3 8 15 24 13

16 1 0 3 0 39 0 21

17 1 0 1 8 19 24 11

18 1 0 0 8 21 24 10

19 1 0 0 0 45 0 18
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FIG. 1. Graphical effect of local complementation on qubit i.
Local complementation on qubit i on the graph on the left �right�
leads to the graph on the right �left�.



C. Local complementation

Two n-qubit states, �
� and �	�, have the same n-partite
entanglement if and only if there are n one-qubit unitary
transformations Ui, such that �
�= � i=1

n Ui�	�. If these one-
qubit unitary transformations belong to the Clifford group,
then the two states are said to be LC equivalent. VDD found
that the successive application of a transformation with a
simple graphical description is enough to generate the com-
plete equivalence class of graph states under local unitary
operations within the Clifford group �hereafter simply re-
ferred to as class or orbit� �16�. This simple transformation is
local complementation.

On the stabilizer, local complementation on the qubit i
induces the map Y�i��Z�i� ,Z�i��−Y�i� on the qubit i and the
map X�j��−Y�j� ,Y�j��X�j� on the qubits j connected with i
�2�. On the generators, local complementation on the qubit i
maps the generators gj

old, with j connected with i, to gj
newgi

new.
Graphically, local complementation on qubit i acts as fol-

lows. Those vertices connected with i which were connected
from each other become disconnected from each other and
vice versa. An example is in Fig. 1.

Using local complementation, one can generate the orbits
of all LC-inequivalent n-qubit graph states. There are 45 or-
bits for n�7 �1,2� and 101 orbits for n=8 �12�.

D. Supports and LC invariants related to supports

Let �	� be a stabilizer state and S��	�� the corresponding
stabilizer. Given a stabilizing operator si=�iM1

�i�
� ¯ � Mn

�i�,
its support supp�si� is the set of all j� �1, . . . ,n� such that

Mj
�i� differs from the identity. Therefore, the support of si is

the set of the labels of the qubits on which the action of the
Pauli matrices is nontrivial �i.e., there is a X, Y, or Z Pauli
matrix acting on the qubit�. Notice that the support is pre-
served under the maps induced on the stabilizer by local
complementation �see Sec. II C�.

Let �� �1, . . . ,n� be the support of a stabilizing operator
si, supp�si�=�. The weight of the operator si is the cardinal-
ity of its support, ���. The identity operator 1 � ¯ � 1, which
is always present in a stabilizer due to the underlying group
structure, fulfills �= �0”� and, therefore, is of weight zero.

The set of operators �si�i=1
2k

of a stabilizer S can be classi-
fied into equivalence classes according to their supports, de-
fining a partition in the stabilizer. We will say that two sta-
bilizing operators si and sj of S belong to the same
equivalence class ��� if they have the same support �, i.e.,
supp�si�=supp�sj�=�. We denote by A���	�� the number of
elements �stabilizing operators� si�S��	�� with supp�si�=�.
In other words, A���	�� is the cardinality of the equivalence
class ���. Since any graph state �G� is a special type of
stabilizer state, these definitions can also be applied to them.

TABLE III. Invariants for the n-qubit graph states with 3�n
�6. Notation: valuemultiplicity. The numeration of the classes is the
one in �1,2�.

No. Invariants

1 02, 11, 31

2 03, 14, 41

3 08, 17, 91

4 08, 13, 24, 51

5 015, 116, 161

6 018, 18, 23, 42, 101

7 017, 17, 26, 51, 81

8 015, 111, 35, 61

9 032, 131, 331

10 038, 115, 28, 82, 171

11 041, 116, 46, 241

12 038, 114, 27, 41, 52, 81, 141

13 042, 16, 28, 46, 51, 131

14 037, 112, 28, 34, 62, 121

15 042, 112, 46, 53, 131

16 044, 14, 212, 53, 211

17 034, 118, 26, 31, 54, 111

18 033, 121, 33, 46, 101

19 047, 11, 315, 181

TABLE IV. Invariants for the seven-qubit graph states. Notation:
valuemultiplicity. The numeration of the classes is the one in �1,2�.

