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Resumen

Esta tesis se enmarca en la resolución numérica de modelos que simulan el comportamiento
de flujos turbulentos mediante técnicas de orden reducido. La resolución numérica de
este tipo de flujos es compleja y costosa, a la par que necesaria para el diseño óptimo de
edificios eco-eficientes, entre otras muchas aplicaciones en ingeniería y arquitectura. La
incorporación de técnicas de Orden Reducido es clave para la reducción en órdenes de
magnitud el tiempo y coste computacional en la resolución numérica de estos problemas.

En esta tesis utilizaremos el modelo de Smagorinsky, un modelo de turbulencia de
tipo LES (Large Eddy Simulation) basado en las ecuaciones de Navier-Stokes que permite
la resolución de flujo turbulento sin la necesidad de mallas muy finas. Aún así, el coste
computacional es elevado, sobre todo en casos 3D.

Dentro de la modelización de orden reducido, existen varias técnicas que permiten
la obtención del modelo reducido. En esta tesis nos centramos en el desarrollo de
métodos de Bases Reducidas (BR). Usaremos de forma auxiliar la “Proper Orthogonal
Decomposition” (POD). Para la obtención del modelo reducido, es necesario el cálculo
del error entre el modelo aproximado y el modelo reducido mediante el método BR, lo
cuál puede llegar a ser muy costoso y complejo. Es por ello que se estudia la deducción
de estimadores a posteriori que permiten estimar este error y cuyo cálculo sea más rápido.

El modelo de Smagorinsky es no lineal ya que deriva de las ecuaciones de Navier-Stokes
y el desarrollo de estimadores para problemas no lineales requiere la utilización de
técnicas matemáticas adaptadas.

Para un modelo estacionario no lineal, encontramos estimadores basados en la teoría
Brezzi-Rappaz-Raviart (BRR) de aproximación de ramas no singulares de problemas no
lineales paramétricos. Es una teoría esencialmente basada sobre el teorema de la función
implícita. Este estimador ha sido ya elaborado para flujos estacionarios, aunque solo se
ha aplicado a flujos 2D. Por lo que, comenzamos aplicando este estimador a un caso 3D,
obteniendo grandes reducciones en cuanto a tiempo y coste computacional.

También aplicamos este estimador a un problema realista de diseño de claustros
orientado a la optimización del confort térmico en la planta baja. Los parámetros a
considerar para el problema son la altura y anchura del pasillo que rodea el claustro.
Conseguimos obtener una respuesta óptima analizando 625 posibilidades en 16 minutos.



Uno de los principales desafíos que abordamos es extender la obtención de estimadores
a posteriori a problemas no estacionarios. Para empezar, es necesario realizar estudios
previos sobre estimaciones a priori que involucren a la velocidad y presión. Así, somos
capaces de desarrollar un estimador a posteriori asumiendo ciertas hipótesis.

Por otro lado, desarrollamos una alternativa basándonos en la teoría de turbulencia
en equilibrio estadístico de Kolmogórov, por la cuál sabemos que existe una cascada de
energía que se propaga desde los grandes torbellinos hacia los más pequeños disipando
la energía en ellos gracias a la viscosidad. Esta cascada genera un espectro de energía
inercial con una forma determinada que utilizamos como estimador. Validamos dicho
estimador con un test académico, utilizando una estrategia POD+Greedy, obteniendo
resultados similares utilizando el estimador y el error real cometido.



Abstract

This PhD dissertation addresses the numerical simulation of models that simulate the
behavior of turbulent flows through reduced-order techniques. The numerical simulation
of this kind of flows is complex and pricey, as well as necessary to the Eco-efficient
building optimized design, among many others applications in engineering and architecture.
The integration of reduced-order techniques is the key to reducing by orders of magnitude
the time and computational cost in the numerical simulation of these problems.

In this dissertation, we use the Smagorinsky model, a Large Eddy Simulation (LES)
model based upon the Navier-Stokes equations that allows for the resolution of turbulent
flows with coarser meshes. Even then, the computational cost is high, especially in 3D
cases.

With respect to the Reduced Order Model (ROM), there exist some techniques to
obtain the ROM. In this dissertation, we focus on the development of Reduced Basis (RB)
method. Upon an ancillary basis, we shall use Proper Orthogonal Decomposition (POD).
For ROM obtainment, it is necessary to compute the error between the approximated
model and the reduced model through the RB method, which could become very expensive
and complex. This is the reason to study a posteriori estimates to estimate the error
and which computation is faster.

The Smagorinsky model is non-linear since it is derived by the Navier-Stokes equations
and the estimator development for non-linear problems requires the use of adapted
mathematical techniques.

For steady non-linear models, we find estimates based on the Brezzi-Rappaz-Raviart
(BRR) theory of non-singular branches approximation of parametric non-linear problems.
It is a theory essentially based upon the Implicit function theorem. This estimator has
already been developed for steady flows, although it has only be applied to 2D flows.
Therefore, we shall start applying this estimator to the 3D case, obtaining large reductions
in time and computational cost.

We also apply this estimator to a realistic design problem for a cloister focused on
the thermal comfort optimization of the ground floor. The parameters to consider for
the problem are the height and width of the corridors around the cloister. We obtain an
optimal answer by analyzing 625 possibilities in 16 minutes.



One of the main challenges addressed in this dissertation is to extend the a posteriori
estimator to unsteady problems. To start, it is necessary to analyze previous studies on
a priori estimations that involve velocity and pressure. Thus, we are able to develop
an a posteriori estimator under some hypothesis.

Furthermore, we develop an alternative based Kolmogórov’s theory of statistical
equilibrium, based on the existence of an energy cascade that spreads the energy from
large eddies to the smallest ones, dissipating the energy thanks to viscosity. This cascade
generates an inertial energy spectrum with a determined shape that we use as the estimator.
We have validated this estimator with an academic test, using a POD+Greedy strategy.
We obtain similar results using the estimator and the committed real error.
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Neumann boundary conditions.

Tf , I f = (0,Tf ) . final time greater than 0 and time domain.
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∆t . . . . . . . . time step.

Th . . . . . . . . a uniformly regular triangulation of Ω with h > 0 related to the mesh
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u,v,z,w . . . . . velocity field.
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θ . . . . . . . . temperature.
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ω,σ . . . . . . . the width and height of the corridor in chapter 2 and 3.

γh,γN . . . . . . continuity factors.

βh,βN . . . . . . stability factors.

ρT . . . . . . . . Lipschitz constant.

∆N . . . . . . . a posteriori error bound estimator.

BC . . . . . . . Boundary Condition.
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xvi Notation and Abbreviations

PDE . . . . . . Partial Differential Equation.

NS . . . . . . . Navier-Stokes.

LES . . . . . . . Large Eddy Simulation.

FE . . . . . . . Finite Element.

EIM . . . . . . Empirical Interpolation Method.

RBF . . . . . . Radial Basis Function.

ROM . . . . . . Reduced-Order Model.

RB . . . . . . . Reduced Basis.

POD . . . . . . Proper Orthogonal Decomposition.

BRR . . . . . . Brezzi-Rappaz-Raviart.

Variable Name SI units
ρ mass density kg/m3

µ dynamical viscosity kg/ms
ν kinematic viscosity m2/s
κ thermal diffusivity m2/s
cp specific heat capacity J/kgK
k thermal conductivity W/mK
α convective heat transfer W/m2K
β thermal expansion (1/θ for ideal gases) K−1

u,v,z,w velocity field m/s

E =
1
2
|u|2 kinetic energy per mass density m2/s2

ε = 2ν |Du|2 dissipation per mass density m2/s3

∇u deformation tensor s−1

Du = (1/2)(∇u+∇ut) symmetric deformation tensor s−1

f source term per mass unity m/s2

p,q,r pressure per mass density m2/s2

U characteristic velocity m/s
L characteristic length m

Table 1: Table of coefficients and variables.



Introduction

Nowadays, many of the problems in the fields of physics and engineering can be
characterized by Partial Differential Equations (PDEs). At the same time, PDEs involve
parameters that change from a resolution to another, modifying the results. This derives
in the resolution of highly complex parametric systems, such as evolutionary and
inverse problems, data assimilation in non-linear PDEs and optimal design of complex
devices, among others.

Along this dissertation, we focus on Computational Fluid Dynamics, which is a
branch of fluid mechanics. These flows frequently depend on parameters such that the
ratio between high and width of a building to study its aerodynamics, the attack angle
of an airfoil, or governing physical parameters such that viscosity, density, thermal
conductivity, etc.

PDEs are solved applying mathematical methods of numerical approximation. Design
problems or fluid variability calls for the solution of PDEs on many occasions, changing
the parameters, what can become very computationally expense. Even the use of the
use of High Performance Computation (HPC) could take a considerable time. Hence,
the need of techniques to develop Reduced Order Models (ROM) whose resolution is
expected to be much faster and with less resources.

The main purpose of the ROM method is to reduce by orders of magnitude the
computational cost of numerical simulation of parameterized partial differential equations.
This method is able to catch the dominant characteristics of the problem accepting some
admissible errors. This method drastically reduces the calculation and allows to carry out
realistic simulations in acceptable computing time without the need of HPC.

The ROMs are constructed in an off-line phase, which requires solving the full-order
model (FOM) for several well-chosen cases. This information is treated to capture the
most important one, using appropriate techniques, and to build the ROM that is run with
highly reduced computational time in an on-line phase. Some basic references about
ROM are the works of Quarteroni et al. [38], Schilders et al. [45] and Chinesta et al. [13].

There exists various kinds of ROMs to solve parametric PDEs. In this dissertation,
we shall mainly develop Reduced Basis (RB) methods to compute parametric turbulent

1



2 Introduction

flows. We shall also use the Proper Orthogonal Decomposition (POD) as an auxiliary
ROMs. These techniques will be introduced in Chapter 1.

The use of RB method requires the design of a posteriori error bound estimators,
which is the main purpose of this dissertation. The RB method is built by means of the
greedy algorithm, which looks for an optimal basis function to add to the current RB space.
The estimator usually is based upon the dual norm of the residual that allows certifying the
method. For linear PDEs, the procedure to obtain an a posteriori error bound estimator is
well-known, applying continuity and coercivity results to the error (between full order and
reduced order solutions) equation (cf. [38]. For non-linear PDEs, the a posteriori error
bound estimator can be developed following the Brezzi-Rappaz-Raviart (BRR) theory
(cf. [8]) for approximation of regular branches of solutions of non-linear PDEs.

The POD is the most used technique for the tensorized approximation of bi-parametric
functions, in this case, the full order solution of evolution PDEs. This technique looks
for minimizing the mean square error between the full order solution and the reduced
solution over all possible subspace of the “snapshots” data of given dimension. This
space is formed by the orthogonal functions (POD basis) that are obtained by singular
value decomposition (SVD) of a suitable correlation matrix. Once the reduced space is
built, a Galerkin projection of the governing PDEs can be employed to obtain a low-order
dynamical system, in to the parameter window used to create the POD basis. The resulting
low-order model is named standard POD-Galerkin ROM.

As we mentioned before, we are interested in the application of ROM to turbulent
flows. Most of the phenomena which carry on a difficulty in the numerical resolution are
turbulence flows. This phenomenon is characterized by chaotic, multi-scale dynamics,
both in space and time. The governing PDEs are the Navier-Stokes (NS) equations whose
resolution becomes unaffordable for many real flows of interest. Using the mesh size
and time steps to accurately solve a single flow past a 3D obstacle with well-developed
turbulence would require dozens of HPC nodes (cf. [12]).

To alleviate this, alternative models have been considered, such as Large Eddy
Simulation (LES) models. The LES models are based upon the Kolmogórov’s theory of
statistical equilibrium, introduced in 1941 by Andrey Kolmogórov. This theory describes
how energy is transferred from large to smaller eddies, (cf. [27, 28]). This is at high
Reynolds number (a physical parameter that triggers turbulence), the flow exhibits an
energy cascade: large scale eddies are broken down into smaller and smaller eddies
until the scales are fine enough so that viscous forces can dissipate their energy. LES
model strategy is based upon to solve large grid scales and to approximate small scales
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by an eddy diffusion term in the NS equations, which involves the mixing length of the
sub-grid eddies, which is proportional to the grid size.

Even the computation of this kind of models is quite complex. Most of the turbulence
effects are genuinely 3D (mainly due to vortex stretching triggered by inertial effects) do
not admit a simplification to 2D. The solution of parametric turbulent flows would call for
the resolution of this model multiple times, which should be computed in affordable times.
At this point, we dip into ROM for the LES model, in particular, for the Smagorinsky
model. This model was introduced by Joseph Smagorinsky in 1963 (see [46]), adding
an eddy viscosity term to the averaged Navier-Stokes equations. The primary objective
of this dissertation is to build a posteriori error bounds for the finite element - reduced
order solution of the Smagorinsky turbulence model.

The use of BRR theory for the steady Smagorinsky model was developed by E.
Delgado in his PhD dissertation [14]. The estimator has been validated for steady 2D
problems only, therefore, as a first contact with this estimator, in this thesis, we validate the
estimator with a numerical test in 3D considering the Reynolds number as the parameter
for the problem. The results are shown in Section 1.5, in which we consider the lid-driven
cavity problem for relatively low Reynolds numbers, for which the flow is steady. The
outcomes are promising reducing the computational time from almost 2 hours to over
2 seconds, with speed-ups around 3000.

The remaining thesis is divided into two parts. In the first part, we seek for the
application of a posteriori error bound estimator to a realistic problem of multiparameter
design. In the second part, we seek to extend to the unsteady Smagorinsky model the
techniques to construct RB solvers developed for steady problems. First, it is necessary to
develop a priori estimates for the unsteady Smagorinsky model to prove well-possednes.
Subsequently, we develop an a posteriori error estimator following the BRR theory.
Lastly, we seek for an a posteriori estimate based on the statistical equilibrium turbulence
theory developed by Andréi Kolmogórov in 1941, and we apply it to an academic test.

Part I

The use of courtyards in the Andalusian architecture goes back to the Roman and Muslim
culture. They were used as a communal space, however, the courtyards have many
others utilities. Nowadays, we can find this kind of structure in many buildings and
their purpose goes from providing light into buildings to create a fresh environment in
the center of the building to refrigerate the rest of it. The air movement will renew the
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air inside the courtyard, which will lower the temperature with respect to the outside
and so the building temperature (cf. [16, 32]).

Cloisters are a kind of courtyard widespread in old buildings such as cathedrals and
monasteries. In Figure 1, an example of this cloister is shown. We are interested in the
optimal thermal comfort design of the cloister, studying the dynamics of the air that flows
into the courtyard by forced convection model, as a first approximation to our problem.

Figure 1: Merced Convent, placed in Córdoba (Spain).

For the building design, it is interesting to know the distribution of temperature along
the courtyard to select the best thermal comfort design. We consider two parameters,
the width and the height of the corridor around the cloister.

The resolution of this kind of flow could take a considerable computing time. This
is the reason to consider to apply the Reduced Basis (RB) Method that we develop
along Chapters 2 and 3.

As a first approximation, we consider the fluid dynamics only in 2D. We develop
the RB problem in Chapter 2 building an a posteriori error bound estimator following
the BRR theory for velocity and pressure. In Chapter 3, we add the temperature to the
problem using a forced convection model. We build the RB problem developing an a

posteriori error bound estimator for temperature, following now standard techniques
since the problem is linear.

We are able to obtain the distribution of velocity, pressure, and temperature in barely
1.5 second in stead of 3.5 minutes with errors more than admissible.
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Taking into account that our parameters are geometrical and the computational time
for the ROM, it makes sense to apply our RB model to a design problem. We study
which is the best combination of both geometrical parameters so that the temperature in
the ground floor is the closest to the comfort one, in order to optimize the comfort
properties of our cloister.

We design a functional to minimize the temperature in the ground floor and we
computed the value of this functional for 625 pairs of parameters in less than 16 minutes.
We obtain an optimum design that optimizes the thermal comfort in the lower part (to
be occupied by people) of the cloister.

Part II

The main goal of this part is to build RB based upon error estimators for the unsteady
Smagorinsky turbulence model.

We start this part studying a priori estimates for velocity and pressure for the
time-space discrete Smagorinsky model in Chapter 4. We base this chapter on the
results obtained by Volker John in Chapter 6 [25], where he developed a priori estimates
for finite element solution of LES models. We obtain a priori estimates over appropriate
space-time Sobolev spaces using inverse inequalities. This results are the key to apply
the BRR theory in the next chapter.

Secondly, in Chapter 5, we are able to apply the BRR theory for the development of a

posteriori error bound estimator, not without finding difficulties. The key is the definition
of the norm related to the problem. Intuition could say that we need a norm relating
the velocity derivative in time, deformation and pressure. However, we can not ensure
the inf-sup condition considering this norm. This is why we consider a norm related
to velocity and pressure, we prove well-posedness depending on the time step chosen,
the inf-sup condition is achieved, and we obtain the a posteriori error bound estimator.
Unfortunately, the computation of the Stability Factor, necessary for the computation
of the a posteriori estimator, is not low-cost, and it is necessary the implementation
of further techniques to reduce the complexity.

Finally, we look for an alternative, and we dip into the statistical equilibrium Kolmogórov
theory. We explain this theory along Chapter 6, explaining the concept of energy spectrum
and how to compute it. Lastly, we introduce the a posteriori error estimator using the
energy spectrum. The continuous problem should achieve an specific energy spectrum,
since the full-order model is intended to be a good approximation of the continuous
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problem, it should also achieve this energy spectrum in the resolved part of the inertial
spectrum. The key is to use the error committed in this energy spectrum by the RB
solution to select the new basis functions by the Greedy algorithm.

To validate the estimate, we develop an academic test in which we compare the
use of the Kolmogórov estimator with the use of the error between the full order and
reduced order solution to develop the RB problem. The test is based on a problem
for which we obtain a velocity field that satisfies the −5/3 law, and we build a RB
problem using the POD+Greedy strategy. The number of bases and the error are similar
to those obtained using the true error as “error estimator”, which indicates that the
estimate works in this case.

In this case, the speed-ups are around 20, which is more than admissible as using the
exact error does not provide a further speed-up improvement.

FreeFem++ and post processing.

All numerical test have been coded in FreeFem++ v. 4.8 (cf. [23]). Due to the complexity
of the numerical test, we use parallel computation using:

• PETSc package (Portable, Extensible Toolkit for Scientific Computation). This
package is embedded in FreeFem++ and allows us to solve variational problems.

For that purpose, it is necessary a domain partition depending on the processor
number, which can be boarded by commands defined in the macro_ddm.idp file,
included in FreeFem++. Then, we define the FE matrices and we solve the problem
using the PETSc package, obtaining a local solution in each partition. Finally, we
recover the solution defined in the complete domain.

This process has been automated using macros.

• MPI (Message Passing Interface). Again, we have commands that allow us the
transmission of information between processors thanks to macro_ddm.idp file.

We use these commands to compute independent loops in parallel, necessary for
example, for the construction of the RB matrices. The main idea is to assign the
computation of some loop iterations to each processor and finally share the result
within the processors. We can apply this technique to the construction of matrices
since these involve two loops with independent iterations.
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Every offline phase along this dissertation has been performed in the cluster Anonimus2021

which allows a High Performance Computation (HPC). This cluster is composed by 18
nodes, two of them dedicated to computation on GPUs. The rest of the nodes are
composed by CPUs AMD EPYC 7542.

For the figures presented along this dissertation, we have used MATLAB 2016b
(cf. [48]) and Paraview v. 5.9 (cf. [3])
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1
Basics of Reduced Basis modelling

In this chapter, we introduce basic results that will be used along this dissertation. We

introduce a general notation for Partial Differential Equations (PDEs) in Section 1.1,

the Reduced Order Model (ROM) for PDEs in Section 1.2. We introduce the Empirical

Interpolation Method (EIM) for the reduced linearization of some terms with respect

to the parameter in Section 1.3. Finally, we show a numerical test, application of the

Reduced Basis Method to the 3D lid-driven cavity flow. This test is an extension to

the numerical test performed by E. Delgado et al. in [11]. In this paper, E. Delgado

et al. develop a technique to construct a posteriori error estimator necessary for the

Reduced Basis Method, and they validate the estimator for the 2D case. We apply this

theory to the 3D case in Section 1.4.

1.1 Parametric Partial Differential Equations

We shall consider in this dissertation parametric PDEs. Let us denote by µµµ = (µ1, . . . ,µP)

the parameter vector where P is the total number of parameters. We note that each µi

for i = 1, . . . ,P can describe a property in the model, such as viscosity, density, thermal

conductivity, etc. (physical parameters) or it can parameterize the shape of the domain

(geometric parameters). Let us denote by D ⊂ RP the parametric set that will contain

all possible parameter values. Finally, let us denote by Ω = Ω(µµµ) ∈ Rd , d = 2,3 the

spatial domain and I f = (0,Tf ) with Tf > 0 the time domain, Γ the boundary of Ω

and QT = I f × Ω.

9
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Then, for all µµµ ∈ D, we consider the following parabolic equation

∂tu(µµµ)+L(µµµ)u(µµµ) = f (µµµ), in QT (1.1)

where f (µµµ) = f (t,x; µµµ) is a given function, L(µµµ) = L(x; µµµ) is a generic elliptic operator

acting on the unknown u(µµµ) = u(t,x; µµµ).

Additionally, we consider

u(x,0; µµµ) = u0(x; µµµ), x ∈ Ω, µµµ ∈D (1.2)

as the initial condition and

u(t,x; µµµ) = uD(t,x; µµµ), x ∈ ΓD, t ∈ I f , µµµ ∈D
∂u
∂n

(t,x; µµµ) = uN(t,x; µµµ), x ∈ ΓN , t ∈ I f , µµµ ∈D
(1.3)

as the boundary conditions where u0, uD and uN are given functions and ΓD ∪ΓN = ∂Ω

with Γ̊D ∩ Γ̊N = /0.

In order to solve this problem numerically, we obtain a weak formulation of problem

(1.1). Let X = X(Ω) be a suitable Hilbert space endowed with the X-norm. Then for

all t ∈ I f and µµµ ∈ D, we consider the problem{
Find u(t; µµµ) ∈ X such that

(∂tu(t; µµµ),v)Ω +A(u(t; µµµ),v; µµµ) = ( f (t; µµµ),v)Ω ∀v ∈ X
(1.4)

where A(· , · ; µµµ) : X ×X → R is a bilinear operator associated to the L(µµµ) operator and

the Neumann boundary condition for all µµµ ∈ D. For simplicity, we have supposed

homogeneous Dirichlet boundary conditions.

A sufficient condition for the existence and uniqueness of the solution of problem

(1.4) for all µµµ ∈ D is that

• the bilinear form A(· , · ; µµµ) is continuous and weakly coercive, that is

|A(u,v; µµµ)| ≤ γ∥u∥X∥v∥X , A(v,v; µµµ)+λ∥v∥2
L2(Ω) ≥ β∥v∥2

X , ∀u,v ∈ X

for some λ ≥ 0 and β > 0;

• u0(µµµ) ∈ L2(Ω) and f (µµµ) ∈ L2(QT ) for all µµµ ∈D.
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Then, for all µµµ ∈D, problem (1.4) admits a unique solution u ∈ L2(I f ;X)∩C0(I f ;L2(Ω)).
We refer to Section 5.1 in [37] for a more detail description.

Now, we consider a Galerkin approximation of problem (1.4). Let {Th}h>0 be a
uniformly regular family of triangulations of Ω (see Definition A.2), then we consider
a discrete subspace Xh = Xh(Ω)⊂ X of dimension Nh as an inner approximation. Then,
for a given t ∈ I f , µµµ ∈ D, the semi-discretized equation in space is{

Due u0
h(µµµ) = uh(0; µµµ), find uh(t; µµµ) ∈ Xh such that

(∂tuh(t; µµµ),vh)Ω +A(uh(t; µµµ),vh; µµµ) = ( f (t; µµµ),vh)Ω, ∀vh ∈ Xh.

where uh(0; µµµ) is an approximation of u0(µµµ) in the space Xh.
Along this dissertation, we will use the explicit (or semi-explicit when A(· , · ; µµµ) is

nonlinear) Euler scheme for time discretization, although the results presented can be
extended to more general numerical schemes.

Let L be a positive integer that defines the number of time steps that we are considering,
let ∆t = Tf /L be the time step and tk = k∆t for k = 0,1, . . . ,L. We consider uk

h(µµµ) the
approximation of uh(tk; µµµ). Then, the space-time discretization of the PDE (1.4) is

For any k = 1, . . . ,L and µµµ ∈D, assuming known uk−1
h (µµµ) ∈ Xh,

find uk
h(µµµ) ∈ Xh such that, ∀vh ∈ Xh

M(uk
h(µµµ),vh; µµµ)+A(uk

h(µµµ),vh; µµµ) = Fk(vh; µµµ)+M(uk−1
h (µµµ),vh; µµµ),

(1.5)

where M(· , · ; µµµ) : X ×X → R is defined by M(u,v; µµµ) = (u,v)Ω/∆t and Fk(vh; µµµ) is a
suitable approximation of the second member, for example,

Fk(vh; µµµ) =
1
∆t

∫ tk

tk−1

∫
Ω

f (t,x; µµµ)vh dΩ dt

for all µµµ ∈ D.

1.2 Model-Order Reduction

The resolution of problem (1.5) lead us to solve a linear system with dimension Nh for
k = 1, . . . ,L. Sometimes, especially if d = 3, Nh could be large and the resolution of
this problem for a given µµµ can take a considerable time and resources, not to mention
for every µµµ ∈ D. This is why we are interested in the application of reduced-order
modeling (ROM) techniques. These techniques use an approximation of the problem
to solve with much lower numerical complexity.
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In particular, we are interested in the Reduced Basis (RB) methods which generate
a RB problem using solutions of problem (1.5) as follows

For any k = 1, . . . ,L and µµµ ∈D, assuming known uk−1
N (µµµ) ∈ XN ,

find uk
N(µµµ) ∈ XN such that, ∀vN ∈ XN

M(uk
N(µµµ),vN ; µµµ)+A(uk

N(µµµ),vN ; µµµ) = Fk(vN ; µµµ)+M(uk−1
N (µµµ),vN ; µµµ),

(1.6)

where u0
N(µµµ) is the projection of u0

h(µµµ) on XN . The space XN is built from uk
h(µµµ) ∈ Xh

solutions of (1.5) for specifically chosen µµµ ∈ D and k = 1, . . . ,L. According to this,
it is easy to think that the space XN should summarize the information described by
the high fidelity problem (1.5) and therefore, keep the important one. The selection
of k and µµµ is the key of this section.

The solution of problem (1.6) by the RB method is divided into two phases:

1. The offline phase in which we compute the RB Space XN and the RB Matrices.

2. The online phase in which we solve the problem (1.6) for any parameter µµµ ∈D.

Phase 1 needs the solution of the sampling problem, one of the key problems to
obtain accurate ROMs, in particular RB methods. The RB base, which forms the space
XN , is intended to provide certified solutions, in the sense that these provide errors
below targeted values.

Reduced Basis Technique

The construction of Reduced Basis spaces is based upon an a posteriori error estimator
and Greedy Algorithm for optimal sampling.

The Greedy Algorithm is an iterative algorithm that provides the optimal sampling at
each stage. In each iteration, we seek for the error between the high fidelity solution and
the RB solution ∥uk

h(µµµ)− uk
N(µµµ)∥X , and we select the time and parameter for which

the error is larger.
For the RB method, we first need to define Dtrain ⊂ D as a set of parameters to

check in the algorithm. The choice of this set is complex, for efficiency should be
small but sufficiently large to represent D. The algorithm is described in Algorithm
1. Its application to the steady problem corresponds to letting k = 1 (assuming that
u1 is the steady solution).

The selection of the new pair (µµµN ,kN) requires to obtain each uk
h(µµµ) for µµµ ∈Dtrain

and k = 1, . . . ,L which may be hard to compute numerically. It is usual to use the a
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Algorithm 1 Greedy

Set εtol > 0, Nmax ∈ N and S1 = {(µµµ1,k1)};
Compute uk1

h (µµµ1);
X1 = span{uk1

h (µµµ1)};
for N = 2 : Nmax do

(µµµN ,kN) = argmaxµµµ∈Dtrain,k=1,...,L ∥uk
h(µµµ)−uk

N−1(µµµ)∥X ;
εN−1 = ∥ukN

h (µµµN)−ukN

N−1(µµµ
N)∥X ;

if εN−1 ≤ εtol then
Nmax = N −1;

end if
Compute ukN

h (µµµN);
SN = SN−1 ∪{(µµµN ,kN)};
XN = XN−1 ∪ span{ukN

h (µµµN)};
end for

posteriori error bound ∆N(µµµ,k) of the error ∥uk
h(µµµ)−uk

N(µµµ)∥X which should be simpler

to compute. The use of the a posteriori error bound ∆N(µµµ,k) is called “Weak” Greedy

Algorithm 2 as it uses the error estimator instead of the error itself.

To avoid redundancies, the RB space should be orthonormal in the X-norm, hence

we use the Gram-Schmidt orthonormalization process.

To obtain reliable error estimates, the X-norm should be independent of µµµ and k.

Algorithm 2 (Weak) Greedy

Set εtol > 0, Nmax ∈ N and S1 = {(µµµ1,k1)};
Compute uk1

h (µµµ1);
X1 = span{uk1

h (µµµ1)};
for N = 2 : Nmax do

(µµµN ,kN) = argmaxµµµ∈Dtrain,k=1,...,L ∆N−1(µµµ,k);
εN−1 = ∆N−1(µµµ

N ,kN);
if εN−1 ≤ εtol then

Nmax = N −1;
end if
Compute ukN

h (µµµN);
SN = SN−1 ∪{(µµµN ,kN)};
XN = XN−1 ∪ span{ukN

h (µµµN)};
end for
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Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition is a model reduction technique. POD problem
consists in finding the orthonormal base that minimizes the error

∑
µµµ∈D

L

∑
k=1

||uk
h(µµµ)−uk

N(µµµ)||2X .

This minimization problem is equivalent to computing the Singular Value Decomposition
(SVD) of a snapshot matrix. Down below, we describe the main procedure:

1. First, we define the set of snapshots {uk
h(µµµ)} for any k = 1, . . . ,L and µµµ ∈Dtrain.

Then, we are able to define the matrices Si ∈ RNh×L for i = 1, . . . ,ns where
dim(Dtrain) = ns such that

Si = [u1
h(µµµ

i),u2
h(µµµ

i), . . . ,uL
h(µµµ

i)], ∀i = 1, . . . ,ns.

The vectors uk
h(µµµ) ∈ RNh represent the degrees of freedom of the function uk

h(µµµ) ∈
Xh for k = 1, . . . ,L. Finally, the snapshot matrix S ∈ RNh×Lns is defined as

S= [S1|S2| . . . |Sns].

2. Now, we define the matrix Xh ∈ RNh×Nh as the matrix associated to the inner
product (· , ·)X such that

uT
h Xhvh = (uh,vh)X , ∀uh,vh ∈ Xh.

Then, the matrix C= STXhS ∈ RLns×Lns is the so-called correlation matrix related
to the X-norm.

3. Finally, we solve the eigen value problem

Cψi = σ
2
i ψi, i = 1, . . . ,r

with ψi ∈ RLns for all i = 1, . . . ,r and r = rank(C). The resolution of this problem
provides r singular values σi such that σ1 ≥ σ2 ≥ ·· · ≥ σr. The key here is the
choice N ≤ r for some criterion over the singular values σi for i = 1, . . . ,r.

If we define εtol as the tolerance, then we can define a criterion envolving the energy
of the modes, that is

I(N) =
∑

N
i=1 σ2

i

∑
r
i=1 σ2

i
≥ 1− ε

2
tol.

or to choose the first N such that σ2
i ≤ εtol for i = N +1, . . . ,r.
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4. We define the POD-ROM basis such that

ϕ
i
=

1
σi
Sψi, ∀i = 1, . . . ,N

where we recall that ϕ
i

represents the degrees of freedom of the basis functions
ϕi for i = 1, . . . ,N. Then, XN = span{ϕi}N

i=1 and that base is already orthonormal
respect to the X-norm.

The POD algorithm is described in Algorithm 3.

Algorithm 3 POD with respect to the X-norm
function V=POD(S,Xh,εtol)

Form C= STXhS;
Solve the eigen value problem Cψi = σ2

i ψi, i = 1, . . . ,r;
Choose N in terms of εtol;

Set ϕ
i
=

1
σi
Sψi, i = 1, . . . ,N; return V= [ϕ

1
, . . . ,ϕ

N
]

end function

The principal issue with the POD strategy is the selection of the parameter training
set Dtrain. We have no way to estimate the training set or the error a priori .

Moreover, the size of C depends on the choice of Dtrain and L, therefore, at some
point, the resolution of the eigenvalue problem could represent a challenge.

Again, taking L = 1, this POD strategy can be used for unsteady problems. We refer
to [29, 5, 47] and Chapter 6 in [38] for more details.

POD+Greedy strategy for unsteady problems

The techniques previously introduced can be reduced to steady problems with no hitches.
Actually, when we consider steady problems depending on parameters, it is usual to
apply any of these two strategies, Greedy or POD.

However, when we talk about unsteady problems, the Greedy algorithm may not
converge since the variability of the snapshots, and a POD strategy can be hard to perform
because of the correlation matrix size.

This is why we introduce a joint strategy for the unsteady problem that we will use in
Chapter 6. The key is to use POD considering the time t as parameter and the Greedy
algorithm for the parameter µµµ . The strategy is shown in Algorithm 4.

We refer to [39, 22] for more information about the POD+Greedy strategy, however
we will extend the application of this strategh in Chapter 6.
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Algorithm 4 POD+Greedy

Set ε1,tol,ε2,tol > 0, Nmax ∈ N, µµµ∗ ∈Dtrain, Z= [ ] and S = { };
while N < Nmax do

S = S∪{µ∗};
Compute uk

h(µ
∗) for k = 1, . . . ,L;

Build S= [u1
h(µµµ

∗),u2
h(µµµ

∗), . . . ,uL
h(µµµ

∗)];
[ξ

1
, . . . ,ξ

M
]=POD(S,Xh,ε1,tol);

Z= [Z,ξ
1
, . . . ,ξ

M
];

[ϕ
1
, . . . ,ϕ

N
]=POD(Z,Xh,ε2,tol);

XN = {ϕi}N
i=1;

µµµ∗ = argmaxµµµ∈Dtrain ∆N(µµµ,L);
εN = ∆N(µµµ

∗,L);
if εN ≤ εtol then

Nmax = N;
end if

end while

Algebraic Construction

Let us recall that XN is the space generated by the RB functions {ϕi}N
i=1. The reduced

solution uk
N(µµµ)∈ XN of (1.6) for any k = 1, . . . ,L can be described as a linear combination

of {ϕi}N
i=1,

uk
N =

N

∑
i=1

(uk
N)i(µµµ)ϕi

where uk
N is the solution of the reduced linear system

(MN +AN)uk
N = fk

N +MNuk−1
N , (1.7)

being MN ,AN ∈ M N×N(R) and fk
N ∈ RN associated to the left and right hand side of

(1.6). These matrices depend on the parameter µµµ and their construction can take a long

computing time depending on N since they are full matrices. To save that time in the

online phase, we look for a linear representation of the problem (1.6) with respects to the

parameters. This linear representation will allow us to define RB parameter-independent

matrices that we store at the offline phase end.

Remark 1.1. For the Greedy Algorithm 1-2, the construction of the spaces XN is recursive,

this is, in order to build the N-iteration, we need the N −1-iteration. The construction of
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the RB matrices could be done in a recursive way too. For example, for the matrix related
to the M operator, given MN−1, then,

MN =


(ϕN ,ϕ1)Ω/∆t

MN−1
...

(ϕN ,ϕN−1)Ω/∆t
(ϕ1,ϕN)Ω/∆t . . . (ϕN−1,ϕN)Ω/∆t (ϕN ,ϕN)Ω/∆t

 .

Physical vs. geometrical parameters

In terms of parameters, we shall identify two kinds, physical or geometric. Dimensionless
numbers, as those described in Appendix A.4, are meant to be a physical parameter. In
this case, the parameter representation is almost direct. However, it could be non-linear
and linearization techniques should be applied. In the next section, we will introduce
the EIM method that will help us to deal with this situation.

For the geometric parameter, the dependency is intrinsic to the domain. In this case,
we are able to fix a parameter µµµr ∈D which defines a reference domain Ωr = Ω(µµµr) and
we define problem (1.5) over Ωr instead of Ω(µµµ) thanks to a change of variable. We will
see an application in Chapter 2, however, we refer to [41, 42, 38, 14] for more details.

1.3 Empirical Interpolation Method

The aim of the Empirical Interpolation Method (EIM) is to build a linear approximation
gM of non-linear function g respect to the time t and paramter µµµ as follows

gM(x; t,µµµ) =
M

∑
i=1

σi(t,µµµ)qi(x), ∀x ∈ Ω, t ∈ I f , µµµ ∈D

for σi and qi for i = 1, . . . ,M to be determined.
To build this approximation, let consider the space

G = {g(·; t,µµµ), µµµ ∈D, t ∈ I f }

as the family of parameter-time-dependent functions. Then, the key of the EIM is to find
a reduced approximation space GM = span{qi}M

i=1 ⊂ G in a first offline phase.
The offline phase could be afforded using the Greedy algorithm. The coefficients

{σi}M
i=1 are obtained by the solution of

M

∑
j=1

q j(xi)σ j(t,µµµ) = g(xi; t,µµµ), i = 1, . . . ,M
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where TM = {xi}M
i=1 are the interpolation or magic points (cf. [33]). That is, in matrix form

Bσσσ(t,µµµ) = gM(t,µµµ), ∀t ∈ I f , µµµ ∈D (1.8)

where
(B)i j = q j(xi), (σσσ(t,µµµ))i = σi(t,µµµ), (gM)i = g(xi; t,µµµ),

for i, j = 1, . . . ,M. The offline and online phases are described in Algorithm 5.

Algorithm 5 EIM (computable version)

function (B,T,G,S)=EIMOFFLINE(g,εEIM,Mmax,DEIM,∆t,L)
Set S = { }, T = { }, G = { };
(k1,µµµ1) = argmaxµµµ∈DEIM ,k=0,...,L ∥g(· ;k∆t,µµµ)∥∞;
r1 = g(· ;k1∆t; µµµ1);
M = 1;
while M < Mmax do

xM = argsupx∈Ω |rM(x)|;
qM = rM/rM(xM);
S = S∪{(kM,µµµM)};
T = T ∪{xM};
G = G∪{qM};
Bi j = q j(xi), 1 ≤ i, j ≤ M;
(kM+1,µµµM+1) = argmaxµµµ∈DEIM ,k=0,...,L ∥g(· ;k∆t,µµµ)−gM(· ;k∆t,µµµ)∥∞;
rM+1 = g(· ;kM+1∆t,µµµM+1)−gM(· ;kM+1∆t,µµµM+1), ε = ∥rM+1∥∞;
M = M+1;
if ε ≤ εEIM then

Mmax = M;
end if

end while
end function
function σ =EIMONLINE(B, t,µµµ,{x1, . . . ,xM})

for i = 1 : M do
gi = (xi; t,µµµ);

end for
σ = B−1g;

end function

1.4 ROM application to steady Smagorinsky turbulence
model

In [11], E. Delgado et al. have built a RB Smagorinsky model for the steady case. They
introduce a posteriori error bound estimator for non-linear problems using the BRR
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theory (cf. [8]). In this section, we will introduce the basics of the theory developed by

E. Delgado, which will be the foundation of Chapter 2 and 5.

Let us consider the dimensionless Smagorinsky turbulence model. It is a Large

Eddy Simulation (LES) model and it was first introduced by Joseph Smagorinsky in

1963 (see [46]).

LES modelization is based upon the Kolmogorov Theory of statistical equilibrium

theory that we will describe in detail in Chapter 6. In essence, we suppose that the

Reynolds number is sufficiently high to ensure that energy is transferred from large

to small scales, which are responsible for dissipation only. This generates an inertial

spectrum in which only inertial forces are important, delimited by two scales which

form the inertial range. The LES modelization consists in solving a part of this inertial

range, in addition to the large scales of the flow.

In particular, the Smagorinsky model is intrinsically discrete, linked to a space

discretization that determines the large scales to solve. It adds an additional term to the

averaged Navier-Stokes equations, called the eddy viscosity term, which is related to a

grid Th that models the energy dissipated by the sub-grid (unresolved) scales.

