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Abstract: The development of differential fault analysis (DFA) techniques and mechanisms to inject
faults into cryptographic circuits brings with it the need to use protection mechanisms that guarantee
the expected level of security. The AES cipher, as a standard, has been the target of numerous DFA
techniques, where its security has been compromised through different formulations and types of fault
injections. These attacks have shown vulnerabilities of different AES implementations and building
blocks. Consequently, several solutions have been proposed that provide additional protection to
cover the identified vulnerabilities. In this paper, an extensive analysis has been carried out covering
the existing fault injection techniques, the types of faults, and the requirements needed to apply
DFA. Additionally, an analysis of the countermeasures reported in the literature is also presented,
considering the protection provided, the type of faults considered, and the coverage against fault
attacks. The eight different types of fault that allow us to perform DFAs on the AES cipher have
been differentiated, as well as the vulnerabilities of the cipher. On the other hand, two comparisons
have been made considering frequency penalty vs. area and fault coverage vs. area and frequency
overhead. A metric has been proposed to compare the fault coverage of all the proposed solutions. To
conclude, a final analysis is presented discussing the key aspects when choosing a particular solution
and the possible development of new countermeasures to provide further protection against DFA.

Keywords: AES; hardware countermeasure; benchmarking; trade-off; fault attack; DFA

1. Introduction

Nowadays, determining and minimizing vulnerabilities in cryptographic devices
has become a scientific challenge. This is mainly due to the constant development and
improvement of analysis techniques and attacks that are able to exploit the vulnerabilities
of existing implementations in order to access the device secret information. In addition
to this, there has been a large increase in the number of applications that require the use
of devices with significant resource and power constraints. An example of this is the
increasing usage of the Internet of Things (IoT). In [1], the authors describe the importance
of analysing security in the IoT, considering recent research work on the different stages
of the IoT security solution. Finally, ref. [2] discusses the risks that exist if attacks on
embedded applications used in this area are not considered.

Although different techniques exist to compromise the security of the cryptographic
devices, herein we will focus on the so-called active attacks. Active attacks have been ex-
tensively studied since the paper presented by Bonet et al. [3], where the authors presented
a fault injection attack on the Rivest–Shamir–Adleman (RSA) cryptosystem. These types of
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attack can compromise the security of cryptographic devices by comparing the relationship
between the correct and the faulty output of the circuit when a fault is injected during
its operations. On the one hand, fault injection is carried out by means of Fault Injection
Attack (FIA) techniques such as non-invasive (the device is not modified such as glitch
induction in the clock signal) or invasive (the device is manipulated such as stripping of
the circuit using a laser beam). On the other hand, the analysis between the correct and
faulty output of the circuit is performed by means of Differential Fault Analysis (DFA).
This analysis allows attackers to obtain information related to the secret key by comparing
the correct and faulty ciphertexts of the circuit.

This technique has been used successfully in different cryptographic algorithms.
Among the block ciphers presented over the years, the Advanced Encryption Standard
(AES) [4] cipher has received the most attention because it is the standard chosen by
the National Institute of Standards and Technology (NIST), it is widely used, and it is
implemented as a standard in a large number of technologies. This cipher has been
subjected to numerous differential analyses and attacks with the aim of compromising its
security [5–17].

Since fault attacks and differential analysis studies are numerous, so are fault detection
schemes. A large number of related works focus on the AES cipher, as in the case of
this work. This paper aims to analyze the different fault injection techniques and the
types of fault they can produce, to analyze the characteristics of the DFAs presented
on the AES cipher, to summarize the most relevant protection schemes, and to analyze
them considering fault coverage, resource consumption, and throughput. To this end, the
different FIA techniques are analyzed to meet the requirements of the DFAs, considering the
fault level, requirements for a successful attack, and the fault location control. A complete
and detailed classification of the different DFA methods on the AES cipher has been carried
out, defining weaknesses, requirements, and attacks times. To compare all countermeasures
as a whole, it is necessary to consider that the attacker is capable of achieving any type of
fault, being the most powerful attacker. This makes it possible to determine whether the
countermeasures studied offer an appropriate level of protection depending on the types of
fault that may occur in relation to those that they are able to detect. This analysis is a guide
for choosing among the many proposals, depending on the level of protection required for
a given application and environment.