No. Invariants

20 063, 164, 641

21 078, 132, 215, 162, 341

22 084, 132, 48, 83, 401

23 077, 131, 215, 83, 171, 261

24 087, 125, 48, 56, 161, 251

25 092, 112, 28, 47, 54, 84, 201

26 087, 116, 214, 47, 81, 102, 281

27 080, 125, 211, 33, 43, 53, 81, 141, 231

28 085, 115, 216, 43, 67, 91, 181

29 087, 112, 215, 49, 53, 131, 221

30 080, 121, 212, 36, 41, 54, 83, 171

31 086, 128, 43, 54, 86, 201

32 089, 112, 216, 44, 54, 82, 321

33 072, 140, 23, 34, 44, 94, 181

34 085, 114, 217, 47, 51, 62, 131, 221

35 079, 125, 212, 42, 56, 83, 171

36 086, 114, 217, 44, 52, 62, 82, 261

37 080, 121, 212, 38, 41, 52, 62, 121, 211

38 074, 132, 28, 33, 45, 75, 161

39 077, 122, 216, 35, 42, 75, 161

40 070, 136, 27, 37, 67, 151

41 078, 122, 214, 35, 43, 54, 111, 201

42 074, 126, 215, 35, 67, 151

43 084, 18, 221, 37, 67, 151

44 078, 124, 23, 315, 46, 101, 191

45 083, 122, 310, 410, 62, 241



TABLE V. Invariants for the eight-qubit graph states. Notation: valuemultiplicity. The numeration of the classes is the one in �12�.

No. Invariants No. Invariants

46 0128, 1127, 1291 97 0163, 144, 217, 314, 45, 54, 72, 106, 221

47 0158, 163, 232, 322, 651 98 0157, 155, 217, 39, 44, 53, 63, 71, 94, 122, 241

48 0173, 164, 415, 163, 841 99 0165, 140, 218, 317, 44, 52, 62, 71, 94, 122, 241

49 0158, 162, 231, 161, 172, 321, 501 100 0152, 159, 216, 38, 412, 98, 211

50 0176, 163, 816, 651 101 0168, 158, 418, 83, 96, 122, 241

51 0176, 156, 47, 58, 87, 321, 441 102 0177, 126, 226, 34, 411, 52, 62, 86, 201, 321

52 0192, 124, 216, 48, 57, 84, 164, 371 103 0174, 120, 240, 39, 64, 72, 82, 124, 271

53 0180, 130, 230, 48, 82, 102, 162, 171, 491 104 0200, 121, 424, 56, 134, 571

54 0163, 154, 222, 38, 84, 92, 181, 241, 421 105 0159, 158, 215, 34, 412, 92, 104, 161, 341

55 0185, 132, 216, 413, 87, 202, 441 106 0193, 119, 215, 312, 612, 91, 123, 541

56 0181, 130, 223, 46, 67, 83, 92, 122, 181, 301 107 0196, 19, 224, 412, 54, 88, 132, 411

57 0191, 132, 29, 416, 106, 161, 661 108 0180, 126, 226, 34, 44, 610, 92, 123, 361

58 0176, 149, 414, 514, 202, 411 109 0164, 140, 228, 32, 48, 54, 61, 72, 106, 221

59 0183, 128, 225, 46, 52, 63, 82, 102, 132, 141, 161, 341 110 0174, 132, 222, 313, 44, 71, 82, 106, 111, 311

60 0179, 132, 225, 49, 63, 83, 101, 142, 201, 381 111 0166, 140, 222, 39, 49, 51, 61, 74, 101, 131, 161, 311

61 0186, 124, 220, 410, 58, 82, 104, 161, 401 112 0168, 131, 232, 39, 48, 51, 72, 134, 311

62 0169, 146, 215, 37, 45, 57, 81, 92, 121, 151, 181, 331 113 0161, 146, 221, 310, 44, 56, 61, 83, 112, 141, 261

63 0175, 127, 231, 34, 46, 62, 87, 91, 142, 261 114 0158, 151, 220, 312, 42, 53, 61, 72, 82, 114, 261

64 0200, 18, 214, 418, 56, 86, 131, 142, 291 115 0164, 140, 228, 32, 47, 56, 87, 141, 261

65 0188, 228, 416, 64, 92, 124, 331 116 0161, 138, 237, 37, 42, 61, 73, 106, 281

66 0181, 120, 226, 38, 48, 63, 74, 81, 103, 161, 281 117 0161, 143, 223, 314, 44, 53, 61, 72, 102, 132, 281

67 0179, 124, 226, 34, 48, 52, 68, 92, 121, 181, 301 118 0155, 155, 212, 316, 49, 98, 211

68 0170, 135, 220, 312, 47, 52, 74, 81, 102, 132, 251 119 0152, 159, 216, 310, 49, 61, 86, 112, 231

69 0180, 154, 48, 57, 164, 172, 371 120 0160, 142, 229, 33, 412, 61, 86, 112, 231