Then, the Smagorinsky turbulence model in its differential form is formulated as

− 1
Re

∆w+(w · ∇)w−∇ · (νt(w)∇w)+∇p = f, in Ω,

∇ ·w = 0, in Ω,

w = g, on ΓD,

−pn+

(
1

Re
+νt(w)

)
∂w
∂n

= 0, on ΓN ,

(1.9)

where Re is the Reynolds number defined in (A.22), w is the velocity field, p is the

pressure per mass density,

νt(w) = ∑
K∈Th

(CShK)
2|∇w|K|

is the eddy viscosity, where | · | denotes the Frobenius norm in Rd×d defined in (A.1),

the constant CS is the Smagorinsky constant which is estimated to be CS ≈ 0.18 (cf.

[31, 26, 44]) and hK is the diameter of the element K ∈ Th. In Chapter 6 in [25], V.

John study the existence and uniqueness of solutions of the Smagorinsky model (1.9)

following the results presented by Ladyzhenskaya in [30].
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1.4.1 Reduced Basis steady Smagorinsky model

Let us state the basics of the RB approximation to the steady Smagorinsky model,
considering the Reynolds number as the parameter µ in a suitable parameter set D.

In order to apply the RB Method, we need a model with homogeneous Dirichlet BCs.
To solve this, we decompose the velocity field into two fields, u the solution of a problem
with homogeneous BCs and the lift uD, which should achieve the non-homogeneous
Dirichlet BC uD = g on ΓD. Without lost of generality, we suppose that the lift is
divergence free since this simplifies the problem.

Finite Element approximation of Steady Smagorinsky model As in Section 1.1,
we shall start from a variational formulation of our problem in a suitable Hilbert space
and then build a discretization.

Let us consider the spaces

Y = {v ∈ H1(Ω) : v|ΓD = 0}, Q = {q ∈ L2(Ω) :
∫

Ω

q = 0}

for velocity and pressure, and denote X = Y ×Q. Let Yh and Qh be Finite Element spaces
constructed on the grid Th to approximate Y and Q, respectively and Xh = Yh ×Qh.

Then the variational discretization of problem (1.9) is stated as follows:

Find (uh, ph) = (uh(µ), ph(µ)) ∈ Xh such that

a(uh,vh; µ)+at(uh +uD;uh +uD,vh; µ)

+b(vh, ph; µ)+ c(uh,uh,vh; µ)+ c(uD,uh,vh; µ)

+c(uh,uD,vh; µ) = F(vh; µ), ∀vh ∈ Yh,

b(uh,qh; µ) = 0, ∀qh ∈ Qh.

(1.10)

where the bilinear forms a(· , · ; µ) and b(· , · ; µ) are defined by

a(u,v; µ) =
1
µ

∫
Ω

∇u : ∇v dΩ, b(v,q; µ) =−
∫

Ω

(∇ ·v)q dΩ;

the trilinear form, c(· , · , · ; µ) and the eddy diffusion term, at(· ; · , · ; µ), are given by

c(u,v,w; µ) =
∫

Ω

(u · ∇)v · w dΩ,

at(u;v,w; µ) =
∫

Ω

νt(u)∇v : ∇w dΩ.

Also, the linear form F(· ; µ) is defined by

F(v; µ) = ⟨f,v⟩Ω −a(uD,v; µ)− c(uD,uD,v; µ).
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Lastly, let us define the norms for the velocity and pressure spaces, considering the
natural norm for each case. For the velocity space Y and, by extension, for Yh, we
define the inner product as follows

(u,v)T =
∫

Ω

[
1
µ̃
+ ν̃t

]
∇u : ∇v dΩ, ∀u,v ∈ Y (1.11)

where ν̃t = νt(uh(µ̃) + uD) and

µ̃ = argmax
µ∈D

{
∑

K∈Th

(CShK)
2 min

x∈K
|∇uh(µ)+∇uD|(x)

}
.

This inner product induces a “turbulence” norm ∥ · ∥T = (· , ·)1/2
T , which is equivalent to

the H1
0 (Ω)-norm. We use this norm since it takes into account the turbulence viscosity

effects that governs the flow. For the pressure space Q and, by extension, for Qh, we
consider the usual L2-norm. Finally, for the X and Xh space, we consider the norm

∥V∥X =
√

∥v∥2
T +∥q∥2

L2(Ω)
, ∀V = (v,q) ∈ X . (1.12)

Following the notation used in (1.5), we can state the discrete problem{
Find Uh(µ) = (uh(µ), ph(µ)) ∈ Xh such that

A(Uh(µ),Vh; µ) = F(Vh; µ), ∀Vh = (vh,qh) ∈ Xh
(1.13)

where

A(Uh,Vh; µ) =
1
µ

A0(Uh,Vh)+A1(Uh,Vh)+A2(Uh,Vh)+A3(Uh,Vh) (1.14)

and

A0(U,V ) =
∫

Ω

∇u : ∇v dΩ,

A1(U,V ) =
∫

Ω

(∇ ·u)q− (∇ ·v)p dΩ+
∫

Ω

(uD ·∇)u ·v+(u ·∇)uD ·v dΩ,

A2(U,V ) =
∫

Ω

(u ·∇)u ·v dΩ,

A3(U,V ) =
∫

Ω

νt(u+uD)∇(u+uD) : ∇v dΩ.

Note that now A(· , · ; µ) is not bilinear, due to the convection and the eddy diffusion
terms. Problem (1.13) is well posed, we will see it by means of the BRR theory of
approximation of branches of regular solutions of non-linear problems in Section 1.4.2.
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RB Smagorinsky model Now, we are able to define the RB Problem for the Smagorinsky
model. We define XN as the reduced space, then the RB problem is stated as{

find UN(µ) = (uN(µ), pN(µ)) ∈ XN such that

A(UN(µ),VN ; µ) = F(VN ; µ), ∀VN = (vN ,qN) ∈ XN
(1.15)

The reduced space is XN = YN ×QN , where YN and QN are the reduced spaces for
velocity and pressure, respectively.

The inf-sup condition is necessary to the well-posedness of problem (1.15). Since
YN is formed by solutions of (1.13) and these are nearly divergence-free, the pair
velocity-pressure (YN ,QN) is not inf-sup stable. In [11], it is proposed the use of an
inner pressure supremizer operator T µ

N : Qh −→ Yh defined as follows

(T µ

N ph,vh)T = b(vh, ph; µ), ∀vh ∈ Yh, (1.16)

to enrich the velocity space YN in a Greedy Algorithm (cf. [47]). This ensures that YN ,
enriched with the supremizer, besides QN are inf-sup stable.

The Greedy algorithm to construct the RB approximation of Smagorinsky model
is described in Algorithm 6.

Algorithm 6 (Weak) Greedy for steady Smagorinsky model

Set εtol > 0, Nmax ∈ N and S1 = {µ1};
Compute Uh(µ

1) = (uh(µ
1), ph(µ

1));
Q1 = span{ψ1 := ph(µ

1)};
Y1 = span{ξξξ

1 := uh(µ
1),ξξξ

2 := T µ

N ψ1};
for N = 2 : Nmax do

µN = argmaxµ∈Dtrain ∆N−1(µ);
εN−1 = ∆N−1(µµµ

N);
if εN−1 ≤ εtol then

Nmax = N −1;
end if
Compute Uh(µ

N) = (uh(µ
N), ph(µ

N));
SN = SN−1 ∪{µN};
QN = QN−1 ∪ span{ψN := ph(µ

N)};
YN = YN−1 ∪ span{ξξξ

2N−1 := uh(µ
N),ξξξ

2N := T µ

N ψN};
end for

Remark 1.2. The use of an inner pressure supremizer T µ

N affects the dimension of the
reduced spaces YN and QN . In our case, using the Greedy Algorithm, the dimension of
the velocity space is twice that of the pressure space.
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Finally, we are able to define the reduced parameter independent matrices and

tensors that will be stored in the offline phase. Then, we define AN ,DN ∈ M 2N×2N(R),
BN ∈ M N×2N(R), CN ∈ M 2N×2N×2N(R) defined by

(AN)i j =
∫

Ω
∇ξξξ

j : ∇ξξξ
i dΩ, i, j = 1, . . . ,2N,

(BN)i j =−
∫

Ω
(∇ ·ξξξ j

)ψ i dΩ, i = 1, . . . ,N, j = 1, . . . ,2N,

(CN)i js =
∫

Ω
(ξξξ

s ·∇)ξξξ
j ·ξξξ i dΩ, i, j,s = 1, . . . ,2N,

(DN)i j =
∫

Ω
(uD ·∇)ξξξ

j ·ξξξ i
+(ξξξ

j ·∇)uD ·ξξξ i dΩ, i, j = 1, . . . ,2N.

where YN = span{ξξξ
i}2N

i=1 and QN = span{ψ i}N
i=1.

Since the Smagorinsky term is nonlinear with respect to the parameter due to the

eddy diffusion term, we use the Empirical Interpolation Method defined in Section 1.3

to approximate it. With this method, we get the RB space GM = span{qm}M
m=1 and we

obtain the following linear decomposition,

νt(u)≈
M

∑
m=1

σ j(µ)qm(x). (1.17)

With the computation of the coefficients {σ j(µ)}M
j=1 for a given µ ∈D, we are able to

approximate the eddy diffusion term during the online phase. This yields the approximation

at(u;u,v; µµµ)≈
M

∑
m=1

σ j(µ)
∫

Ω

qm
∇u : ∇v dΩ.

Finally, we are able to define the matrix Em
N ∈M 2N×2N(R) for m= 1, . . . ,M associated

to the eddy diffusion term by

(Em
N)i j =

∫
Ω

qm
∇ξξξ

j : ∇ξξξ
i dΩ, i, j = 1, . . . ,2N.

1.4.2 A posteriori error bound estimator

In this Section, we summarize Sections 4 and 5 in [11], where the a posteriori error

bound estimator is derived. It is based on the Brezzi-Rappaz-Raviart (BRR) theory

mentioned above (cf. [8]).

Thanks to the BRR theory, it is proved that in a neighbourhood of UN(µ) solution

of (1.15), there exists a unique Uh(µ) solution of (1.13), with

∥Uh(µ)−UN(µ)∥X ≤ ∆N(µ), ∀µ ∈D
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where
∆N(µ) =

βN(µ)

2ρT (µ)

[
1−
√

1− τN(µ)
]
, τN(µ) =

4εN(µ)ρT (µ)

βN(µ)2 . (1.18)

Here,

• βN(µ) is the Stability Factor

βN(µ)≡ inf
Zh∈Xh

sup
Vh∈Xh

∂1A(UN(µµµ),Vh; µ)(Zh)

∥Zh∥X∥Vh∥X
, (1.19)

where the derivative operator of A(· , · ; µ) follows the Definition A.1.

• ρT is the Lipschitz continuity of ∂1A(UN(µµµ),Vh; µ)(Zh) for all Vh, Zh ∈ Xh defined
by

ρT = 2C4;T +4C3;2CSh2−d/3
max

where C4;T > 0 is the Sobolev embedding constant verifying that ∥ · ∥L4(Ω) ≤
C4;T∥ · ∥T , hmax = maxK∈Th hK and C3;2 > 0 is defined in (A.11).

• εN(µ) is the residual defined by εN(µ) = ∥R(UN(µ); µ)∥X ′ is the residual where

⟨R(Zh; µ),Vh⟩= A(Zh,Vh; µ)−F(Vh; µ), ∀Zh,Vh ∈ Xh.

Note that (1.18) only applies when the dual norm of the residual εN(µ) is small enough
to have τ(µ)N < 1 for all µ ∈ D.

1.5 Application to 3D lid-driven cavity turbulent flow

In this Section, we extend Section 7.2 in [11] to the 3D case, actually to 3D lid-driven
cavity flow, using the same software, FreeFem++ v. 4.8 (cf. [23]).

To solve the problem presented, we use a FE approximation with the Taylor-Hood
finite element, i.e., we consider P2−P1 for velocity-pressure discretization that are
inf-sup stable. Since the pressure is in L2(Ω) with a mean of zero, we add a stabilization
term for the pressure discretization in the variational formulation, this is, a L2 penalization.

We consider a lid-driven cavity flow problem in the unit cube as we see in Figure 1.1a.
We define a tetrahedral mesh in the cube, with 13 subdivisions for each edge, obtaining
a mesh with 13182 tetrahedral and 2744 vertices (see Figure 1.1b). Furthermore, the
grid element diameter is hK = 0.1332 for each K ∈ Th.

The parameter set is an interval such that D = [Remin,Remax] with Remin = 1000 and
Remax = 5000. In this range, the flow is steady and laminar, therefore, this test is purely
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(a) 3D domain. (b) Mesh.

Figure 1.1: Unit cube for the problem.

academic to verify the estimate (1.18). Recall that the eddy viscosity term adds diffusion

to our problem and thanks to this, we are able to achieve a steady situation.

As we consider a lid-driven cavity problem, we only need to set Dirichlet BCs. We

identify two parts on the boundary, the top ΓS and the walls ΓW as it is shown in Figure

1.1a. We impose that w|ΓW = 0 and w|ΓS = (g(x,y),0) with g(x,y) = 16x(x−1)y(y−1)

for all (x,y) ∈ ΓS. As we already mentioned, we need to split the velocity field w into u
and a lift uD. For this case, we choose uD to be the solution of Stokes problem.

Since the problem (1.10) is nonlinear, we use a semi-implicit linearized evolution

approach,

Assuming that u0
h = 0, then for k = 1, . . . ,NFE ,

find (uk
h, pk

h) = (uk
h(µµµ), pk

h(µµµ)) ∈ Xh such that

1
∆t

(uk
h,vh)Ω +a(uk

h,vh; µ)+at(uk−1
h +uD;uk

h +uD,vh; µ)

+b(vh, pk
h; µ)+ c(uk−1

h ,uk
h,vh; µ)+ c(uD,uk

h,vh; µ)

+c(uk
h,uD,vh; µ) = F(vh; µ)+

1
∆t

(uk−1
h ,vh)Ω, ∀vh ∈ Yh,

b(uk
h,qh; µ) = 0, ∀qh ∈ Qh.

(1.20)

We stop the process when a nearly steady solution has been reached, this is, when

for k = 1, . . . ,NFE we have that ∥(uk
h − uk−1

h )/∆t∥L2(Ω) < εFE for εFE = 10−11 and

∆t = 1. The selection to εFE affects directly to the residual εN(µ) for all µ ∈ D in
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Figure 1.2: Convergence of the EIM algorithm.

the a posteriori error estimator computation, since εh(µ) = ∥R(Uh(µ); µ)∥X ′ ∼ εFE .

We obtain Uh(µ) = (uh(µ), ph(µ)) ∈ Xh the steady solution which we will consider

as the high fidelity solution.

We compute a reduced approximation of the eddy viscosity by the EIM Algorithm 5.

For this purpose, we compute Uh(µ) the steady solution of (1.20) for µ ∈DEIM where

DEIM = {1000,1250, . . . ,5000} with a step of 250.

For the EIM, we obtain the RB space G = span{qi}M
i=1 along with the magic points

TM = {xi}M
i=1 and B as we saw in Section 1.3, applied to νt(uh +uD). We obtain M = 6

bases for an error below εEIM = 10−4, as we see in Figure 1.2. We also compute the error

committed for µ ∈ {1000,1025, . . . ,5000} with a step of 25 in Figure 1.3.

Setup for the a posteriori error bound estimate For the computation of the a posteriori

error bound ∆N(µ) defined in (1.18), we need to obtain the Stability Factor βN(µ) and

the Sobolev embedding constant C4;T that appears in the Lipschitz continuity constant ρT .

For the Stability Factor βN(µ), we approximate this quantity by βh(µ) since UN(µ)

is assumed to be a good approximation of Uh(µ). We consider the heuristic strategy

introduced in [35]. First, we compute βh(µ) for µ ∈DEIM since we already computed
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Figure 1.3: Committed EIM Error.

Uh(µ) for this parameter set. This is based on the computation of the smallest eigenvalue

problem {
Find (α,Zh) =∈ R×Xh, Zh ̸= 0, such that

F(µ)TX−1F(µ)Zh = αXZh, ∀Zh ∈ Xh,

where the matrices X and F(µ) are the matrices associated to the inner product related

to the X-norm (1.12) and the tangent operator ∂1A, this is,

V T
h XZh = (Vh,Zh)X , ∀Vh,Zh ∈ Xh,

V T
h F(µ)Zh = ∂1A(Uh(µ),Vh; µ)(Zh), ∀Vh,Zh ∈ Xh, ∀µ ∈D,

resulting that βh(µ) = (αmin)
1/2.

Then, we apply the Radial Basis Function (RBF) algorithm to obtain an approximation

of βh(µ) for any µ ∈ D. In this case, we stop the algorithm when the RBF estimator

is below εβ = 10−4. In the RBF, we have tested a total of 51 parameters and we have

selected 22. This procedure is more detailed in Section 1.5 in [14], however, we describe

the Stability Factor approximation for the unsteady case in Section 5.4.

For the computation of the Sobolev embedding constant C4;T , we follow the fixed-point

algorithm that can be found in [15] and [34].
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Figure 1.4: Greedy Algorithm convergence.

Greedy Algorithm Finally, we compute the RB space applying the Greedy Algorithm 6.

We stop the algorithm when ∆N(µ) < εRB with εRB = 10−4. The training set is

Dtrain = {1000,1025,1050, . . . ,5000} with dim(Dtrain) = 161.

In Figure 1.4, we can see the convergence history of the Greedy algorithm. Since

for the two first iterations τN(µ) ≥ 1, we use this quantity as the estimator as it is

proportional to the dual norm of the residual.

In Figure 1.5 we observe the evolution of the estimator in each Greedy iteration.

We can see the parameter selection clearly, first, we choose µ1 = 1000 as we fix it as

the first parameter, then the algorithm chooses the opposite µ2 = 5000. With 3 basis

functions, we obtain τN(µ)< 1 and we are able to compute ∆N(µ). Finally, the algorithm

chooses µ3 = 2350, µ4 = 1400 and µ5 = 3575, and we stop the algorithm since we

achieve convergence. Each peak in the figure corresponds to a selected parameter,

included in the RB base.

Finally, we obtain 5 basis functions, resulting a linear system of dimension 15 in the

online phase because of the addition of the inner pressure supremizer operator defined

in (1.16) to enrich the velocity space.
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Figure 1.5: Error estimator in each Greedy iteration.

Online phase We randomly choose four Reynolds numbers to compare the computational
time and the error between the FE and RB solution. We compute Uh(µ) and UN(µ) on
only one processor in a cluster with CPUs AMD EPYC 7542 2.9 GHz.

We summarize results in Table 1.1. The computation of the RB solution took not nearly
2 seconds, while the FE solution took around 112min. The speed-ups are close to 3000.

Re 2251 3003 3545 4860
∆N(µ) 3.06 ·10−6 6.47 ·10−6 3.25 ·10−7 1.89 ·10−6

∥Uh −UN∥X 4.65 ·10−7 8.71 ·10−7 4.75 ·10−8 2.34 ·10−7

Efficiency 6.58 7.43 6.84 8.08
TFE 99.69min 109.14min 112.81min 119.42min
TRB 2.07s 2.13s 2.22s 2.23s

speedup 2890 3071 3046 3220

Table 1.1: Errors and speedups.

The efficiency of the a posteriori error bound is nearly 10 which is rather large
although it is common for non-linear problems.

In figures 1.6-1.7 we show velocity and pressure for the FE and RB problem. Finally,
we compute the FE and RB solution for µ ∈Dtrain, and we compute the estimate and the
error between the solutions. In Figure 1.8, we validate that the a posteriori error bound
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Figure 1.6: Velocity field for Re=3 545.

Figure 1.7: Pressure for Re=3 545.
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estimator ∆N(µ) is greater than the error between the FE and RB solutions, furthermore,
maxµ ∥Uh(µ)−UN(µ)∥X = 5.3031 · 10−6.
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Figure 1.8: Validation of the a posteriori error bound estimator.
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2
Reduced Basis steady Smagorinsky model

with variable geometry

In this chapter, we build a RB model for the air flow within a cloister, as a problem of

practical interest of a turbulent flow with multi-parametric geometrical dependence. We

consider a steady turbulent flow governed by the 2D Smagorinsky model. The geometrical

parameters are the width and the height of the corridors around the cloister.

In Section 2.1 we define the problem establishing the domain, the geometrical

parameters, and the procedure to follow for applying the RB Method. In Section 2.2 we

define the RB problem explaining how the RB matrices are built. Finally, in Section 2.3

we deduce an a posteriori error estimator necessary to build the RB space in the Greedy

Algorithm. At the end of the chapter, in Section 2.4, we show the numerical results for a

specific case, giving keys for coding and validating the estimator developed in Section 2.3.

2.1 Problem statement

We consider a 2D modeling of the air flow within a cloister. Although this will avoid 3D

effects in the aerothermal flow, this still is an adequate approach to determine its optimal

dimensions regarding thermal comfort. Indeed, thermal inversions and strong 3D effects

will only be produced by strong winds that are assumed to occur only occasionally. We

thus consider thermally stratified flows through a 2D modeling.

35
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We consider the 2D steady Smagorinsky model that allows us to solve the largest
scales considering a coarse mesh. This model was introduced in Section 1.4. However,
we will derive the dimensionless model as we depart from a real situation.

The flow domain is described in Figure 2.1 which can be considered as a vertical
section of the real domain (a cloister), where ω and σ are the width and the height of
the corridor around the cloister, respectively, and W and H are the total width and height.
The parameters for this case are µµµ = (ω,σ) while W and H are fixed. We denote by
Ω(µµµ) ∈ R2 the domain for each µµµ ∈ D with D the parameter set.

We take D = [ωmin,ωmax]× [σmin,σmax] where ωmin, ωmax, σmin and σmax are the
extreme values of corridors width and height that make sense for architectural design.
In the cases σ = 0 and σ = H, there would be no cloister, it would be a question
of studying a courtyard, then [σmin,σmax] ⊂ (0,H). For ω , we consider only up to
W/2 due to symmetry and we exclude the extremes for the same reason as for the
height, then [ωmin,ωmax] ⊂ (0,W/2).

(0, 0)

(0, σ)

(ω, σ)

(ω, H) (W − ω, H)

(W − ω, σ)

(W, σ)

(W, 0)
u|ΓF = (0, 0)

u|ΓS = (g, 0)

u|ΓW = (0, 0)

(ω, 0)

Figure 2.1: Domain and diagram of the problem.

Let Γ(µµµ) = ∂Ω(µµµ) be the domain boundary that splits into three parts:

• Open sky boundary: ΓS(µµµ),

• Floor boundary: ΓF(µµµ),

• Lateral walls boundary: ΓW (µµµ).
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The flow within the cloister is induced through boundary ΓS. This setup leads us to a
lid-driven cavity turbulent flow problem. We impose homogeneous Dirichlet boundary
conditions (BCs) on the velocity on the floor ΓF(µµµ) and the walls ΓW (µµµ). On the top we
assume an horizontal wind, given by the function g(x1) ≥ 0 with x1 ∈ ΓS.

We set {Th}h>0 as a family of triangulations of Ω. In this way, the problem to solve is:
Find w : Ω(µµµ) −→ R2 and p : Ω(µµµ) −→ R such that

−ν∆w+(w · ∇)w−∇ · (νt(w; µµµ)∇w)+∇p = 0, in Ω(µµµ),

∇ ·w = 0, in Ω(µµµ),

w = (g(· ; µµµ),0), on ΓS(µµµ),

w = 0, on ΓW (µµµ)∪ΓF(µµµ),

(2.1)

where w is the velocity field, p is the pressure per mass density, ν is the kinematic
viscosity for the air and the turbulent viscosity is given by

νt(w; µµµ) = ∑
K∈Th

(CShK(µµµ))
2|∇w(µµµ)|K|,

where we recall that hK is the diameter of the element K ∈ Th and CS denotes the
Smagorinsky constant.

As it is usual, we consider the dimensionless model. In this way, we use a single model
for flows within similar domains, and deal with computer quantities close to one to avoid
round-off errors. We set U0 and L0 as the characteristics velocity and length, respectively,
then w = U0w∗, p = ρU2

0 p∗, µµµ = L0µµµ∗, where w∗ and p∗ represent the dimensionless
velocity and pressure, µµµ∗ the dimensionless length parameter, ρ is the mass density of the
air (constant in this case), g =U0g∗, hK = L0h∗K . Henceforth, (w∗, p∗) satisfy the problem

− 1
Re

∆∗w∗+(w∗ · ∇∗)w∗−∇∗ · (ν∗
t (w∗; µµµ∗)∇∗w∗)+∇∗p∗ = 0, in Ω(µµµ∗),

∇∗ · w∗ = 0, in Ω(µµµ∗),

w∗ = (g∗(· ; µµµ∗),0), on ΓS(µµµ
∗),

w∗ = 0, on ΓW,F(µµµ
∗),

where Re =U0L0/ν is the Reynolds number defined in (A.22), fixed for this problem, and

ν
∗
t (w

∗; µµµ
∗) = ∑

K∈Th

(CSh∗K(µµµ
∗))2|∇∗w∗(µµµ∗)|. (2.2)

The operator ∇∗ and ∆∗ are defined respect to the dimensionless variable x∗ = x/L0.
From now on, we avoid the star notation for simplicity.
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In order to apply the RB Method, we need a model with homogeneous Dirichlet BCs.
To solve this, we decompose the velocity field as the sum of two fields, u the solution
of a problem with homogeneous Dirichlet BCs and uD a function defined in all Ω(µµµ)

sufficiently regular and that satisfies non-homogeneous Dirichlet BCs, this is,

• uD = (g(· ; µµµ),0) on ΓS(µµµ),

• uD = 0 on ΓW (µµµ)∪ΓF(µµµ).

This function is known as the boundary lifting function or simply a lift of the conditions.
Then, the problem leads

For a known uD, find (u, p) such that

− 1
Re

∆u+(u · ∇)u+(uD · ∇)u+(u · ∇)uD +∇p

−∇ · (νt(u+uD; µµµ)∇(u+uD)) =
1

Re
∆uD − (uD · ∇)uD, in Ω(µµµ),

∇ ·u =−∇ ·uD, in Ω(µµµ),

u = 0, on Γ(µµµ).

(2.3)

The total solution w = u+uD is completely independent of the lift choice. This uD

can be determined by an analytical expression or by the solution of a simpler problem
which preserves the nonhomogeneous BCs, for example, the Stokes problem.

We are interested in looking at weak solutions to establish an approximation, and
therefore we start by defining the variational formulation for this problem.

Let us consider the spaces Y (µµµ) = H1
0 (Ω(µµµ)), Q(µµµ) = L2

0(Ω(µµµ)), and
X(µµµ) = Y (µµµ)× Q(µµµ). We can define the weak formulation of the problem (2.3),
doing the standard procedure:

Find (u, p) = (u(µµµ), p(µµµ)) ∈ X(µµµ) such that

a(u,v; µµµ)+b(v, p; µµµ)+ c(u,u,v; µµµ)

+c(uD,u,v; µµµ)+ c(u,uD,v; µµµ)

+at(u+uD;u+uD,v; µµµ)

=−a(uD,v; µµµ)− c(uD,uD,v; µµµ), ∀v ∈ Y (µµµ),

b(u,q; µµµ) =−b(uD,q; µµµ), ∀q ∈ Q(µµµ),

(2.4)

where the bilinear forms a(· , · ; µµµ) and b(· , · ; µµµ) are given by

a(u,v; µµµ) =
1

Re

∫
Ω(µµµ)

∇u : ∇v dΩ, b(v,q; µµµ) =−
∫

Ω(µµµ)
(∇ ·v)q dΩ;
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the trilinear form, c(· , · , · ; µµµ) and the eddy viscosity term, at(· ; · , · ; µµµ), are given by

c(u,v,z; µµµ) =
∫

Ω(µµµ)
(u · ∇)v · z dΩ,

at(u;v,z; µµµ) =
∫

Ω(µµµ)
νt(u; µµµ)∇v : ∇z dΩ.

Ω1

Ω4

Ω2 Ω3

Figure 2.2: Partitioned Geometry.

These forms depend on the geometrical parameters that determine the domain. To

apply the RB Method, we need to express these forms as linear expressions with respect

to the parameters. With this purpose, we consider a reference domain, on which we build

the variational formulation through a change of variables.

We set µµµr = (ωr,σr) ∈D a couple of reference parameters that define Ωr = Ω(µµµr)

as the reference domain. Then, we consider a smooth mapping Φ(· ; µµµ) that transforms

the reference domain into the original domain for any value of the parameter µµµ . We

have defined Φ as a piecewise linear mapping and because of that we divide the domain

in four regions Ωl for l = 1,2,3,4 as is shown in Figure 2.2 and we define a linear

transformation for each one of them, this is, Φl for l = 1,2,3,4 such that Φ(x; µµµ) =
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Φl(x; µµµ) if x ∈ Ωl , as follows

Φ1(x; µµµ) =


ω

ωr
0

0
σ

σr

( x1

x2

)
,

Φ2(x; µµµ) =


W −2ω

W −2ωr
0

0
σ

σr


(

x1

x2

)
+

 ω − W −2ω

W −2ωr

0

 ,

Φ3(x; µµµ) =


ω

ωr
0

0
σ

σr

( x1

x2

)
+

 W
ωr −ω

ωr

0

 ,

Φ4(x; µµµ) =


W −2ω

W −2ωr
0

0
H −σ

H −σr


(

x1

x2

)
+

 ω −ωr
W −2ω

W −2ωr

σ −σr
H −σ

H −σr

 .

(2.5)

Observe that the global mapping is Lipschitz-continuous as

Φ1|Γ12 = Φ2|Γ12, Φ2|Γ23 = Φ3|Γ23 and Φ2|Γ24 = Φ4|Γ24 ,

where Γi j = ∂Ωi ∩Ω j; and Φl ∈ C∞(Ωl) for l = 1,2,3,4. The Jacobian determinant
for each transformation is

|JΦ1|= |JΦ3 |=
ωσ

ωrσr
, |JΦ2|=

(W −2ω)σ

(W −2ωr)σr
, |JΦ4|=

(W −2ω)(H −σ)

(W −2ωr)(H −σr)
, (2.6)

Associated with the Jacobian matrix for each transformation, we define three diagonal
matrices η l = η l(µµµ),λ l = λ l(µµµ),ϕ l = ϕ l(µµµ) ∈ M 2×2(R) for l = 1,2,3,4 by

η
l = J−T

Φl
|JΦl |, λ

l = J−1
Φl

J−T
Φl

|JΦl |, ϕ
l = J−1

Φl
J−T

Φl
,

whose diagonal elements are:

η
1
11 = η

2
11 = η

3
11 =

σ

σr
, η

4
11 =

H −σ

H −σr
, η

1
22 = η

3
22 =

ω

ωr
, η

2
22 = η

4
22 =

W −2ω

W −2ωr
, (2.7)

λ
1
11 = λ

3
11 =

ωrσ

ωσr
, λ

2
11 =

(W −2ωr)σ

(W −2ω)σr
, λ

4
11 =

(W −2ωr)(H −σ)

(W −2ω)(H −σr)
, (2.8)

λ
1
22 = λ

3
22 =

ωσr

ωrσ
, λ

2
22 =

(W −2ω)σr

(W −2ωr)σ
, λ

4
22 =

(W −2ω)(H −σr)

(W −2ωr)(H −σ)
, (2.9)
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and

ϕ
1
11 = ϕ

3
11 =

ω2
r

ω2 , ϕ
2
11 = ϕ

4
11 =

(W −2ωr)
2

(W −2ω)2 , (2.10)

ϕ
1
22 = ϕ

2
22 = ϕ

3
22 =

σ2
r

σ2 , ϕ
4
22 =

(H −σr)
2

(H −σ)2 . (2.11)

These matrices are well defined since µµµ ∈ D ⊂ (0,W/2)× (0,H).
Now, we can state the weak formulation (2.4) on Ωr. Let us consider the spaces

Yr = Y (µµµr), Qr = Q(µµµr), and Xr = Yr ×Qr. Let us define the norms related to the spaces
Yr and Qr. For the velocity space Yr, we consider the turbulence norm which is the
natural norm associated to the problem, defined as

(v,z)T =
∫

Ωr

[
1

Re
+ ν̃t

]
∇v : ∇z dΩ, ∀v,z ∈ Yr (2.12)

where ν̃t = νt(u + uD; µ̃µµ) and

µ̃µµ = arg min
µµµ∈D ∑

K∈Th

(CShK(µµµ))
2 min

x∈K
|∇(u(µµµ)+ uD)|(x).

The inner product (·, ·)T is parameter independent, it is well defined and it induces a
norm ∥ · ∥T = (· , ·)1/2

T in Yr equivalent to the H1
0 -norm. For the pressure space Qr, we

will use the usual L2-norm. Finally, we define the X-norm such as

∥V∥X =
√

∥v∥2
T +∥q∥2

L2(Ω)
, ∀V = (v,q) ∈ Xr. (2.13)

Then, the weak formulation reads:

Find (u, p) = (u(µµµ), p(µµµ)) ∈ Xr such that
4

∑
l=1

2

∑
k=1

λ
l
kk(akl(u,v)+at,kl(u+uD;u+uD,v; µµµ))

+η
l
kk(bkl(v, p)+ ckl(u,u,v)+ ckl(uD,u,v)+ ckl(u,uD,v))

=−
4

∑
l=1

2

∑
k=1

λ
l
kkakl(uD,v)+η

l
kkckl(uD,uD,v), ∀v ∈ Yr,

4

∑
l=1

2

∑
k=1

η
l
kkbkl(u,q) =−

4

∑
l=1

2

∑
k=1

η
l
kkbkl(uD,q), ∀q ∈ Qr.

(2.14)

Notice that the indices k and l are associated to the derivative direction and the different
regions in Ωr, respectively. Then, for k = 1,2 and l = 1,2,3,4 the forms associated
to the problem (2.14) are defined by

akl(u,v) =
∫

Ωl

1
Re

(∂ku1∂kv1 +∂ku2∂kv2) dΩ, (2.15)
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bkl(u, p) =−
∫

Ωl

∂kuk p dΩ, (2.16)

ckl(u,v,z) =
∫

Ωl

(uk∂kv1z1 +uk∂kv2z2) dΩ, (2.17)

at,kl(u;v,z; µµµ) =
∫

Ωl

ν
l
t (u; µµµ)(∂kv1∂kz1 +∂kv2∂kz2) dΩ, (2.18)

where

ν
l
t (u; µµµ) = ∑

K∈Th,l

(CShK(µµµ))
2
√

ϕ l
11((∂1u1)2 +(∂1u2)2)+ϕ l

22((∂2u1)2 +(∂2u2)2)

(2.19)
being Th,l = Th ∩Ωl the mesh corresponding to each region.

Now, we can rewrite this problem in a compact notation as{
Find U(µµµ) = (u(µµµ), p(µµµ)) ∈ Xr such that

A(U(µµµ),V ; µµµ) = F(V ; µµµ), ∀V ∈ Xr,
(2.20)

where A(· , · ; µµµ) : Xr ×Xr −→ R is the operator defined by

A(U,V ; µµµ) = A0(U,V ; µµµ)+A1(U,V ; µµµ)+A2(U,V ; µµµ)+A3(U,V ; µµµ)

with

A0(U,V ; µµµ) =
4

∑
l=1

2

∑
k=1

λ
l
kkakl(u,v),

A1(U,V ; µµµ) =
4

∑
l=1

2

∑
k=1

η
l
kk(bkl(v, p)−bkl(u,q)+ ckl(uD,u,v)+ ckl(u,uD,v)),

A2(U,V ; µµµ) =
4

∑
l=1

2

∑
k=1

η
l
kkckl(u,u,v),

A3(U,V ; µµµ) =
4

∑
l=1

2

∑
k=1

λ
l
kkat,kl(u+uD;u+uD,v; µµµ),

(2.21)

while the right hand side is defined as

F(V ; µµµ) =−
4

∑
l=1

2

∑
k=1

λ
l
kkakl(uD,v)+η

l
kk(ckl(uD,uD,v)−bkl(uD,q)).

Therefore, we are able to state the discrete formulation of (2.20). We consider a finite
element discretization Yh and Qh inner approximations of Yr and Qr, respectively; and
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define Xh = Yh ×Qh. By extension, we endow Yh, Qh and Xh with the norms for Yr, Qr

and Xr, respectively. We consider the following discretization of the problem (2.20):{
Find Uh(µµµ) = (uh(µµµ), ph(µµµ)) ∈ Xh such that

A(Uh(µµµ),Vh; µµµ) = F(Vh; µµµ), ∀Vh ∈ Xh,
(2.22)

In the first part of Section 2.3, we will study the well-posedness of problem (2.22),
applying the Brezzi-Rappaz-Raviart (BRR) theory (cf. [8]). Thanks to the BRR theory, we
are able to deduce an a posteriori error bound estimator in the second part of Section 2.3.

2.2 Reduced Basis problem

Now, we are able to define the RB problem from the discrete formulation defined in (2.22).
First, we need to build the RB space for the RB problem as we described in Section

1.4.1. This space must be a subspace of Xh, then, the required basis is built from
solutions of the problem (2.22) for a selected number of parameters. These solutions
are nearly weakly divergence free, therefore, the RB problem does not meet the inf-sup
condition (see Theorem A.8) necessary to obtain a unique reduced solution. We enrich
the velocity reduced space by introducing an inner-pressure supremizer operator. This
procedure was developed by G. Rozza and K. Veroy in [43] for the Stokes equations,
and by E. Delgado et al. for the Smagorinsky model in [11] and we already introduced
it for the 3D case in Section 1.4.

For any µµµ ∈D, let T µµµ

N : Qh −→ Yh be the inner-pressure supremizer defined as,

(T µµµ

N ph,vh)T =
4

∑
l=1

2

∑
k=1

η
l
kkbkl(vh, ph), ∀vh ∈ Yh. (2.23)

Let XN = YN ×QN ⊂ Xh be the RB space of dimension N ∈ N defined as

YN = span{ξξξ
2i−1

= uh(µµµ
i), ξξξ

2i
= T µµµ

N ph(µµµ
i), i = 1, . . . ,N} (2.24)

and
QN = span{ψ

i = ph(µµµ
i), i = 1, . . . ,N} (2.25)

where we denote by {µµµ i}N
i=1 the set of selected parameters following the Greedy Algorithm 6

in Chapter 1.
Then, the Reduced Basis Problem is stated as{

Find UN(µµµ) ∈ XN such that

A(UN(µµµ),VN ; µµµ) = F(VN ; µµµ) ∀VN ∈ XN .
(2.26)
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The solution UN(µµµ) = (uN(µµµ), pN(µµµ)) ∈ XN can be expressed as a linear combination

of the selected basis, by

uN(µµµ) =
2N

∑
i=1

(uN)i(µµµ)ξξξ
i
, pN(µµµ) =

N

∑
i=1

(pN)i(µµµ)ψ
i

where uN ∈ R2N and pN ∈ RN conform the solution of a reduced linear system which

is built from parameter-independent matrices and tensors. To develop this system, we

build the parameter-independent matrices Akl
N ,Dkl

N ∈ M 2N×2N(R), Bkl
N ∈ M N×2N(R),

Ckl
N ∈ M 2N×2N×2N(R) for k = 1,2 and l = 1,2,3,4 defined by

(Akl
N )i j = akl(ξξξ

j
,ξξξ

i
), i, j = 1, . . . ,2N,

(Bkl
N )i j = bkl(ξξξ

j
,ψ i), i = 1, . . . ,N, j = 1, . . . ,2N,

(Ckl
N )i js = ckl(ξξξ

s
,ξξξ

j
,ξξξ

i
), i, j,s = 1, . . . ,2N,

(Dkl
N )i j = ckl(uD,ξξξ

j
,ξξξ

i
)+ ckl(ξξξ

j
,uD,ξξξ

i
), i, j = 1, . . . ,2N.

Since the Smagorinsky term is non-linear with respect to the parameters due to the

eddy diffusion term, we use the EIM to approximate it developed in Section 1.3. With

this method, we compute an approximation RB space WM = span{qm}M
m=1 selecting this

base by a Greedy algorithm. The eddy viscosity is approximated on this space,

νt(u; µµµ)≈
M

∑
m=1

σ j(µµµ)qm(x). (2.27)

With the computation of the coefficients {σ j(µµµ)}M
j=1 by solving a linear system for a

given µµµ ∈D, we are able to approximate the eddy diffusion term during the online phase.

This procedure has been exposed in Algorithm 5.

Then, for any k = 1,2 and l = 1,2,3,4,

at,kl(u;u,v; µµµ)≈
M

∑
m=1

σ j(µµµ)
∫

Ωl

qm(∂ku1∂kv1 +∂ku2∂kv2) dΩ.