70 0176, 162, 814, 161, 172, 321 121 0192, 125, 424, 56, 88, 411

71 0188, 122, 232, 57, 84, 172, 691 122 0176, 124, 224, 36, 416, 61, 72, 106, 221

72 0148, 184, 28, 37, 84, 174, 351 123 0190, 128, 212, 31, 516, 86, 112, 511

73 0185, 132, 215, 412, 810, 161, 501 124 0200, 15, 232, 56, 88, 134, 411

74 0178, 130, 226, 49, 66, 83, 92, 241, 361 125 0169, 135, 228, 34, 44, 56, 64, 81, 92, 122, 331

75 0166, 154, 214, 46, 57, 84, 91, 142, 171, 291 126 0170, 144, 214, 36, 512, 86, 101, 112, 261

76 0188, 126, 214, 414, 52, 86, 92, 131, 142, 291 127 0161, 148, 219, 36, 49, 54, 76, 101, 161, 281

77 0186, 128, 218, 412, 54, 104, 142, 161, 401 128 0161, 142, 233, 33, 46, 61, 73, 106, 281

78 0191, 124, 222, 41, 58, 87, 142, 601 129 0160, 150, 218, 38, 49, 63, 72, 94, 121, 301

79 0178, 132, 225, 47, 66, 84, 123, 421 130 0156, 152, 219, 39, 410, 61, 86, 112, 231

80 0166, 149, 215, 36, 48, 56, 81, 91, 111, 141, 201, 351 131 0152, 159, 216, 312, 46, 62, 74, 104, 251

81 0156, 170, 23, 34, 415, 92, 101, 134, 281 132 0156, 152, 216, 313, 410, 75, 102, 131, 251

82 0179, 127, 227, 34, 46, 64, 82, 91, 125, 301 133 0148, 169, 212, 32, 416, 98, 211

83 0179, 124, 226, 34, 410, 52, 64, 82, 92, 121, 181, 301 134 0188, 134, 320, 63, 910, 541

84 0165, 149, 214, 36, 410, 76, 81, 102, 132, 251 135 0166, 144, 220, 33, 412, 810, 351

85 0160, 156, 216, 34, 410, 54, 81, 144, 321 136 0191, 130, 23, 33, 412, 715, 101, 481

86 0190, 110, 230, 416, 53, 92, 102, 162, 371 137 0154, 151, 226, 38, 46, 62, 74, 104, 251

87 0200, 19, 216, 424, 52, 134, 571 138 0154, 151, 224, 314, 41, 65, 96, 271

88 0176, 128, 216, 314, 412, 71, 84, 114, 231 139 0183, 112, 231, 310, 510, 66, 123, 301

89 0174, 130, 232, 44, 52, 66, 85, 142, 321 140 0160, 136, 234, 39, 48, 64, 92, 122, 271

90 0175, 124, 233, 34, 410, 62, 74, 81, 162, 341 141 0212, 11, 314, 628, 451

91 0168, 128, 244, 31, 42, 64, 72, 82, 124, 271, 142 0184, 143, 628, 451

92 0175, 127, 231, 34, 48, 62, 81, 91, 106, 341 143 0179, 114, 235, 315, 73, 88, 101, 321

93 0170, 133, 226, 39, 44, 52, 66, 71, 91, 122, 151, 271 144 0172, 19, 256, 36, 64, 88, 291

94 0182, 120, 226, 38, 410, 52, 83, 101, 132, 161, 341 145 0188, 137, 32, 628, 451

95 0164, 141, 228, 36, 44, 54, 62, 72, 112, 142, 291 146 0164, 121, 256, 32, 64, 88, 291

96 0167, 140, 223, 37, 45, 55, 71, 84, 112, 141, 291



supp�sk� = �k, supp�sksl� = �kl. �3�

Then, �i� �Tn,r
� ��	��� is LC invariant and �ii� the LC equiva-

lence class of �	� is completely determined by the values of
all invariants �Tn,n

� ��	��� �i.e., where r=n�.
VDD provide another family of support-related invari-

ants, based on a second theorem with the same formulation
than the one above, except for the substitution of conditions
�3� by new constraints

supp�sk� � �k, supp�sksl� � �kl. �4�

These new LC invariants are the dimensions of certain vector
spaces and, in principle, are more manageable from a com-
putational point of view because they involve the generator
matrix of the stabilizer and rank calculation. Nevertheless,
we will focus our attention on the first family of invariants,
since they suffice to solve the problem we address in this
paper with no extra computational effort. To resort to the
second family would be justified in case we had to use in-
variants with a high r value to achieve LC discrimination
among graph states up to eight qubits. We refer the reader to
Ref. �14� for a proof of Theorem 1 and the extension to the
second family of LC invariants.

The invariants of Theorem 1 are the cardinalities of cer-
tain subsets Tn,r

� ��	�� of S�	�¯S�	�, which are defined in
terms of simple constraints �3� on the supports of the stabi-
lizing operators. VDD pointed out that, for r=1, these invari-
ants count the number of operators in the stabilizer with a
prescribed support. Therefore, fixing r=1, for every possible
support �k� �1, . . . ,n�, there is an invariant

��s � S�	��supp�s� = �k�� . �5�

That is, the invariants for r=1 are the A�k
��	��, i.e., the car-

dinalities of the equivalence classes ��k� of the stabilizer.
The number of possible supports in a stabilizer of an n-qubit
state is equal to 2n and, therefore, there are 2n VDD’s invari-
ants for r=1. Many of them could be equal to zero. In fact,
when dealing specifically with graph states, it can be easily
seen that A�k

��	��=0 when referred to supports fulfilling
��k�=1 because stabilizing operators of weight 1 are not

present in the stabilizer of a graph state due to the inherent
connectivity of the graphs associated to the states that rules
out isolated vertices.

On the other hand, VDD consider the invariants A�k
��	��

as “local versions” of the so-called weight distribution of a
stabilizer, a concept frequently used in classical and quantum
coding theory. For r�2, the new series of invariants involve
r-tuples of stabilizing operators and their corresponding sup-
ports and constitute a generalization of the weight distribu-
tion. Let us denote

Ad��	�� = 

�,���=d

A���	�� , �6�

the number of stabilizing operators with weight equal to d.
According to this notation, the weight distribution of a sta-
bilizer is the �n+1�-tuple

W�	� = �Ad��	���d=0
n . �7�

In principle, W�	� could be a compact way to present the
whole information about the invariants A���	��, i.e., VDD’s
invariants with r=1. This question will be addressed later.

In order to clarify the content of VDD’s theorem, let us
briefly discuss the way it works when applied to a particular
graph state. We have chosen the three-qubit linear cluster
state, �LC3�, because of its simplicity, combined with a suf-
ficient richness in the stabilizer structure. Table I shows the
stabilizer of �LC3� with its eight stabilizing operators,
�s1 , . . . ,s8�. Three of them �s1=g1, s2=g2, and s3=g3� consti-
tute a generator. �LC3� is a three-qubit graph state, so there
are 23=8 possible supports �8 being the number of subsets in
the set �1,2,3��:

�0”�,�1�,�2�,�3�,�1,2�,�1,3�,�2,3�,�1,2,3� . �8�

VDD’s invariants for r=1. In this case, �= ��1�. By �,
we denote each of all the possible ways to choose a single
support �1, so there are eight choices for �, which are those
listed in Eq. �8�. Given a particular choice of �= ��1�, the set
Tn,1

� ��LC3�� contains all stabilizing operators s1 for the �LC3�
fulfilling

supp�s1� = �1, �9�

so, as a matter of fact, Tn,1
� ��LC3�� is the equivalence class

��1� associated to the support �1. Only five out of the eight
possible supports are in fact present in the stabilizer of the
�LC3� �see the column “Support” in Table I� and, therefore,
we can distinguish between five nonempty equivalence
classes ���. According to VDD’s theorem, the LC invariants
for r=1, �Tn,1

� ��LC3���, are the cardinalities A���LC3�� of such
equivalence classes ���, namely,

A�0”���LC3�� = 1, �10a�

A�1���LC3�� = 0, �10b�

A�2���LC3�� = 0, �10c�

A�3���LC3�� = 0, �10d�

E. Invariants of Van den Nest, Dehaene, and De Moor

The following theorem is a key result obtained by VDD in 
�14� that presents a finite set of invariants which character-
izes the LC equivalence class of any stabilizer state �i.e., 
functions that remain invariant under the action of all local 
Clifford transformations�. We have chosen an adapted formu-
lation of the theorem to group multiplication involving Pauli 
operators �see Eq. �3��, slightly different from VDD’s origi-
nal notation, which is based on the well-known equivalent 
formulation of the stabilizer formalism in terms of algebra 
over the field F2=GF�2�, where arithmetic is performed 
modulo 2 and each stabilizing operator is identified with a 
2n-dimensional binary index operator.