Finally, we are able to define the matrix Eklm
N ∈M 2N×2N(R) for k = 1,2, l = 1,2,3,4

and m = 1, . . . ,M associated to the eddy viscosity term by

(Eklm
N )i j =

∫
Ωl

qm(∂kξ j,1∂kξi,1 +∂kξ j,2∂kξi,2) dΩ, i, j = 0, . . . ,2N −1.

Thanks to these matrices, we are able to build the reduced system for any parameter µµµ .
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2.3 A posteriori error estimator

As we saw in Section 1.4 the Greedy algorithm uses the norm of the error between the

high fidelity solution of (2.22) and the RB solution of (2.26) for each parameter µµµ ∈Dtrain,

which implies the computation of a large number of high fidelity solution. This would not

be very practical since this would largely increase the offline phase computational cost.

To avoid this, we develop a posteriori error estimator to bound the exact error.

Since our problem is non-linear, we use the Brezzi-Rappaz-Raviart (BRR) theory (cf.

[8]), that will help us to build an a posteriori error estimator for the Smagorinsky model.

First, we study the well-posedness of problem (2.22), studying the continuity and

inf-sup stability of the Fréchet derivative of A, that we denote by ∂1A.

Secondly, we use the BRR theory to obtain an a posteriori error bound estimator. We

prove that the tangent operator ∂1A is Lipschitz continuous, and we obtain the estimator

proving existence and uniqueness of a solution Uh of (2.22) close to a solution UN of

(2.26).

2.3.1 Well-posedness analysis

In this section, we analyse the well-posedness of problem (2.22) studying the directional

derivative of the operator A defined in Definition A.1, in the sense that for any solution

Uh(µµµ) of (2.22), there exist β0 > 0 and γ0 ∈ R such that for all µµµ ∈ D,

0 < β0 < βh(µµµ)≡ inf
Zh∈Xh

sup
Vh∈Xh

∂1A(Uh(µµµ),Vh; µµµ)(Zh)

∥Zh∥X∥Vh∥X
,

∞ > γ0 < γh(µµµ)≡ sup
Zh∈Xh

sup
Vh∈Xh

∂1A(Uh(µµµ),Vh; µµµ)(Zh)

∥Zh∥X∥Vh∥X
.

(2.28)

For this purpose, we prove that the directional derivative of the operator A is continuous

and weakly coercive. In this section, we set U = (u, p), V = (v,q) and Z = (z,r).
Moreover, for simplicity, we denote Ω, in stead of the reference domain Ωr. From the

definition of A(· , · ; µµµ) in (2.21) it holds,

∂1A0(U,V ; µµµ)(Z) = A0(Z,V )

∂1A1(U,V ; µµµ)(Z) = A1(Z,V )

∂1A2(U,V ; µµµ)(Z) =
4

∑
l=1

2

∑
k=1

η
l
kk(ckl(u,z,v)+ ckl(z,u,v))
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and

∂1A3(U,V ; µµµ)(Z) =
4

∑
l=1

2

∑
k=1

λ
l
kkat,kl(w;z,v; µµµ)

+
4

∑
l=1

∑
K∈Th,l

∫
K
(CShK(µµµ))

2 ∑
2
k=1 λ l

kk(∇kw · ∇kz)√
∑

2
k=1 ϕ l

kk(∇kw · ∇kw)

(
2

∑
k=1

ϕ
l
kk(∇kw · ∇kv)

)

where, for simplicity, we are denoting by w = u+uD and ∇ku = [∂ku1,∂ku2] for k = 1,2.

Remark 2.1. For the next results, we introduce the notation

α
∗ = max

l=1,2,3,4

(
max
k=1,2

α
l
kk

)
and α̂ = min

l=1,2,3,4

(
min
k=1,2

α
l
kk

)
and similar notations for λ l , η l and ϕ l for l = 1,2,3,4 defined in (2.7)-(2.11). Moreover,

h∗max = max
µµµ∈D

max
K∈Th

hK(µµµ).

Remark 2.2. We also introduce the definition of some constants necessary for the next
results that are derived from relevant results exposed in Appendix A.2:

• The norm related to the inner product (2.12) is equivalent to the H1
0 (Ω)-norm, then,

there exists a constant C1,2;T > 0 such that

∥∇v∥L2(Ω) ≤C1,2;T∥v∥T , ∀v ∈ Y. (2.29)

• We recall the definition of the constant C4;1,2 > 0 from the application of the
Sobolev embedding Theorem A.2 in (A.9). Moreover, because of the definition of
the previous constant, there exists C4;T =C4;1,2C1,2;T . To sum up,

∥v∥L4(Ω) ≤C4;1,2∥∇v∥L2(Ω), ∥v∥L4(Ω) ≤C4;T∥v∥T , ∀v ∈ Y. (2.30)

• For all K ∈ Th, we apply the Local Inverse Inequality Theorem A.3 as in (A.11),
introducing the constant C3;2 > 0, this is,

∥∇vh∥L3(K) ≤C3;2h−d/6
K ∥∇vh∥L2(K), ∀K ∈ Th, ∀vh ∈ Yh. (2.31)

We start by studying the continuity of the directional derivative ∂1A(Uh(µµµ), · ; µµµ)(·)
for a given Uh(µµµ) ∈ Xh.
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Proposition 2.1. For any µµµ ∈D and Uh =Uh(µµµ) ∈ Xh, it holds

|∂1A(Uh,Vh; µµµ)(Zh)| ≤ γ
∗
h∥Zh∥X∥Vh∥X , ∀Zh,Vh ∈ Xh,

where γ∗h = maxµµµ∈D γh(µµµ) and

γh(µµµ) = λ
∗C2

1,2;T

Re
+η

∗C1,2;T +η
∗C4;TC1,2;T (∥uh∥L4(Ω)+∥uD∥L4(Ω))

+η
∗C2

4;T (∥∇uh∥L2(Ω)+∥∇uD∥L2(Ω))

+λ
∗

(
1+

ϕ∗√
ϕ̂

)
C2

S(h
∗
max)

2−d/3C2
1,2;TC2

3;2∥∇uh +∇uD∥L3(Ω).

where the dependency on µµµ is produced by uh.

Proof. Since

|∂1A(Uh,Vh; µµµ)(Zh)| ≤
3

∑
i=0

|∂1Ai(Uh,Vh; µµµ)(Zh)|

we study each term separately.

• First,

|∂1A0(Uh,Vh; µµµ)(Zh)|= |A0(Zh,Vh)|=

∣∣∣∣∣ 4

∑
l=1

2

∑
k=1

λ
l
kkakl(zh,vh)

∣∣∣∣∣
≤ λ

∗
∣∣∣∣ 1
Re

∫
Ω

∇zh : ∇vh dΩ

∣∣∣∣ .
Then, we use the Cauchy-Schwarz Inequality A.1, and (2.29)

|∂1A0(Uh,Vh; µµµ)(Zh)| ≤ λ
∗ 1

Re
∥∇zh∥L2(Ω)∥∇vh∥L2(Ω) ≤ λ

∗C2
1,2;T

Re
∥zh∥T∥vh∥T

Now, from the definition of the X-norm (2.13),

|∂1A0(Uh,Vh; µµµ)(Zh)| ≤ λ
∗C2

1,2;T

Re
∥Zh∥X∥Vh∥X .

• Second,

|∂1A1(Uh,Vh; µµµ)(Zh)|= |A1(Zh,Vh)|

=

∣∣∣∣∣ 4

∑
l=1

2

∑
k=1

η
l
kk(bkl(vh,rh)−bkl(zh,qh)+ ckl(uD,zh,vh)+ ckl(zh,uD,vh))

∣∣∣∣∣
≤ η

∗
∣∣∣∣∫

Ω

(∇ ·vh)rh − (∇ · zh)qh +(uD · ∇)zh · vh +(zh · ∇)uD · vh dΩ

∣∣∣∣
≤ η

∗(∥∇vh∥L2(Ω)∥rh∥L2(Ω)+∥∇zh∥L2(Ω)∥qh∥L2(Ω))

+η
∗(∥uD∥L4(Ω)∥∇zh∥L2(Ω)∥vh∥L4(Ω)+∥zh∥L4(Ω)∥∇uD∥L2(Ω)∥vh∥L4(Ω))
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Then, we use (2.29) and (2.30) and the definition of the X-norm (2.13),

|∂1A1(Uh,Vh;µµµ)(Zh)| ≤ η
∗C1,2;T (∥vh∥T∥rh∥L2(Ω)+∥zh∥T∥qh∥L2(Ω))

+η
∗C4;T (C1,2;T∥uD∥L4(Ω)+C4;T∥∇uD∥L2(Ω))∥vh∥T∥zh∥T

≤ η
∗(C1,2;T +C4;TC)∥Vh∥X∥Zh∥X ,

where C = (C1,2;T∥uD∥L4(Ω)+C4;T∥∇uD∥L2(Ω)).

• The following term,

|∂1A2(Uh,Vh;µµµ)(Zh)|=

∣∣∣∣∣ 4

∑
l=1

2

∑
k=1

η
l
kk(ckl(uh,zh,vh)+ ckl(zh,uhvh))

∣∣∣∣∣
≤ η

∗
∣∣∣∣∫

Ω

(uh · ∇)zh · vh +(zh · ∇)uh · vh dΩ

∣∣∣∣
≤ η

∗
(
∥uh∥L4(Ω)∥∇zh∥L2(Ω)∥vh∥L4(Ω)

+ ∥zh∥L4(Ω)∥∇uh∥L2(Ω)∥vh∥L4(Ω))
)

≤ η
∗
(

C1,2;TC4;T∥uh∥L4(Ω)+C2
4;T∥∇uh∥L2(Ω)

)
∥vh∥T∥zh∥T

≤ η
∗
(

C1,2;TC4;T∥uh∥L4(Ω)+C2
4;T∥∇uh∥L2(Ω)

)
∥Vh∥X∥Zh∥X .

• Finally,

|∂1A3(Uh,Vh,µµµ)(Zh)| ≤

∣∣∣∣∣ 4

∑
l=1

2

∑
k=1

λ
l
kkat,kl(wh;zh,vh; µµµ)

∣∣∣∣∣
+

∣∣∣∣∣∣
4

∑
l=1

∑
K∈Th,l

∫
K
(CShK)

2 ∑
2
k=1 λ l

kk(∇kwh · ∇kzh)√
∑

2
k=1 ϕ l

kk|∇kwh|

(
2

∑
k=1

ϕ
l
kk(∇kwh · ∇kvh)

)∣∣∣∣∣∣
≤ λ

∗
∑

K∈Th

∣∣∣∣∫K
(CShK(µµµ))

2|∇wh|∇zh : ∇vh

∣∣∣∣
+

λ ∗ϕ∗√
ϕ̂

∑
K∈Th

∣∣∣∣∫K
(CShK(µµµ))

2 ∇wh : ∇zh

|∇wh|
(∇wh : ∇vh)

∣∣∣∣
≤ λ

∗

(
1+

ϕ∗√
ϕ̂

)
∑

K∈Th

∫
K
(CShK(µµµ))

2|∇wh||∇zh||∇vh|
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≤ λ
∗

(
1+

ϕ∗√
ϕ̂

)
∑

K∈Th

(CShK(µµµ))
2∥∇wh∥L3(K)∥∇zh∥L3(K)∥∇vh∥L3(K)

≤ λ
∗

(
1+

ϕ∗√
ϕ̂

)
C2

3;2 ∑
K∈Th

C2
ShK(µµµ)

2−d/3∥∇wh∥L3(K)∥∇zh∥L2(K)∥∇vh∥L2(K)

≤ λ
∗

(
1+

ϕ∗√
ϕ̂

)
C2

S(h
∗
max)

2−d/3C2
3;2∥∇wh∥L3(Ω)∥∇zh∥L2(Ω)∥∇vh∥L2(Ω)

≤ λ
∗

(
1+

ϕ∗√
ϕ̂

)
C2

S(h
∗
max)

2−d/3C2
1,2;TC2

3;2∥∇wh∥L3(Ω)∥zh∥T∥vh∥T

≤ λ
∗

(
1+

ϕ∗√
ϕ̂

)
C2

S(h
∗
max)

2−d/3C2
1,2;TC2

3;2∥∇wh∥L3(Ω)∥Vh∥X∥Vh∥X .

where we have used (2.31) and that wh = uh +uD.

Consequently, the continuity constant is

γh(µµµ) = λ
∗C2

1,2;T

Re
+η

∗(C1,2;T +C4;TC)

+η
∗
(

C1,2;TC4;T∥uh∥L4(Ω)+C2
4;T∥∇uh∥L2(Ω)

)
+λ

∗

(
1+

ϕ∗√
ϕ̂

)
C2

S(h
∗
max)

2−d/3C2
1,2;TC2

3;2∥∇uh +∇uD∥L3(Ω).

where the dependency on µµµ is produced by uh.

Now, we study the coercivity of the derivative operator.

Proposition 2.2. For any µµµ ∈ D and Uh = Uh(µµµ) ∈ Xh, let us suppose that
∥∇uD∥L2(Ω) < 1/C and

∥∇uh∥L2(Ω) ≤
1
C
− ∥∇uD∥L2(Ω),

where the positive constant C is defined by

C =
λ̂ min{1,

√
ϕ̂}

2η∗C2
1,2;TC2

4;1,2

with C1,2;T and C4;1,2 defined in (2.29)-(2.30). Then it holds,

∂1A(Uh,Zh; µµµ)(Zh)≥ β̃h∥zh∥2
T , ∀Zh ∈ Xh,
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where

β̃h = λ̂ min{1,
√

ϕ̂}−2η
∗C2

1,2;TC2
4;1,2(∥∇uh∥L2(Ω)+∥∇uD∥L2(Ω))> 0.

Proof. By definition,

∂1A(Uh,Zh; µµµ)(Zh) =
3

∑
i=0

∂1Ai(Uh,Zh; µµµ)(Zh)

and we study each term separately. We recall that forms Ai for i = 0,1,2,3 are defined in

(2.21). Along the proof, we will use that wh = uh +uD for simplicity.

• The derivative of the diffusion term is bounded as

∂1A0(Uh,Zh; µµµ)(Zh) =
4

∑
l=1

2

∑
k=1

λ
l
kkakl(zh,zh)≥ λ̂

1
Re

∥∇zh∥2
L2(Ω).

The eddy viscosity term is treated by

∂1A3(Uh,Zh; µµµ)(Zh) =
4

∑
l=1

2

∑
k=1

λ
l
kkat,kl(wh;zh,zh; µµµ)

+
4

∑
l=1

∑
K∈Th,l

∫
K
(CShK)

2

2

∑
k=1

λ
l
kk∇kwh · ∇kzh√

2

∑
k=1

ϕ
l
kk|∇kwh|2

(
2

∑
k=1

ϕ
l
kk∇kwh · ∇kzh

)

≥ λ̂
√

ϕ̂ ∑
K∈Th

∫
K
(CShK)

2|∇wh||∇zh|2 +
λ̂ ϕ̂√

ϕ∗ ∑
K∈Th

∫
K
(CShK)

2 |∇wh : ∇zh|2

|∇wh|
.

Using that this last addend is positive and adding these two terms, we obtain

∂1A0(Uh,Zh; µµµ)(Zh)+∂1A3(Uh,Zh; µµµ)(Zh)

≥ λ̂
1

Re

∫
Ω

|∇zh|2 dΩ+ λ̂
√

ϕ̂

∫
Ω

(CShK)
2|∇wh||∇zh|2 dΩ

+
λ̂ ϕ̂√

ϕ∗ ∑
K∈Th

∫
K
(CShK)

2 |∇wh : ∇zh|2

|∇wh|

≥ λ̂ min{1,
√

ϕ̂}∥zh∥2
T .

(2.32)
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• On the other hand, we bound from above the rest of the terms, such as

|∂1A1(Uh,Zh; µµµ)(Zh)+∂1A2(Uh,Zh; µµµ)(Zh)|

=

∣∣∣∣∣ 4

∑
l=1

2

∑
k=1

η
l
kk(ckl(wh,zh,zh)+ ckl(zh,wh,zh))

∣∣∣∣∣
≤ η

∗
∣∣∣∣∫

Ω

(wh · ∇)zh · zh +(zh · ∇)wh · zh dΩ

∣∣∣∣
≤ η

∗
∫

Ω

|wh||∇zh||zh|+ |zh|2|∇wh| dΩ

≤ η
∗
(
∥wh∥L4(Ω)∥∇zh∥L2(Ω)∥zh∥L4(Ω)+∥zh∥2

L4(Ω)∥∇wh∥L2(Ω)

)
≤ 2η

∗C2
4;1,2∥∇wh∥L2(Ω)∥∇zh∥2

L2(Ω)

≤ 2η
∗C2

1,2;TC2
4;1,2∥∇wh∥L2(Ω)∥zh∥2

T

where C4;1,2 is defined in (2.30) and thanks to the Triangle Inequality, we obtain
that

|∂1A1(Uh,Zh; µµµ)(Zh)+∂1A2(Uh,Zh; µµµ)(Zh)|

≤ 2η
∗C2

1,2;TC2
4;1,2(∥∇uh∥L2(Ω)+∥∇uD∥L2(Ω))∥zh∥2

T .

Then,

∂1A1(Uh,Zh; µµµ)(Zh)+∂1A2(Uh,Zh; µµµ)(Zh)

≥−2η
∗C2

1,2;TC2
4;1,2(∥∇uh∥L2(Ω)+∥∇uD∥L2(Ω))∥zh∥2

T . (2.33)

Finally, regrouping (2.32) and (2.33), we obtain

∂1A(Uh,Zh; µµµ)(Zh)≥ β̃h∥zh∥2
T ,

where

β̃h = λ̂ min{1,
√

ϕ̂}−2η
∗C2

1,2;TC2
4;1,2(∥∇uh∥L2(Ω)+∥∇uD∥L2(Ω))

Since β̃h should be positive, we define C > 0

C =
λ̂ min{1,

√
ϕ̂}

2η∗C2
1,2;TC2

4;1,2

then, if ∥∇uD∥L2(Ω)< 1/C and ∥∇uh∥L2(Ω)≤ 1/C−∥∇uD∥L2(Ω), we are able to guarantee
that the constant is positive and therefore, the operator is coercive.
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Remark 2.3. If we choose Yh and Qh in order to verify the inf-sup condition in Theorem

A.8 (for example, considering Taylor-Hood finite element spaces), we are able to ensure

that the operator ∂1A verifies (2.28). Moreover, if the pair of spaces (YN ,QN), are inf-sup

stables and the data are small enough, the problem (2.26) is also well-posed.

According to BRR theory, we can conclude that problem (2.22) admits a solution

Uh ∈ Xh for small data which is locally unique.

2.3.2 The building of an a posteriori error estimator

As a previous result, we need to prove that the tangent operator ∂1A is Lipschitz.

Lemma 2.1. For all µµµ ∈D and U1
h ,U

2
h ,Zh,Vh ∈ Xh, it holds

|∂1A(U1
h ,Vh; µµµ)(Zh)−∂1A(U2

h ,Vh; µµµ)(Zh)| ≤ ρT∥U1
h −U2

h ∥X∥Zh∥X∥Vh∥X (2.34)

for a positive constant

ρT = 2η
∗C1,2;TC2

4;T +

(
λ
∗√

ϕ∗+3λ
∗ ϕ∗√

ϕ̂

)
C2

S(h
∗
max)

2−d/2C3
1,2;TC3

3;2,

where constant C1,2;T , C4;T and C3;2 are defined in (2.29)-(2.31).

Proof. By definition

∂1A(U1
h ,Vh; µµµ)(Zh)−∂1A(U2

h ,Vh; µµµ)(Zh) = ∂1A2(U1
h ,Vh; µµµ)(Zh)

−∂1A2(U2
h ,Vh; µµµ)(Zh)+∂1A3(U1

h ,Vh; µµµ)(Zh)−∂1A3(U2
h ,Vh; µµµ)(Zh), (2.35)

remaining the terms associated with the nonlinear part of the operator A. First, we study

the first couple of terms above

∂1A2(U1
h ,Vh; µµµ)(Zh)−∂1A2(U2

h ,Vh; µµµ)(Zh)

=
4

∑
l=1

2

∑
k=1

η
l
kk(ckl(u1

h,zh,vh)− ckl(u2
h,zh,vh)+ ckl(zh,u1

h,vh)− ckl(zh,u2
h,vh))

=
4

∑
l=1

2

∑
k=1

η
l
kk(ckl(u1

h −u2
h,zh,vh)+ ckl(zh,u1

h −u2
h,vh))

≤ η
∗
(∫

Ω

(
(u1

h −u2
h) · ∇

)
zh · vh dΩ +

∫
Ω

(zh · ∇)(u1
h −u2

h) · vh dΩ

)
.
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Then,∣∣∣∣∫
Ω

(
(u1

h −u2
h) · ∇

)
zh · vh dΩ

∣∣∣∣≤ ∫
Ω

|u1
h −u2

h||∇zh||vh| dΩ

≤ ∥u1
h −u2

h∥L4(Ω)∥∇zh∥L2(Ω)∥vh∥L4(Ω) ≤C1,2;TC2
4;T∥u1

h −u2
h∥T∥zh∥T∥vh∥T

≤C1,2;TC2
4;T∥U1

h −U2
h ∥X∥Zh∥X∥Vh∥X ,

and analogously,∣∣∣∣∫
Ω

(zh · ∇)(u1
h −u2

h) · vh dΩ

∣∣∣∣≤ ∥zh∥L4(Ω)∥∇(u1
h −u2

h)∥L2(Ω)∥vh∥L4(Ω)

≤C1,2;TC2
4;T∥U1

h −U2
h ∥X∥Zh∥X∥Vh∥X ,

and finally,

|∂1A2(U1
h ,Vh; µµµ)(Zh)−∂1A2(U2

h ,Vh; µµµ)(Zh)|

≤ 2η
∗C1,2;TC2

4;T∥U1
h −U2

h ∥X∥Zh∥X∥Vh∥X , (2.36)

where the constants C1,2;T and C4;T were defined in (2.29) and (2.30), respectively.
Now we study the second couple of terms in (2.35),

∂1A3(U1
h ,Vh; µµµ)(Zh)−∂1A3(U2

h ,Vh; µµµ)(Zh)

=
4

∑
l=1

2

∑
k=1

λ
l
kk(at,kl(w1

h;zh,vh; µµµ)−at,kl(w2
h;zh,vh; µµµ))

+
4

∑
l=1

∑
K∈Th,l

∫
K
(CShK)

2

 ∑
2
k=1 λ l

kk(∇kw1
h · ∇kzh)√

∑
2
k=1 ϕ l

kk(∇kw1
h · ∇kw1

h)

(
2

∑
k=1

ϕ
l
kk(∇kw1

h · ∇kvh)

)

− ∑
2
k=1 λ l

kk(∇kw2
h · ∇kzh)√

∑
2
k=1 ϕ l

kk(∇kw2
h · ∇kw2

h)

(
2

∑
k=1

ϕ
l
kk(∇kw2

h · ∇kvh)

) .
(2.37)

where we recall that wi
h = ui

h +uD for i = 1,2 and the form at,kl(· ; · , · ; µµµ) was defined in
(2.18). It holds∣∣∣∣∣ 4

∑
l=1

2

∑
k=1

λ
l
kk( at,kl(w1

h;zh,vh; µµµ)−at,kl(w2
h;zh,vh; µµµ))

∣∣
≤λ

∗
∣∣∣∣∫

Ω

(νt(w1
h; µµµ)−νt(w2

h; µµµ))(∇zh : ∇vh) dΩ

∣∣∣∣
≤λ

∗√
ϕ∗

∣∣∣∣∣ ∑
K∈Th

∫
K
(CShK)

2 (|∇w1
h|− |∇w2

h|
)
(∇zh : ∇vh)

∣∣∣∣∣
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≤λ
∗√

ϕ∗ ∑
K∈Th

∫
K
(CShK)

2|∇(u1
h −u2

h)||∇zh||∇vh|

≤λ
∗√

ϕ∗ ∑
K∈Th

(CShK)
2∥∇(u1

h −u2
h)∥L3(K)∥∇zh∥L3(K)∥∇vh∥L3(K)

≤λ
∗√

ϕ∗C3
3;2 ∑

K∈Th

(CShK)
2−d/2∥∇(u1

h −u2
h)∥L2(K)∥∇zh∥L2(K)∥∇vh∥L2(K)

≤λ
∗√

ϕ∗C2
S(h

∗
max)

2−d/2C3
3;2∥∇(u1

h −u2
h)∥L2(Ω)∥∇zh∥L2(Ω)∥∇vh∥L2(Ω)

≤λ
∗√

ϕ∗C2
S(h

∗
max)

2−d/2C3
1,2;TC3

3;2∥U1
h −U2

h ∥X∥Zh∥X∥Vh∥X .

where we have applied the Local Inverse Inequality (2.31).
For the second term, using the same results and procedure that in the first term, we

obtain:∣∣∣∣∣∣
4

∑
l=1

∑
K∈Th,l

∫
K
(CShK)

2

 ∑
2
k=1 λ l

kk(∇kw1
h · ∇kzh)√

∑
2
k=1 ϕ l

kk(∇kw1
h · ∇kw1

h)

(
2

∑
k=1

ϕ
l
kk(∇kw1

h · ∇kvh)

)

− ∑
2
k=1 λ l

kk(∇kw2
h · ∇kzh)√

∑
2
k=1 ϕ l

kk(∇kw2
h · ∇kw2

h)

(
2

∑
k=1

ϕ
l
kk(∇kw2

h · ∇kvh)

)∣∣∣∣∣∣
≤ λ

∗ ϕ∗√
ϕ̂

∣∣∣∣∣ ∑
K∈Th

∫
K
(CShK)

2
(

∇w1
h : ∇zh

|∇w1
h|

(∇w1
h : ∇vh)−

∇w2
h : ∇zh

|∇w2
h|

(∇w2
h : ∇vh)

)∣∣∣∣∣
= λ

∗ ϕ∗√
ϕ̂

∣∣∣∣∣ ∑
K∈Th

∫
K
(CShK)

2
(

∇w1
h : ∇zh

|∇w1
h|

(∇(w1
h −w2

h) : ∇vh) +
∇(w1

h −w2
h) : ∇zh

|∇w2
h|

(∇w2
h : ∇vh)

)

+ ∑
K∈Th

∫
K
(CShK)

2 (|∇w2
h|− |∇w1

h|)
|∇w1

h||∇w2
h|

(∇w1
h : ∇zh)(∇w2

h : ∇vh)

∣∣∣∣∣
≤ 3λ

∗ ϕ∗√
ϕ̂

∑
K∈Th

∫
K
(CShK)

2|∇(u1
h −u2

h)||∇zh||∇vh|

≤ 3λ
∗ ϕ∗√

ϕ̂
∑

K∈Th

(CShK)
2∥u1

h −u2
h∥L3(K)∥zh∥L3(K)∥vh∥L3(K)

≤ 3λ
∗ ϕ∗√

ϕ̂
C2

S(h
∗
max)

2−d/2C3
1,2;TC3

3;2∥U1
h −U2

h ∥X∥Zh∥X∥Vh∥X .

Using these bounds in (2.37) and summing with (2.36), we conclude that there exists

ρT = 2η
∗C1,2;TC2

4;T +

(
λ
∗√

ϕ∗+3λ
∗ ϕ∗√

ϕ̂

)
C2

S(h
∗
max)

2−d/2C3
1,2;TC3

3;2,
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such that (2.34) is satisfied.

Remark 2.4. Note that the Lipschitz constant ρT only depends on possible values of µµµ ,
this is, the selection of D and the characteristic mesh parameters.

It also depends on (h∗max)
2−d/2 which tends to zero since 2−d/2 > 0 for any d < 4.

As we explained, in order to apply the RB Method, we develop an a posteriori error
estimator. For its construction, we first introduce some definitions.

Definition 2.1. The Stability Factor βN(µµµ) and the continuity factor γN(µµµ), associated
with ∂1A(UN(µµµ), · ; µµµ) are defined by

βN(µµµ)≡ inf
Zh∈Xh

sup
Vh∈Xh

∂1A(UN(µµµ),Vh; µµµ)(Zh)

∥Zh∥X∥Vh∥X
, (2.38)

γN(µµµ)≡ sup
Zh∈Xh

sup
Vh∈Xh

∂1A(UN(µµµ),Vh; µµµ)(Zh)

∥Zh∥X∥Vh∥X
, (2.39)

for a given UN(µµµ) ∈ XN , solution of (2.26).

Note that from Proposition 2.2, βN(µµµ) > 0 whenever the data is small enough and
the pair (Yh,Qh) are inf-sup stable. This condition implies that the tangent operator
∂1A(UN(µµµ), · ; µµµ) is an isomorphism of Xh into its self for all µµµ ∈ D.

Definition 2.2. For a given UN(µµµ) ∈ XN solution of (2.26), the supremizer operator
T µµµ

N : Xh −→ Xh is defined by

T µµµ

N Zh = arg sup
Vh∈Xh

∂1A(UN(µµµ),Vh; µµµ)(Zh)

∥Vh∥X
. (2.40)

This supremizer is unlike the inner-pressure supremizer presented in (2.23). The
pressure supremizer is related to the pressure and it is defined to enrich the velocity space,
while this last supremizer is related to the tangent operator ∂1A.

Remark 2.5. From definitions 2.1 and 2.2, we deduce the relation between the factors
and the supremizer operator:

βN(µµµ)≡ inf
Zh∈Xh

∥T µµµ

N Zh∥X

∥Zh∥X
, γN(µµµ)≡ sup

Zh∈Xh

∥T µµµ

N Zh∥X

∥Zh∥X
.

In particular, we have

βN(µµµ)≤
∂1A(UN(µµµ),T

µµµ

N Zh; µµµ)(Zh)

∥T µµµ

N Zh∥X∥Zh∥X
, ∀Zh ∈ Xh, (2.41)

for a given UN ∈ XN .
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The construction of an a posteriori error estimator goes through the proof of the

existence and uniqueness of the solution of problem (2.22).

Theorem 2.1 (Uniqueness). Let µµµ ∈D, and assume that βN(µµµ)> 0. If problem (2.22)

admits a solution Uh(µµµ) such that

Uh(µµµ) ∈ BX

(
UN(µµµ),

βN(µµµ)

ρT

)
then, this solution is unique.

For the proof of this theorem and the next one, we define the following operators:

• The residual R(· ; µµµ) : Xh −→ X ′
h by

⟨R(Zh; µµµ),Vh⟩= A(Zh,Vh; µµµ)−F(Vh; µµµ), ∀Zh,Vh ∈ Xh. (2.42)

• The derivative of the operator A(·, · ; µµµ), DA(Uh(µµµ); µµµ) : Xh −→ X ′
h, by

⟨DA(Uh(µµµ); µµµ)Zh,Vh⟩= ∂1A(Uh,Vh; µµµ)(Zh), ∀Zh,Vh ∈ Xh. (2.43)

• The operator H : Xh −→ Xh by

H(Zh; µµµ) = Zh −DA(UN(µµµ); µµµ)−1R(Zh; µµµ), ∀Zh ∈ Xh. (2.44)

Proof. The strategy of this proof is to show that H(· ; µµµ) is a contraction in the sense of

Definition A.3. If there exists a fixed point Uh, this point is a solution of problem (2.22)

since

H(Uh(µµµ); µµµ) =Uh(µµµ)−DA(UN(µµµ); µµµ)−1R(Uh(µµµ); µµµ) =Uh(µµµ)

⇐⇒ R(Uh(µµµ); µµµ) = 0.

Let us study if the operator H is a contraction, proving in this way that it has a unique

fixed point. By definition, we have

H(Z1
h ; µµµ)−H(Z2

h ; µµµ) = (Z1
h −Z2

h)−DA(UN(µµµ); µµµ)−1(R(Z1
h ; µµµ)−R(Z2

h ; µµµ)). (2.45)

Using the residual definition (2.42) and the mean value theorem, it holds

R(Z1
h ; µµµ)−R(Z2

h ; µµµ) =DA(ξ ; µµµ)(Z1
h −Z2

h), (2.46)
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where ξ = sZ1
h +(1− s)Z2

h , for some s ∈ (0,1).
To prove this, we define T : [0,1]−→ R, by

T (s) = ⟨R(sZ1
h +(1− s)Z2

h ; µµµ),Vh⟩, ∀Vh ∈ Xh.

The function T is derivable for all s ∈ (0,1) and its derivative is

T ′(s) = ⟨DA(sZ1
h +(1− s)Z2

h ; µµµ)(Z1
h −Z2

h),Vh⟩.

If we apply the mean value theorem to T we have (2.46).
Now, multiplying (2.45) by DA(UN(µµµ); µµµ) and applying (2.46), we can write

DA(UN(µµµ); µµµ)(H(Z1
h ; µµµ)−H(Z2

h ; µµµ)) = [DA(UN(µµµ); µµµ)−DA(ξ ; µµµ)](Z1
h −Z2

h).

Then, thanks to the Lipschitz condition (2.34), we can write

⟨DA(UN(µµµ); µµµ)(H(Z1
h ; µµµ)−H(Z2

h ; µµµ)),Vh⟩

≤ ρT∥UN(µµµ)−ξ∥X∥Z1
h −Z2

h∥X∥Vh∥X (2.47)

Taking Zh = H(Z1
h ; µµµ)−H(Z2

h ; µµµ) in (2.41), then,

βN(µµµ)∥H(Z1
h ; µµµ)−H(Z2

h ; µµµ)∥X∥T µµµ

N (H(Z1
h ; µµµ)−H(Z2

h ; µµµ))∥X

≤ ⟨DA(UN(µµµ); µµµ)(H(Z1
h ; µµµ)−H(Z2

h ; µµµ)),T µµµ

N (H(Z1
h ; µµµ)−H(Z2

h ; µµµ))⟩,

and applying (2.47) to Vh = T µµµ

N (H(Z1
h ; µµµ)−H(Z2

h ; µµµ)) we have that,

βN(µµµ)∥H(Z1
h ; µµµ)−H(Z2

h ; µµµ)∥X∥T µµµ

N (H(Z1
h ; µµµ)−H(Z2

h ; µµµ))∥X

≤ ρT∥UN(µµµ)−ξ∥X∥Z1
h −Z2

h∥X∥T µµµ

N (H(Z1
h ; µµµ)−H(Z2

h ; µµµ))∥X

from which we obtain that

∥H(Z1
h ; µµµ)−H(Z2

h ; µµµ)∥X ≤ ρT

βN(µµµ)
∥UN(µµµ)−ξ∥X∥Z1

h −Z2
h∥X .

If Z1
h and Z2

h are in BX(UN(µµµ),α) then ∥UN(µµµ)−ξ∥X ≤ α since ξ = sZ1
h +(1− s)Z2

h

for some s ∈ (0,1) and

∥H(Z1
h ; µµµ)−H(Z2

h ; µµµ)∥X ≤ ρT

βN(µµµ)
α∥Z1

h −Z2
h∥X

Then, H(· ; µµµ) is a contraction if α <
βN(µµµ)

ρT
.

In conclusion, if there exists a fixed point Uh in BX

(
UN(µµµ),

βN(µµµ)

ρT

)
, this point is

unique.
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Now we state an a posteriori error bound estimator that will be deduced in the
Existence Theorem 2.2. First,

τN(µµµ) =
4εN(µµµ)ρT

βN(µµµ)2 (2.48)

where the Stability Factor βN(µµµ) is defined in (2.38), the Lipschitz constant ρT is
defined in (2.34) and

εN(µµµ) = ∥R(UN(µµµ); µµµ)∥X ′ = sup
Vh∈Xh

⟨R(UN(µµµ); µµµ),Vh⟩
∥Vh∥X

(2.49)

that is, εN(µµµ) is the dual norm of the residual.
Then, we define

∆N(µµµ) =
βN(µµµ)

2ρT

[
1−
√

1− τN(µµµ)
]
, ∀µµµ ∈D. (2.50)

Thanks to the next result, we will see that ∆N(µµµ) is an a posteriori error estimator.

Theorem 2.2 (Existence). Assume that βN(µµµ)> 0 and τN(µµµ)≤ 1 for all µµµ ∈D. Then
there exists a unique solution Uh(µµµ) of (2.22) such that the error with respect to UN(µµµ)

solution of (2.26), is bounded by the a posteriori error bound estimator, i.e.,

∥Uh(µµµ)−UN(µµµ)∥X ≤ ∆N(µµµ), (2.51)

with effectivity,

∆N(µµµ)≤
[

2γN(µµµ)

βN(µµµ)
+ τN(µµµ)

]
∥Uh(µµµ)−UN(µµµ)∥X . (2.52)

Proof. The strategy of this proof is to show the existence of Uh(µµµ) ∈ Xh close to
UN(µµµ) ∈ XN solution of (2.22) and (2.26). To do this, it is enough to prove that we
are under the hypothesis of the Schauder Fixed-Point Theorem A.7, that is that H(· ; µµµ)

is a contraction in a certain compact set K of Xh. Then, the fixed point exists and if this
compact verifies that

K ⊂ BX

(
UN(µµµ),

βN(µµµ)

ρT

)
,

then, we guarantee also the uniqueness of this fixed point thanks to Theorem 2.1.
We consider the definitions (2.42)-(2.44). Then,

H(Zh; µµµ)−UN(µµµ) = Zh −UN(µµµ)−DA(UN(µµµ); µµµ)−1R(Zh; µµµ)

= Zh −UN(µµµ)−DA(UN(µµµ); µµµ)−1[R(Zh; µµµ)−R(UN(µµµ); µµµ)]

−DA(UN(µµµ); µµµ)−1R(UN(µµµ); µµµ).
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Applying DA(UN(µµµ); µµµ), we obtain

⟨DA(UN(µµµ); µµµ)(H(Zh; µµµ)−UN(µµµ)),Vh⟩= ⟨DA(UN(µµµ); µµµ)(Zh −UN(µµµ)),Vh⟩

−⟨R(Zh; µµµ)−R(UN(µµµ); µµµ),Vh⟩−⟨R(UN(µµµ); µµµ),Vh⟩, ∀Vh ∈ Xh

Following the same idea as in Theorem 2.1, we can find ξ (µµµ) = sZh+(1− s)UN(µµµ) with

s ∈ (0,1) such that

R(Zh; µµµ)−R(UN(µµµ); µµµ) =DA(ξ (µµµ); µµµ)(Zh −UN(µµµ)).

In this way, and thanks to Lemma 2.1 and the definition of εN(µµµ) in (2.49), we obtain

that:

⟨DA(UN(µµµ);µµµ)(H(Zh; µµµ)−UN(µµµ)),Vh⟩

= ⟨DA(UN(µµµ); µµµ)(Zh −UN(µµµ)),Vh⟩

−⟨DA(ξ (µµµ); µµµ)(Zh −UN(µµµ)),Vh⟩−⟨R(UN(µµµ); µµµ),Vh⟩

= ⟨(DA(UN(µµµ); µµµ)−DA(ξ (µµµ); µµµ))(Zh −UN(µµµ)),Vh⟩

−⟨R(UN(µµµ); µµµ),Vh⟩

≤ ρT∥UN(µµµ)−ξ (µµµ)∥X∥Zh −UN(µµµ)∥X∥Vh∥X + εN(µµµ)∥Vh∥X

≤
(
ρT∥Zh −UN(µµµ)∥2

X + εN(µµµ)
)
∥Vh∥X .

Then, using (2.41)

βN(µµµ)∥H(Zh; µµµ)−UN(µµµ)∥X∥T µµµ

N (H(Zh; µµµ)−UN(µµµ))∥X

≤ ⟨DA(UN(µµµ); µµµ)(H(Zh; µµµ)−UN(µµµ)),T
µµµ

N (H(Zh; µµµ)−UN(µµµ))⟩

≤
(
ρT∥Zh −UN(µµµ)∥2

X + εN(µµµ)
)
∥T µµµ

N (H(Zh; µµµ)−UN(µµµ))∥X ,

simplifying,

∥H(Zh; µµµ)−UN(µµµ)∥X ≤ ρT

βN(µµµ)
∥Zh −UN(µµµ)∥2

X +
εN(µµµ)

βN(µµµ)
.

and since Zh ∈ BX(UN(µµµ),α) we obtain

∥H(Zh; µµµ)−UN(µµµ)∥X ≤ ρT

βN(µµµ)
α

2 +
εN(µµµ)

βN(µµµ)
.
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To ensure that H maps BX(UN(µµµ),α) into a part of itself, we are seeking the values of α

such that
ρT

βN(µµµ)
α

2 +
εN(µµµ)

βN(µµµ)
≤ α.

This holds if α is between the two roots of the second order equation

ρT α
2 −βN(µµµ)α + εN(µµµ) = 0

which are,

α± =
βN(µµµ)±

√
βN(µµµ)2 −4ρT εN(µµµ)

2ρT

=
βN(µµµ)

2ρT

[
1±

√
1− 4ρT εN(µµµ)

βN(µµµ)2

]

=
βN(µµµ)

2ρT

[
1±
√

1− τN(µµµ)
]
.

Observe that as τN(µµµ)≤ 1, then α− ≤ α+ ≤ βN(µµµ)

ρT
.

Then, H(· ; µµµ) is compact on BX(UN(µµµ),α) if α ∈ [α−,α+], then, there exists a

unique solution Uh(µµµ) (2.22) in the ball BX(UN(µµµ),α). To obtain the estimator, we take

α = α− = ∆N(µµµ).

To prove the efficiency, let us define the error Eh(µµµ) = Uh(µµµ)−UN(µµµ). From the

definition of the residual and applying the mean value theorem, for some s ∈ (0,1) we

have that

⟨R(UN(µµµ); µµµ),Vh⟩= A(UN(µµµ),Vh; µµµ)−F(Vh; µµµ)

= A(UN(µµµ),Vh; µµµ)−A(Uh(µµµ),Vh; µµµ)

= ∂1A(sUh(µµµ)+(1− s)UN(µµµ),Vh; µµµ)(Eh(µµµ))

= ⟨DA(sUh(µµµ)+(1− s)UN(µµµ); µµµ)Eh(µµµ),Vh⟩

= ⟨(DA(sUh(µµµ)+(1− s)UN(µµµ); µµµ)−DA(UN(µµµ); µµµ))Eh(µµµ),Vh⟩

+ ⟨DA(UN(µµµ); µµµ)Eh(µµµ),Vh⟩.

Thanks to the Lemma 2.1, and taking into account the definition of γN(µµµ) and βN(µµµ) in



2. RB steady Smagorinsky model with variable geometry 61

(2.38) and (2.39) respectively, we obtain,

⟨R(UN(µµµ); µµµ),Vh⟩ ≤ ρT∥s(UN(µµµ)−Uh(µµµ))∥X∥Eh(µµµ)∥X∥Vh∥X

+ γN(µµµ)∥Eh(µµµ)∥X∥Vh∥X .

Taking supreme in Vh ∈ Xh and using the definition of (2.49)

εN(µµµ)≤ ρT∥Eh(µµµ)∥2
X + γN(µµµ)∥Eh(µµµ)∥X .

Since 0 ≤ τN(µµµ)≤ 1 and 1−
√

1− τN(µµµ)≤ τN(µµµ), we have that

2ρT

βN(µµµ)
∆N(µµµ)≤ τN(µµµ),

and then

∆N(µµµ)≤
2εN(µµµ)

βN(µµµ)
.

It follows that

∆N(µµµ)≤
2ρT

βN(µµµ)
∥Eh(µµµ)∥2

X +
2γN(µµµ)

βN(µµµ)
∥Eh(µµµ)∥X .

Thanks to (2.51), we know that ∥Eh(µµµ)∥X ≤ ∆N(µµµ), then

2ρT

βN(µµµ)
∥Eh(µµµ)∥X ≤ τN(µµµ),

it follows that

∆N(µµµ)≤
[

2γN(µµµ)

βN(µµµ)
+ τN(µµµ)

]
∥Eh(µµµ)∥X .

Finally, we have proved that ∆N(µµµ) is an a posteriori error estimator with an efficiency

described in (2.52). The estimator is composed of different elements such that the inf-sup

and Lipschitz constants and finally the norm of the residual. In the next section, we

apply the RB method to the Smagorinsky model and we will see how we can compute

these factors in practice.
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2.4 Numerical results

In this section, we present a numerical test coded in FreeFem++ v. 4.8 (cf. [23]). To
solve the problems presented along this chapter, we use a FE approximation with the
Taylor-Hood finite element, i.e., we consider P2−P1 for velocity-pressure that are inf-sup
stable. Additionally, it is necessary to impose that the pressure mean is zero and we can
not ensure this using P1 as the finite element space for the pressure. For this reason,
we add a stabilization term in the variational formulation, this is a L2 penalization, as
the pressure is defined up to an additive constant.

2.4.1 Problem statement

To state the flow domain, we consider that the typically total size of the courtyard is 28m
wide (W ) and 6m high (H). Then, we are able to state the set of parameters fixing the
maximum and the minimum width and height of the corridor around the courtyard,

ωmin = 2m, ωmax = 4m, σmin = 2.5m, σmax = 3m,

and we set

ωr =
ωmin +ωmax

2
= 3m, σr =

σmin +σmax

2
= 2.75m

as the reference parameters and the characteristic length as L0 =W −2∗ωr = 22m.

Figure 2.1: Final mesh.

In Figure 2.1, we can see the final dimensionless reference geometry, split into four
regions and the mesh with 1624 triangles and 892 vertices. The diameter of each triangle
hK is constant in each region and it can be set by (ω,σ).

The characteristic velocity U0 is determined by the maximum velocity that we have
at the top of the courtyard. We set a constant horizontal wind of 2.13 · 10−3m/s, and
due to the kinematic viscosity for the air is ν = 1.51 · 10−5m2/s, we obtain a Reynolds
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number such as Re = 3100. This is a small wind velocity, but for larger values the flow
becomes unsteady and the steady model cannot be applied.

Second, we set the lifting of the BCs for the problem. In this case, we choose to solve
the following Stokes equations taking into account the non-homogeneous BCs

− 1
Re

∆uD +∇pD = 0, in Ω,

∇ ·uD = 0, in Ω,

uD = (gD,0), on ΓS,

uD = 0, on ΓW ∪ΓF ,

(2.53)

where gD is a dimensionless regularization of the Dirichlet boundary condition given by

gD(x) =


sin
(

π
x−ωr

2a

)
, if x ≤ a+ωr,

1, if a+ωr < x <W − (ωr +a),

sin
(

π
W − (ωr + x)

2a

)
, if W − (ωr +a)≤ x,

(2.54)

with a = 0.1.
Finally, we are ready to solve the problem (2.22). This problem is non-linear, hence

we use a semi-implicit evolution approach, similarly to (1.20) and we finish the process
when a steady solution has been reached, this is when

4

∑
l=1

∥∥∥∥∥√|JΦl |
uk

h −uk−1
h

∆t

∥∥∥∥∥
2

L2(Ωl)

< ε
2
FE

with εFE = 10−11 and ∆t = 5 · 10−2.

2.4.2 Empirical Interpolation Method (EIM)

Since the parameter dependency of the turbulent eddy viscosity defined in (2.19) is
non-linear, we need a tensorized approximation to handle this term in the RB formulation.
For this approximation, we use the EIM Algorithm 5. Since it is a problem with two
geometrical parameters, the number of solutions needed to perform the EIM could be high.

We stop the construction of the EIM base when we reach an error below εEIM = 10−4.
In Figure 2.2 we see the convergence of the algorithm that finishes with a total of
77 basis functions.

In Figure 2.3 we show the normalized error between the turbulent eddy viscosity and
the interpolation for 625 parameters. The maximum error is 1.302 · 10−3 which means
that we have obtained a good interpolation for the eddy viscosity term.



64 2.4. Numerical results

0 10 20 30 40 50 60 70

M

10
-4

10
-3

10
-2

10
-1

10
0

max
 D

|g( )-I
M

[g( )]| /|g( )|

Figure 2.2: Convergence of the EIM algorithm.
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Figure 2.3: Normalized error in L∞-norm of the turbulent eddy viscosity.

2.4.3 Setup for an a posteriori error bound estimate

This section is intended to detail the computation of the different items that take part in
the construction of the a posteriori error bound estimate defined in (2.50).

• For the computation of the Stability Factor (2.38) we substitute this quantity for
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βh(µµµ) since UN(µµµ) is intended to be a good approximation of Uh(µµµ) drawn from
the solutions that we already computed for the EIM.

To compute the inf-sup stability factor, we use the procedure exposed in Section 1.5
in [14] using the Radial Basis Function (RBF) algorithm to approximate the value
of the inf-sup stability factor for the new parameters. First, we compute βh(µµµ) for
the 81 solutions getting the lowest eigenvalue in problem{

Find (α,Zh) ∈ R×Xh, Zh ̸= 0, such that

F(µ)TX−1F(µ)Zh = αXZh, ∀Zh ∈ Xh,

where the matrices X and F(µ) are the matrices associated to the inner product
related to the X-norm (2.13) and the tangent operator ∂1A, this is,

V T
h XZh = (Vh,Zh)X , ∀Vh,Zh ∈ Xh,

V T
h F(µ)Zh = ∂1A(Uh(µ),Vh; µ)(Zh), ∀Vh,Zh ∈ Xh, ∀µ ∈D,

resulting that βh(µµµ) = (αmin)
1/2.

Secondly, we apply the RBF algorithm to obtain an approximation of βh(µµµ) for all
µµµ ∈D. In this case, we stop the algorithm when the estimator is below εβ = 10−4.
In the RBF, we tested 729 solutions and at the end we have selected 82 parameters.

• The residual (2.49) is computed in each iteration solving a variational problem
applying the Riesz representation Theorem A.5.

• To compute the Lipschitz constant ρT defined in (2.34) we need to compute η∗,
λ ∗, ϕ∗, ϕ̂ and h∗max which are easy to obtain since these parameters only depend on
D and C4;T defined in (2.30). This last constant is approximated by a fixed-point
algorithm described in [15, 34].

For the first iterations, τN(µµµ) is not lower than one since the residual is still large.
While τN(µµµ)> 1, we use as a posteriori error bound estimator the proper τN(µµµ).

2.4.4 Offline phase

Finally, we compute the RB space applying the Greedy algorithm for the selection of
dim(Dtrain) = 625. We stop the algorithm when ∆N(µµµ)< εRB with εRB = 5 · 10−4.

In each iteration, we use the Gram-Schmidt algorithm to orthonormalize the reduced
basis functions to improve the condition number of the reduced problem.



66 2.4. Numerical results

5 10 15 20 25

N

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

max
  D N

( )

max
  D N

( )

Figure 2.4: Greedy Algorithm convergence.

Finally, in Figure 2.4 we show the Greedy Algorithm convergence. We observe that
τN(µµµ) is lower than one when we achieve 25 basis functions, then we are able to compute
∆N(µµµ) finally stopping the algorithm with 28 basis function.

It is interesting to take a look at the parameter selection. In Figure 2.5 we show the
a posteriori error bound estimator for six different iterations of the Greedy Algorithm.
As we have explained before, in figures 2.5a-2.5d we show τN(µµµ) while in figures 2.5e
and 2.5f we show ∆N(µµµ). We observe the progressive decrease of errors.

The Greedy algorithm starts with µµµ0 = (ωmin,σmin) as the first parameter, and
in the following iterations it selects µµµ1 = (ωmax,σmax), µµµ2 = (ωmax,σmin) and µµµ3 =

(ωmin,σmax) finishing with µµµ4 = (2.771,3) that is close to (ωmean,σmean). This situation
is expected since the algorithm is catching the main information in these iterations.
This is described in Figure 2.5a.

In Figure 2.5b we still see a homogeneous distribution of the parameter selection and
that the total error is decreasing along figures 2.5c and 2.5d.

Finally, in Figure 2.5e we use the a posteriori error bound estimator and we see that in
three more iterations, the maximum is lower than εRB and we finish the algorithm (Figure
2.5f).
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10
-10

3

10
-5

2.9
4

2.8

10
0

3.5

2.7 3

10
5

2.6 2.5

2.5 2

1

2

3

4

5

6

7

(c) Iteration 15.
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(e) Iteration 25.
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Figure 2.5: ∆N(µµµ) through the Greedy Algorithm.
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Data Case 1 Case 2 Case 3
∆N 1.21 · 10−4 1.07 · 10−4 1.89 · 10−4

∥Uh −UN∥X 5.93 · 10−6 3.73 · 10−6 7.28 · 10−6

Efficiency 20.4 28.69 25.96
speedup 142 167 148

Table 2.1: Errors and speedups.

We have tried to keep going with the algorithm looking for decreasing the error to
εRB = 10−4, however, in a few more iterations, the algorithm has reached a point when it
selects parameters that already have been selected. This makes the reduced system be
singular, thus stopping the algorithm. This can be due to a low precision of the solution
of the linear problems that appear in the full order model.

2.4.5 Online phase

In this section, we validate an a posteriori error bound estimator ∆N(µµµ) and we compare
the computational time between the Reduced Basis and the Finite Element solutions.

To do this, we choose three random pairs of parameters:

• Case 1: ω = 2.891m, σ = 2.734m,

• Case 2: ω = 2.649m, σ = 2.65m,

• Case 3: ω = 2.469m, σ = 2.923m,

and we compute the Uh(µµµ) and UN(µµµ) for each one studying the error between them.
This computation has been made on a Mac Book Pro 2017 with a 2.3 GHz Intel
Core i5 processor.

The computational time for the Finite Element (FE) solutions Uh(µµµ) is between 3 and
3.60min while for the Reduced Basis solutions UN(µµµ) is between 1.3 and 1.48s, which is
a considerable improvement. In the Table 2.1 we show the value of the estimator ∆N(µµµ),
the error between both solutions in the X-norm, the estimator efficiency and the computing
time relation between the FE and the RB solutions. The speed-ups factors are close to 150.

Finally, in Figures 2.6-2.7 we show a comparison between the estimate ∆N(µµµ) and the
real error ∥Uh−UN∥X . As we can see, both have the same shape and the real error is lower
than the estimate, which validates the estimate and the computation made in this section.

Additionally, in figures 2.8 and 2.9 we show the velocity field and the pressure,
respectively, for the three cases. The domain represented in these figures is Ω(µµµ)

for each case.
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Figure 2.6: Final estimate ∆N(µµµ).
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Figure 2.8: Velocity field for each case.

Figure 2.9: Pressure for each case.



3
Reduced Basis steady Smagorinsky model

for forced convection flow

In this chapter, we afford the thermal comfort optimization of a cloister by means

of Reduced Basis modeling. We first build the RB model and then apply it to the

thermal comfort optimization of the cloister. We consider forced convection, in which the

momentum conservation equations are decoupled from the temperature equation.

We introduce the new problem in Section 3.1, bringing in the temperature to the

Smagorinsky model with the Boussinesq approximation, defining the related RB problem,

and explaining the connection with the results presented in Chapter 2. Next, we build

an a posteriori error bound estimator for the temperature in Section 3.2, following an

classical technique using the Lax-Milgram Lemma A.1.

Finally, we show some numerical results in Section 3.3 for a realistic case validating

the estimate. In Section 3.4, we also solve an optimization problem which goal is to

choose the pair of parameters that give us the best cloister configuration minimizing the

minimizing the difference between the temperature and an ideal comfort temperature

near the ground.

3.1 Problem statement

In this section, we introduce an aero-thermal model for the cloister. We modify the

Smagorinsky model (2.1) including the Boussinesq approximation for temperature.

71
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We consider forced convection in which buoyancy forces are not considered in the

momentum conservation equation. This is an acceptable approximation for moderate

temperature gradients between the ground and the outer air. We refer to Chapter 14 in [49]

for more information. In principle, a steady thermal flow governed by the Smagorinsky

turbulence model would obey to the following equations:

−ν∆w+(w · ∇)w−∇ · (νt(w; µµµ)∇w)+∇p =−gβ (θ −θ0), in Ω(µµµ),

∇ ·w = 0, in Ω(µµµ),

(w · ∇)θ −∇ · ((κ +κt(w))∇θ) = Q, in Ω(µµµ),

w = (g(· ; µµµ),0), on ΓS(µµµ),

w = 0, on ΓW (µµµ)∪ΓF(µµµ),

θ = θS, on ΓS(µµµ),

θ = θF , on ΓF(µµµ),

−n · ((κ +κt(w; µµµ))∇θ) =
α

ρcp
(θ −θ0), on ΓW (µµµ).

(3.1)

An additional term appears in the momentum conservation equation (3.1)1, −gβ (θ −θ0),

that models the buoyancy force, where β is the coefficient of expansion of the fluid, g
is the gravitational acceleration, and θ0 represent a reference temperature.

In the energy conservation equation (3.1)3, the first term represents the transport of

heat due to the motion of the fluid and it is known as the advection term, while the second

one is the diffusion term where we introduce the eddy diffusivity κt(· ; µµµ), which usually

in turbulence modeling is assumed to be proportional to νt(· ; µµµ). At the right-hand side

we find the heat generation term Q. The coefficient κ is known as the thermal diffusivity

and is defined as κ = k/ρcp, where k is thermal conductivity, ρ is mass density and

cp is the specific heat capacity (see Table 1).

Finally, we impose Dirichlet boundary conditions at the top of the domain (ΓS(µµµ)) and

on the floor (ΓF(µµµ)). Moreover, we impose the heat flow on the walls (ΓW (µµµ)), where α

is the heat transfer or film coefficient. This is stated in the last equations (3.1)6-(3.1)8.

For simplicity, we do not consider any distributed heating for this problem, then

Q = 0. For a perfect gas, β = 1/θ , then the buoyancy term is written as −g(θ −θ0)/θ .

If the absolute variation of the temperature from the ground to the outer air is sufficiently

small, then the buoyancy effects can be neglected, and we obtain a variation of the

temperature depending on the velocity, not the other way round. This is the situation

that we consider, called “forced convection”.
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To sum up, we assume forced convection, which gives us the following model

(1)


−ν∆w+(w · ∇)w−∇ · (νt(w; µµµ)∇w)+∇p = 0, in Ω(µµµ),

∇ ·w = 0, in Ω(µµµ),

w = (g(· ; µµµ),0), on ΓS(µµµ),

w = 0, on ΓW (µµµ)∪ΓF(µµµ),

(3.2)

(2)



(w · ∇)θ −∇ · ((κ +κt(w; µµµ))∇θ) = 0, in Ω(µµµ),

θ = θS, on ΓS(µµµ),

θ = θF , on ΓF(µµµ),

−n · ((κ +κt(w; µµµ))∇θ) =
α

ρcp
(θ −θ0), on ΓW (µµµ).

(3.3)

where we first compute the velocity w and the pressure p in (3.2) and in a second step,
we compute the temperature θ in (3.3).

As the velocity does not depend on the temperature, we just need to build a RB
problem for the temperature.

We start by obtaining the dimensionless problem following the same procedure as in
Section 2.1. We consider θ0 = θC where θC is an ideal comfort temperature and we set
the dimensionless temperature θ ∗ = θ/θC. We obtain the dimensionless equations

(w∗ · ∇∗)θ ∗−∇∗ ·
((

1
Pe

+κ∗
t (w∗; µµµ∗)

)
∇∗θ ∗

)
= 0, in Ω(µµµ∗),

θ ∗ =
θS

θC
, on ΓS(µµµ

∗),

θ
∗ =

θF

θC
, on ΓF(µµµ

∗),

−n ·
((

1
Pe

+κ
∗
t (w

∗; µµµ
∗)

)
∇
∗
θ
∗
)
=

Nu
Pe

(θ ∗−1), on ΓW (µµµ∗),

(3.4)

where w = U0w∗,

κ
∗
t (w

∗; µµµ
∗) =

1
Pr

ν
∗
t (w

∗; µµµ
∗),

where we recall that ν∗
t (w∗; µµµ∗) was defined in (2.2), Pr, Pe and Nu are the Prandlt, Péclet

and Nusselt numbers defined in Appendix (A.21), (A.23) and (A.24) respectively, such
that

Pr =
cpµ

k
, Pe = RePr, Nu =

αL
k
,

where µ is the dynamical viscosity. Again, from now on, we avoid the star notation for
simplicity.
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Once more, we need homogeneous boundary conditions on ΓS and ΓF for the

temperature to apply the RB method. Following the same procedure as for the velocity,

we consider a lift θD for the temperature, thus the problem to solve will be

(w · ∇)θ̂ −∇ ·
((

1
Pe

+κt(w; µµµ)

)
∇(θ̂ +θD)

)
=−(w · ∇)θD, in Ω(µµµ),

θ̂ = 0, on ΓS,F(µµµ),

−n ·
((

1
Pe

+κt(w; µµµ)

)
∇(θ̂ +θD)

)
=

Nu
Pe

(θ̂ +θD −1), on ΓW (µµµ).

(3.5)

In this case, θD only should satisfy

• θD = θS/θC on ΓS(µµµ),

• θD = θF/θC on ΓF(µµµ).

It is easy to define an analytic expression for θD, for example, we can take

θD(x) =
θS −θF

θCH
x2 +

θF

θC
. (3.6)

Again, θ = θ̂ +θD is unique and does not depend on the lift choice.

We obtain the dimensionless equations. Let us consider the space

Θ(µµµ) = {θ ∈ H1(Ω(µµµ)) | θ|ΓS∪ΓF = 0}

endowed with the H1
0 (Ω(µµµ))-norm. Then, problem (3.5) admits the variational formulation

For a given u = u(µµµ) ∈ Y (µµµ), w = u+uD,

find θ u = θ u(µµµ) ∈ Θ(µµµ) such that

cθ (w,θ u,θ v; µµµ)+aθ (θ u,θ v; µµµ)+aθ
t (w,θ u,θ v; µµµ)

+dθ (θ u,θ v; µµµ) =−cθ (w,θD,θ
v; µµµ)−aθ (θD,θ

v; µµµ)

−aθ
t (w,θD,θ

v; µµµ)−dθ (θD −1,θ v; µµµ), ∀θ
v ∈ Θ(µµµ)

(3.7)

where its solution θ u is the temperature associated to the velocity u solution of (2.4).

The bilinear forms aθ (· , · ; µµµ) and dθ (· , · ; µµµ) are defined by

aθ (θ u,θ v; µµµ) =
1

Pe

∫
Ω(µµµ)

∇θ
u · ∇θ

vdΩ, dθ (θ u,θ v; µµµ) =
Nu
Pe

∫
ΓW (µµµ)

θ
u
θ

v dΓ,
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and the trilinear forms, cθ (· , · , · ; µµµ) and aθ
t (· , · , · ; µµµ) are given by

cθ (w,θ u,θ v; µµµ) =
∫

Ω(µµµ)
(w · ∇θ

u)θ vdΩ,

aθ
t (w,θ u,θ v; µµµ) =

∫
Ω(µµµ)

κt(w; µµµ)∇θ
u · ∇θ

vdΩ.

Again, these forms need to be expressed as integrals on the reference domain. We
follow the same procedure as in Chapter 2 using the transformation (2.5) and defining
the matrices from equations (2.6)-(2.11).

Let define Ωr = Ω(µµµr) and by extension Θr = Θ(µµµr), then problem (3.7) reads:

For a given u = u(µµµ) ∈ Yr, w = u+uD,

find θ u = θ u(µµµ) ∈ Θr such that for all θ v ∈ Θr

4

∑
l=1

2

∑
k=1

[η l
kkcθ

kl(w,θ u,θ v)+ γ
l
kk(a

θ
kl(θ

u,θ v)+aθ
t,kl(w,θ u,θ v; µµµ))]

+
4

∑
l=1

|JΦl |d
θ
l (θ

u,θ v) =−
4

∑
l=1

2

∑
k=1

[η l
kkcθ

kl(w,θD,θ
v)

+γ
l
kk(a

θ
kl(θD,θ

v)+aθ
t,kl(w,θD,θ

v; µµµ))]−
4

∑
l=1

|JΦl |d
θ
l (θD −1,θ v)

(3.8)

where for k = 1,2 and l = 1,2,3,4:

aθ
kl(θ

u,θ v) =
1
Pe

∫
Ωl

∂kθ
u
∂kθ

v dΩ, dθ
l (θ

u,θ v) =
Nu
Pe

∫
ΓW,l

θ
u
θ

v dΩ,

cθ
kl(u,θ

u,θ v) =
∫

Ωl

uk∂kθ
u
θ

v dΩ, aθ
t,kl(u,θ

u,θ v; µµµ) =
∫

Ωl

κt(u; µµµ)∂kθ
u
∂kθ

v dΩ,

where κ l
t (u; µµµ) = ν l

t (u; µµµ)/Pr and we recall that ν l
t (· ; µµµ) has been defined in (2.19) and

ΓW,l = ΓW ∩ Ω̄l . Observe that dθ
2 (θ

u,θ v) = 0 for all θ u, θ v ∈ Ωr since ΓW,2 = /0.
We assume that the velocity and the pressure are computed by the RB method

introduced in Chapter 2. Therefore, from now on, we set wN = uN +uD where uN =

uN(µµµ) ∈ YN is the solution of (2.3).
Now, we are able to state the discrete formulation for problem (3.8). Let Θh be a

finite dimensional space, inner approximation of Θr. By extension, we endow Θh with
the H1

0 (Ω)-norm. Then, we consider the following discretization in its compact form:
For a given uN = uN(µµµ) ∈ YN , wN = uN +uD,

find θ
uN
h (µµµ) ∈ Θh such that

Aθ (wN ,θ
uN
h (µµµ),θ v

h ; µµµ) = Fθ (wN ,θ
v
h ; µµµ), ∀θ v

h ∈ Θh

(3.9)
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where the operators Aθ (wN , · , · ; µµµ) : Θh ×Θh −→ R and Fθ (wN , · ; µµµ) : Θh −→ R are
defined by

Aθ (wN ,θ
u,θ v; µµµ) =

4

∑
l=1

2

∑
k=1

[η l
kkcθ

kl(wN ,θ
u,θ v)

+ γ
l
kk(a

θ
kl(θ

u,θ v)+aθ
t,kl(wN ,θ

u,θ v; µµµ))]+
4

∑
l=1

|JΦl |d
θ
l (θ

u,θ v)

and

Fθ (wN ,θ
v; µµµ) =−

4

∑
l=1

2

∑
k=1

[η l
kkcθ

kl(wN ,θD,θ
v)

+ γ
l
kk(a

θ
kl(θD,θ

v)+aθ
t,kl(wN ,θD,θ

v; µµµ))]−
4

∑
l=1

|JΦl |d
θ
l (θD −1,θ v).

We state the RB problem establishing RB spaces and matrices. Let ΘN ⊂ Θh be the
RB space with N ∈ N the number of basis functions

ΘN = span{ϑ
i = θ

uN
h (µµµ i), i = 1, . . . ,N},

where θ
uN
h (µµµ i) is the solution of (3.9) for a suitable parameter µµµ i for i = 1, . . . ,N. We

state the RB problem by
For a given uN = uN(µµµ) ∈ YN , wN = uN +uD,

find θ
uN
N (µµµ) ∈ ΘN such that

Aθ (wN ,θ
uN
N (µµµ),θ v

N ; µµµ) = Fθ (wN ,θ
v
N ; µµµ), ∀θ v

N ∈ ΘN .

(3.10)

Note that as the solution θN(µµµ) can be expressed as a linear combination of the selected
basis functions

θ
uN
N (µµµ) =

N

∑
i=1

θ
i
N(µµµ)ϑ

i,

and equation (3.10) is linear, then the coefficients {θ
i
N}N

i=1 are obtained from the solution
of the reduced linear system.

3.2 A posteriori error estimator

In this section, we study the well-posed of problem (3.9), which guaranties the existence
and uniqueness of solution applying the Lax-Milgram Lemma A.1. Then, supporting
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us on this result, we are able to obtain an a posteriori error bound estimator. We follow

the procedure explained in Section 3.6 in [38].

First, we study continuity and coercivity of the operator Aθ (wN , · , · ; µµµ), using the

notation introduced in Remark 2.1. For simplicity of notation, we denote the reference

domain by Ω instead of Ωr. This will not source of confusion as there are no other

domains to deal with. Hereunder, we define some constants necessary for the results.

Remark 3.1. For the next results, we introduce some constants that are derived from the

application of relevant results exposed in Appendix A.2:

• We recall the definition of the constant C4;1,2 > 0 from the application of the Sobolev

Embedding Theorem A.2 in (A.9), this is,

∥θ
v
h∥L4(Ω) ≤C4;1,2∥θ

v
h∥H1

0 (Ω), ∀θ
v
h ∈ Θh. (3.11)

• For all K ∈ Th, we apply the Local Inverse Inequality Theorem A.3 as in (A.11)

introducing the constant C3;2 > 0 such that

∥∇θ
v
h∥L3(K) ≤C3;2h−d/6

K ∥∇θ
v
h∥L2(K), ∀K ∈ Th, ∀θ

v
h ∈ Θh. (3.12)

• We recall the constant CΓW > 0 as a result of applying the Trace Theorem A.6 on

ΓW and the equivalence between the H1(Ω) and H1
0 (Ω) norms, this is,

∥θ
v
h∥L2(ΓW ) ≤CΓW ∥θ

v
h∥H1

0 (Ω), ∀θ
v
h ∈ Θh. (3.13)

We recall that wN = uN +uD where uN is the solution of (2.3).

Theorem 3.1 (Continuity). For any µµµ ∈D and uN = uN(µµµ) ∈ YN , it holds

|Aθ (wN ,θ
uN
h ,θ v

h ; µµµ)| ≤ γh(µµµ)∥θ
uN
h ∥H1

0 (Ω)∥θ
v
h∥H1

0 (Ω), ∀θ
uN
h ,θ v

h ∈ Θh,

where

γh(µµµ) = η
∗C2

4;1,2∥∇wN∥L2(Ω)+ γ
∗

(
1
Pe

+
√

ϕ∗C2
3;2

C2
S(h

∗
max)

2−d/3

Pr
∥∇wN∥L3(Ω)

)
+C2

ΓW
max

l=1,3,4
|JΦl |

Nu
Pe

where the constants C4;1,2, C3;2 and CΓW are defined in (3.11)-(3.13).
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Proof. First, we know that

|Aθ (wN ,θ
uN
h ,θ v

h ; µµµ)| ≤
4

∑
l=1

2

∑
k=1

η
l
kk|c

θ
kl(wN ,θ

uN
h ,θ v

h )|+
4

∑
l=1

2

∑
k=1

γ
l
kk|a

θ
kl(θ

uN
h ,θ v

h )|

+
4

∑
l=1

2

∑
k=1

γ
l
kk|a

θ
t,kl(wN ,θ

uN
h ,θ v

h ; µµµ)|+
4

∑
l=1

|JΦl ||d
θ
l (θ

uN
h ,θ v

h )|.

We separately study each term:

• At first,
4

∑
l=1

2

∑
k=1

η
l
kk|c

θ
kl(wN ,θ

uN
h ,θ v

h )| ≤ η
∗
∫

Ω

|wN ||∇θ
uN
h ||θ v

h |dΩ

≤ η
∗∥wN∥L4(Ω)∥∇θ

uN
h ∥L2(Ω)∥θ

v
h ∥L4(Ω)

≤ η
∗C2

4;1,2∥∇wN∥L2(Ω)∥θ
uN
h ∥H1

0 (Ω)∥θ
v
h ∥H1

0 (Ω),

where C4;1,2 is defined in (3.11).

• Next,
4

∑
l=1

2

∑
k=1

γ
l
kk|a

θ
kl(θ

uN
h ,θ v

h )| ≤
γ∗

Pe

∫
Ω

|∇θ
uN
h ||∇θ

v
h |dΩ ≤ γ∗

Pe
∥θ

uN
h ∥H1

0 (Ω)∥θ
v
h ∥H1

0 (Ω).

• Moreover,
4

∑
l=1

2

∑
k=1

γ
l
kk|a

θ
t,kl(wN ,θ

uN
h ,θ v

h ; µµµ)|

≤ γ
∗√

ϕ∗ ∑
K∈Th

∫
K

(CShK)
2

Pr
|∇wN ||∇θ

uN
h ||∇θ

v
h |dK

≤ γ
∗√

ϕ∗ ∑
K∈Th

(CShK)
2

Pr
∥∇wN∥L3(K)∥∇θ

uN
h ∥L3(K)∥∇θ

v
h ∥L3(K)

≤ γ
∗√

ϕ∗ ∑
K∈Th

C2
3;2

C2
Sh2−d/3

K
Pr

∥∇wN∥L3(K)∥∇θ
uN
h ∥L2(K)∥∇θ

v
h ∥L2(K)
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∗√

ϕ∗C2
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S(h

∗
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2−d/3

Pr
∥∇wN∥L3(Ω)∥∇θ
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h ∥L2(Ω)∥∇θ

v
h ∥L2(Ω)

where we have used the Local Inverse Inequality (3.12).
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• Finally,

4

∑
l=1

|JΦl ||d
θ
l (θ

uN
h ,θ v

h )| ≤ max
l=1,3,4

|JΦl |
Nu
Pe

∫
ΓW

θ
uN
h θ

v
h dΓ

≤ max
l=1,3,4

|JΦl |
Nu
Pe

∥θ
uN
h ∥L2(ΓW )∥θ

v
h ∥L2(ΓW )

≤C2
ΓW

max
l=1,3,4

|JΦl |
Nu
Pe

∥θ
uN
h ∥H1

0 (Ω)∥θ
v
h ∥H1

0 (Ω)

where CΓW was defined in (3.13). Note that in the max operator, the l-index is
taking the values 1,3,4 since l = 2 refers to Ω2 and Ω2 ∩Γ = /0.

From these bounds, the continuity constant is defined as

γh(µµµ) = η
∗C2

4;1,2∥∇wN∥L2(Ω)+ γ
∗

(
1
Pe

+
√

ϕ∗C2
3;2

C2
S(h

∗
max)

2−d/3

Pr
∥∇wN∥L3(Ω)

)
+C2

ΓW
max

l=1,3,4
|JΦl |

Nu
Pe

and the dependency on µµµ takes places through wN = uN +uD.

Theorem 3.2 (Coercivity). For any µµµ ∈ D and uN = uN(µµµ) ∈ YN , let us suppose that
∥wN −w∥H1

0 (Ω(µµµ)) is sufficiently small. Then it holds,

Aθ (wN ,θ
uN
h ,θ uN

h ; µµµ)≥ β (µµµ)∥θ
uN
h ∥2

H1
0 (Ω)

, ∀θ
uN
h ∈ Θh,

where
β (µµµ) = γ̂

(
1
Pe

+min
x∈Ω

νt(wN ; µµµ)

Pr

)
− εN(µµµ)

2
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εN(µµµ) =C2
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|JΦl |
1/2∥wN −w∥H1

0 (Ω(µµµ)).

Proof. Let us recall that

Aθ (wN ,θ
uN
h ,θ uN

h ; µµµ) =
4

∑
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∑
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η
l
kkcθ
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∑
l=1

2

∑
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+
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∑
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∑
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γ
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l=1

|JΦl |d
θ
l (θ

uN
h ,θ uN

h ).

It holds
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∑
l=1

2

∑
k=1

γ
l
kkaθ

kl(θ
uN
h ,θ uN

h )≥ γ̂

Pe
∥∇θ
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L2(Ω)
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and
4

∑
l=1

2

∑
k=1

γ
l
kkaθ

t,kl(wN ,θ
uN
h ,θ uN

h ; µµµ)≥ γ̂ ∑
K∈Th

∫
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νt(wN ; µµµ)

Pr
|∇θ

uN
h |dK

≥ γ̂

Pr
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x∈Ω

νt(wN ; µµµ)∥∇θ
uN
h ∥2

L2(Ω)

We bound the boundary term by
4

∑
l=1

|JΦl |d
θ
l (θ

uN
h ,θ uN

h )≥ min
l=1,3,4

|JΦl |
∫

ΓW

|θ uN
h |2 dΓ = min

l=1,3,4
|JΦl |∥θ
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h ∥2

L2(ΓW ) ≥ 0.

Finally, we upper bound the last term and we prove that it is sufficiently small not to
affect the coercivity. We have
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∑
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η
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2
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∇ ·wN(θ
uN
h )2dΩ (3.14)

Since wN = uN + uD and uN is the solution of problem (2.26), it verifies that for all
qN ∈ QN , ∫

Ω(µµµ)
∇ ·wNqN = 0.

Therefore, wN is weakly divergence free and we can not ensure that (3.14) is null,
since we can not guarantee that (θ uN

h )2 belongs to QN . However, w solution of (2.1) is
divergence free, then∣∣∣∣∫
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Hence,
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where the constant C4;1,2 is defined in (3.11). Then,

4

∑
l=1

2

∑
k=1

η
l
kkcθ

kl(wN ,θ
uN
h ,θ uN

h )>−εN(µµµ)

2
∥θ

uN
N ∥2

H1
0 (Ω)

where

εN(µµµ) =C2
4;1,2 max

l=1,2,3,4
|JΦl |

1/2∥wN −w∥H1
0 (Ω(µµµ)).

Finally, the coercivity constant is

β (µµµ) = γ̂

(
1
Pe

+min
x∈Ω

νt(wN ; µµµ)

Pr

)
− εN(µµµ)

2
,

which is positive for small enough ∥wN −w∥H1
0 (Ω(µµµ)).

Remark 3.2. If N is sufficiently large, then we can obtain that ∥wN −w∥H1
0 (Ω(µµµ)) to

be sufficiently small to guarantee that β (µµµ) be positive and in this way, to ensure the

coercivity of the form Aθ .

Once we obtain the continuity and coercivity factors, we are able to infer an a

posteriori error estimator.

Lemma 3.1. Let µµµ ∈D. We denote euN
h (µµµ) = θ

uN
h (µµµ)−θ

uN
N (µµµ) ∈ Θh the error between

the high fidelity solution of problem (3.9) and the reduced solution of (3.10). Then,

∥R(wN ;θ
uN
N (µµµ))∥Θ′

h

γh(µµµ)
≤ ∥euN

h (µµµ)∥H1
0 (Ω) ≤
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uN
N (µµµ))∥Θ′

h

β (µµµ)
, (3.15)

where the residual operator R(wN ;θ
uN
N (µµµ)) ∈ Θ′

h is defined by

⟨R(wN ,θ
uN
N (µµµ));θ

v
h⟩= Fθ (wN ,θ

v
h ; µµµ)−Aθ (wN ,θ

uN
N (µµµ),θ v

h ; µµµ), ∀θ
v
h ∈ Θh.

Proof. We represent R(wN ; ·) in Θh by means of the L2-inner product by r(wN) ∈ Θh:

(r(wN),θ
v
h )Ω = ⟨R(wN ;θ

uN
N (µµµ)),θ v

h ⟩, ∀θ
v
h ∈ Θh. (3.16)

Now taking into account that the problem defined by euN
h can be expressed by

Aθ (wN ,e
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uN
N (µµµ)),θ v
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and thanks to the continuity of the operator Aθ (wN , · , · ; µµµ) in Theorem 3.1, it holds

|(r(wN),θ
v
h )Ω|= |Aθ (wN ,e

uN
h ,θ v

h ; µµµ)| ≤ γh(µµµ)∥euN
h ∥H1

0 (Ω)∥θ
v
h ∥H1

0 (Ω).

Due to the definition of dual norm, we obtain that

∥R(wN ;θ
uN
N (µµµ))∥Θ′

h
≤ γh(µµµ)∥euN

h ∥H1
0 (Ω).

On the other hand, we apply the Lax-Milgram Lemma A.1 to the problem (3.17),

∥euN
h ∥H1

0 (Ω) ≤
∥R(wN ;θ

uN
N (µµµ)∥Θ′

h

β (µµµ)
.

Remark 3.3. In view of the preceding lemma, we state an a posteriori error estimator as
follows

∆θ ,N(µµµ) =
∥R(wN ;θ

uN
N (µµµ)∥Θ′

h

β (µµµ)
. (3.18)

Then the estimation (3.15) can be rewritten as
∆θ ,N(µµµ)β (µµµ)

γh(µµµ)
≤ ∥euN

h (µµµ)∥H1
0 (Ω) ≤ ∆θ ,N(µµµ).

The efficiency is the quotient between the upper and lower bounds of the error, and in this
case is γh(µµµ)/β (µµµ) for all µµµ ∈D.

3.3 Numerical results

In this section, we apply the RB method to problem (3.9) computing the RB spaces
using the estimate (3.18).

We consider the velocity field uN ∈ YN solution of (2.26), for this reason we keep the
same domain configuration as in Section 2.4.1. Again, we recall that wN = uN +uD.

3.3.1 Problem statement

We set the floor temperature equal to the comfort one that we assume to be 295.15K
(22°C). We assume that the temperature of the outer air is 303.15K (30°C). Since the
characteristic temperature was chosen as θC = θF , the dimensionless temperature on
the floor should be 1, and 1.4 on the top.