Theorem 1. Let �� � be a stabilizer state on n qubits corre-
sponding to a stabilizer S���. Let r�N0 and consider subsets 
�k ,�kl � �1,  . . .  ,n� for every k , l� �1,  . . .  ,r�, with k� l. De-
note �ª ��1 ,�2 ,  . . .  ,�12 ,�13 , . . .� and let Tn

�
,r����� be the set 

consisting of all tuples �s1 ,  . . .  ,sr��S���¯S��� satisfying



A�1,2���LC3�� = 1, �10e�

A�1,3���LC3�� = 1, �10f�

A�2,3���LC3�� = 1, �10g�

A�1,2,3���LC3�� = 4. �10h�

VDD’s invariants for r=2. In this case, �= ��1 ,�2 ;�12�.
By � we denote each of all the possible different ways to
choose two supports �1, �2, and then a third support �12. Let
M =2n be the number of possible supports and n being the
number of qubits. On one hand, there are � M

2 � different com-
binations of two supports ��1 ,�2�, plus M couples of the
form ��1 ,�2=�1�. On the other hand, there are M possible
choices for �12. As a consequence, there are M�M + � M

2 ��
ways to choose �. For n=3, this number is 288. Given a
particular choice of �= ��1 ,�2 ;�12�, the set Tn,2

� ��LC3�� con-
tains all the two-tuples of the stabilizing operators �s1 ,s2� of
the �LC3� fulfilling

supp�s1� = �1, supp�s2� = �2, supp�s1s2� = �12. �11�

Many of these sets Tn,2
� ��LC3�� could be empty because the

stabilizer fails to fulfill any of the conditions �11�. The car-
dinalities of the 288 sets, �Tn,2

� ��LC3���, are the VDD’s invari-
ants that we are interested in. For instance, if we choose
�= ��1 ,�2 ;�12� such that

�1 = �1,2�, �2 = �1,2,3�, �12 = �1,2,3� , �12�

then, according to the information in Table I, there is only
one operator with support �1, namely, s1, and four
operators with support �2: s2, s5, s7, and s8. We obtain
Tn,2

� ��LC3��= ��s1 ,s2� , �s1 ,s5� , �s1 ,s7� , �s1 ,s8�� because these
four two-tuples verify conditions �11� and the value of the
corresponding VDD’s invariant is the cardinality of the set,
�Tn,2

� ��LC3���=4.
Another example. If we choose � such that �1= �1,2�,

�2= �2,3�, and �12= �1,2 ,3�, then the VDD’s invariant is
�Tn,2

� ��LC3���=0 because the two-tuple �s1 ,s3� defined by the
supports �1 and �2 fulfills s1s3=s6 and s6 does not match
with support �12.

III. RESULTS

The number of VDD’s invariants for an n-qubit graph
state grows very rapidly with r �and, of course, with n�. If
n=3, there are eight invariants for r=1 and 288 invariants
for r=2. For an eight-qubit graph state, there are 256 invari-
ants for r=1 and 8 421 376 for r=2. Obviously, the problem
of calculating all the VDD’s invariants for graph states up to
eight qubits becomes completely unfeasible if there are no
restrictions on r. The total number of VDD’s invariants for a
given n-qubit graph state, and all possible values of r, is
M +
r=2

n C��M ,r�C��M , P�, where M =2n, P= � r
2 �, and

C��M ,r� denotes the combinations with repetition of M ele-
ments choose r. For n=7, this formula gives 2.18�1036; for
n=8, it gives 1.88�1053.

How many of them are needed to distinguish between all
LC equivalence classes? VDD stated that “the LC equiva-
lence class of �	� is completely determined by the values of
all invariants �Tn,n

� ��	��� �i.e., where r=n�” �14�. However,
this number �i.e., C��M ,r�C��M , P� with r=n� is still too
large to be practical. For n=7 is 2.18�1036 and for n=8 is
1.88�1053 �i.e., most of the invariants correspond to the
case r=n�. We are interested in the minimum value of r that
yields a series of invariants sufficient to distinguish between
all the 146 LC equivalence classes of graph states up to n
=8 qubits. In Ref. �14�, the authors point out that there are
examples of equivalence classes in stabilizer states which are
characterized by invariants of small r; for instance, those
equivalent to GHZ states. In addition, they remark that a
characterization based on small r values could be feasible, at
least for some interesting subclasses or subsets of stabilizer
states. We have calculated the VDD’s invariants for r=1 for
the 146 LC equivalence classes of graph states with up to
n=8 qubits. This implies calculating the cardinalities A���	��
of the corresponding equivalence classes ��� of the 146 rep-
resentatives of the LC-equivalence classes, 30 060 invariants
in total �since there are 1, 1, 2, 4, 11, 26, and 101 classes of
two-, three-, four-, five-, six-, seven-, and eight-qubit graph
states, respectively, and the number of VDD’s invariants with
r=1 is 2n for each class�. Our results confirm the conjecture
that invariants with r=1 are enough for distinguishing be-
tween the 146 LC equivalence classes for graph states up to
eight qubits. It is therefore unnecessary to resort to families
of VDD’s invariants �Tn,r