We set the Prandlt number associated to the air equal to 0.71 and the Nusselt number
associated to the transfer of temperature at the walls equal to 2 (cf. [4]). The Péclet
number appearing in the temperature equation is defined by Pe = RePr. Considering
that Re = 3100, then Pe = 2201. Finally, we set the parameter set D as in Section 2.4.1,
that is µµµ = (ω,σ) ∈ D = [2m,4m]× [2.5m,3m].
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3.3.2 Offline phase

We again use the EIM applied to approximate the eddy diffusion, taking into account
the approximation of the eddy viscosity, already computed in Chapter 2.

In this case, the computation of an a posteriori estimator is simpler than the one
developed in Chapter 2. Besides, we need to compute an approximation for the coercivity
constant for each µµµ ∈ D and the residual associated to the problem (3.9).

To compute the coercivity constant, we apply the same procedure as for the inf-sup
constant in Chapter 2. We compute βh(µµµ) for 81 pairs of parameters with the procedure
described in Section 3.7 in [38], solving an eigenvalue problem, and then, we apply the
RBF algorithm explained in Section 1.5 in [14]. We stop the algorithm when the estimator
is below εβ = 10−4 testing 729 parameter pairs and selecting 82 parameters.

For the residual, we use a representation r(uN) in Θh as in (3.16), solving a FE
problem.

Finally, we compute the offline phase stopping the algorithm when ∆θ ,N(µµµ)< εθ ,RB

with εθ ,RB = 5 · 10−3. Again, we orthonormalize the RB functions using the Gram-Schmidt
algorithm with H1

0 (Ω)-norm to the temperature space Θh. Along this phase, we have tested
a total of 625 parameters. In Figure 3.1 we can see the Greedy Algorithm convergence.
It stops when 17 basis functions are selected.

3.3.3 Online Phase

In this section, we compare the computational time for the full discrete model and the
RB model, and we validate the a posteriori error bound estimator ∆θ ,N(µµµ).

We select the three random cases, already chosen in Section 2.4.5:

• Case 1: ω = 2.891m, σ = 2.734m,

• Case 2: ω = 2.649m, σ = 2.65m,

• Case 3: ω = 2.469m, σ = 2.923m.

First, we compute the high fidelity problem (computing θ
uh
h (µµµ) from uh(µµµ) solution

of (2.22)) and the full reduced problem (computing θ
uN
N (µµµ) from uN(µµµ) solution of

(2.26)). We measure the error between both solutions and the time that takes to compute
them and we compare them to obtain the speedup.

In the Table 3.1 we can observe the committed error in H1
0 (Ω)-norm and the speedup.

As we can see, the errors are admissible and we reduce the computational time from



84 3.3. Numerical results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N

10
-3

10
-2

10
-1

10
0

10
1

10
2

max
  D ,N

( )

Figure 3.1: Greedy Algorithm convergence.

Data Case 1 Case 2 Case 3
∥θ

uh
h −θ

uN
N ∥H1

0 (Ω) 5.10403 · 10−4 6.24142 · 10−4 1.09348 · 10−3

speedup 134 146 156

Table 3.1: Errors and speedups.

3.5min to 1.33s. This computation has been done on only one processor of a cluster
with CPUs AMD EPYC 7542 2.9 GHz.

In order to validate the a posteriori error bound estimator ∆θ ,N(µµµ), we consider
the finite element solution θ

uN
h (µµµ) computed from the velocity uN(µµµ) and we compare

the error between θ
uN
h (µµµ) and θ

uN
N (µµµ) in the H1

0 (Ω)-norm and the estimator ∆θ ,N(µµµ)

for 625 pair of parameters.
In Figure 3.2 we show two graphics in 3D with the same limits in the axes. In

Figure 3.2a the vertical scale goes from 5.03 · 10−9 to 5 · 10−3 and in Figure 3.2b it
goes from 1.61 · 10−9 to 1.6 · 10−3. Both graphics have the same shape and the estimate
is above the error between the finite element and the RB solution. With this, we can
validate our estimate for the temperature.

Additionally, we compute the estimate and the error for the three previous cases of
parameters. The full high fidelity model computes the temperature associated to uh(µµµ),
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Figure 3.2: Validation of the estimate.

that is, θ
uh
h (µµµ), however, we are using the temperature associated to uN(µµµ), that is,

θ
uN
h (µµµ) as the high fidelity solution. We show the results in Table 3.2 and we also see

that ∥θ
uh
h −θ

uN
N ∥H1

0 (Ω) is close to ∥θ
uN
h −θ

uN
N ∥H1

0 (Ω) at least for these three cases.

Data Case 1 Case 2 Case 3
∥θ

uN
h −θ

uN
N ∥H1

0 (Ω) 5.10131 · 10−4 6.30339 · 10−4 1.11298 · 10−3

∆θ ,N 1.76917 · 10−3 2.78895 · 10−3 3.81012 · 10−3

Efficiency 3.47 4.42 3.42

Table 3.2: Validation for the three cases of the estimate.

Finally, in Figure 3.3 we show the temperature in Kelvin (K) for the three cases. It

is interesting to compare them with the velocity field shown in Figure 3.4. We observe

that the highest temperate values are in the biggest eddy, while the temperature keeps

colder in the corridors as expected from buoyancy effects, even if these have not been

taken into account to compute the velocity.

3.4 Application: geometrical optimization of a cloister

In this section, we optimize the cloister geometry with the goal of maximizing the comfort

measured as the difference between an ideal comfort temperature and the computed

temperature, in a region where the visitors of the cloister may find themselves. To do
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Figure 3.3: Temperature for the three test cases.

Figure 3.4: Velocity for the three test cases.



3. RB steady Smagorinsky model for forced convection flow 87

this, we define the “thermal comfort” functional J : D −→ R+ by

J (µµµ) =
1

A (ΩI(µµµ))

∫
ΩI(µµµ)

|θ(µµµ)−θC|2dΩ (3.19)

where A (Ω) represents the area of Ω, ΩI(µµµ) =
⋃

l∈IΩl ⊂ Ω(µµµ), θ(µµµ) is the solution
of (3.3) and I represents the set of indices of the domains where the visitors of the
cloister may find them selves. The purpose is to minimize this functional for µµµ ∈ D
and choosing ΩI depending on our interest:

• we choose I= {1,2,3} if we are interested on the ground floor,

• we choose I= {1,3} if we are interested on the corridors.

We have to solve the constrained minimization problem

µµµopt = arg min
µµµ∈Dad

JN(µµµ)

where Dad is the set of admissible parameters from the architectural point of view.
Instead of applying optimization methods to solve the optimization problem, we

compute the functional for a training set Dtrain ⊂ Dad and we directly look for the
minimum. This is possible thanks to the RB solution of the temperature equation, whose
computational cost is very low. With this method, we obtain additional information about
the functional based on the parameters and in particular, the minimum.

Since we assume that θ
uN
h (µµµ) is a good approximation of θ(µµµ) solution of (3.3)

and we build θ
uN
N (µµµ) from θ

uN
h (µµµ), we can say that we are not loosing the important

information on the temperature behavior using the RB method for (3.19) with θ = θ
uN
N ,

denoted by JN(µµµ).
Again, we select a total of 625 pairs of parameters and we compute JN(µµµ), this

takes less than 16 minutes of computing time. We remember that θ
uN
N (µµµ) solution of

(3.10) is a dimensionless variable defined on Ωr with θ
uN
N = 0 on ΓS ∪ΓF , then we need

to set the Dirichlet boundary condition θD to θ
uN
N (µµµ). In practice, we need to define a

dimensionless functional J ∗
N(µµµ) and for simplicity, we define it on ΩI(µµµr).

On one side, we know that the physical dimensions of the functional in (3.19) is θ 2
0 ,

then we define J ∗
N = JN/θ 2

C. On the other side, we use the mapping defined in (2.5)
to define the functional on ΩI(µµµr). Finally, we obtain that

J ∗
N(µµµ) =

1
A ∗(I; µµµ)∑

i∈I

∫
Ωi

|JΦi||θ
uN
N (µµµ)+θD −1|2dΩ, (3.20)
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Figure 3.5: Computation of the functional for θ
uN
N (µµµ).

where

A ∗(I; µµµ) = ∑
i∈I

∫
Ωi

|JΦi|dΩ =

{
σW if I= {1,2,3}

2σω if I= {1,3}
. (3.21)

In Figure 3.5 we show the functional JN(µµµ) for both cases. In these graphics,
we can see that the functional minimum it is achieved for a corridor width of 4m and
a height of 2.5m, which correspond to the maximum width and the minimum height
of the corridor. This makes sense since, with this configuration, the air barely flows
through the corridors, it stays in the interior of the courtyard and does not carry the hot
air that comes from the top of the corridors.

In the hypothetical case that the corridors were higher, the horizontal flow that comes
into the corridors would be increased, and so would be the temperature. Similarly, if the
corridors were narrower, their area would decrease and so would the amount of air in
them, on the contrary, it would not affect the flow that comes into the corridors.

A Mac Book Pro 2017 with a 2.3 GHz Intel Core i5 processor takes 7.79min for case
I = {1,2,3} and 8.04min for case I = {1,3} using two processors.



Open problems
To consider more realistic situations, we set some open problems related to the

modeling carried on this part:

□ Extension to free convection, where buoyancy effects are included in the momentum
conservation equation. An estimator involving velocity, pressure, and temperature
must be developed.

□ Cloister modeling in 3D. It may be necessary to change the mapping Φ developed
in (2.5) and the corresponding a posteriori error estimate.

□ Inclusion of radiation effects Q to the problem using the previous modeling in
3D. This is necessary since radiation depends on the position of the sun and this
movement is in 3D.

□ Inclusion of unsteady and seasonal effects.

□ Inclusion of tempering elements in the cloister, such as fountains, vegetation, etc.
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Unsteady Reduced Smagorinsky model





4
Numerical approximation of transient

Smagorinsky model

We are interested in the development of an a posteriori error bound estimator using the

Brezzi-Rappaz-Raviart (BRR) theory (cf. [8]) for the transient Smagorinsky model. To

do this, it is necessary to define the problem on Hilbert spaces, therefore, we study a

priori estimates of the time-discrete Smagorinsky model and the conditions to formulate

the problem on these spaces.

We introduce the problem to study in Section 4.1 and we develop the a priori estimates

for velocity and pressure in Sections 4.2 and 4.3.

4.1 Problem statement

Let be Ω a bounded polyhedral domain in Rd , with d = 2,3 with the boundary domain

Γ = ∂Ω. Let Tf > 0 be a chosen final finite time, then, we define the interval I f = (0,Tf )

and QT = I f × Ω.

The {Th}h>0 be a uniformly regular family of triangulations of Ω and h the maximum

diameter among every element K ∈ Th.

Now, we are under the conditions to define the following unsteady Smagorinsky

Model with homogeneous Dirichlet boundary conditions:
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Find (u, p) such that

∂tu−∇ ·
((

1
µ
+νt(u)

)
∇u
)
+(u · ∇)u+∇p = f in QT ,

∇ ·u = 0 in QT ,

u = 0 on I f ×Γ,

u(0, ·) = 0 in Ω,

(4.1)

where µ = Re the Reynolds number is considered the parameter for this problem, u is
the velocity field and p is the pressure per mass density. Moreover, f ∈ L2(QT ) is the
source of the problem and the eddy diffusion term is given by

νt(u) = ∑
K∈Th

(CShK)
2|∇u|K|XK (4.2)

where CS is the Smagorinsky constant. The parameter µ belongs to a suitable parameter
set D ⊂ R.

Remark 4.1. For simplicity, we select an homogeneous boundary and initial conditions
for the problem (4.1). However the results exposed in this chapter can be extended to
general boundary and initial conditions, using a lift function as in Part I.

To establish a weak formulation of the problem (4.1) we consider the following
Banach space

W 1,3
0 (Ω) = {v ∈W 1,3(Ω) : v|Γ = 0}

equipped with its natural norm. We consider the following weak formulation of (4.1):
Find u ∈ H1(0,Tf ;L2(Ω)) ∩ L3(0,Tf ;W 1,3

0 (Ω)) such that u(0, ·) = 0 and
p ∈ L2(0,Tf ;L3/2(Ω)) solution of the problem

∫
QT

∂tu · vdQT +
∫

QT

(
1
µ
+νt(u)

)
∇u : ∇vdQT −

∫
QT

p∇ ·vdQT

+
∫

QT

q∇ ·udQT +
1
2

∫
QT

(u · ∇)u · v− (u · ∇)v · udQT

=
∫

QT

f · vdQT

(4.3)

for all v ∈ H1(0,Tf ;L2(Ω))∩L3(0,Tf ;W 1,3
0 (Ω)) and q ∈ L2(0,Tf ;L3/2(Ω)).

The existence and uniqueness of this problem has been deeply studied. Due to the
lack of regularity for the velocity in the equation (4.1), it is usual to define the velocity on
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divergence free spaces to recover the pressure using the De Rham Theorem (cf. Theorem
3.1 in [12], Theorem B. 73 in [18]). One proof for divergence free spaces can be found
in Chapter 6 in [25] by J. Volker, who follow the proof presented by Ladyzhenskaya in
[30]. For the pressure, the space L3/2(Ω) is a Banach space, therefore it is not possible
to apply the BRR theory with this space.

However, in practice, we use a discrete model as the high fidelity solution, therefore
we would like to study this model instead of (4.3).

We follow the Space-Time Discretization presented by T. Chacón and R. Lewandowski
in Section 10.3 in [12], choosing ε = θ = 1 obtaining the full implicit Euler scheme and
we follow the proofs for the a priori estimates developed in Chapter 6 in [25] by J. Volker.

First, we set the discretization in time using a semi-implicit Euler scheme. Let L be a
positive integer that defines the number of time steps that we are considering, let be the
time step ∆t = Tf /L and consider the discrete times of solution tk = k∆t, k = 0,1, . . . ,L.
Let uk be the approximation of u(tk, ·) for any k = 0,1, . . . ,L.

Then, for the space discretization, we define two discrete spaces Yh ⊂W 1,3(Ω) and
Qh ⊂ L2(Ω) that are inner approximations, where the subscript h > 0 denotes the mesh
diameter. The norms associated to these spaces will be described by the a priori estimates
along the chapter.

From the initial condition in (4.1), we set u0
h = 0. This setting gives us the following

model:
For k = 1, . . . ,L, and assuming known uk−1

h ∈ Yh, find (uk
h, pk

h) ∈ Yh ×Qh solution of
1
∆t

m(uk
h,v

k
h)−

1
∆t

m(uk−1
h ,vk

h)+
1
µ

a(uk
h,v

k
h)

+at(uk
h;uk

h,v
k
h)+ c(uk

h,u
k
h,v

k
h)+b(vk

h, pk
h) = ⟨fk,vk

h⟩Ω, ∀vk
h ∈ Yh,

b(uk
h,q

k
h) = 0, ∀qk ∈ Qh,

(4.4)

where fk is the average value of f in [tk−1, tk], the bilinear forms m(· , ·), a(· , ·) and
b(· , ·) are defined by

m(u,v) =
∫

Ω

u ·v dΩ, a(u,v) =
∫

Ω

∇u : ∇v dΩ, (4.5)

b(v,q) =−
∫

Ω

∇ ·v,q dΩ; (4.6)

the trilinear form c(· , · , ·) is given by

c(u,z,v) =
1
2

∫
Ω

(u · ∇)z ·v− (u · ∇)v · z dΩ; (4.7)
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and the nonlinear Smagorinsky term, at(· ; · , ·) is defined by

at(u;z,v) =
∫

Ω

νt(u)∇z : ∇v dΩ. (4.8)

To simplify the notation, we shall consider the following discrete functions:

• ṽh : (0,Tf )−→ Yh is the piecewise constant function defined by

ṽh(t) := vk
h if t ∈ (tk−1, tk).

• q̃h : (0,Tf )−→ Qh is the piecewise constant in time function defined by

q̃h(t) := qk
h if t ∈ (tk−1, tk).

• ∂ ⋆
t ṽh : (0,Tf )−→ Yh is the discrete derivative of ṽh defined by

∂
⋆
t ṽh(t) :=

vk
h −vk−1

h
∆t

if t ∈ [tk−1, tk].

• f̃ : (0,Tf )−→ L2(Ω) is the piecewise constant in time function defined by f̃(t) = fk

if t ∈ (tk−1, tk).

We can define Ỹh as the space formed by the piecewise constant functions that belongs to
Yh and Q̃h formed by the piecewise constant functions that belongs to Qh.

Furthermore, we can define an equivalent problem to (4.4) as follows:
Find (ũh, p̃h) ∈ Ỹh × Q̃h solution of

m̃(∂ ∗
t ũh, ṽh)+

1
µ

ã(ũh, ṽh)+ ãt(ũh; ũh, ṽh)

+c̃(ũh, ũh, ṽh)+ b̃(ṽh, p̃h) = ⟨f̃, ṽh⟩QT , ∀ṽh ∈ Ỹh,

b̃(ũh, q̃h) = 0, ∀q̃h ∈ Q̃h,

(4.9)

where the forms m̃(· , ·), ã(· , ·), b̃(· , ·), c̃(· , · , ·) and ãt(· ; · , ·) are the same as the forms
defined in (4.5) - (4.8) by changing the integration domain by the time-space domain
QT = I f × Ω, instead of Ω.

Note that for a given Banach Space X and any n ∈ N, the continuous norms applied
to the piecewise functions ṽ : (0,Tf )−→ X such that ṽ(t) := vk, for all t ∈ (tk−1, tk) and
k = 1, . . . ,L are related to its discrete norms, this is,

∥ṽ∥Ln(X)=

(∫ Tf

0
∥ṽ(s)∥n

X ds
)1/n

=

(
L

∑
k=1

∫ tk

tk−1

∥ṽ(s)∥n
X ds

)1/n

=

(
L

∑
k=1

∆t∥vk∥n
X

)1/n

,

and
∥ṽ∥L∞(X) = max

t∈(0,Tf )
∥ṽ(t)∥X = max

k=1,...,L
∥vk∥X .
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Remark 4.2. We shall denote by C a constant that may change from one to other

occurrence, but which always is independent of h.

Remark 4.3. Note that, since fk = 1
∆t

∫ tk

tk−1

f(s) ds for k = 1, . . . ,L, then ∥f̃∥Ln(X)≤∥f∥Ln(X)

for any Banach space X. This result is well know, however, we follow with the proof for

more completeness. This is, for any n ≥ 1

∥f̃∥n
Ln(X) =

∫ Tf

0
∥f̃(s)∥n

X ds =
L

∑
k=1

∫ tk

tk−1

∥f̃(s)∥n
X ds =

L

∑
k=1

∆t∥fk∥n
X

=
L

∑
k=1

∆t1−n
∥∥∥∥∫ tk

tk−1

f(s) ds
∥∥∥∥n

X
≤

L

∑
k=1

∆t1−n
(∫ tk

tk−1

∥f(s)∥X ds
)n

.

Using the Hölder’s Inequality A.1 on the interval (tk−1, tk),

∥f̃∥n
Ln(X)≤

L

∑
k=1

∆t1−n
(∫ tk

tk−1

1 ds
)n−1(∫ tk

tk−1

∥f(s)∥n
X ds

)
=

L

∑
k=1

∫ tk

tk−1

∥f(s)∥n
X ds= ∥f∥n

Ln(X).

4.2 A priori error estimates for the velocity

In this section, we will derive some a priori error estimates for the velocity in terms
of norms in time and space.

Lemma 4.1. Assume that f ∈ L1(0,Tf ;L2(Ω)) and (ũh, p̃h) ∈ Ỹh × Q̃h is a solution of

(4.9). Then this solution satisfies

∥ũh∥L∞(L2) ≤C∥f∥L1(L2). (4.10)

Proof. For any k = 1, . . . ,L, (uk
h, pk

h) ∈ Yh ×Qh is a solution of (4.4). We take vk
h = uk

h

and we obtain from the first equation in (4.4),

1
∆t

m(uk
h,u

k
h)−

1
∆t

m(uk−1
h ,uk

h)+
1
µ

a(uk
h,u

k
h)

+at(uk
h;uk

h,u
k
h)+b(uk

h, pk
h)+ c(uk

h,u
k
h,u

k
h) = ⟨fk,uk

h⟩Ω

We note that
a(uk

h,u
k
h) = ∥∇uk

h∥
2
L2(Ω), c(uk

h,u
k
h,u

k
h) = 0,

and that b(uk
h, pk

h) = 0 since uk
h verifies the second equation in (4.4).
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Furthermore, using the property (A.3) and multiplying by 2∆t we obtain:

∥uk
h∥

2
L2(Ω)−∥uk−1

h ∥2
L2(Ω)+∥uk

h −uk−1
h ∥2

L2(Ω)+2
1
µ

∆t∥∇uk
h∥

2
L2(Ω)

+2∆tat(uk
h;uk

h,u
k
h) = 2∆t⟨fk,uk

h⟩Ω (4.11)

Then, as at(uk
h;uk

h,u
k
h)≥ 0, we have

∥uk
h∥

2
L2(Ω)−∥uk−1

h ∥2
L2(Ω) ≤ 2∆t⟨fk,uk

h⟩Ω

Summing for k = 1, . . . ,m for some m ≥ 1, we obtain:

∥um
h ∥

2
L2(Ω)≤ 2

m

∑
k=1

∆t⟨fk,uk
h⟩Ω ≤ 2

m

∑
k=1

∆t∥fk∥L2(Ω)∥uk
h∥L2(Ω)≤ 2

m

∑
k=1

∆t∥fk∥L2(Ω)∥ũh∥L∞(L2)

Taking the maximum in m = 1, . . . ,L:

∥ũh∥L∞(L2) ≤ 2
L

∑
k=1

∆t∥fk∥L2(Ω) = 2∥f̃∥L1(L2) ≤ 2∥f∥L1(L2)

and therefore we obtain the result for C = 2.

To take into account the eddy diffusion effects in our estimates, we consider the
following norm. Let X ⊆ H1

0 (Ω) be a Banach Space, we define the turbulence inner
product (· , ·)T in this space as

(v,z)T =
∫

Ω

[
1
µ̄
+ν

⋆
t

]
∇v : ∇z dΩ, ∀v,z ∈ X (4.12)

where ν⋆
t = νt(u(µ̄)), with

µ̄ = arg min
µ∈D

{
∑

K∈Th

(CShK)
2 min

x∈K
|∇u(x,µ)|K|XK

}
,

where u(µ) is the minimum on time of the solution u(· ,µ) of (4.3) for µ ∈ D.

Remark 4.4. The norm associated to the inner product defined in (4.12) is equivalent to
the H1

0 (Ω)-norm.

We shall denote by ∥ · ∥Lp
T (H

1
0 )

the norm in Lp(0,Tf ;H1
0 (Ω)) defined by

∥v∥Lp
T (H

1
0 )
=

(∫ Tf

0
∥v(t)∥p

T dt
)1/p

, for 1 ≤ p <+∞, (4.13)

∥v∥L∞
T (H

1
0 )
= max

t∈(0,Tf )
∥v(t)∥T , (4.14)

where the T -norm is induced by the inner product (4.12).
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Lemma 4.2. Under the same assumptions of Lemma 4.1, it holds

∥ũh∥2
L∞(L2)+

1
µ
∥∇ũh∥2

L2(QT )
+(CShmin)

2∥∇ũh∥3
L3(QT )

≤C∥f∥2
L1(L2). (4.15)

where hmin is the minimum size of all elements in the mesh Th.

Proof. From (4.11), we sum for k = 1, . . . ,m:

∥um
h ∥

2
L2(Ω)+

m

∑
k=1

2∆t
(

µ∥∇uk
h∥

2
L2(Ω)+at(uk

h;uk
h,u

k
h)
)
≤

m

∑
k=1

2∆t⟨fk,uk
h⟩Ω

We observe that

at(uk
h;uk

h,uh) = ∑
K∈Th

(CShK)
2
∫

K
|∇uk

h|
3 dK ≥ (CShmin)

2∥∇uk
h∥

3
L3(Ω).

In particular,

∥um
h ∥

2
L2(Ω)+

m

∑
k=1

∆t
µ
∥∇uk

h∥
2
L2(Ω)+

m

∑
k=1

∆t(CShmin)
2∥∇uk

h∥
3
L3(Ω) ≤

m

∑
k=1

2∆t⟨fk,uk
h⟩Ω.

Moreover, thanks to (4.10)

m

∑
k=1

∆t⟨fk,uk
h⟩Ω ≤

m

∑
k=1

∆t∥fk∥L2(Ω)∥uk
h∥L2(Ω)

≤ 2
m

∑
k=1

∆t∥fk∥L2(Ω)∥f̃∥L1(L2) = 2∥f̃∥2
L1(L2) ≤ 2∥f∥2

L1(L2).

Taking the maximum in m = 1, . . . ,L, we obtain the result.

Corollary 4.1. Under the same assumptions as in Lemma 4.2, we also obtain

∥ũh∥2
L∞(L2)+∥ũh∥2

L2
T (H

1
0 )
≤C∥f∥2

L1(L2). (4.16)

Now we prove some estimates for ∥∇uk
h∥L3(Ω) with k = 1, . . . ,L.

Corollary 4.2. For any k = 1, . . . ,L

∥∇uk
h∥L3(Ω) ≤C3;2h−d/6

min ∆t−1/2
√

2µ∥f∥L1(L2). (4.17)

Proof. Let us consider the Inverse Inequality Theorem A.4

∥∇uk
h∥L3(Ω) ≤C3;2h−d/6

min ∥∇uk
h∥L2(Ω)

≤C3;2h−d/6
min ∆t−1/2

(
m

∑
k=1

∆t∥∇uk
h∥

2
L2(Ω)

)1/2

=C3;2h−d/6
min ∆t−1/2∥∇ũh∥L2(QT )

.

Continuing this estimate with (4.15) we get the result.



100 4.2. A priori error estimates for the velocity

Corollary 4.3. For any k = 1, . . . ,L

∥∇uk
h∥L3(Ω) ≤ ∆t−1/3(CShmin)

−2/3 3
√

2∥f∥2/3
L1(L2)

. (4.18)

Proof. It is straightforward that

∥∇uk
h∥L3(Ω) ≤ ∆t−1/3∥∇ũh∥L3(QT )

Then using the estimate (4.15) we get the result.

Corollary 4.4. For any k = 1, . . . ,L

∥∇uk
h∥L3(Ω) ≤ 2C1,3;2h−1−d/6

min ∥f∥L1(L2). (4.19)

Proof. We use the Inverse Inequality Theorem A.4

∥∇uk
h∥L3(Ω) ≤C1,3;2h−1−d/6

min ∥uk
h∥L2(Ω) ≤C1,3;2h−1−d/6

min ∥ũh∥L∞(L2)

Then using estimate (4.10) we get the result.

Remark 4.5. Applying the Sobolev embedding Theorem A.2, we obtain that W 1,3(Ω)⊂
L6(Ω) for d = 2,3. This is, there exists a constant C6;1,3 > 0 such that

∥u∥L6(Ω) ≤C6;1,3∥∇u∥L3(Ω). (4.20)

This inequality will be used along the proof of the next lemma.

Lemma 4.3. Under the assumptions of Lemma 4.1 and assuming that f ∈ L2(QT ), it
holds

∥∂
∗
t ũh∥2

L2(QT )
+

1
µ
∥∇ũh∥2

L∞(L2)+(CShmin)
2∥∇ũh∥3

L∞(L3)

≤C1 exp
(

C2h−8/3
min ∥f∥2/3

L1(L2)

)
h−8

min∥f∥8
L2(QT )

+∥f∥2
L2(QT )

(4.21)

where C1,C2 > 0 depends on QT and with ∆t sufficiently small.

Proof. We take the momentum equation (4.4) and we chose as test function
vk

h = uk
h −uk−1

h :

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

+a(uk
h,u

k
h −uk−1

h )+at(uk
h;uk

h,u
k
h −uk−1

h )

+ c(uk
h,u

k
h,u

k
h −uk−1

h ) = ⟨fk,uk
h −uk−1

h ⟩Ω.
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Then,

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

+
1
µ
∥∇uk

h∥
2
L2(Ω)+at(uk

h;uk
h,u

k
h −uk−1

h )

=−c(uk
h,u

k
h,u

k
h −uk−1

h )+a(uk
h,u

k−1
h )+ ⟨fk,uk

h −uk−1
h ⟩Ω.

We sum for k = 1, . . . ,m:

m

∑
k=1

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

+
1
µ

m

∑
k=1

∥∇uk
h∥

2
L2(Ω)+

m

∑
k=1

at(uk
h;uk

h,u
k
h −uk−1

h )

=
1
µ

m

∑
k=1

a(uk
h,u

k−1
h )−

m

∑
k=1

c(uk
h,u

k
h,u

k
h −uk−1

h )+
m

∑
k=1

⟨fk,uk
h −uk−1

h ⟩Ω

The main idea is to compensate the right side with the left side. We will treat each
term individually.

• First, we use the property (A.4) to obtain

1
µ

m

∑
k=1

a(uk
h,u

k−1
h ) =

m

∑
k=1

1
µ
(∇uk

h,∇uk−1
h )Ω

≤ 1
µ

m

∑
k=1

[
1
2
∥∇uk

h∥
2
L2(Ω)+

1
2
∥∇uk−1

h ∥2
L2(Ω)

]

=
1
µ

m−1

∑
k=1

∥∇uk
h∥

2
L2(Ω)+

1
2µ

∥∇um
h ∥

2
L2(Ω).

• We integrate by parts for the antisymmetric term obtaining

m

∑
k=1

c(uk
h,u

k
h,u

k
h −uk−1

h ) =

=
1
2

m

∑
k=1

∆t

(
(uk

h · ∇)uk
h,

uk
h −uk−1

h
∆t

)
Ω

− 1
2

m

∑
k=1

∆t

(
(uk

h · ∇)
uk

h −uk−1
h

∆t
,uk

h

)
Ω

=
m

∑
k=1

∆t

(
(uk

h · ∇)uk
h,

uk
h −uk−1

h
∆t

)
Ω

+
1
2

m

∑
k=1

∆t

(
∇ ·uk

h,u
k
h ·

uk
h −uk−1

h
∆t

)
Ω



102 4.2. A priori error estimates for the velocity

We will study each term separately. Using the property (A.5) with c = 1/2 we
obtain that

m

∑
k=1

∆t

(
(uk

h · ∇)uk
h,

uk
h −uk−1

h
∆t

)
Ω

≤
m

∑
k=1

2∆t∥(uk
h · ∇)uk

h∥
2
L2(Ω)+

1
8

m

∑
k=1

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

.

It holds

∥(uk
h ·∇)uk

h∥
2
L2(Ω) =

∫
Ω

|(uk
h · ∇)uk

h|dΩ
2 ≤ 3

∫
Ω

(uk
h · uk

h)(∇uk
h : ∇uk

h)dΩ

≤ 3∥uk
h∥

2
L6(Ω)∥∇uk

h∥
2
L3(Ω)

≤ 3C2
6;1,3∥∇uk

h∥
4
L3(Ω).

Henceforth,

m

∑
k=1

∆t

(
(uk

h · ∇)uk
h,

uk
h −uk−1

h
∆t

)
Ω

≤ 6C2
6;1,3

m

∑
k=1

∆t∥∇uk
h∥

4
L3(Ω)+

1
8

m

∑
k=1

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

.

On the other hand,

1
2

m

∑
k=1

∆t

(
∇ ·uk

h,u
k
h ·

uk
h −uk−1

h
∆t

)
Ω

≤ 1
2

m

∑
k=1

∆t∥∇uk
h∥L3(Ω)∥uk

h∥L6(Ω)

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
L2(Ω)

.

Using again the same Sobolev embedding and the property (A.5) with the constant
equal to 1, we obtain that

1
2

m

∑
k=1

∆t

(
∇ ·uk

h,u
k
h ·

uk
h −uk−1

h
∆t

)
Ω

≤
C6;1,3

2

m

∑
k=1

∆t∥∇uk
h∥

4
L3(Ω)+

1
8

m

∑
k=1

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

.
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Summing up,

m

∑
k=1

c(uk
h,u

k
h,u

k
h −uk−1

h )≤ (12C2
6;1,3 +C6;1,3)

1
2

m

∑
k=1

∆t∥∇uk
h∥

4
L3(Ω)

+
1
4

m

∑
k=1

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

.

• Using again the property (A.5) with c = 1,

m

∑
k=1

⟨fk,uk
h −uk−1

h ⟩Ω =
m

∑
k=1

∆t

〈
fk,

uk
h −uk−1

h
∆t

〉
Ω

≤
m

∑
k=1

∆t∥fk∥2
L2(Ω)+

1
4

m

∑
k=1

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

• Using now the property (A.6),

m

∑
k=1

at(uk
h,u

k
h,u

k
h −uk−1

h ) =
m

∑
k=1

∑
K∈Th

(CShK)
2
(
|∇uk

h|∇uk
h,∇uk

h −∇uk−1
h

)
K

≥1
3 ∑

K∈Th

(CShK)
2

[
m

∑
k=1

∥∇uk
h∥

3
L3(K)−∥∇uk−1

h ∥3
L3(K)

]

=
1
3 ∑

K∈Th

(CShK)
2∥∇um

h ∥
3
L3(K) ≥

1
3
(CShmin)

2∥∇um
h ∥

3
L3(Ω).

Summing up,

m

∑
k=1

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

+
1
µ

m

∑
k=1

∥∇uk
h∥

2
L2(Ω)+

1
3
(CShmin)

2∥∇um
h ∥

3
L3(Ω)

≤ 1
µ

m−1

∑
k=1

∥∇uk
h∥

2
L2(Ω)+

1
2µ

∥∇um
h ∥

2
L2(Ω)+

C∗

2

m

∑
k=1

∆t∥∇uk
h∥

4
L3(Ω)

+
1
2

m

∑
k=1

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

+
m

∑
k=1

∆t∥fk∥2
L2(Ω)
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where C∗ = 12C2
6;1,3 +C6;1,3, and we obtain that

m

∑
k=1

∆t

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
2

L2(Ω)

+
1
µ
∥∇um

h ∥
2
L2(Ω)+

2
3
(CShmin)

2∥∇um
h ∥

3
L3(Ω)

≤C∗
m

∑
k=1

∆t∥∇uk
h∥

4
L3(Ω)+2

m

∑
k=1

∆t∥fk∥2
L2(Ω) (4.22)

Let us prove a bound for ∇ũh ∈ L4(0,Tf ;L3(Ω)). From the previous expression,

∥∇um
h ∥

3
L3(Ω) ≤

3
2(CShmin)2

(
C∗

m

∑
k=1

∆t∥∇uk
h∥

4
L3(Ω)+2

m

∑
k=1

∆t∥fk∥2
L2(Ω)

)
Then, we apply the discrete Gronwall Lemma A.3 using k = ∆t, B = 0 and

am = ∥∇um
h ∥

3
L3(Ω), bm = 0, cm = 2C′h−2

min∥fm∥2
L2(Ω),

γm =C′C∗h−2
min∥∇um

h ∥L3(Ω).

where C′ =
3

2C2
S

.

In order to apply this lemma, we need to guarantee that ∆tγm ≤ ρ with ρ < 1 for all
m = 1, . . . ,L. From Corollary 4.4 we obtain that

∆t∥∇um
h ∥L3(Ω) ≤ 2C1,3;2∆th−1−d/6

min ∥f∥L1(L2)

Then, multiplying by C′C∗h−2
min,

∆tγm ≤ 2C1,3;2C′C∗
∆th−3−d/6

min ∥f∥L1(L2) ≤ ρ

if and only if

∆t ≤
h3+d/6

min
2C1,3;2C′C∗∥f∥L1(L2)

·ρ

for some ρ ∈ (0,1). We select Corollary 4.4 since it seems to be the least restrictive
compared to Corollary 4.2 and 4.3.

Now, applying the discrete Gronwall Lemma A.3,

∥∇um
h ∥L3(Ω) ≤ exp

(
m

∑
k=1

∆tγk

1−∆tγk

)
·

(
2C′h−2

min

m

∑
k=1

∆t∥fk∥2
L2(Ω)

)

≤ exp

(
1

1−ρ

m

∑
k=1

∆tγk

)
·

(
2C′h−2

min

m

∑
k=1

∆t∥fk∥2
L2(Ω)

)

= exp

(
C′C∗h−2

min
1−ρ

m

∑
k=1

∆t∥∇uk
h∥L3(Ω)

)
·

(
2C′h−2

min

m

∑
k=1

∆t∥fk∥2
L2(Ω)

)
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And taking the supreme in m = 1, . . . ,L,

∥∇ũh∥L∞(L3) ≤ exp

(
C′C∗h−2

min
1−ρ

∥∇ũh∥L1(L3)

)(
2C′h−2

min∥f∥2
L2(QT )

)
The exponential term is bounded since ∇ũh ∈ L3(0,Tf ;L3(Ω)) from (4.15) and

L3(0,Tf ) ↪→ L1(0,Tf ), then, there exists C′
Tf

> 0 such that

∥∇ũh∥L1(L3) ≤C′
Tf
∥∇ũh∥L3(QT )

≤
3
√

2C′
Tf

(CShmin)2/3∥f∥2/3
L1(L2)

with this, we have proven that ũh ∈ L∞(0,Tf ,W 1,3(Ω)).
Again, since L∞(0,Tf ) ↪→ L4(0,Tf ), there exists C⋆

Tf
> 0 such that

∥∇ũh∥L4(L3) ≤C⋆
Tf
∥∇ũh∥L∞(L3).

Then, taking the supreme in m = 1, . . . ,L in (4.22) we obtain

∥∂
∗
t ũh∥2

L2(QT )
+

1
µ
∥∇ũh∥2

L∞(L2)+(CShmin)
2 2

3
∥∇ũh∥3

L∞(L3)

≤C∗∥∇ũh∥4
L4(L3)+2∥f∥2

L2(QT )

≤C∗(C∗
Tf
)4∥∇ũh∥4

L∞(L3)+∥f∥2
L2(QT )

≤C∗(C∗
Tf
)4 exp

(
4C′C∗h−2

min
1−ρ

∥∇ũh∥L1(L3)

)(
2C′h−2

min∥f∥2
L2(QT )

)4
+∥f∥2

L2(QT )

≤ 16C∗(C⋆
Tf

C′)4 exp

4 3
√

2C′C∗C′
Tf

h−8/3
min

C2/3
S (1−ρ)

∥f∥2/3
L1(L2)

h−8
min∥f∥8

L2(QT )
+∥f∥2

L2(QT )

and we obtain the result.

Corollary 4.5. Under the same assumptions as in Lemma 4.3, we also obtain

∥∂
∗
t ũh∥2

L2(QT )
+∥ũh∥2

L∞
T (H

1
0 )

≤C1 exp
(

C2h−8/3
min ∥f∥2/3

L1(L2)

)
h−8

min∥f∥8
L2(QT )

+∥f∥2
L2(QT )

(4.23)

where C1,C2 > 0 depends on QT and ∆t sufficiently small.

Remark 4.6. We are working with the Smagorinsky model, therefore we have set a mesh
Th with h > 0. The Lemma 4.3 shows an estimate with negative power on hmin which
should not be a issue since hmin ̸= 0.
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4.3 A priori error estimates for the pressure

In this section, we develop the usual a priori estimate for the pressure in L2(Ω)(0,Tf ;L3/2(Ω))

and using an Inverse Inequality, we obtain an a priori estimate in L2(QT ).

Lemma 4.4. Assume that f ∈ L2(0,Tf ;H−1(Ω)) and (ũh, p̃h) ∈ Ỹh × Q̃h is a solution of

(4.9). Then it holds

∥p̃h∥2
L2(L3/2)

≤C
(
∥∂

∗
t ũh∥2

L2(QT )
+

1
µ2∥∇ũh∥2

L2(QT )
+((CShmax)

4 +1)∥∇ũh∥4
L4(L3)

+∥ũh∥4
L4(L3)+∥f∥2

L2(H−1(Ω))

)
, (4.24)

where C > 0 is a constant that depends on Ω.

Proof. From the momentum equation of (4.4) for vk
h = vh ∈ Yh, we have that

(pk
h,∇ ·vh)Ω =

(
uk

h −uk−1
h

∆t
,vh

)
Ω

+
1
µ
(∇uk

h,∇vh)Ω +(νt(uk
h)∇uk

h,∇vh)Ω

+
1
2

[
((uk

h · ∇)uk
h,vh)Ω − ((uk

h · ∇)vh,uk
h)Ω

]
−⟨fk,vh⟩Ω

(4.25)

then

(pk
h,∇ ·vh)Ω ≤

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
L2(Ω)

∥vh∥L2(Ω)+
1
µ
∥∇uk

h∥L2(Ω)∥∇vh∥L2(Ω)

+(CShmax)
2∥∇uk

h∥
2
L3(Ω)∥∇vh∥L3(Ω)+

1
2
∥uk

h∥L3(Ω)∥∇uk
h∥L3(Ω)∥vh∥L3(Ω)

+
1
2
∥uk

h∥L3(Ω)∥∇vh∥L3(Ω)∥uk
h∥L3(Ω)+∥fk∥H−1(Ω)∥∇vh∥L2(Ω)

(4.26)

If we use the Inf-Sup Condition Theorem A.8 for p1 = 3/2 and p2 = 3, there exits a
constant α > 0 such that

α∥pk
h∥L3/2(Ω) ≤ sup

vh∈W 1,3(Ω)

(∇ ·vh, pk
h)Ω

∥vh∥W 1,3(Ω)

. (4.27)

Now we try to get a bound of (4.26) depending on ∥vh∥W 1,3(Ω) so we can use (4.27).
Note that

W 1,3(Ω) ↪→ L3(Ω) ↪→ L2(Ω),
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with continuous injections. Then for any v ∈W 1,3(Ω), there exists C2;3 > 0 such that

∥v∥L2(Ω) ≤C2;3∥v∥L3(Ω) ≤C2;3∥v∥W 1,3(Ω),

and

∥∇v∥L2(Ω) ≤C2;3∥∇v∥L3(Ω) ≤C2;3∥v∥W 1,3(Ω),

then

(pk
h,∇ ·vh)Ω ≤C2;3

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
L2(Ω)

∥vh∥W 1,3(Ω)+
C2;3

µ
∥∇uk

h∥L2(Ω)∥vh∥W 1,3(Ω)

+C2;3(CShmax)
2∥∇uk

h∥
2
L3(Ω)∥vh∥W 1,3(Ω)+

1
2
∥uk

h∥L3(Ω)∥∇uk
h∥L3(Ω)∥vh∥W 1,3(Ω)

+
1
2
∥uk

h∥L3(Ω)∥vh∥W 1,3(Ω)∥uk
h∥L3(Ω)+C2;3∥fk∥H−1(Ω)∥vh∥W 1,3(Ω)

(4.28)

Finally, using (4.27) and (4.28)

α∥pk
h∥L3/2(Ω) ≤C2;3

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
L2(Ω)

+
C2;3

µ
∥∇uk

h∥L2(Ω)+C2;3(CShmax)
2∥∇uk

h∥
2
L3(Ω)

+
1
2
∥uk

h∥L3(Ω)∥∇uk
h∥L3(Ω)+

1
2
∥uk

h∥
2
L3(Ω)+C2;3∥fk∥H−1(Ω)

and applying the Poincaré Inequality A.2 with constant C3;1,3 > 0, we obtain that

∥pk
h∥L3/2(Ω) ≤C

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
L2(Ω)

+
1
µ
∥∇uk

h∥L2(Ω)+(CShmax)
2∥∇uk

h∥
2
L3(Ω)

+∥∇uk
h∥

2
L3(Ω)+∥uk

h∥
2
L3(Ω)+∥fk∥H−1(Ω)

)
,

where C = max{C2;3,C3;1,3/2}/α . Taking the square, multiplying by ∆t and summing

for k = 1, . . . ,L, we obtain

∥p̃h∥2
L2(L3/2)

≤C
(
∥∂

∗
t ũh∥2

L2(QT )
+

1
µ2∥∇ũh∥2

L2(QT )
+(CShmax)

4∥∇ũh∥4
L4(L3)

+∥ũh∥4
L4(L3)+∥∇ũh∥4

L4(L3)+∥f̃∥2
L2(H−1(Ω))

)
,

and we obtain the result. The norms related to ũh in the second hand are bounded as we

saw in Section 4.2.
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Now, applying the Local Inverse Inequality Theorem A.3 we are able to obtain a
better estimate for the pressure.

Corollary 4.6. Assuming the same assumptions as in Lemma 4.4, it holds

∥p̃h∥2
L2(QT )

≤C
(
∥∂

∗
t ũh∥2

L2(QT )
+

1
µ2∥∇ũh∥2

L2(QT )

+(C4
Sh4−d/3

max +1)∥∇ũh∥4
L4(L3)+∥f̃∥2

L2(H−1)

)
(4.29)

Proof. We follow the same idea as in the proof of Lemma 4.4. We use the Local Inverse
Inequality Theorem A.3 in (A.11) for the eddy viscosity term, this is, there exists a
constant C3;2 > 0 such that

(νt(uk
h)∇uk

h,∇vh)Ω ≤ ∑
K∈Th

(CShK)
2∥∇uk

h∥
2
L3(K)∥∇vh∥L3(K)

≤C3;2 ∑
K∈Th

C2
Sh2−d/6

K ∥∇uk
h∥

2
L3(K)∥∇vh∥L2(K)

≤C3;2C2
Sh2−d/6

max ∥∇uk
h∥

2
L3(Ω)∥∇vh∥L2(Ω)

From this and (4.25), we obtain that

(pk
h,∇ ·vh)Ω ≤

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
L2(Ω)

∥vh∥L2(Ω)+
1
µ
∥∇uk

h∥L2(Ω)∥∇vh∥L2(Ω)

+C3;2C2
Sh2−d/6

max ∥∇uk
h∥

2
L3(Ω)∥∇vh∥L2(Ω)+

1
2
∥uk

h∥L2(Ω)∥∇uk
h∥L3(Ω)∥vh∥L6(Ω)

+
1
2
∥uk

h∥L3(Ω)∥∇vh∥L2(Ω)∥uk
h∥L6(Ω)+∥fk

h∥H−1(Ω)∥∇vh∥L2(Ω)

Now we use the Inf-Sup Condition Theorem A.8 for p1 = 2 and p2 = 2, then there exists
a constant α ′ > 0 such that

α
′∥pk

h∥L2(Ω) ≤ sup
vh∈H1(Ω)

(∇ ·vh, pk
h)Ω

∥∇vh∥L2(Ω)

.

Then we study each term separately:

• First, using Poincaré Inequality A.2 with constant C2;1,2 > 0∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
L2(Ω)

∥vh∥L2(Ω) ≤C2;1,2

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
L2(Ω)

∥∇vh∥L2(Ω).
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• For the next term, we use the injection L3(Ω) ↪→ L2(Ω) with the constant C2;3 > 0
and applying the Poincaré Inequality A.2 with constant C3;1,3 > 0, we obtain that

∥uk
h∥L2(Ω) ≤C2;3∥uk

h∥L3(Ω) ≤C2;3C3;1,3∥∇uk
h∥L3(Ω).

Furthermore, we know from the Sobolev embedding Theorem A.2 that
H1

0 (Ω) ↪→ L6(Ω) for d = 2,3 with constant C6;1,2 > 0, this is,

∥vh∥L6(Ω) ≤C6;1,2∥∇vh∥L2(Ω).

To sum up:

∥uk
h∥L2(Ω)∥∇uk

h∥L3(Ω)∥vh∥L6(Ω) ≤C2;3C3;1,3C6;1,2∥∇uk
h∥

2
L3(Ω)∥∇vh∥L2(Ω).

• Thanks to the constant C6;1,3 > 0 defined in (4.20),

∥uk
h∥L3(Ω)∥∇vh∥L2(Ω)∥uk

h∥L6(Ω) ≤C3;1,3C6;1,3∥∇uk
h∥

2
L3(Ω)∥∇vh∥L2(Ω).

Bringing back to the beginning of the proof, we obtain

(pk
h∇·vh)Ω ≤C2;1,2

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
L2(Ω)

∥∇vh∥L2(Ω)+
1
µ
∥∇uk

h∥L2(Ω)∥∇vh∥L2(Ω)

+(C3;2C2
Sh2−d/6

max +
1
2

C3;1,3(C2;3C6;1,2 +C6;1,3))∥∇uk
h∥

2
L3(Ω)∥∇vh∥L2(Ω)

+∥fk
h∥H−1(Ω)∥∇vh∥L2(Ω).

(4.30)

By Inf-Sup Condition Theorem A.8 for p1 = 2 and p2 = 2 there exists a constant
α ′ > 0 such that

α
′∥pk

h∥L2(Ω) ≤ sup
vh∈H1(Ω)

(∇ ·vh, pk
h)Ω

∥∇vh∥L2(Ω)

and using Inequality (4.30), we obtain

α
′∥pk

h∥L2(Ω) ≤C2;1,2

∥∥∥∥∥uk
h −uk−1

h
∆t

∥∥∥∥∥
L2(Ω)

+
1
µ
∥∇uk

h∥L2(Ω)

+(C3;2C2
Sh2−d/6

max +
1
2

C3;1,3(C2;3C6;1,2 +C6;1,3))∥∇uk
h∥

2
L3(Ω)+∥fk

h∥H−1(Ω).

Taking the square, multiplying by ∆t and summing for k = 1, . . . ,L, we obtain the result.
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With this last result, we obtain an estimate for the pressure in a Hilbert space and
we also have proved that under a certain constrain over ∆t, the velocity filed is in
L∞(0,Tf ;W 1,3(Ω)).

These results are the key for the next chapter. As we said, we need Hilbert spaces
to develop an a posteriori error bound estimator and the velocity regularity obtained
will help us to prove it.



5
A posteriori error estimation for

unsteady Smagorinsky model

The aim of this chapter is to build a space-time error estimator based on the BRR theory
for the unsteady Smagorinsky model. We shall extend the theory described in Section
1.4 and Chapter 2 considering the Reynolds number as the parameter.

In Section 5.1 we establish the general notation to apply the RB method. In Section
5.2, we study the well-posedness of the problem over some suitable norms. Then, in
Section 5.3, we obtain an a posteriori error bound estimator for the unsteady case. In
Section 5.4, we clarify the approximation of the inf-sup Stability Factor for the unsteady
case and we overview the difficulties in its computation.

The notation used along this chapter has been introduced in Section 4.1. In order to
avoid unnecessary repetition, we refer to the reader to Section 4.1 for notation description.

5.1 Problem statement

We consider the unsteady dimensionless Smagorinsky model introduced in (4.9), that is:
Find (w̃h, p̃h) ∈ Ỹh × Q̃h solution of

(∂ ∗
t w̃h, ṽh)QT +

1
Re

(∇w̃h,∇ṽh)QT +(νt(w̃h)∇w̃h,∇ṽh)QT

+
1
2
[((w̃h ·∇)w̃h, ṽh)QT − ((w̃h ·∇)ṽh, w̃h)QT ]

−(∇ · ṽh, p̃h)QT = ⟨f̃, ṽh⟩QT , ∀ṽh ∈ Ỹh,

(∇ · w̃h, q̃h)QT = 0, ∀q̃h ∈ Q̃h.

111
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where the eddy viscosity term is given by

νt(w̃) = ∑
K∈Th

(CShK)
2|∇w̃|K|XK .

To simplify notation, we introduce the space X̃h = Ỹh × Ỹh × Q̃h, this is, the space
formed by piecewise constant functions Ṽh related to the velocity field ṽh ∈ Ỹh, its discrete
time derivative ∂ ∗

t ṽh ∈ Ỹh and pressure q̃h ∈ Q̃h.
In order to consider nonhomogeneous Dirichlet BCs for the application of the RB

method, we set up a divergence free lift uD that will take part of the formulation,
then, w̃h = ũh + uD where ũh verifies homogeneous Dirichlet BCs. We assume that
uD ∈ L∞(0,Tf ;H1

0 (Ω)) and for simplicity, it must verify that uD(0, ·) is equal to the initial
condition, then, w̃h(0, ·) = 0. We consider µ = Re the parameter of the problem and D
the parameter set. Then the problem to solve in its compact form is defined as follows{

Given µ ∈D find Ũh(µ) = (ũh(µ), p̃h(µ)) ∈ X̃h such that

Ã(Ũh(µ),Ṽh; µ) = F(Ṽh; µ), ∀Ṽh ∈ X̃h,
(5.1)

where A is defined as

Ã(Ũh(µ),Ṽh; µ) = Ã0(Ũh(µ),Ṽh; µ)+ Ã1(Ũh(µ),Ṽh; µ)+ Ã2(Ũh(µ),Ṽh; µ) (5.2)

with

Ã0(Ũ ,Ṽ ; µ) =
∫

QT

∂
∗
t ũ · ṽdQT

Ã1(Ũ ,Ṽ ; µ) =
1
µ

∫
QT

∇ũ : ∇ṽdQT +
1
2

∫
QT

[(ũ ·∇)ũ · ṽ− (ũ ·∇)ṽ · ũ]dQT

+
1
2

∫
QT

[(uD ·∇)ũ · ṽ− (uD ·∇)ṽ · ũ]dQT

+
1
2

∫
QT

[(ũ ·∇)uD · ṽ− (ũ ·∇)ṽ ·uD]dQT

+
∫

QT

νt(ũ+uD)∇(ũ+uD) : ∇ṽdQT

Ã2(Ũ ,Ṽ ; µ) =
∫

QT

(∇ · ũ)q̃dQT −
∫

QT

(∇ · ṽ)p̃dQT

F(Ṽ ; µ) =
∫

QT

f · ṽdQT − 1
µ

∫
QT

∇uD : ∇ṽdQT

− 1
2

∫
QT

(uD ·∇)uD · ṽdQT +
1
2

∫
QT

(uD ·∇)ṽ ·uD dQT .

(5.3)
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where Ũ = (ũ,∂ ∗
t ũ, p̃) and Ṽ = (ṽ,∂ ∗

t ṽ, q̃). Note that Ã0 is the operator related to the
derivative on time, Ã1 involves convection and viscous effects and Ã2 involves the
pressure.

From now on, we consider the following norm on X̃h:

∥Ṽh∥X̃ =
√
∥ṽh∥2

L2
T (H

1
0 )
+∥q̃h∥2

L2(QT )
, (5.4)

where we recall that the Lp
T (H

1
0 (Ω))-norm was introduced in (4.13)-(4.14) for p∈ [1,+∞].

With this setting, we can state the Reduced Basis problem as{
Given µ ∈D, find ŨN(µ) ∈ X̃N such that

Ã(ŨN(µ),ṼN ; µ) = F(ṼN ; µ), ∀ṼN ∈ X̃N
(5.5)

where X̃N = ỸN × ỸN × Q̃N , with ỸN ⊂ Ỹh and Q̃N ⊂ Q̃h are the reduced basis spaces.

Remark 5.1. The results of existence and stability proved in Chapter 4 still hold for
problem (5.1) for smooth enough lift uD.

5.2 Well-posedness analysis

To study the well-posedness of the model, we use the Brezzi-Rappaz-Raviart (BRR)
theory (see, e.g. [8]). This theory provides a technique to obtain an a posteriori error
estimator for nonlinear parametric problems and it has already applied to the steady
case. We study the directional derivative defined in Definition A.1 of operator Ã to
apply this theory. Let Z̃ = (z̃,∂ ∗

t z̃, r̃), it holds,

∂1Ã0(Ũ ,Ṽ ; µ)(Z̃) =
∫

QT

∂
∗
t z̃ · ṽdQT ,

∂1Ã1(Ũ ,Ṽ ; µ)(Z̃) =
1
µ

∫
QT

∇z̃ : ∇ṽdQT

+
1
2

∫
QT

[(w̃ ·∇)z̃ · ṽ− (w̃ ·∇)ṽ · z̃]dQT

+
1
2

∫
QT

[(z̃ ·∇)w̃ · ṽ− (z̃ ·∇)ṽ · w̃]dQT

+
∫

QT

νt(w̃)∇z̃ : ∇ṽdQT

+ ∑
K∈Th

∫ Tf

0

∫
K
(CShK)

2 ∇(w̃) : ∇z̃
|∇(w̃)|

∇(w̃) : ∇ṽdKdt,

∂1Ã2(Ũ ,Ṽ ; µ)(Z̃) =
∫

QT

(∇ · z̃)q̃dQT −
∫

QT

(∇ · ṽ)r̃ dQT

(5.6)

where w̃ = ũ + uD.
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Remark 5.2. Before to start, we define some constants derived from relevant results

presented in Appendix A.2:

• The norm related to the inner product (2.12) is equivalent to the H1
0 (Ω)-norm, then,

there exists a constant C1,2;T > 0 such that

∥∇ṽh∥L2(Ω) ≤C1,2;T∥ṽh∥T , ∀ṽh ∈ Ỹh, ∀t ∈ I f . (5.7)

• Applying the Sobolev embedding Theorem A.2 we obtain that H1
0 (Ω) ↪→ L4(Ω) ↪→

L2(Ω) with constants C4;1,2,C2;1,2 > 0. Thanks to the previous point, there exist

constants C4;T =C4;1,2C1,2;T and C2;T =C2;1,2C1,2;T such that

∥ṽh∥L4(Ω) ≤C4;T∥v∥T , ∥ṽh∥L2(Ω) ≤C2;T∥v∥T , ∀ṽh ∈ Ỹh, ∀t ∈ I f . (5.8)

• For all K ∈ Th, we apply the Local Inverse Inequality Theorem A.3 as in (A.11),
introducing the constant C3;2 > 0, this is,

∥∇ṽh∥L3(K) ≤C3;2h−d/6
K ∥∇ṽh∥L2(K), ∀K ∈ Th, ∀ṽh ∈ Ỹh, ∀t ∈ I f . (5.9)

We start proving the continuity of operator ∂1Ã.

Proposition 5.1. For any µ ∈D and Ũh(µ) ∈ X̃h, it holds

|∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h)| ≤ γh∥Z̃h∥X̃∥Ṽh∥X̃ , ∀Z̃h,Ṽh ∈ X̃h, (5.10)

where γh = maxµ∈D γh(µ) and

γh(µ) = 2
C2

2;T

∆t
+2C1,2;T +

C2
1,2;T

µ
+2C1,2;TC2

4;T∥w̃h∥L∞
T (H

1
0 )

+2(C1,2;TC3;2CS)
2h2−d/3

max ∥∇w̃h∥L∞(L3).

with w̃h = ũh+uD, and the constants C1,2;T , C2;T , C4;T and C3;2 are defined in (5.7)-(5.9).

Proof. We start from

|∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h)| ≤ |∂1Ã0(Ũh(µ),Ṽh; µ)(Z̃h)|

+ |∂1Ã1(Ũh(µ),Ṽh; µ)(Z̃h)|+ |∂1Ã2(Ũh(µ),Ṽh; µ)(Z̃h)|

We study each term separately using the constants defined in (5.7)-(5.9).
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The first term involves the derivative in time,

|∂1Ã0(Ũh(µ),Ṽh)(Z̃h)|=

∣∣∣∣∣ L

∑
k=1

∆t
∫

Ω

zk
h − zk−1

h
∆t

·vk
h dΩ

∣∣∣∣∣
≤

L

∑
k=1

∆t

∥∥∥∥∥zk
h − zk−1

h
∆t

∥∥∥∥∥
L2(Ω)

∥vk
h∥L2(Ω) ≤

C2
2;T

∆t

L

∑
k=1

∆t∥zk
h − zk−1

h ∥T∥vk
h∥T

≤2
C2

2;T

∆t
∥z̃h∥L2

T (H
1
0 )
∥ṽh∥L2

T (H
1
0 )
≤ 2

C2
2;T

∆t
∥Z̃h∥X̃∥Ṽh∥X̃

(5.11)

Next, we study |∂1Ã1(Ũh(µ),Ṽh; µ)(Z̃h)| term by term,

∣∣∣∣ 1
µ

∫
QT

∇z̃h : ∇ṽh dQT

∣∣∣∣≤ 1
µ

L

∑
k=1

∆t
∣∣∣∣∫

Ω

∇zk
h : ∇vk

h dΩ

∣∣∣∣
≤ 1

µ

L

∑
k=1

∆t∥∇zk
h∥L2(Ω)∥∇vk

h∥L2(Ω) ≤
C2

1,2;T

µ

L

∑
k=1

∆t∥zk
h∥T∥vk

h∥T

Furthermore,

∣∣∣∣12
∫

QT

[(w̃h ·∇)z̃h · ṽh − (w̃h ·∇)ṽh · z̃h]dQT

+
1
2

∫
QT

[(z̃h ·∇)w̃h · ṽh − (z̃h ·∇)ṽh · w̃h]dQT

∣∣∣∣
≤1

2

L

∑
k=1

∆t
∫

Ω

∣∣∣(wk
h ·∇)zk

h ·v
k
h − (wk

h ·∇)vk
h · z

k
h

∣∣∣ dΩ

+
1
2

L

∑
k=1

∆t
∫

Ω

∣∣∣(zk
h ·∇)wk

h ·v
k
h − (zk

h ·∇)vk
h ·w

k
h

∣∣∣ dΩ

≤1
2

L

∑
k=1

∆t
[
∥wk

h∥L4(Ω)∥∇zk
h∥L2(Ω)∥vk

h∥L4(Ω)+∥wk
h∥L4(Ω)∥∇vk

h∥L2(Ω)∥zk
h∥L4(Ω)

+ ∥zk
h∥L4(Ω)∥∇wk

h∥L2(Ω)∥vk
h∥L4(Ω)+∥zk

h∥L4(Ω)∥∇vk
h∥L2(Ω)∥wk

h∥L4(Ω)

]
≤2C1,2;TC2

4;T

L

∑
k=1

∆t∥wk
h∥T∥zk

h∥T∥vk
h∥T .

where we use (5.7) and (5.8) and the Hölder’s Inequality A.1.
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Finally, the viscosity term is bounded by∣∣∣∣∫QT

νt(w̃h)∇z̃h : ∇ṽh dQT + ∑
K∈Th

∫ Tf

0
∆t
∫

K
(CShK)

2 ∇w̃h : ∇z̃h

|∇w̃h|
∇w̃h : ∇ṽh dKdt

∣∣∣∣∣
≤ 2 ∑

K∈Th

L

∑
k=1

∆t
∫

K
(CShK)

2∥∇wk
h∥L3(K)∥∇zk

h∥L3(K)∥∇vk
h∥L3(K) dK

≤ 2C2
3;2 ∑

K∈Th

L

∑
k=1

∆t
∫

K
C2

Sh2−d/3
K ∥∇wk

h∥L3(K)∥∇zk
h∥L2(K)∥∇vk

h∥L2(K) dK

≤ 2(C3;2CS)
2h2−d/3

max

L

∑
k=1

∆t
[
∥∇wk

h∥L3(Ω)∥∇zk
h∥L2(Ω)∥∇vk

h∥L2(Ω)

]
≤ 2(C1,2;TC3;2CS)

2h2−d/3
max

L

∑
k=1

∆t
[
∥∇wk

h∥L3(Ω)∥zk
h∥T∥vk

h∥T

]
where w̃h = ũh +uD and the constants C1,2;T is defined in (5.7) and C3;2 comes from the
application of the Local Inverse Inequality (5.9).

To sum up,

|∂1Ã1(Ũh(µ),Ṽh; µ)(Z̃h)|

≤
L

∑
k=1

∆t

(
C2

1,2;T

µ
+2C1,2;TC2

4;T∥wk
h∥T

+ 2(C1,2;TC3;2CS)
2h2−d/3

max ∥∇wk
h∥L3(Ω)

)
∥zk

h∥T∥vk
h∥T

≤

(
C2

1,2;T

µ
+2C1,2;TC2

4;T∥w̃h∥L∞
T (H

1
0 )

+ 2(C1,2;TC3;2CS)
2h2−d/3

max ∥∇w̃h∥L∞(L3)

)
∥z̃h∥L2

T (H
1
0 )
∥ṽh∥L2

T (H
1
0 )

≤

(
C2

1,2;T

µ
+2C1,2;TC2

4;T∥w̃h∥L∞
T (H

1
0 )

+ 2(C1,2;TC3;2CS)
2h2−d/3

max ∥∇w̃h∥L∞(L3)

)
∥Z̃h∥X̃∥Ṽh∥X̃

(5.12)

Finally,

|∂1Ã2(Ũh(µ),Ṽh)(Z̃h)|=
∣∣∣∣∫QT

(∇ · z̃h)q̃h dQT −
∫

QT

(∇ · ṽh)r̃h dQT

∣∣∣∣
≤
∫ Tf

0
∥∇z̃h∥L2(Ω)∥q̃h∥L2(Ω) dt +

∫ Tf

0
∥∇ṽh∥L2(Ω)∥r̃h∥L2(Ω) dt

≤C1,2;T∥z̃h∥L2
T (H

1
0 )
∥q̃h∥L2(QT )

+C1,2;T∥ṽh∥L2
T (H

1
0 )
∥r̃h∥L2(QT )

≤ 2C1,2;T∥Z̃h∥X̃∥Ṽh∥X̃
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We get the result with

γh(µ) = 2
C2

2;T

∆t
+2C1,2;T +

C2
1,2;T

µ
+2C1,2;TC2

4;T∥w̃h∥L∞
T (H

1
0 )

+2(C1,2;TC3;2CS)
2h2−d/3

max ∥∇w̃h∥L∞(L3).

and we set γh = max
µ∈D

γh(µ).

The continuity constant γh grows as ∆t−1 because of the derivative in time. This

dependency is admissible for moderate time steps. If we include the time derivative in

the X̃-norm, the constant continuity does not depend on the time step. However, the

dependency on ∆t−1 appears when proving the inf-sup condition.

Proposition 5.2. For any µ ∈ D and Ũh(µ) ∈ X̃h, let us suppose that

∥uD∥L∞
T (H

1
0 )
<

1
C1,2;TC2

4;T
and

∥ũh∥L∞
T (H

1
0 )
<

1
C1,2;TC2

4;T
−∥uD∥L∞

T (H
1
0 )
.

where the constants C1,2;T and C4;T are defined in (5.7) and (5.8) Then, for all µ ∈D it

holds,

βh(µ) = inf
Z̃h∈X̃h

sup
Ṽh∈X̃h

∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h)

∥Z̃h∥X̃∥Ṽh∥X̃
, (5.13)

where

βh(µ) =

(
Ct +(1+ γ

2
h )

(
1+ γ2

h

β̃ 2
h (µ)

+
2
√

CCt

β̃h(µ)

))−1/2

with

β̃h(µ) = 1−C1,2;TC2
4;T∥w̃h∥L∞

T (H
1
0 )
, Ct =

Tf

∆t

and γh is the continuity constant deduced in Proposition 5.1 that grows as ∆t−1.

Proof. We base this proof on Theorem 1 in [10]. The key is to prove that for a given

µ ∈D, and Z̃h ∈ X̃h,

∥Z̃h∥X̃ βh(µ)≤ S̃(Ũh(µ), Z̃h) = sup
Ṽh∈X̃h

∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h)

∥Ṽh∥X̃
.
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First, we start deducing an estimate for the velocity in its related norm. We select

Ṽh = Z̃h ∈ Xh, it holds

∂1Ã(Ũh(µ), Z̃h; µ)(Z̃h) = ∂1Ã0(Ũh(µ), Z̃h)(Z̃h)

+∂1Ã1(Ũh(µ), Z̃h; µ)(Z̃h)+∂1Ã2(Ũh(µ), Z̃h)(Z̃h).

The time derivative term is positive since

∂1Ã0(Ũh(µ), Z̃h)(Z̃h) =
∫

QT

∂
∗
t z̃h · z̃h dQT =

L

∑
k=1

∆t

(
zk

h − zk−1
h

∆t
,zk

h

)

=
1
2

L

∑
k=1

(
∥zk

h∥
2
L2(Ω)−∥zk−1

h ∥2
L2(Ω)+∥zk

h − zk−1
h ∥2

L2(Ω)

)

=
1
2
∥zL

h∥2
L2(Ω)+

1
2

L

∑
k=1

∥zk
h − zk−1

h ∥2
L2(Ω);

For the second term, on one side, we bound the terms related to viscosity,

∫
QT

(
1
µ
+νt(w̃h)

)
|∇z̃h|2 dQT + ∑

K∈Th

∫ Tf

0

∫
K
(CShK)

2 |∇w̃h : ∇z̃h|2

|∇w̃h|
dΩdt

≥
∫

QT

(
1
µ
+νt(w̃h)

)
|∇z̃h|2 dQT ≥ ∥z̃h∥2

L2
T (H

1
0 )

;

where we recall that w̃h = ũh +uD. On another hand,

1
2

∫
QT

[(z̃h ·∇)w̃h · z̃h − (z̃h ·∇)z̃h · w̃h]dQT

=
1
2

L

∑
k=1

∆t
∫

Ω

[(zk
h ·∇)wk

h · z
k
h − (zk

h ·∇)zk
h ·w

k
h]dΩ

≤ 1
2

L

∑
k=1

∆t[∥zk
h∥L4(Ω)∥∇wk

h∥L2(Ω)∥zk
h∥L4(Ω)+∥zk

h∥L4(Ω)∥∇zk
h∥L2(Ω)∥wk

h∥L4(Ω)]

≤C1,2;TC2
4;T

L

∑
k=1

∆t∥wk
h∥T∥zk

h∥
2
T ≤C1,2;TC2

4;T∥w̃h∥L∞
T (H

1
0 )
∥z̃h∥2

L2
T (H

1
0 )
.

Lastly, ∂1Ã2(Ũh(µ), Z̃h)(Z̃h) = 0, then,

∂1Ã(Ũh(µ), Z̃h; µ)(Z̃h)≥ (1−C1,2;TC2
4;T∥w̃h∥L∞

T (H
1
0 )
)∥z̃h∥2

L2
T (H

1
0 )
. (5.14)
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We need that 1−C1,2;TC2
4;T∥w̃h∥L∞

T (H
1
0 )
> 0 and that is equivalent to

1
C1,2;TC2

4;T
> ∥ũh∥L∞

T (H
1
0 )
+∥uD∥L∞

T (H
1
0 )

Then, if we suppose that ∥uD∥T <
1

C1,2;TC2
4;T

, we need that

∥ũh∥L∞
T (H

1
0 )
<

1
C1,2;TC2

4;T
−∥uD∥L∞

T (H
1
0 )
.

Note that inequality (5.14) is possible thanks to Corollary 4.5 for small data. Finally,
there exists β̃h(µ) = 1−C1,2;TC2

4;T∥w̃h∥L∞
T (H

1
0 )
> 0 such that

∥z̃h∥2
L2

T (H
1
0 )

β̃h(µ)≤ S̃(Ũh(µ), Z̃h)∥Z̃h∥X̃ , ∀Z̃h ∈ X̃h.

Next, we deduce the pressure estimate. Setting Uk
h ,V k

h , Zk
h ∈ X̃h with Xh =Yh×Yh×Qh

defined by

Uk
h = (uk

h,u
k−1
h , pk

h), V k
h = (vk

h,v
k−1
h ,qk

h), Zk
h = (zk

h,z
k−1
h ,rk

h),

from definition (5.6), we can express

∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h) =
L

∑
k=1

∆t∂1A(Uk
h (µ),V

k
h ; µ)(Zk

h) (5.15)

where

∂1A(Uk
h (µ),V

k
h ; µ)(Zk

h) = ∂1A0(Uk
h (µ),V

k
h ; µ)(Zk

h)+∂1A1(Uk
h (µ),V

k
h ; µ)(Zk

h)

+∂1A2(Uk
h (µ),V

k
h ; µ)(Zk

h).

with the forms ∂1A1 and ∂1A2 as the same as ∂1Ã1 and ∂1Ã2 by changing the integration
domain to Ω instead of QT and

∂1A0(Uk
h (µ),V

k
h ; µ)(Zk

h) =
∫

Ω

zk
h − zk−1

h
∆t

·vk
h dΩ.

Choosing the test function V k
h = (vk

h,v
k−1
h ,0), for all k = 1, . . . ,L, we have

∂1A(Uk
h (µ),V

k
h ; µ)(Zk

h) = ∂1A0(Uk
h (µ),V

k
h ; µ)(Zk

h)

+∂1A1(Uk
h (µ),V

k
h ; µ)(Zk

h)−
∫

Ω

(∇ ·vk
h)r

k
h dΩ
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from where∫
Ω

(∇ ·vk
h)r

k
h dΩ =−∂1A(Uk

h (µ),V
k
h ; µ)(Zk

h)

+∂1A0(Uk
h (µ),V

k
h ; µ)(Zk

h)+∂1A1(Uk
h (µ),V

k
h ; µ)(Zk

h)

Now, we define a supreme Sk related to each time step, for a given µ ∈D :

Sk(Uk
h (µ),Z

k
h) = sup

V k
h ∈Xh

∂1A(Uk
h (µ),V

k
h ; µ)(Zk

h)

∥V k
h ∥X

, ∀Zk
h ∈ Xh, (5.16)

with
∥V k

h ∥X =
√

∥vk
h∥2

T +∥qk
h∥2

L2(Ω)
, ∀V k

h ∈ Xh.

Because of the V k
h selection, we obtain that

∂1A(Uk
h (µ),V

k
h ; µ)(Zk

h)≤ Sk(Uk
h (µ),Z

k
h)∥vk

h∥T , ∀Zk
h ∈ Xh

Analogously to (5.11) and (5.12), it can be obtained:

∂1A0(Uk
h (µ),V

k
h ; µ)(Zk

h)≤
C2

2;T

∆t
∥zk

h − zk−1
h ∥T∥vk

h∥T ,

∂2A0(Uk
h (µ),V

k
h ; µ)(Zk

h)≤γ
k
h(µ)∥zk

h∥T∥vk
h∥T ,

where

γ
k
h(µ) =

C2
1,2;T

µ
+2C1,2;TC2

4;T∥wk
h∥T +2(C1,2;TC3;2CS)

2h2−d/3
max ∥∇wk

h∥L3(Ω).

with wk
h = uk

h +uD. Then,

∫
Ω

(∇ ·vk
h)r

k
h dΩ ≤ Sk(Uk

h (µ),Z
k
h)∥vk

h∥T +
C2

2;T

∆t
∥zk

h − zk−1
h ∥T∥vk

h∥T + γ
k
h(µ)∥zk

h∥T∥vk
h∥T

Dividing by ∥vk
h∥T , we are able to apply the Inf-sup condition Theorem A.8 since the

T -norm is equivalent to the H1
0 (Ω)-norm. There exists α > 0 such that

α∥rk
h∥L2(Ω) ≤ Sk(Uk

h (µ),Z
k
h)+

C2
2;T

∆t
∥zk

h − zk−1
h ∥T + γ

∗
h∥zk

h∥T .

where γ
∗
h = max

µ∈D,k=1,...,L
γ

k
h(µ). Then,

α
2∥rk

h∥
2
L2(Ω) ≤ 3

(
S2

k(U
k
h (µ),Z

k
h)+

C4
2;T

∆t2 ∥zk
h − zk−1

h ∥2
T +(γ∗h )

2∥zk
h∥

2
T

)
,
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and multiplying by ∆t and summing on k,

α
2∥r̃h∥2

L2(QT )
≤ 3

L

∑
k=1

∆t

[
S2

k(U
k
h (µ),Z

k
h)+3

C4
2;T

∆t2 ∥zk
h − zk−1

h ∥2
T +3(γ∗h )

2∥zk
h∥

2
T

]
,

We need an upper bound of this inequality in terms of the supreme S̃2(Ũh(µ), Z̃h) and
∥z̃h∥2

L2
T (H

1
0 )

. On one side,

α
2∥r̃h∥2

L2(QT )
≤3

L

∑
k=1

∆t
[
S2

k(U
k
h (µ),Z

k
h)
]
+3

(
2C4

2;T

∆t2 +(γ∗h )
2

)
∥z̃h∥2

L2
T (H

1
0 )

≤3
L

∑
k=1

∆t
[
S2

k(U
k
h (µ),Z

k
h)
]
+6γ

2
h∥z̃h∥2

L2
T (H

1
0 )
,

where γh is the continuity constant deduced in Proposition 5.1. On the other side, let us
define the functions Ṽ k

h ∈ X̃h for all k = 1, . . . ,L by

Ṽ k
h =

{
V k

h if t ∈ (tk−1, tk),

0 otherwise,

Then, using the definition of S̃(Ũh(µ), Z̃h),

S̃(Ũh(µ), Z̃h) = sup
Ṽh∈X̃h

∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h)

∥Ṽh∥X̃
≥ sup

Ṽ k
h ∈X̃h

∂1Ã(Ũh(µ),Ṽ k
h ; µ)(Z̃h)

∥Ṽ k
h ∥X̃

,

for all k = 1, . . . ,L. Note that Ṽ k
h belongs to X̃h and

∥Ṽ k
h ∥

2
X̃ =

L

∑
n=1

∆t
(
∥vn

h∥
2
T +∥qn

h∥
2
L2(Ω)

)
= ∆t∥vk

h∥
2
T +∥qk

h∥
2
L2(Ω) = ∆t∥V k

h ∥
2
X

with V k
h ∈ Xh. Moreover, note that from (5.15),

∂1Ã(Ũh(µ),Ṽ k
h ; µ)(Z̃h) = ∆t∂1A(Uk

h (µ),V
k
h ; µ)(Zk

h)

then for all k = 1, . . . ,L,

S̃(Ũh(µ), Z̃h)≥ sup
V k

h ∈Xh

∆t∂1A(Uk
h (µ),V

k
h ; µ)(Zk

h)√
∆t∥V k

h ∥X
=
√

∆tSk(Uk
h (µ),Z

k
h).

in particular,

L

∑
k=1

∆tS2
k(U

k
h (µ),Z

k
h)≤

L

∑
k=1

S̃(Ũh(µ), Z̃h) = LS̃(Ũh(µ), Z̃h) =
Tf

∆t
S̃(Ũh(µ), Z̃h)
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and we obtain the estimate for the pressure,

∥r̃h∥2
L2(QT )

≤C
(

Ct S̃2(Ũh(µ), Z̃h)+ γ
2
h∥z̃h∥2

L2
T (H

1
0 )

)
; (5.17)

where C = 6/α2, Ct = Tf /∆t. Recovering the velocity estimate, we obtain that

∥z̃h∥2
L2

T (H
1
0 )

β̃h(µ)≤S̃(Ũh(µ), Z̃h)∥Z̃h∥X̃ ≤ S̃(Ũh(µ), Z̃h)
(
∥z̃h∥2

L2
T (H

1
0 )
+∥r̃h∥2

L2(QT )

)1/2

≤S̃(Ũh(µ), Z̃h)
(
(1+Cγ

2
h )∥z̃h∥2

L2
T (H

1
0 )
+CCt S̃2(Ũh(µ), Z̃h)

)1/2

≤(1+Cγ
2
h )

1/2S̃(Ũh(µ), Z̃h)∥z̃h∥L2
T (H

1
0 )
+
√

CCt S̃2(Ũh(µ), Z̃h)

and using the Young Inequality,

∥z̃h∥2
L2

T (H
1
0 )

β̃h(µ)≤
(1+Cγ2

h )
1/2

2ε
S̃2(Ũh(µ), Z̃h)

+
ε(1+Cγ2

h )
1/2

2
∥z̃h∥2

L2
T (H

1
0 )
+
√

CCt S̃2(Ũh(µ), Z̃h)

Choosing ε = β̃h(µ)/(1+Cγ2
h )

1/2, we obtain the velocity estimate

∥z̃h∥2
L2

T (H
1
0 )
≤

(
1+ γ2

h

β̃ 2
h (µ)

+
2
√

CCt

β̃h(µ)

)
S̃2(Ũh(µ), Z̃h),

and the pressure, combining with (5.17)

∥r̃h∥2
L2(QT )

≤C

(
Ct +Ct

(
1+ γ2

h

β̃ 2
h (µ)

+
2
√

CCt

β̃h(µ)

))
S̃2(Ũh(µ), Z̃h).

Finally,
∥Z̃h∥X̃ βh(µ)≤ S̃(Ũh(µ), Z̃h)

with

βh(µ) =

(
Ct +(1+ γ

2
h )

(
1+ γ2

h

β̃ 2
h (µ)

+
2
√

CCt

β̃h(µ)

))−1/2

.

Remark 5.3. In this case, the Stability Factor βh(µ) grows as γ
−2
h , the continuity constant,

this is, ∆t2. Again, if we include the time derivative in the X̃-norm, we are not able to
deduce an estimate for the derivative in time respect to the supreme S̃(Ũh(µ), ·) as for
velocity and pressure, therefore, the inf-sup (5.13) is not ensure. As we will see, the
Stability Factor takes part in an a posteriori error estimator, for this reason, the previous
proof is important.

Remark 5.4. If ∆t is fixed, we are able to ensure the existence and uniqueness of problem
(5.1), thanks to the BRR theory.
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5.3 A posteriori error estimator

In this section we construct an a posteriori error estimator for the Greedy algorithm and
as we said in the previous section, we will use the BRR theory for its construction.

We begin by proving that the derivative of the operator Ã(·, ·; µ) is locally Lipschitz
continuous.