� ��	��� with r�2.
Our goal is not to show the values of these 30 060 invari-

ants but to compress all this information and construct
simple invariants from it. However, in order to do it properly,
some requirements should be fulfilled. �I� The compacted
information must be unambiguous and easily readable. �II�
The compacted information must be LC invariant. �III� The
compacted information concerning different LC equivalence
classes must still distinguish between any of them.

Following the comments of VDD in Ref. �14� about con-
sidering the invariants A���	�� as “local versions” of the
weight distribution W�	� of a stabilizer, we have calculated
W�	� for the 146 LC classes of equivalence, according to
definition �7�. It can easily be seen that, if A���	�� is LC
invariant, then W�	� is also LC invariant and permits a com-
pact way to compress the information of the invariants
A���	��. Unfortunately, W�	� is not able to distinguish be-
tween any two LC classes of equivalence. Table II shows that
the weight distribution fails to distinguish between LC
classes starting from n=6. Graph states with labels 13 and 15
in Refs. �1,2� have the same weight distribution and this
degeneration increases as the number of qubits grows, as we
have checked out calculating W�	� for all graph states up to
eight qubits.

Therefore, we must look for a way to compress the infor-
mation about the invariants A���	��, which satisfies �I�–�III�.
The fact that the stabilizing operators of a stabilizer can be
classified into equivalence classes according to their supports
�equivalence classes ����, and that the cardinalities of such
classes ��� are the invariants A���	��, leads us to introduce
two definitions. Two classes ��1� and ��2� are equipotent if
and only if both have the same cardinality, i.e., A�1

��	��



culate four quantities. These four LC invariants characterize
any LC class of n�8 qubits.

This result solves a problem raised in the classification of
graph states of n�8 qubits developed in Refs. �1,2,12�. A
compact set of invariants that characterize all inequivalent
classes of graph states with a higher number of qubits can be
obtained by applying the same strategy. This can be done
numerically up to n=12, a number of qubits beyond the
present experimental capability in the preparation of graph
states �17�.

We have also shown that the conjecture �18� that the list
of LC invariants given in Eq. �4� is sufficient to characterize
the LC equivalence classes of all stabilizer states, which is
not true in general �1�, is indeed true for graph states of
n�8 qubits. Moreover, we have shown that, for graph states
of n�8 qubits, the list of LC invariants given in Eq. �5�,
which is more restrictive than the list given in Eq. �4�, is
enough. This solves a problem suggested in �14�, regarding
the possibility of characterizing special subclasses of stabi-
lizer states using subfamilies of invariants.
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=A�2
��� ��, regardless of whether their stabilizing operators 

have different weights ��1�� ��2� or not. It is clear that the 
number of equipotent equivalence classes ��� for a given 
cardinality A���� �� is LC invariant. We will call it the A� 
multiplicity �or A� potency� and denote it by M�A��. For 
instance, if we take a look at the list of invariants A���LC3�� 
�see Eqs. �10a�–�10h�� we find that the value 0 appears three 
times �so there are three equivalence classes ��� with that 
cardinality� and then M�0�=3. Using this criterion, M�1� 
=4 and 
M�4�=1 for the �LC3�.

If we tabulate the values of A���� �� together with the 
corresponding values of M�A��, we obtain a two-index com-
pact information, which is LC invariant and, more impor-
tantly, LC discriminant, as required. The results are shown in 
Tables III–V.

In Table V we can see that four numbers are enough to 
distinguish between all classes of graph states with n=8 qu-
bits: the multiplicities of the values 0, 1, 3, and 4. Indeed, in 
Tables III and IV we see that these four numbers are enough 
to distinguish between all classes of graph states with n�8 
qubits.

IV. CONCLUSIONS

We have shown that, to decide which entanglement class 
a graph state of n�8 qubits belongs to, it is enough to cal-