Lemma 5.1. For all µ ∈D and Ũ1
h ,Ũ

2
h , Z̃h,Ṽh ∈ X̃h, it holds

|∂1Ã(Ũ1
h ,Ṽh; µ)(Z̃h)−∂1Ã(Ũ2

h ,Ṽh; µ)(Z̃h)| ≤ ρT∥Ũ1
h −Ũ2

h ∥X̃∥Z̃h∥X̃∥Ṽh∥X̃ , (5.18)

for a positive constant

ρT = ∆t−1/2(2C1,2;TC2
4;T +4(C1,2;TC3;2)

3C2
Sh2−d/2

max ),

and the constants C1,2;T ,C4;T and C3;2 are defined in (5.7)-(5.9).

Proof. As w̃1
h − w̃2

h = ũ1
h − ũ2

h, we have that

|∂1Ã(Ũ1
h ,Ṽh; µ)(Z̃h)−∂1Ã(Ũ2

h ,Ṽh; µ)(Z̃h)|

≤ 1
2

∣∣∣∣∫QT

((w̃1
h − w̃2

h) ·∇)z̃h · ṽh dQT

∣∣∣∣+ 1
2

∣∣∣∣∫QT

((w̃1
h − w̃2

h) ·∇)ṽh · z̃h dQT

∣∣∣∣
+

1
2

∣∣∣∣∫QT

(z̃h ·∇)(w̃1
h − w̃2

h) · ṽh dQT

∣∣∣∣+ 1
2

∣∣∣∣∫QT

(z̃h ·∇)ṽh · (w̃1
h − w̃2

h)dQT

∣∣∣∣
+

∣∣∣∣∫QT

(νt(w̃1
h)−νt(w̃2

h))∇z̃h : ∇ṽhdQT

∣∣∣∣
+

∣∣∣∣∣ ∑
K∈Th

∫ Tf

0

∫
K
(CShK)

2(|∇w̃1
h|− |∇w̃2

h|)∇z̃h : ∇ṽh dKdt

∣∣∣∣∣
+

∣∣∣∣∣ ∑
K∈Th

∫ Tf

0

∫
K
(CShK)

2 ∇w̃1
h : ∇z̃h

|∇w̃1
h|

(∇w̃1
h : ∇ṽh)dKdt

− ∑
K∈Th

∫ Tf

0

∫
K
(CShK)

2 ∇w̃2
h : ∇z̃h

|∇w̃2
h|

(∇w̃2
h : ∇ṽh)dKdt

∣∣∣∣∣ .
Now, we bound each term separately, using the definition of the constants C1,2;T and

C4;T in (5.7)-(5.8), and the inverse inequality

∥ṽh∥L∞
T (H

1
0 )
≤ 1

∆t

L

∑
k=1

∆t∥vk
h∥T ≤ 1

∆t

(
L

∑
k=1

∆t2∥vk
h∥

2
T

)1/2

≤ ∆t−1/2∥ṽh∥L2
T (H

1
0 )
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in time for all ṽh ∈ Ỹh. Then,

1
2

∣∣∣∣∫QT

((w̃1
h − w̃2

h) ·∇) z̃h · ṽh dQT |+
1
2

∣∣∣∣∫QT

((w̃1
h − w̃2

h) ·∇)ṽh · z̃h dQT

∣∣∣∣
≤ 1

2

∫ Tf

0
∥w̃1

h − w̃2
h∥L4(Ω)∥∇z̃h∥L2(Ω)∥ṽh∥L4(Ω) dt

+
1
2

∫ Tf

0
∥w̃1

h − w̃2
h∥L4(Ω)∥∇ṽh∥L2(Ω)∥z̃h∥L4(Ω) dt

≤C1,2;TC2
4;T

∫ Tf

0
∥w̃1

h − w̃2
h∥T∥z̃h∥T∥ṽh∥T dt

≤C1,2;TC2
4;T∥w̃1

h − w̃2
h∥L2

T (H
1
0 )
∥z̃h∥L2

T (H
1
0 )
∥ṽh∥L∞

T (H
1
0 )

≤C1,2;TC2
4;T ∆t−1/2∥Ũ1

h −Ũ2
h ∥X̃∥Z̃h∥X̃∥Ṽh∥X̃ ;

and in the same way,

1
2

∣∣∣∣∫QT

(z̃h ·∇)(w̃1
h − w̃2

h) · ṽh dQT

∣∣∣∣+ 1
2

∣∣∣∣∫QT

(z̃h ·∇)ṽh · (w̃1
h − w̃2

h)dQT

∣∣∣∣
≤C1,2;TC2

4;T ∆t−1/2∥Ũ1
h −Ũ2

h ∥X̃∥Z̃h∥X̃∥Ṽh∥X̃ .

Moreover,∣∣∣∣∣ ∑
K∈Th

∫ Tf

0

∫
K
(CShK)

2(|∇w̃1
h|− |∇w̃2

h|)∇z̃h : ∇ṽh dKdt
∣∣∣∣

≤ ∑
K∈Th

∫ Tf

0
(CShK)

2∥∇ũ1
h −∇ũ2

h∥L3(K)∥∇z̃h∥L3(K)∥∇ṽh∥L3(K) dt

≤C3
3;2 ∑

K∈Th

∫ Tf

0
C2

Sh2−d/2
K ∥∇ũ1

h −∇ũ2
h∥L2(K)∥∇z̃h∥L2(K)∥∇ṽh∥L2(K) dt

≤C3
3;2C2

Sh2−d/2
max

∫ Tf

0
∥∇ũ1

h −∇ũ2
h∥L2(Ω)

(
∑

K∈Th

∥∇z̃h∥L2(K)∥∇ṽh∥L2(K)

)
dt

≤C3
3;2C2

Sh2−d/2
max ∥∇ũ1

h −∇ũ2
h∥L∞(L2)∥∇z̃h∥L2(QT )

∥∇ṽh∥L2(QT )

≤(C1,2;TC3;2)
3C2

Sh2−d/2
max ∥ũ1

h − ũ2
h∥L∞

T (H
1
0 )
∥z̃h∥L2

T (H
1
0 )
∥ṽh∥L2

T (H
1
0 )

≤(C1,2;TC3;2)
3C2

Sh2−d/2
max ∆t−1/2∥Ũ1

h −Ũ2
h ∥X̃∥Z̃h∥X̃∥Ṽh∥X̃ ,

where we have used the Local Inverse Inequality (5.9).
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And, for the last term, we use that∣∣∣∣∣ ∑
K∈Th

∫ Tf

0

∫
K
(CShK)

2 ∇w̃1
h : ∇z̃h

|∇w̃1
h|

(∇w̃1
h : ∇ṽh)dKdt

− ∑
K∈Th

∫ Tf

0

∫
K
(CShK)

2 ∇w̃2
h : ∇z̃h

|∇w̃2
h|

(∇w̃2
h : ∇ṽh)dKdt

∣∣∣∣∣
=

∣∣∣∣∣ ∑
K∈Th

∫ Tf

0

∫
K
(CShK)

2
[

∇w̃1
h : ∇z̃h

|∇w̃1
h|

(∇(w̃1
h − w̃2

h) : ∇ṽh

+
∇(w̃1

h − w̃2
h) : ∇z̃h

|∇w̃2
h|

(∇w̃2
h : ∇ṽh)

]
dKdt

+ ∑
K∈Th

∫ Tf

0

∫
K
(CShK)

2 (|∇w̃2
h|− |∇w̃1

h|)∇w̃1
h : ∇z̃h

|∇w̃1
h||∇w̃2

h|
(∇w̃2

h : ∇ṽh)dKdt

∣∣∣∣∣
≤ 2 ∑

K∈Th

∫ Tf

0

∫
K
(CShK)

2|∇z̃h||∇(w̃1
h − w̃2

h)||∇ṽh|dKdt

+ ∑
K∈Th

∫ Tf

0

∫
K
(CShK)

2 ∣∣|∇w̃1
h|− |∇w̃2

h|
∣∣ |∇z̃h||∇ṽh|dKdt

≤ 3(C1,2;TC3;2)
3C2

Sh2−d/2
max ∆t−1/2∥Ũ1

h −Ũ2
h ∥X̃∥Z̃h∥X̃∥Ṽh∥X̃ ,

where the last estimate is obtained similarly to the previous one.
We obtain the result with

ρT = ∆t−1/2(2C1,2;TC2
4;T +4(C1,2;TC3;2)

3C2
Sh2−d/2

max ).

The Lipschitz constant grows as a negative power of the time step ∆t. In this case,
the power of ∆t is the lowest with respect to the obtained for the continuity γ̃h and
the Stability factor βh.

In order to guarantee the well-posedness of the Reduced Basis Problem (5.5) in the
same way as in (5.1), we consider the inf-sup and continuity factors.

Definition 5.1. The Stability Factor βN(µ) and the continuity factor γN(µ) are defined by

βN(µ)≡ inf
Z̃h∈X̃h

sup
Ṽh∈X̃h

∂1Ã(ŨN(µ),Ṽh; µ)(Z̃h)

∥Z̃h∥X̃∥Ṽh∥X̃
, (5.19)
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γN(µ)≡ sup
Z̃h∈X̃h

sup
Ṽh∈X̃h

∂1Ã(ŨN(µ),Ṽh; µ)(Z̃h)

∥Z̃h∥X̃∥Ṽh∥X̃
. (5.20)

for all ŨN(µ) ∈ X̃N .

Note that from Proposition 5.2, βN(µ)> 0 whenever the data are small enough and the
pair of spaces (Yh,Qh) satisfies the discrete inf-sup condition. This condition implies that
the tangent operator ∂1Ã(ŨN(µ), · ; µ) is an isomorphism of X̃h into its self, for all µ ∈D.

Moreover, note that both the continuity factor γN(µ) and the Stability Factor βN(µ)

depends on the time-step ∆t from Proposition 5.1 and 5.2.
Now we introduce the supremizer operator in order to facilitate the proof of an

a posteriori estimator.

Definition 5.2. The supremizer operator T µ

N : X̃h −→ X̃h as a supremizer operator, by

T µ

N Z̃h = arg sup
Ṽh∈X̃h

∂1Ã(ŨN(µ),Ṽh; µ)(Z̃h)

∥Ṽh∥X̃
. (5.21)

This supremizer exists because ∂1Ã is continuous and X̃h is a finite-dimensional space.

Remark 5.5. From the definitions (5.19) and (5.20) we have that

βN(µ)≡ inf
Z̃h∈X̃h

∥T µ

N Z̃h∥X̃

∥Z̃h∥X̃
, γN(µ)≡ sup

Z̃h∈X̃h

∥T µ

N Z̃h∥X̃

∥Z̃h∥X̃
.

From this, we have that

βN(µ)≤
∥T µ

N Z̃h∥X̃

∥Z̃h∥X̃
, ∀Z̃h ∈ X̃h,

and from (5.21),

βN(µ)≤
∂1Ã(ŨN(µ),T

µ

N Z̃h; µ)(Z̃h)

∥T µ

N Z̃h∥X̃∥Z̃h∥X̃
, ∀Z̃h ∈ X̃h. (5.22)

We are now in a position to state our first result leading to an a posteriori error
estimate:

Theorem 5.1 (Uniqueness). Let µ ∈ D, and assume that βN(µ) > 0. If problem (5.1)
admits a solution Ũh(µ) such that

∥Ũh(µ)−ŨN(µ)∥X̃ ≤ βN(µ)

ρT
,

then this solution is unique in the ball BX̃

(
ŨN(µ),

βN(µ)

ρT

)
.
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For the proof of this theorem and the next one, we define the following operators:

• The residual R(·; µ) : X̃h −→ X̃ ′
h by

⟨R(Z̃h; µ),Ṽh⟩= Ã(Z̃h,Ṽh; µ)−F(Ṽh; µ), ∀Z̃h,Ṽh ∈ X̃h. (5.23)

• The derivative of the operator A, DA(Ũh(µ); µ) : X̃h −→ X̃ ′
h, defined, for Ũh(µ) ∈

X̃h, as

⟨DA(Ũh(µ); µ)Z̃h,Ṽh⟩= ∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h), ∀Z̃h,Ṽh ∈ X̃h. (5.24)

This operator is invertible since βN(µ)> 0 for all µ ∈D.

• And finally the mapping H : X̃h −→ X̃h defined as,

H(Z̃h; µ) = Z̃h −DA(ŨN(µ); µ)−1R(Z̃h; µ), ∀Z̃h ∈ X̃h. (5.25)

Proof. The strategy is to proof that H(·; µ) is a contraction in the sense of Definition

A.3. If there exists a fixed point Ũh, this point is a solution of problem (5.1) because of

definition (5.25).

We have that

H(Z̃1
h ; µ)−H(Z̃2

h ; µ) = (Z̃1
h − Z̃2

h)−DA(ŨN(µ); µ)−1(R(Z̃1
h ; µ)−R(Z̃2

h ; µ)). (5.26)

It holds

R(Z̃1
h ; µ)−R(Z̃2

h ; µ) =DA(ξ̃ ; µ)(Z̃1
h − Z̃2

h), (5.27)

where ξ̃ = sZ̃1
h +(1− s)Z̃2

h , for some s ∈ (0,1). In order to prove this, we define T :

[0,1]−→ R, by

T (s) = ⟨R(sZ̃1
h +(1− s)Z̃2

h ; µ),Ṽh⟩, ∀Ṽh ∈ X̃h.

From this definition,

T ′(s) = ⟨DA(sZ̃1
h +(1− s)Z̃2

h ; µ)(Z̃1
h − Z̃2

h),Ṽh⟩.

If we apply the mean value theorem to T we have (5.27). Now, multiplying (5.26) by

DA(ŨN(µ); µ) and applying (5.27), we can write

DA(ŨN(µ); µ)(H(Z̃1
h ; µ)−H(Z̃2

h ; µ)) = [DA(ŨN(µ); µ)−DA(ξ̃ ; µ)](Z̃1
h − Z̃2

h).
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Then, thanks to (5.18), we can write

⟨DA(ŨN(µ); µ)(H(Z̃1
h ; µ)−H(Z̃2

h ; µ)),Ṽh⟩ ≤ ρT∥ŨN(µ)− ξ̃∥X̃∥Z̃1
h − Z̃2

h∥X̃∥Ṽh∥X̃

(5.28)
From (5.22)

⟨DA(ŨN(µ); µ)(H(Z̃1
h ; µ)−H(Z̃2

h ; µ)),T µ

N (H(Z̃1
h ; µ)−H(Z̃2

h ; µ))⟩
≥ βN(µ)∥H(Z̃1

h ; µ)−H(Z̃2
h ; µ)∥X̃∥T µ

N (H(Z̃1
h ; µ)−H(Z̃2

h ; µ))∥X̃

And applying (5.28) to Ṽh = T µ

N (H(Z̃1
h ; µ)−H(Z̃2

h ; µ)) we have that,

βN(µ)∥H(Z̃1
h ; µ)−H(Z̃2

h ; µ)∥X̃∥T µ

N (H(Z̃1
h ; µ)−H(Z̃2

h ; µ))∥X̃

≤ ρT∥ŨN(µ)− ξ̃∥X̃∥Z̃1
h − Z̃2

h∥X̃∥T µ

N (H(Z̃1
h ; µ)−H(Z̃2

h ; µ))∥X̃ .

Note that T µ

N Z̃h = 0 if and only if Z̃h = 0. Therefore, T µ

N (H(Z̃1
h ; µ)−H(Z̃2

h ; µ)) ̸= 0 if
H(Z̃1

h ; µ) ̸= H(Z̃2
h ; µ). Simplifying

∥H(Z̃1
h ; µ)−H(Z̃2

h ; µ)∥X̃ ≤ ρT

βN(µ)
∥ŨN(µ)− ξ̃∥X̃∥Z̃1

h − Z̃2
h∥X̃ .

If Z̃1
h and Z̃2

h are in BX̃(ŨN(µ),α), then ∥ŨN(µ)− ξ̃∥X̃ ≤ α and

∥H(Z̃1
h ; µ)−H(Z̃2

h ; µ)∥X̃ ≤ ρT

βN(µ)
α∥Z̃1

h − Z̃2
h∥X̃ .

Then, H(·; µ) is a contraction if α <
βN(µ)

ρT
. So it follows that there can exist at most

one fixed point of H(·; µ) inside BX̃

(
ŨN(µ),

βN(µ)

ρT

)
, and hence, at most one solution

Ũh(µ) of (5.1) in this ball.

Now we are in a position to define an a posteriori error bound estimator by

∆N(µ) =
βN(µ)

2ρT

[
1−
√

1− τN(µ)
]
, ∀µ ∈D, (5.29)

where βN(µ) is defined in (5.19), ρT is defined in (5.18) and

τN(µ) =
4εN(µ)ρT

βN(µ)2 , (5.30)

with

εN(µ) = ∥R(ŨN(µ); µ)∥X̃ ′ = sup
Ṽh∈X̃h

⟨R(ŨN(µ); µ),Ṽh⟩
∥Ṽh∥X̃

. (5.31)

We observe that τN(µ) in (5.30) is a re-scaling of the residual (5.31). Note that ∆N(µ)

in (5.29) is only defined if τN(µ)≤ 1, which holds only if the residual is sufficiently small.
The error estimator is given by the following theorem.
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Theorem 5.2 (Existence). Assume that βN(µ)> 0 and τN(µ)≤ 1 for all µ ∈D. Then
there exists a unique solution Ũh(µ) of (5.1) such that the error with respect ŨN(µ),
solution of (5.5), is bounded by the a posteriori error bound estimator, i.e.,

∥Ũh(µ)−ŨN(µ)∥X̃ ≤ ∆N(µ), (5.32)

with effectivity,

∆N(µ)≤
[

2γN(µ)

βN(µ)
+ τN(µ)

]
∥Ũh(µ)−ŨN(µ)∥X̃ . (5.33)

Proof. The main goal of this proof is to show that there exists a unique Ũh(µ) ∈ X̃h close
to ŨN(µ) ∈ X̃N solution of (5.1) and (5.5) (resp.), i.e.,

⟨R(Ũh(µ); µ),Ṽh⟩= 0, ∀Ṽh ∈ X̃h. (5.34)

To do this, it is enough to prove that H is a contraction in a certain compact subset K of
X̃h such that H(K)⊂ K. Therefore, H has a fixed point thanks to the fixed-point theorem
[9]. The operator H is continuous by the Proposition 5.1, then we only need to prove that
it is contractive.

We consider the definition at the beginning of the previous proof. Then,

H(Z̃h; µ)−ŨN(µ) = Z̃h −ŨN(µ)−DA(ŨN(µ); µ)−1R(Z̃h; µ).

Multiplying by DA(ŨN(µ); µ), we obtain

⟨DA(ŨN(µ); µ)(H(Z̃h; µ)−ŨN(µ)),Ṽh⟩= ⟨DA(ŨN(µ); µ)(Z̃h −ŨN(µ)),Ṽh⟩
−⟨R(Z̃h; µ)−R(ŨN(µ); µ),Ṽh⟩−⟨R(ŨN(µ); µ),Ṽh⟩, ∀Ṽh ∈ X̃h

As in the proof of Theorem 5.1, it holds

R(Z̃h; µ)−R(ŨN(µ); µ) =DA(ξ̃ (µ); µ)(Z̃h −ŨN(µ)),

where ξ̃ (µ) = sZ̃h +(1− s)ŨN(µ), s ∈ (0,1). By this way, and thanks to Lemma 5.1, we
obtain:

⟨DA(ŨN(µ);µ)(H(Z̃h; µ)−ŨN(µ)),Ṽh⟩

= ⟨DA(ŨN(µ); µ)(Z̃h −ŨN(µ)),Ṽh⟩

−⟨DA(ξ̃ (µ); µ)(Z̃h −ŨN(µ)),Ṽh⟩−⟨R(ŨN(µ); µ),Ṽh⟩

= ⟨(DA(ŨN(µ); µ)−DA(ξ̃ (µ); µ))(Z̃h −ŨN(µ)),Ṽh⟩

−⟨R(ŨN(µ); µ),Ṽh⟩

≤ ρT∥ŨN(µ)− ξ̃ (µ)∥X̃∥Z̃h −ŨN(µ)∥X̃∥Ṽh∥X̃ + εN(µ)∥Ṽh∥X̃

≤ (ρT∥Z̃h −ŨN(µ)∥2
X̃ + εN(µ))∥Ṽh∥X̃ .
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Then, using (5.22)

βN(µ)∥H(Z̃h; µ)−ŨN(µ)∥X̃∥T µ

N (H(Z̃h; µ)−ŨN(µ))∥X̃

≤ ⟨DA(ŨN(µ); µ)(H(Z̃h; µ)−ŨN(µ)),T
µ

N (H(Z̃h; µ)−ŨN(µ))⟩

≤ (ρT∥Z̃h −ŨN(µ)∥2
X̃ + εN(µ))∥T µ

N (H(Z̃h; µ)−ŨN(µ))∥X̃

Then as Z̃h ∈ BX̃(ŨN(µ),α) and simplifying,

∥H(Z̃h; µ)−ŨN(µ)∥X̃ ≤ ρT

βN(µ)
α

2 +
εN(µ)

βN(µ)

In order to ensure that H maps BX̃(ŨN(µ),α) into a part of itself, we are seeking the
values of α such that

ρT

βN(µ)
α

2 +
εN(µ)

βN(µ)
≤ α

This holds if α is between the two roots of the second order equation

ρT α
2 −βN(µ)α + εN(µ) = 0

which are,

α± =
βN(µ)±

√
βN(µ)2 −4ρT εN(µ)

2ρT
=

βN(µ)

2ρT

[
1±

√
1− 4ρT εN(µ)

βN(µ)2

]
.

Observe that as τN(µ) ≤ 1, then α− ≤ α+ ≤ βN(µ)

ρT
. Consequently, if α− ≤ α ≤ α+,

there exists a unique solution Ũh(µ) to (5.1) in the ball BX̃(ŨN(µ),α). To obtain the
estimator, we take α = α− = ∆N(µ).

To prove the efficiency, let us define the error Ẽh(µ) = Ũh(µ)−ŨN(µ). From the
definition of the residual and applying the mean value theorem, for some s ∈ (0,1) we
have that

⟨R(ŨN(µ); µ),Ṽh⟩= Ã(ŨN(µ),Ṽh; µ)−F(Ṽh; µ)

= Ã(ŨN(µ),Ṽh; µ)− Ã(Ũh(µ),Ṽh; µ)

= ∂1Ã(sŨh(µ)+(1− s)ŨN(µ),Ṽh; µ)(Ẽh(µ))

= ⟨DA(sŨh(µ)+(1− s)ŨN(µ); µ)Ẽh(µ),Ṽh⟩

= ⟨(DA(sŨh(µ)+(1− s)ŨN(µ); µ)−DA(ŨN(µ); µ))Ẽh(µ),Ṽh⟩

+ ⟨DA(ŨN(µ); µ)Ẽh(µ),Ṽh⟩
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Thanks to the Lemma 5.1, and taking into account the definition of γN(µ) and βN(µ) in
(5.19) and (5.20) respectively, we obtain,

⟨R(ŨN(µ); µ),Ṽh⟩ ≤ ρT∥s(ŨN(µ)−Ũh(µ))∥X̃∥Ẽh(µ)∥X̃∥Ṽh∥X̃

+ γN(µ)∥Ẽh(µ)∥X̃∥Ṽh∥X̃ .

Dividing by ∥Ṽh∥X̃ , taking supremum in Ṽh ∈ X̃h and using the definition of (5.31), it
holds

εN(µ)≤ ρT∥Ẽh(µ)∥2
X̃ + γN(µ)∥Ẽh(µ)∥X̃ .

Since 0 ≤ τN(µ)≤ 1 and 1−
√

1− τN(µ)≤ τN(µ), we have that

2ρT

βN(µ)
∆N(µ)≤ τN(µ)

and then
∆N(µ)≤

2εN(µ)

βN(µ)
.

It follows that

∆N(µ)≤
2ρT

βN(µ)
∥Ẽh(µ)∥2

X̃ +
2γN(µ)

βN(µ)
∥Ẽh(µ)∥X̃

Thanks to (5.32), we know that ∥Ẽh(µ)∥X̃ ≤ ∆N(µ), then

2ρT

βN(µ)
∥Ẽh(µ)∥X̃ ≤ τN(µ).

It follows that
∆N(µ)≤

[
2γN(µ)

βN(µ)
+ τN(µ)

]
∥Ẽh(µ)∥X̃ .

5.4 Stabiliy Factor approximation for unsteady problems

In Theorems 5.1-5.2, we have obtained the a posteriori error bound estimator ∆N(µ) to
apply the RB method through the Greedy Algorithm. Unfortunately, the construction of
the a posteriori error bound estimator is expensive, specifically, due to the computation
of the Stability Factor. We outline the application of the same technique as in Section
1.5 in [14] for the computation of βh(µ) for the unsteady case hereunder.
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Let us define the Stability Factor βh(µ) for the full-order problem (5.1) by

βh(µ) := inf
Z̃h∈X̃h

sup
Ṽh∈X̃h

∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h)

∥Z̃h∥X̃∥Ṽh∥X̃
(5.35)

and the so called supremizer operator T µ

h : X̃h −→ X̃h by

T µ

h Z̃h = arg sup
Ṽh∈X̃h

∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h)

∥Ṽh∥X̃
(5.36)

where Ũh(µ) = (ũh(µ), p̃h(µ)) is the solution of problem (5.1). Then,

βh(µ) = inf
Z̃h∈X̃h

∥T µ

h Z̃h∥X̃

∥Z̃h∥X̃
. (5.37)

We recall that the X̃-norm was introduced in (5.4) and it is associated to the inner
product

(Ṽh, Z̃h)X̃ = (ṽh, z̃h)L2
T (H

1
0 )
+(q̃h, r̃h)L2(QT )

. (5.38)

where Ṽh = (ṽh, q̃h) and Z̃h = (z̃h, r̃h).
The key is to express (5.37) in an algebraic form and transform the computation of

βh(µ) into an eigenvalue problem. This is, we look after two matrices
X̃, F̃(µ) ∈ M NhL×NhL(R) such that

Ṽh
T X̃Z̃h = (Ṽh, Z̃h)X̃ , ∀Ṽh, Z̃h ∈ X̃h,

Ṽh
T F̃(µ)Z̃h = ∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h), ∀Ṽh, Z̃h ∈ X̃h, ∀µ ∈D,

where Nh = dim(X̃h) and vectors Ṽh, Z̃h ∈ RNhL are the values of the degrees of freedom
of the representation of Ṽh and Z̃h on X̃h. For all k = 1, . . . ,L let us define

Vh
k =

(
vk

h
qk

h

)
, Zh

k =

(
zk

h
rk

h

)
,

and

Ṽh =


V 1

h
V 2

h
...

V L
h

 , Z̃h =


Z1

h
Z2

h
...

ZL
h

 .

Now, we rewrite (5.37) by

βh(µ) = inf
Z̃h∈X̃h

Z̃h
T F̃(µ)T X̃−1F̃(µ)Z̃h

Z̃h
T X̃Z̃h

. (5.39)
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This quotient is the minimum of a Rayleigh quotient. Then, for a given µ ∈ D, we
solve the following eigenvalue problem{

Find (α, Z̃h) ∈ R× X̃h, Z̃h ̸= 0, such that

F̃(µ)T X̃−1F̃(µ)Z̃h = αX̃Z̃h, ∀Z̃h ∈ X̃h.
(5.40)

and from (5.39), we obtain that βh(µ) = (αmin)
1/2 with αmin the minimum eigenvalue

of (5.40). To solve the eigenvalue problem (5.40), we perform a Power Iteration method,
consequently, we shall compute the largest eigenvalue of matrix F̃(µ)−1X̃F̃(µ)−T X̃.

We know that

(Ṽh, Z̃h)X̃ =
∫ Tf

0
(ṽh, z̃h)T +(q̃h, r̃h)L2(Ω) dt =

L

∑
k=1

∆t(vk
h,z

k
h)T +∆t(qk

h,r
k
h)L2(Ω)

Let us define the matrices L and T by

(qh,rh)L2(Ω) = qh
TLrh, (vh,zh)T = vh

TTzh, (5.41)

for all vh,zh ∈ Yh and qh,rh ∈ Qh. Then

(Ṽh, Z̃h)X̃ =
L

∑
k=1

∆t(vk
h)

TTzk
h +∆t(qk

h)
TLrk

h.

Then,

(Ṽh, Z̃h)X̃ =
L

∑
k=1

∆t
[
(V k

h )
T
(

T 0
0 L

)
Zk

h

]
.

Finally, we obtain that (Ṽh, Z̃h)X̃ = Ṽh
T X̃Z̃h, where

X̃= ∆t


T

L
. . .

T
L

 . (5.42)

To obtain the F̃(µ) matrix, we recall that we have obtained the decomposition (5.15),

∂1Ã(Ũh(µ),Ṽh; µ)(Z̃h) =
L

∑
k=1

∆t∂1A(Uk
h (µ),V

k
h ; µ)(Zk

h).

Then, we are able to define Fk(µ) for k = 1, . . . ,L, such that for all Ṽh, Z̃h ∈ X̃h

and µ ∈ D it holds

(V k
h )

TFk(µ)Zk
h = ∂1A(Uk

h (µ),V
k
h ; µ)(Zk

h),
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and we finally define F̃(µ) by

F̃(µ) = ∆t


F1(µ)

F2(µ)
. . .

FL(µ)

 . (5.43)

We observe that matrix X̃ in (5.42) is a block-diagonal matrix, whose elements are
composed by the matrices L and T defined in (5.41) and also F̃(µ) whose elements
are the matrices Fk(µ) for k = 1, . . . ,L.

Our goal is to compute the largest eigenvalue of the matrix F̃(µ)−1X̃F̃(µ)−T X̃ which
turns out to be a matrix with very large dimension. The computation of the largest
eigenvalue of this matrix does not seen to be affordable with the current techniques
in the literature.

To sum up, the problem of building low cost techniques for the approximation
of βh(µ) remains open.

We intend to use hyper-reduction techniques to afford the computation of the eigenvalue
problem (5.40). We could use only some time steps in the building of F̃(µ) or/and we
could use a coarser mesh in order to decrease Nh.



6
A posteriori error estimation based upon

Kolmogórov turbulence theory

The aim of this chapter is to introduce an alternative a posteriori error estimation. This

estimator is based upon the Kolmogórov turbulence theory, which introduces the idea

of energy cascade and an expression for the energy spectrum.

In Section 6.1, we introduce an energy balance analysis of the Navier-Stokes equations

to see how the energy is dissipated. In Section 6.2, we introduce the Fourier Transform

and thanks to which, we are able to study the eddy energy by its size. In sections 6.3 and

6.4, we introduce the idea behind energy cascades and the energy spectrum. Finally, in

Section 6.5, we introduce an a posteriori error estimator and we develop an academic

test for a RB problem in Section 6.6.

6.1 System energy study

In this section, we study the basics of the energy balance of the Navier-Stokes (NS)

equations for three cases. Let Ω be a bounded polyhedral domain in Rd , with d = 2,3

and Tf > 0 be a chosen final finite time. We denote the time interval as I f = (0,Tf ) and

the time-space domain as QT = I f ×Ω. The NS equations in differential form are:{
∂tu+(u ·∇)u =−∇p+ν∆u+ f, in QT ,

∇ ·u = 0, in QT .
(6.1)

135
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We complement this problem with homogeneous or periodic boundary conditions and

u0 = u0(x) as the initial condition.

The NS equations determine any flow by the velocity field ([u] = ms−1) and pressure

per mass density ([p] = m2 s−2). This flow can be seen as a laminar or turbulent flow,

depending on the Reynolds number associated with the problem, see (A.22). The

Reynolds number establishes a relation between inertial and viscous forces, understanding

that we have a turbulent flow hen inertial forces are important and laminar when viscous

forces are relevant. That said, since the velocity and characteristic length are difference

along the domain, we can find different Reynolds numbers within the domain.

Now, we define the total kinetic energy of the system as

E=
1
2
⟨|u|2⟩

where we denote ⟨·⟩ a suitable average operator. This average verifies the following

properties:

• ⟨u+ v⟩= ⟨u⟩+ ⟨v⟩,

• ⟨au⟩= a⟨u⟩ for all constant a,

• ⟨∂tu⟩= ∂t⟨u⟩.

From now on, for simplicity, we will suppose that |Ω|= 1, and we choose a spacial

average as follows

⟨u⟩=
∫

Ω

u dx.

We study the energy of equations (6.1) in difference situations, depending on the

values of f and ν .

Case 1: f = 0 and ν = 0

We multiply (6.1) by u, and applying the average, we obtain that

1
2

∂t⟨|u|2⟩= ∂tE= 0.

This is, the energy is time-constant since we are removing the source and viscosity

terms, indeed, E =
1
2
⟨|u0|2⟩.
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Case 2: f = 0 and ν ̸= 0

We repeat the process and we obtain that

∂tE=−εν

where εν = 2ν⟨|Du|2⟩ is the turbulent dissipation, that we will introduce with more
detail below, with Du = (1/2)(∇u+∇ut).

Note that by definition, εν ≥ 0, then, ∂tE≤ 0. This is, the energy is decreasing over
time, then we can deduce that the energy dissipation is caused by the viscosity forces.

Case 3: f ̸= 0 and ν ̸= 0

We obtain that

∂tE= ε f − εν

where ε f = ⟨f · u⟩.
In this case, we can not ensure the behavior of energy since the force terms could

add or remove energy to the system, depending on the sign of ε f .

6.2 Fourier space representation

One of the most notorious features in turbulence flow is the variability of eddies induced
by the fluid motion. Each eddy could be classified by its size r, and also by its wavenumber
k = 1/r. In this section, we express the energy and the turbulent dissipation over the
wavenumber. This will allow us to describe the energy cascade and energy spectrum
concepts in the following sections.

Thanks to the Fourier transform, we are able to decompose the velocity field in
Fourier modes û(t,k) as follows

û(t,k) =
∫

Ω

u(t,x)φ k(x) dx

and on the contrary,

u(t,x) =
∫
Rd

û(t,k)φk(x) dk

where φk(x) = e2πik·x, φ k(x) = e−2πik·x is the complex conjugate, k = kn, n a unit vector
in Zd . We assume that û(t,k) = 0 for k = 0, this is, the mean flow is zero. From now
on, to simplify notation, we consider u(x) = u(t,x) and û(k) = û(t,k).
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Note that, if u(·, t)∈ L2(Ω) for all t ∈ I f , we can apply the Parseval Identity as follows,∫
Ω

|u(x)|2 dx =
∫

Ω

u(x)u(x) dx

=
∫

Ω

u(x)
∫
Rd

û(k)φk(x) dk dx

=
∫

Ω

u(x)
∫
Rd

û(k)φ k(x) dk dx

=
∫
Rd

û(k)
∫

Ω

u(x)φ k(x) dx dk

=
∫
Rd

û(k)û(k) dk =
∫
Rd

|û(k)|2 dk,

(6.2)

therefore,
E=

1
2

∫
Rd

|û(k)|2 dk, (6.3)

this is, we can express the energy system through the Fourier modes.
Henceforth, we assume that the flow is isotropic, which supposes that the statistical

properties of the mean flow are invariant under rotations. We refer to Section 5.2.1 in
[12] and Section 3.7 in [36] for a more specific description of isotropy.

Theorem 6.1. There exists a measurable integrable function E(k) = E(t,k), defined over
R+, and such that

E=
∫

∞

0
E(k)dk, (6.4)

where E is the total kinetic energy.

Proof. See Theorem 5.3 in [12].

The function E(k) for k ∈ (0,+∞) is the energy associated to the eddies of size
r = 1/k and it is well known as the energy spectrum. It can be described as

E(k) =
∫

k=|k|
E(k) dk (6.5)

where E(k) represents the kinetic energy part on the Fourier mode k.
Now, we introduce the concept of turbulent dissipation as

ε = 2ν⟨|Du|2⟩ (6.6)

which appears as εν in Case 2 in Section 6.1. Actually, since ∇ ·u = 0, then ε = ν⟨|∇u|2⟩.
As its name suggest, it is related to the energy dissipation through viscosity.

Following the same idea as for the energy E, it is possible to link the turbulent
dissipation ε to the energy spectrum E. This is the key for the derivation of Subgrid-Scale
Modelling (SGM), in particular for the Smagorinsky model, as we will see in Section 6.4.
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Lemma 6.1. The turbulent dissipation ε can be expressed by a measurable function

E(k) = E(t,k), defined over R+ as

ε = ν

∫
∞

0
8π

2k2E(k) dk. (6.7)

Proof. See Lemma 5.2 in [12].

Corollary 6.1. According to (6.6), we also have

⟨|Du|2⟩=
∫

∞

0
4π

2k2E(k) dk.

6.3 A brief introduction to energy cascades

It was first introduced by L. F. Richardson in 1922 [40]. As we have already explained,

turbulence is composed by eddies of different sizes. Each eddy is also described through

their velocity and time scales. Then, for a certain eddy scale r, we could define a

local Reynolds number

Re(r) =
urr
ν

where ur is the local velocity.

Richardson states that the largest eddies have large Reynolds numbers. Thus, they

are unstable and they end up breaking, transferring their energy to smaller eddies. This

phenomenon occurs across all scales until the viscosity effects are greater than the inertia

and the energy is dissipated by heat. This is called the direct energy cascade.

Richardson summarizes this process with:

“Big whorls have little whorls, that feed on their velocity, and little whorls have

lesser whorls and so on to viscosity.”

Richardson theory matches with the system energy studied in Section 6.1. We

already saw that if the fluid is inviscid, the energy is conserved, by contrast, if ν ̸= 0

energy is dissipated by viscosity effects. This viscosity effects are important when the

Reynolds number is low and this is linked to small scales. Moreover, at large scales,

a high Reynolds number means the inertia effects are significant, and we can assume

that large scales have large energy.
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6.4 Energy spectrum

Andréi Kolmogórov stated in 1941 that under the following hypothesis:

• similarity, which assumes that the physical properties of the flow are invariant under
scales changed;

• and isotropy;

there exists an inertial range [k1,k2] where the energy spectrum E(k) can be expressed
by the wavenumber k and the turbulent dissipation ε , this is, E(k) ∼ εαkβ for some
α,β to be determined.

The inertial range [k1,k2] is defined by two wavenumbers,

• k1 is associated to the largest scale of the problem.

• k2 is associated to the smaller scale r0 under which the viscosity starts taking an
active part.

Remark 6.1. Kolmogórov also established three hypotheses that support the “Universal
Equilibrium Theory” (cf. [17]). The first hypothesis says that if the Reynolds number
is sufficiently high and k2 >> k1, then, for all wavenumber k ∼ k2 the turbulence is in
statistical equilibrium. Moreover, the statistical properties of these eddies depend on two
dimensionless independent magnitudes, the viscosity ν and the energy dissipation rate ε .

This hypothesis allows us to obtain an estimation of the size of the smallest eddies,
called the Kolmogórov length scale, followed by the velocity and time scale, defined by

r0 =

(
ν3

ε

)1/4

, u0 = (νε)1/4, τ0 =
(

ν

ε

)1/2
, (6.8)

respectively.

From this assumption, we can suppose that

E=
∫ k2

k1

E(k)dk

and
⟨|Du|2⟩=

∫ k2

k1

4π
2k2E(k) dk.

Apart from that, solving the NS equations directly using a numerical approximation
is impracticable for real problems, due to the dimension of the resulting system and
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the sensitivity to the initial conditions. A good solution could be to consider the

Reynolds decomposition:

u = ⟨u⟩+u′, p = ⟨p⟩+ p′, (6.9)

where u′ and p′ are the fluctuation of velocity and pressure. Then, the main idea is

to find the equations satisfied by the average fields ⟨u⟩ and ⟨p⟩. The selection of the

average ⟨·⟩ is not unique and it generates a “closure problem” which derives into different

models to use in practice.

If the strategy is to solve large grid scales and to model the subgrid scales, we

obtain a Large Eddy Simulation (LES) model (see Chapter 5 in [12] for more details).

In the LES modeling, large scales are solved and small scales are approximated by

eddy diffusion term in the NS equations, whereby the mesh size is involved. From

decomposition (6.9), we also formally have

⟨|Du|2⟩= |D⟨u⟩|2 + ⟨|Du′|2⟩.

Thanks to this, we can choose a kc = δ−1 where δ is the mesh size, and kc ∈ (k1,k2) such

that

|D⟨u⟩|2 = 1
2

∫ kc

k1

k2E(k) dk, ⟨|Du′|2⟩= 1
2

∫ k2

kc

k2E(k) dk.

The [k1,kc] range represents the solved scales, then we can assume that kc >> k1.

Remark 6.2. The average used to obtain a LES model can be identified with the spatial

average. This is also called the ergodic hypothesis.

We deduce the energy spectrum expression by the Kolmogórov theory, applying

a dimensional analysis. To do this, let us define L and T that determine the spatial

and time dimension.

We know that the units of energy and wavenumber are

[E] = L2/T 2, [k] = L−1,

then by (6.4), [E] = L3/T 2.

Furthermore, when viscosity is relevant, we know that the turbulent dissipation is

described in terms of viscosity and the gradient of velocity as in (6.6). We know that

[ν ] = L2/T and [|Du|] = T−1, then [ε] = L2/T 3.
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Finally, from Kolmogórov Theory, we have that E(k) ∼ εαkβ , therefore

L3

T 2 =

(
L2

T 3

)α

·
(

1
L

)β

⇔ 3 = 2α −β

2 = 3α

}
⇔ α = 2/3

β =−5/3

and we finally obtain

E(k) =Cε
2/3k−5/3 (6.10)

where C is a constant. This is the so-called Kolmogórov −5/3 law.

Remark 6.3. From the Kolmogórov −5/3 law, we deduce that

|D⟨u⟩|2 =
1
2

∫ kc

k1

k2E(k)dk =
1
2

Cε
2/3
∫ kc

k1

k1/3dk =
3
8

Cε
2/3(k4/3

c − k4/3
1 ) (6.11)

As kc >> k1, we can approximate (6.11) by

|D⟨u⟩|2 ∼Cε
2/3k4/3

c

and recalling that kc ∼ δ−1, we deduce that ε =C|D⟨u⟩|3δ 2.
On the other hand, to deduce the eddy viscosity νt , we replace r0 by δ in (6.8) and we

obtain that δ = ν
3/4
t ε−1/4 or νt = ε1/3δ 4/3.

Finally, we get that νt =Cδ 2|D⟨u⟩|, this is the term added to the NS equations and
both constitute the Smagorinsky model, used along this dissertation.

6.5 A posteriori error estimation

The main goal of this section is to use the Kolmogórov theory to obtain an a posteriori
error estimator to apply the RB method to the Smagorinsky Model. However, this theory
can be extended to any other model for which an inertial energy spectrum is known.

We already saw that the Smagorinsky model solves a part of the inertial range
since it is a LES model. To avoid repetition, we directly describe the Smagorinsky
Model FE approximation.

Let Yh ⊂ W 1,3(Ω) and Qh ⊂ L2(Ω) be two finite element approximation spaces
associated to the mesh {Th}h>0. Then, for all µ ∈ D and t ∈ I f , find (uh(t), ph(t)) =
(uh(t; µ), ph(t; µ)) ∈ Yh ×Qh solution of

∫
Ω

∂tuh(t) ·vh dΩ+
1

Re

∫
Ω

∇uh(t) : ∇vh dΩ

+
∫

Ω

νt(uh(t))∇uh(t) : ∇vh dΩ+
∫

Ω

(uh(t) ·∇)uh(t) ·vh dΩ

−
∫

Ω

(∇ ·vh)ph(t) dΩ = ⟨f,vh⟩Ω, ∀vh ∈ Yh,∫
Ω

(∇ ·uh(t))qh dΩ = 0, ∀qh ∈ Qh.

(6.12)
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We apply the RB method considering the Reynolds number as the parameter. Then,

let YN and QN be the reduced spaces built from solutions of (6.12) for all µ ∈ D and

t ∈ I f , then we are able to deduce the RB problem.

For all µ ∈ D and t ∈ I f , find (uN(µ), pN(µ)) = (uN(t; µ), pN(t; µ)) ∈ YN × QN

solution of

∫
Ω

∂tuN(µ) ·vN dΩ+
1

Re

∫
Ω

∇uN(µ) : ∇vN dΩ

+
∫

Ω

νt(uN(µ))∇uN(µ) : ∇vN dΩ+
∫

Ω

(uN(µ) ·∇)uN(µ) ·vN dΩ

−
∫

Ω

(∇ ·vN)pN(µ) dΩ = ⟨f,vN⟩Ω, ∀vN ∈ YN ,∫
Ω

(∇ ·uN(µ))qN dΩ = 0, ∀qN ∈ QN .

(6.13)

As we saw in Chapter 1, the Greedy Algorithm requires the computation of the error

between the high fidelity solution Uh(µ) = (uh(µ), ph(µ)) of (6.12) and the RB solution

UN(µ) = (uN(µ), pN(µ)) of (6.13) for all µ ∈D and t ∈ I f in each Greedy iteration.

The computation of U(µ) solution of the NS equation (6.1) is mostly impracticable,

this is why, we usually consider Uh(µ) = (uh(µ), ph(µ)) as the high fidelity solution. In

this section, we keep U(µ) as the high fidelity solution and Uh as the FE solution.

Then, our goal is to replace this error by an estimation whose computation is

affordable.

Since we consider the Smagorinsky model, we are solving the scales in the inertial

subrange [k1,kc] which is much smaller than the inertial range. The mesh Th should be

carefully chosen in order to solve a part of the inertial range, this is, kc ∈ [k1,k2].

We have already seen that the energy spectrum in the inertial range [k1,k2] has a

specific expression depending on the wavenumber, this is, from (6.10)

E(k; µ) = a(µ)k−5/3 (6.14)

where a(µ) > 0 depends on ε(µ).

The energy spectrum of the high fidelity solution u(µ) should be as (6.14) for a

suitable a(µ) and for all µ ∈ D.

If the FE solution uh(µ) of (6.12) is a good approximation of u(µ), we should expect

a similar energy spectrum. The RB problem is built from FE solution uh(µ), then, if

the RB solution uN(µ) is a good approximation of the FE solution uh(µ) for all µ ∈D,
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then, it is razonable to think that the energy spectrum for the RB solution uN(µ) should

approximate the energy spectrum in (6.14), for a suitable a(µ) for all µ ∈ D.

Then, let EN(k; µ) be the energy spectrum associated to uN(µ). We define an a

posteriori error estimator as follows

∆N(µ) = min
a

(∫ kc

k1

|EN(k; µ)−a(µ)k−5/3|2 dk
)1/2

. (6.15)

This measures how close is a given solution (either reduced or FOM-obtained) to the

theoretical Kolmogórov spectrum, in the range of inertial wavenumbers [k1,kc] which

is solved by the Smagorinsky model.

We look for designing an academic test to use this a posteriori estimator. For

simplicity in the computation, we board a 2D problem.

Discrete Fourier Transform

In practice, we use the Discrete Fourier Transform (DFT) as an approximation of the

Fourier Transform, as well as its inverse, defined in Section 6.2.

To do this, we suppose that Ω is square of length s, this is Ω= [−s/2,s/2]2. We divide

each edge in N intervals of length h = s
N , with N ∈ N pair, generating a mesh T̂h.

Let us consider u : Ω −→ C a continuous periodic function. Then, for a Fourier mode

k = (k1,k2), k1,k2 = −N /2,−N /2+ 1, . . . ,N /2,

ûk1k2 =
1

(N +1)d

N /2

∑
j1, j2=−N /2

u j1 j2φ k1k2
( j1h, j2h), (6.16)

where we recall that φk1k2( j1h, j2h) = e2πih(k1 j1+k2 j2) and

u j1 j2 = u( j1h, j2h), j1, j2 =−N /2,−N /2+1, . . . ,N /2. (6.17)

On the other side, j1, j2 = −N /2,−N /2+ 1, . . . ,N /2, it holds

u j1 j2 =
N /2

∑
k1,k2=N /2

ûk1k2φk1k2( j1h, j2h). (6.18)

Remark 6.4. For a faster computation of the Discrete Fourier Transform, it is usual to

use a decomposition in terms of a Vandermonde matrix Fε ∈ M (N +1)×(N +1)(C). This
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matrix is defined as follows

Fε =



w(−N /2)·N /2
ε · · · w0·N /2

ε · · · wN /2·N /2
ε

... . . . ... . . . ...
w(−N /2)·0

ε · · · w0·0
ε · · · wN /2·0

ε

... . . . ... . . . ...
w(−N /2)·(−N /2)

ε · · · w0·(−N /2)
ε · · · wN /2·(−N /2)

ε


(6.19)

where ε = −1,1, depending on the direct or inverse Fourier Transform computation.
Moreover, we build the Vandermonde matrix in parallel, which accelerates the computation.

Discrete energy spectrum

For the computation of the energy spectrum and taking into account (6.4), we can
approximate the total energy system by

E=
∫

∞

0
E(k) dk ≈

LN

∑
l=0

Ê(l)

where LN is the integer part of
√

2N and taking into account (6.5), we approximate
the energy spectrum by

Ê(l) = ∑
l≤|k|<l+1

1
2
|ûk|2.

6.6 Academic test

The aim of this test is to obtain an energy spectrum following the Kolmogórov −5/3
law defined in (6.10) solving the Smagorinsky model. Then, we look for applying the
estimator ∆N(µ) defined in (6.15) to build a RB Smagorinsky model.

Problem statement

We solve the Smagorinsky model (6.12) in its dimensionless version for all t ∈ (0,Tf )

with Tf = 15, over the unit square Ω = [−1/2,1/2]2 with periodic boundary conditions.
We do not consider any source, then f = 0. We select the Reynolds number Re as the
only parameter µ and we fix the parameter set as D = [1000,16000].

We have supposed an spatial isotropy hypothesis over the flow. We should be able
to reproduce this characteristic numerically, in order to reproduce the energy spectrum
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(a) N = 16, h= 8.839 ·10−2, 512 triangles, 289
vertices.

(b) N = 64, h = 2.209 · 10−2, 8192 triangles,
4225 vertices.

Figure 6.1: Triangular meshes

desired. In Chapter 4 in [20], D. Franco reproduces the energy spectrum for the Euler

equation. In this case, for a finite number of Fourier modes, they obtain a constant

energy inertial spectrum, departing from an invariant mesh under rotation that remains

the unit cube. This gives us an idea that the first step should be the construction of

this kind of mesh.

We divide each edge of the square Ω into N intervals, generating a triangular mesh

as we see in Figure 6.1. This mesh is invariant under rotations that keep invariant the

square and it is symmetric with respect to the axis OX , OY , XY and −XY .

As usual, we consider a FE approximation with the Taylor-Hood finite element, i.e.,

we consider P2−P1 finite elements for velocity-pressure discretization.

We board the time discretization as in the previous chapters, using a semi-implicit

linearized Euler scheme as in (1.20), with ∆t = 20/N .

Remark 6.5. We have tried also Explicit Euler, Backward differencing (BDF2), explicit

pseudo-Crank-Nicolson and Crank-Nicolson schemes, obtaining the same results for the

energy spectrum. We retain the semi-implicit Euler scheme since it is the simplest and it

has good stability properties.

In order to build the initial condition, we look for a velocity field with an inertial

energy spectrum as in (6.14). We consider a velocity field w0
h = (v,v), where v is defined
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Figure 6.2: Representation of the module and energy spectrum of w0
h.
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Figure 6.3: Initial condition u0
h and its energy spectrum.

through its Fourier transform:

v̂(k) =

{
k−(5/3+1)/2 if 0 < k ≤ N /4,

0 other case ,

The energy spectrum of w0
h is shown in Figure 6.2. We build an initial condition with

a physical inertial spectrum. To do this, we solve the Smagorinsky model taking w0
h as

the initial state for µ = 8500, the intermediate Reynolds number. We stop for t = 15, this
is, n = 48 and we take the velocity field at this time as the initial condition.

In Figure 6.3, we show the initial condition u0
h and its energy spectrum. For wavenumbers

between 5 and 32, we obtain a good approximation of the inertial spectrum. For k > 32,
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(b) EIM error, each line correspond to a time step
tn for n = 1, . . . ,L.

Figure 6.4: EIM applied to unsteady Smagorinsky Model.

we observe an abrupt decay of the energy. This is produced by the wavenumbers that

are out of the circle of the largest radio inside the square. As we can see, we start

from a well-developed energy spectrum.

Empirical Interpolation Method

As we saw in Chapters 1 and 2, the eddy viscosity term requires to be linearized with

respect to the parameter. With this purpose, it is necessary to compute some solutions for

different parameters, and then to apply Algorithm 5 for an unsteady problem.

We compute the finite element solution (un
h(µ), pn

h(µ) for all n = 1, . . . ,L,

µ = {1000, 6000, 11000, 16000} and we apply the EIM. We stop the algorithm on

186 basis when the error is below εEIM = 10−5. The convergence error is shown in Figure

6.4a, while in Figure 6.4b, we show the error and each line represents a time step tn for

n = 1, . . . ,48. The maximum error is 7.929 · 10−2.

POD+Greedy strategy

We use a POD+Greedy strategy as it was described in Algorithm 4. We recall that we

follow a POD strategy considering the time t as a parameter and the Greedy algorithm

for the Reynolds number, with the purpose of building a reduced basis space that takes

into account time and parameter variability.

For the POD, we use a separate strategy in the sense that we apply POD to a velocity

snapshot matrix Su and a pressure snapshot matrix Sp. To build the correlation matrices,
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it is necessary to establish spatial norms for velocity and pressure, since the time should
be considered as a parameter. In this case, we use the inner product

(vh,zh)T =
∫

Ω

1
Re f

∇vh : ∇zh dΩ, vh,zh ∈ Yh (6.20)

where Re f = 8500 for velocity which drift into a T -norm, and L2-norm for the pressure,
for the spaces Yh and Qh, respectively. Let define the matrices Yh and Qh which are
related to the velocity and pressure norms.

Again, the reduced spaces YN and QN must be inf-sup stable, therefore, we propose
the use of an inner pressure supremizer operator T µ

N : Qh −→ Yh defined as follows

(T µ

N ph,vh)T =−
∫

Ω

(∇ ·vh)ph dΩ, ∀vh ∈ Yh

for a given ph ∈ Qh. In [47], G. Stabile and G. Rozza propose two different strategies
to implement the supremizer when POD is applied over a parameter. We stay with the
exact supremizer enrichment, this is, we compute the supremizer basis from the pressure
basis obtained in the POD procedure.

Algorithm 7 POD+Greedy with supremizer

Set ε1,tol,ε2,tol > 0, Nmax ∈ N, µ∗ ∈Dtrain, Zu = [ ], Zp = [ ] and S = { };
while N < Nmax do

S = S∪{µ∗};
Compute Un

h (µ
∗) = (un

h(µ
∗), pn

h(µ
∗)) for n = 1, . . . ,L;

Build Su = [u1
h(µ

∗),u2
h(µ

∗), . . . ,uL
h(µ

∗)], Sp = [p1
h(µ

∗), p2
h(µ

∗), . . . , pL
h(µ

∗)];
[ξ u

1
, . . . ,ξ u

Mu]=POD(Su,Yh,ε1,tol);
[ξ p

1
, . . . ,ξ p

Mp]=POD(Sp,Qh,ε1,tol);
Zu = [Zu,ξ u

1
, . . . ,ξ u

Mu];
Zp = [Zp,ξ p

1
, . . . ,ξ p

Mp];
[ϕu

1
, . . . ,ϕu

Nu]=POD(Zu,Yh,ε2,tol);
[ϕ p

1
, . . . ,ϕ p

N p]=POD(Zp,Qh,ε2,tol);
Compute ϕu

Nu+i = T µ

N ϕ
p
i for i = 1, . . . ,N p;

N = Nu +2N p;
YN = {ϕu

i }
Nu+N p

i=1 , QN = {ϕ
p
i }N p

i=1,
µ∗ = argmaxµ∈Dtrain ∆N(µ,L);
εN = ∆N(µ

∗,L);
if εN ≤ εtol then

Nmax = N;
end if

end while

Finally, we apply the algorithm described in Algorithm 7. We give a general idea:
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1. For a given µ∗, we solve the Smagorinsky Model for any time tn for n = 1, . . . ,L,
and we save the result in the snapshot matrices Su for velocity and Sp for pressure.

2. We apply the POD procedure separately for velocity and pressure, for a given
tolerance ε1,tol and we add the results in the matrices Zu and Zp.

3. Finally, we apply a second POD to Zu and Zp for a given tolerance ε2,tol . This
procedure avoid repetition in the basis.

4. We compute the supremizer for the pressure basis resulting above and we add it to
the velocity basis, obtaining YN and QN .

5. Lastly, we apply the Greedy Algorithm to the RB problem associated to the spaces
YN and QN , obtaining the new parameter µ∗. We use the estimate ∆N(µ) at the last
time since it is assumable that the energy spectrum is well-developed at that time.

To compute the estimator, we should know the resolved part of the inertial range in the
Smagorinsky model [k1,kc]. Since we already compute (un

h(µ), pn
h(µ)) for n = 1, . . . ,L,

µ = {1000, 6000, 11000, 16000} for the EIM, we know the energy spectrum associated
to each parameter in n = L. In Figure 6.5, we show the energy spectrum and we see
clearly that we could assume k1 = 5 and kc = 32. We also show the velocity field
uL

h(µ) in Figure 6.6.

Results

We compare the use of the estimate ∆N(µ) introduced in (6.15) versus the use of the
exact error at the final time

εN(µ) = ∥uL
h(µ)−uL

N(µ)∥T , (6.21)

for the parameter selection in Algorithm 7.
Tables 6.1-6.2 shows the comparison using the estimator ∆N(µ) (upper table) and the

exact error εN(µ) (lower table) for the selection of the parameter µ . We set ε2,tol =
√

ε1,tol ,
with ε1,tol = 10−10 in Table 6.1 and ε1,tol = 10−13 in Table 6.2. In both tables, using
∆N(µ), we stop the algorithm in the third iteration, since the next Reynolds number
has been already select and we remain with the same number of basis, N = 98 in Table
6.1 and N = 143 in Table 6.2. The exact error and the number of RB basis are similar
whether we use the estimator ∆N(µ) or the exact error εN(µ), which tell us that the
use of the estimator ∆N(µ) is quasi-optimum.
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Figure 6.5: Energy Spectra for µ = {1000, 6000, 11000, 16000} at final time.

Comparing both tables, the exact errors are similar, therefore, we deduce that a very

small tolerance in the POD steps does not ensure a decrease in error.

In Figure 6.7a, we show the comparison of the estimate ∆N(µ) in each iteration of

the POD+Greedy algorithm described in Table 6.1 versus

∆h(µ) = min
a

(∫ kc

k1

|Eh(k; µ)−a(µ)k−5/3|2 dk
)1/2

and Eh(k; µ) for k ∈ (k1,kc) represents the energy spectrum of uL
h(µ).

Since the reduced solution is built from the FE approximation, we should not expect

that ∆N(µ) tends to 0 when N −→∞, it should rather converge to ∆h. We observe in Figure

6.7a that indeed ∆N(µ) approaches ∆h as N increases and ∆h needs not be zero as the

finite element solution is just an approximation of the physical flow. Therefore, we depend

on the error committed by the FE approximation to approximate the inertial spectrum.

In Figure 6.7b, we show the error εN(µ) for µ = 1000,1625, . . . ,16000 at each

POD+Greedy algorithm iteration. In the last iteration, the error is smaller than 10−4.
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(a) Re = 1000 (b) Re = 6000

(c) Re = 11000 (d) Re = 16000

Figure 6.6: Module of velocity at final time |uL
h(µ)|.

Online phase

To test the Reduced Basis spaces obtained by the previous procedure using ∆N(µ),

we select five random Reynolds values different from the selected ones by the Greedy

Algorithm, and we solve the RB and FE problems. The results below have been computed

on only one processor in a cluster with CPUs AMD EPYC 7542 2.9 GHz.

In Table 6.3, we show the computational time, the values of the estimates, and the

error between the RB and FE solution at the final time Tf = 15.

We obtain speed-ups ratio close to 20, what is satisfying for an evolution turbulence

model. We already saw that considering εN(µ) instead of ∆N(µ) does not reduce the
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It. Re N maxµ ∆N(µ) maxµ εN(µ)

1 1000 30 7.92 ·10−1 2.57 ·10−3

2 16000 72 5.27 ·10−1 2.37 ·10−4

3 2250 98 3.51 ·10−1 6.04 ·10−5

4 16000 98
It. Re N maxµ εN(µ)

1 1000 30 2.57 ·10−3

2 16000 72 2.37 ·10−4

3 3500 100 3.52 ·10−5

4 7250 119 3.53 ·10−5

Table 6.1: Step by step of the POD+Greedy algorithm for ε1,tol = 10−10, ε2,tol = 10−5, using
∆N(µ) (upper table) and εN(µ) (lower table) for the parameter selection.

It. Re N maxµ ∆N(µ) maxµ εN(µ)

1 1000 39 5.52 2.6 ·10−3

2 16000 105 4.03 ·10−1 2.17 ·10−3

3 1625 143 3.53 ·10−1 7.09 ·10−5

4 16000 143
It. Re N maxµ εN(µ)

1 1000 39 2.6 ·10−3

2 16000 105 2.17 ·10−4

3 3500 152 3.25 ·10−5

4 7250 197 2.2 ·10−5

Table 6.2: Step by step of the POD+Greedy algorithm for ε1,tol = 10−13, ε2,tol = 3.16 · 10−7,
using ∆N(µ) (upper table) and εN(µ) (lower table) for the parameter selection.

number of basis functions, thus, we can not blame the estimator.
Finally, in Figures 6.8-6.9 we show velocity and pressure for Re = 11757, along

a time step selection.
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Figure 6.7: Convergence of POD+Greedy algorithm.

Re = 1825 Re = 4804 Re = 11757 Re = 13605 Re = 14027
TFE 55.63s 58.67s 58.3s 58.09s 57.94s
TRB 2.95s 2.99s 2.83s 2.92s 3.06s

Speedup 19 20 21 20 19
∆N(µ) 3.42 ·10−1 2.8 ·10−1 2.97 ·10−1 3.11 ·10−1 3.17 ·10−1

∆h(µ) 3.18 ·10−1 3.23 ·10−1 3.09 ·10−1 3.2 ·10−1 3.25 ·10−1

εN(µ) 2.86 ·10−5 5.73 ·10−5 3.56 ·10−5 2.94 ·10−5 2.88 ·10−5

Table 6.3: Validation of RB model.
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Figure 6.8: Velocity field for Re = 11757.
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Figure 6.9: Pressure for Re = 11757.



Open problems
As possible ways to continue this research, we set some open problems related to

the results presented in this part:

□ Computation of the Stability Factor βh(µ) for µ ∈D in Chapter 5, using hyper-reduction
techniques in space (with coarser meshes) and time (using only some time iterations
instead of all).

□ Extend the academic test in Section 6.6 to other definitions of the Kolmogórov
estimate. Instead of using the last time, we purpose the use of mean value, maximum
value, or some time values in an interval of time.

□ Extension of the academic test in Section 6.6 to the 3D case.

□ Application to industry problems thanks to the low cost Kolmogórov estimate.

□ Extension to another space discretization, such as finite volume or finite difference
method since the Kolmogórov estimate is independent of the used method.

□ Find an estimate for the exact error using the Kolmogórov estimation.

□ Application to Variational Multi-scale (VMS) Smagorinsky model in order to
consider less diffusive Smagorinsky models.
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A
Basic notations and auxiliary results

The goal of this section is to introduce the difference properties and basic notations

that we use along this document.

A.1 Basic notations

Notations for Matrix-Vector Operations

Let x = (xi)
d
i=1 and y = (yi)

d
i=1 be two vectors and A = (ai j)

d
i, j=1 and B = (bi j)

d
i, j=1

two d × d matrices. Then,

• The dot product of two vectors:

x ·y =
d

∑
i=1

xiyi

• The dot product of two matrices:

A : B =
d

∑
i, j=1

ai jbi j

• The Frobenius norm of the matrix A:

|A|=

(
d

∑
i, j=1

a2
i, j

)1/2

= (A : A)1/2 (A.1)

161
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Lebesgue Spaces

Let Ω ⊂ Rd , d = 1,2,3, be a domain and let p ∈ [1,∞]. The Banach spaces Lp(Ω) are

formed by measurable functions on Ω with the norm

• if p ∈ [1,∞),

∥v∥Lp(Ω) :=
(∫

Ω

|v|p dΩ

)1/p

,

• if p = ∞,

∥v∥L∞(Ω) := sup
x∈Ω

|v(x)|.

In addition, L2(Ω) is a Hilbert space with respect to the inner product

(v,w)Ω =
∫

Ω

v ·wdΩ

If p ∈ (1,∞), then the dual space of Lp(Ω) is Lq(Ω) where p−1 + q−1 = 1 with

the dual pairing

⟨v,w⟩Ω =
∫

Ω

v ·wdΩ, v ∈ Lp(Ω), w ∈ Lq(Ω).

For more details, see [1].

Sobolev Spaces

Let p and r be two non-negative integers. The Sobolev spaces are defined by

W r,p(Ω) = {f ∈ Lp(Ω) | Dα f ∈ Lp(Ω), ∀α ∈ Nd : |α| ≤ r}, (A.2)

where α = (α1, . . . ,αd) with αi ≥ 0 for any i = 1, . . . ,d is a multi-index such that

|α| = ∑
d
i=1 αi and

Dαv :=
∂ αv

∂xα1 . . .∂xαd

.

This spaces are equipped with the norm

• If p ∈ [1,∞),

∥v∥W r,p(Ω) :=

(
∑

0≤|α|≤r
∥Dαv∥p

Lp(Ω)

)1/p

,
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• if p = ∞,
∥v∥W r,∞(Ω) := max

0≤|α|≤r
∥Dαv∥L∞(Ω).

In general, the Sobolev Spaces are Banach Spaces and in particular, the spaces
W r,2(Ω) are Hilbert Spaces, denoted by Hr(Ω).

The dual space of W r,p(Ω) is the space L (W r,p(Ω),R) such that for F ∈L (W r,p(Ω),R),

|F(v)| ≤C∥v∥W r,p(Ω), ∀v ∈W r,p(Ω).

Particularly, for p = 2, the dual of Hr(Ω) is H−r(Ω). For more details, see [1].

Bochner Spaces

Let (a,b) be a time interval and v be a function defined on (a,b)×Ω. Let (V,∥ · ∥V )

a Banach space on Ω. We denote by Lp(a,b;V ) for p ∈ [1,∞], the Bochner space
endowed with the norm

• If p ∈ [1,∞),

∥v∥Lp(V ) :=
(∫ b

a
∥v(t)∥p

V dt
)1/p

;

• if p = ∞,
∥v∥L∞(V ) := sup

t∈(a,b)
∥v(t)∥V .

A.2 Auxiliary results

For this section, let (X ,∥ · ∥X) be a Hilbert space on Ω ⊂ Rd .

Property A.1. For any a,b ∈ X then,

2(a−b,a)Ω = ∥a∥2
X −∥b∥2

X +∥a−b∥2
X . (A.3)

Proof.

2(a−b,a)Ω = (a−b,a)Ω +(a,a−b)Ω

= (a−b,a)Ω +(a,a)Ω − (a,b)Ω +(b,b)Ω − (b,b)Ω

= (a−b,a)Ω +∥a∥2
X − (a−b,b)Ω −∥b∥2

X

= (a−b,a−b)Ω +∥a∥2
X −∥b∥2

X

= ∥a−b∥2
X +∥a∥2

X −∥b∥2
X
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Property A.2. For any a,b ∈ X then,

(a,b)Ω ≤ 1
2
∥a∥2

X +
1
2
∥b∥2

X (A.4)

Proof.

∥a−b∥2
X = (a−b,a−b)Ω = ∥a∥2

X +∥b∥2
X −2(a,b)Ω ≥ 0

Property A.3. For any a,b ∈ X and c ∈ R,

(a,b)Ω ≤ c
4
∥a∥2

X +
1
c
∥b∥2

X (A.5)

Proof. ∥∥∥∥√c
2

a− 1√
c

b
∥∥∥∥2

X
=

c
4
∥a∥2

X +
1
c
∥b∥2

X − (a,b)Ω ≥ 0

Property A.4. For any a,b ∈ R,

|a|a(a−b)≥ 1
3
|a|3 − 1

3
|b|3 (A.6)

Proof. Taking into account the Taylor series for the function f (x) = 1
3 |x|

3 ( f ′(x) = |x|x),

we obtain that
1
3
|b|3 = 1

3
|a|3 + |a|a(b−a)+ |c|(b−a)2

for a < b ∈ R and c ∈ (a,b). As the last term is non-negative,

1
3
|b|3 − 1

3
|a|3 + |a|a(a−b) = |c|(b−a)2 ≥ 0

and this completes the proof.

Definition A.1. Let X be a Banach space and A(· , · ; µ) : X ×X −→ R. We define the

directional derivative of A(· , · ; µ) with respect to the first variable, in the direction of

Z ∈ X, for all U,V ∈ X, as

∂1A(U,V ; µ)(Z) = lim
α→0

A(U +αZ,V ; µ)−A(U,V ; µ)

α
, (A.7)

if this limit exists.
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Theorem A.1 (Hölder’s inequality). Assume that f ∈ Lp(Ω) and g ∈ Lq(Ω) for p,q ∈
[1,∞] with p−1 +q−1 = 1.. Then f g ∈ L1(Ω) since

( f ,g)Ω ≤ ∥ f∥Lp(Ω)∥g∥Lq(Ω) (A.8)

Proof. See [7], page 92.

Remark A.1. For p = q = 2, the Hölder’s inequality is known as the Cauchy-Schwarz

inequality.

Theorem A.2 (Sobolev embedding). Let 1 ≤ p ≤ ∞. We have

• If p < d,

W 1,p(Ω)⊂ Lq(Ω),
1
q
=

1
p
− 1

d
.

• If p = d,

W 1,p(Ω)⊂ Lq(Ω), ∀q ∈ [p,+∞).

• If p > d,

W 1,p(Ω)⊂ L∞(Ω).

All these injections are continuous.

Proof. See [7], page 285.

Remark A.2. Thanks to the Sobolev embedding Theorem A.2, we obtain the injection

from H1(Ω) to L4(Ω). Because of the equivalence between the H1(Ω) and H1
0 (Ω) norms,

there exists a constant C4;1,2 > 0 depending on Ω such that

∥v∥L4(Ω) ≤C4;1,2∥v∥H1
0 (Ω), ∀v ∈ H1(Ω). (A.9)

This inequality is used along this dissertation.

For each h > 0, let Th be a triangulation of Ω̄ made of closed triangles K with
diameters bounded by hmax. In other words:

Ω̄ =
⋃

K∈Th

K

where any two triangles K1 and K2 are either disjoint or share at most one side or one
vertex. The size and shape of each triangle K are specified by two quantities
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• hK the diameter of K,

• ρK the diameter of the inscribed circle in K.

The regularity of a triangle K is measured by the ratio σK = hK/ρK .

Definition A.2. A family {Th}h>0 of triangulations of Ω̄ is said to be regular as h tends
to zero if there exists a number σ > 0, independent of h and K, such that

σK ≤ σ , ∀K ∈ Th.

In addition, Th is said to be uniformly regular as h tends to zero if there exists another
constant τ > 0 such that

τh ≤ hK ≤ σρK, ∀K ∈ Th.

Theorem A.3 (Local Inverse inequality for polynomial functions). Let q1, q2 be two real
numbers such that 1 ≤ q1, q2 ≤ +∞. Let k1, k2 be two non-negative integer numbers.
Assume that k2 ≤ k1 and k2 − d

q2
≤ k1 − d

q1
. For any non-negative integer l there exists a

constant C > 0 such that

∥v∥W k1,q1(K) ≤Cρ
k2−k1− d

q2
k h

d
q1
K ∥v∥W k2,q2(K), ∀v ∈ Pl(K)

If in addition, the family of triangulations {Th}h>0 is regular, then for all Th

∥v∥W k1,q1(K) ≤Ch
k2−k1− d

q2
+ d

q1
K ∥v∥W k2,q2(K), ∀K ∈ Th, ∀v ∈ Pl(K) (A.10)

where hK is the diameter of a triangle K, ρK is the diameter of the largest circle be
inscribed in K and the constant C only depends on q1, q2, k1, k2, d, l and the aspect ratio
of the family of triangulations.

Proof. See VII.4 in [6].

Remark A.3. Thanks to the application of the Local Inverse Inequality A.3 to the spaces
L3(K) and L2(K) for K ∈ Th, there exists a constant C3;2 > 0 such that

∥v∥L3(K) ≤C3;2h−d/6
K ∥v∥L2(K), ∀K ∈ Th,∀v ∈ Pl(K) (A.11)

This inequality is used along this dissertation.

Theorem A.4 (Global Inverse inequality). Let q1, q2 be two real numbers such that
1 ≤ q1, q2 ≤+∞. Let k1, k2 be two non-negative integer numbers. Assume that k2 ≤ k1

and k2 − d
q2

≤ k1 − d
q1

. Supposing that for all h, the FE space Xh is in W k1,q1(Ω). There
exists C > 0 depending on the polynomial degree in each element K ∈ Th such that
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• for q2 ≤ q1,

∥v∥W k1,q1(Ω) ≤Ch
k2−k1− d

q2
+ d

q1
min ∥v∥W k2,q2(Ω), ∀v ∈ Xh

• for q1 < q2,
∥v∥W k1,q1(Ω) ≤Chk2−k1

min ∥v∥W k2,q2(Ω), ∀v ∈ Xh. (A.12)

where hmin = minK∈Th hK .

Proof. See VIII.5 in [6].

Theorem A.5 (Riesz representation theorem). Let X ′ denote the dual space of X. Let
f ∈ X ′, then there exists a unique x f ∈ X such that

f (y) = (x f ,y) ∀y ∈ X .

Moreover,
∥ f∥X ′ = ∥x f ∥X .

Proof. See [7].

Lemma A.1 (Lax-Milgram lemma). Assume that a(·, ·) is a bilinear form on X such that

|a(u,v)| ≤ γ∥u∥X∥v∥X , ∀u,v ∈ X

and
a(u,u)≥ β∥u∥2

X ∀u ∈ X .

for some γ > 0 and β > 0. Then, given f : X −→ R, there exists a unique element u ∈ X
such that

a(u,v) = ⟨ f ,v⟩, v ∈ X

that satisfies

∥u∥X ≤ 1
β
∥ f∥X ′.

Proof. See [7].

Lemma A.2 (Poincaré). Let 1 ≤ p <+∞ and let Ω be a bounded open set. Then, there
exists Cp;1,p > 0 such that

∥v∥Lp(Ω) ≤Cp;1,p∥∇v∥Lp(Ω), ∀v ∈W 1,p
0 (Ω) (A.13)

where W 1,p
0 (Ω) is the space formed by v ∈W 1,p(Ω) with zero trace.
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Theorem A.6 (Trace theorem). Let Ω be a domain of Rd provided with a Lipschitz

continuous boundary ∂Ω. There exists one and only one linear and continuous application

γ0 : H1(Ω)−→ L2(∂Ω),

such that γ0v = v|∂Ω, for all v ∈ H1 ∩C0(Ω̄); and

∥γ0v∥L2(Γ) ≤CΓ∥v∥H1(Ω)

for some CΓ > 0. The result still holds if we consider the trace operator γΓ : H1(Ω)−→ L2(Γ)

where Γ is a sufficiently regular portion of the boundary of Ω with positive measure.

Proof. See [19], Section 5.5.

Lemma A.3 (Discrete Gronwall’s Lemma). Let k, B, and an, bn, cn, γn, for integers n ≥ 0,

be nonnegative numbers such that

am + k
m

∑
n=0

bn ≤ k
m

∑
n=0

γnan + k
m

∑
n=0

cn +B, for n ≥ 0. (A.14)

Suppose that kγn < 1, for all n, and set σn ≡ (1− kγn)
−1. Then,

am + k
m

∑
n=0

bn ≤ exp

(
k

m

∑
n=0

γnσn

)(
k

m

∑
n=0

cn +B

)
, for n ≥ 0. (A.15)

Proof. See [24], page 369.

Definition A.3. Let H : X −→ X with X be a Hilbert space. We say that H is a contraction

if there exists some L ∈ (0,1) such that

∥H(u)−H(v)∥X ≤ L∥u− v∥X , ∀u,v ∈ X . (A.16)

Theorem A.7 (Schauder Fixed-Point Theorem). Let K be a nonempty, compact, convex

subset of a space X, and suppose H : K −→ K is a continuous operator. Then, H has a

fixed point.

Proof. See [50], Chapter 2.

Remark A.4. It can be proved that if a contractive function has a fixed point, this point

is unique. Moreover, if we are under the conditions of theorem A.7, we can ensure the

existence and uniqueness.
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A.3 Well-posedness of saddle point problem

Let Y and Q be two real Hilbert spaces on Ω with norm ∥ · ∥Y and ∥ · ∥Q respectively. Let
us define the non-linear form a(u;w,v) on Y ×Y ×Y such that the mapping (w,v) 7−→
a(u;w,v) is a bilinear and continuous form on Y ×Y and the continuous bilinear form
b(v,q) on Y × Q.

Then, for a given f ∈ Y ′, we consider the following problem:
Find (u, p) ∈ Y ×Q such that

a(u;u,v)+b(v, p) = ⟨f,v⟩Ω, ∀v ∈ Y

b(u,q) = 0 ∀q ∈ Q

(A.17)

Then, we introduce the operators A(u)∈L (Y ;Y ′) for u ∈Y and B ∈L (Y ;Q′) defined by

⟨A(u)w,v⟩Ω = a(u;w,v), ∀w,v ∈ Y,

⟨Bv,q⟩Ω = b(v,q), ∀v ∈ Y, ∀q ∈ Q.

We can rewrite the problem (A.17) into:
Find (u, p) ∈ Y ×Q such that

A(u)u+B′p = f, in Y ′

Bu = 0, in Q′

(A.18)

Then, we set X = ker(B) in Y , then we can define a problem associated to (A.17) such that{
Find u ∈ X such that

a(u;u,v) = ⟨f,v⟩Ω, ∀v ∈ X
(A.19)

Theorem A.8 (Inf-sup Condition). Let Ω be a bounded, connected, Lipschitz-continuous

domain in Rd and let p1, p2 be two real numbers such that p−1
1 + p−1

2 = 1. Then, there is

a constant α > 0 such that

α∥q∥Lp1(Ω) ≤ sup
v∈W 1,p2(Ω)

b(v,q)
∥v∥W 1,p2(Ω)

, ∀q ∈ Lp1(Ω) (A.20)

Proof. See Corollary 3.2. in [2].

Remark A.5. The pair of spaces ([H1
0 (Ω)]d,L2(Ω)) verifies the inf-sup condition (A.20).

Theorem A.9 (Uniqueness problem (A.19)). Let us make the following hypotheses:
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1. The form a(·; ·, ·) is uniformly elliptic with respect to the first variable, that is, there

exists a constant β > 0 such that:

a(u;v,v)≥ β∥v∥2
Y , ∀v,u ∈ X .

2. The mapping u 7−→ A(u) is locally Lipschitz continuous in X; that is, there exists a

continuous and monotonically increasing function L : R+ −→R+ such that ∀ε > 0:

|a(u1;w,v)−a(u2;w,v)| ≤ L(ε)∥u1 −u2∥Y∥w∥Y∥v∥Y , ∀w,v ∈ X

for all u1,u2 ∈ Bε where Bε = {v ∈ X : ∥v∥Y ≤ ε}.

Then, problem (A.19) has a unique solution u ∈ X.

Theorem A.10 (Uniqueness problem (A.17)). Suppose that the form b(·, ·) : Y ×Q −→R
satisfies the inf-sup condition (A.20) then, for each solution u of problem (A.19), there

exists a unique p ∈ Q such that the pair (u, p) satisfies problem (A.17).

Proof. For the proof of theorems A.9 and A.10 we refer to Chapter IV in [21].

A.4 Dimensionless numbers

Prandlt

It depends only on the fluid and the fluid state since defines the ratio of momentum

diffusivity (ν) and thermal diffusivity (κ). It is around 0.71 for air and 7.56 for water at

18◦C.

Pr =
ν

κ
=

cpµ

k
(A.21)

Reynolds

It is the ratio of inertial forces to viscous forces. At low Reynolds numbers, flows tend to

be dominated by laminar flow, while at high Reynolds numbers, flows tend to be turbulent.

Re =
UL
ν

=
ρUL

µ
(A.22)
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Péclet

It is the ratio of the rate of advection transport rate and diffusive transport rate. For heat
transfer, the Péclet number is equivalent to the product of the Reynolds number and
the Prandlt number.

Pe =
LU
κ

=
LUρcp

k
= RePr (A.23)

Nusselt

It is the ratio of convective to conductive heat transfer at a boundary in a fluid.

Nu =
αL
k

(A.24)
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