Note that in this paper, we focus on analysing attacks on physical implementations
of private key encryption algorithms and on proposed hardware solutions to detect such
attacks and prevent secret encrypted and exchanged information from being compromised.
To this end, attackers must have access to the devices that implement the encryption
algorithms in hardware.

There are some reviews about differential analysis and countermeasures in hardware
implementations such as [18–20] or software such as [21]. In the case of [18] an analysis
of security issues and possible countermeasures in IoT applications is carried out. In
this work, the main weaknesses in IoT environments are analysed, and the application of
encryption algorithms such as AES, Data Encryption Standard (DES), or Rivest–Shamir–
Adleman (RSA) are proposed as countermeasures. However, this work does not consider
the vulnerabilities that are present in this type of algorithms, such as the AES cipher,
the possible attacks or solutions that allow them to be detected. In [19], an extensive
analysis of the different types of DFA applied to the AES cipher is presented and some
of the solutions proposed to detect flaws are presented. In this work, some of the DFAs
reported in the literature on the AES cipher are considered, considering single bit, single
byte and multiple byte fault types. However, the analysis of attack types by fault insertion
is not considered, as well as the comparison between fault coverage and occupied area
of the physical implementations. The comparison between the most relevant solutions
against attacks is not presented, considering only a few solutions. A comparison of cost
versus security of countermeasures against fault attacks is presented in [20]. In this work,
different solutions based on the use of redundant spaces for fault detection are analysed.



Appl. Sci. 2022, 12, 2443 3 of 20

However, the comparison of fault types, attack techniques, DFAs and fault coverage
analysis versus delay and area is not carried out. Finally, an analysis of countermeasures
applied on the AES cipher from the software point of view is carried out in [21]. Different
solutions and their comparisons are presented, but it should be considered that they are not
comparable to those studied in this work because they do not deal with attacks on physical
implementations or hardware countermeasures.

The rest of the paper is organized as follows. Section 2 presents a study of the different
FIA techniques through which it is possible to achieve the requirements needed to be able
to apply the DFA on the AES. Section 3 presents in summary form a description of the
AES cipher, a classification of the types of faults useful for DFAs is presented, and the
vulnerabilities of the AES cipher against DFAs are described in detail. Section 4 presents
the different countermeasures considered, performing a classification of all of them, and
making a comparison between implementation costs and fault coverage. Section 5 presents
a comparison between the different protection schemes and the current state of the art
according to the security level. Section 6 presents a discussion from the point of view of
security and resource trade-offs. Finally, Section 7 presents the conclusions.

2. Fault Injection Attack Techniques

In the context of crypto circuit vulnerability analysis, FIAs are the existing techniques
on which DFAs are based to achieve the fault injections and faulty outputs necessary to
recover the secret key. In order to perform these attacks, sometimes extensive knowledge of
the device and the cryptographic system is required. Once the device has been manipulated,
the output of the device must be different from the correct output. Additionally, the
effectiveness of the attack depends on the fault model applied. The fault model is a
representation of how the fault affects the behaviour of the device, making a hypothesis of
how many bits have been modified and what is the impact of the modification on them.
The most important fault injection techniques are briefly described below.

As a general example of attacks on hardware implementations, Figure 1 can be found.
In this figure, two main blocks can be distinguished, the physical attacks on the physical
implementations and the analysis of the behaviour of the circuits after the attacks. The first
one consists of carrying out attacks on ASIC or FPGA implementations and comparing the
behaviour with the correct operation performed on hardware or software. On the other
hand, there is the analysis of the results obtained after the application of the FIAs, where,
depending on the DFA used, one type of fault or another is exploited in order to recover
the secret key by means of cryptanalysis.

Figure 1. General representation of attack using FIA and DFA.

– Temperature: Since chip manufacturers define the temperature range at which their
device can work properly, taking the chip to its limits can intentionally cause faults
within it. By setting the temperature of the chip to a value where write options
work, but reads do not, or conversely, several attacks can be mounted. Depending
on the vulnerability of the components to temperature, different types of fault can be
achieved. Generally, the attacker does not have precise control over the type of faults
that will be generated [22,23].

– White light: All electrical circuits are sensitive to light due to photoelectric effects.
The current induced by photons can be used to induce faults if a circuit is exposed to
intense light for a short period of time. This can be used as an inexpensive method of
fault induction [24].
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– Laser beam: A laser can reproduce a wide variety of faults. The effect produced is
similar to white light, but the advantage of a laser over white light is the directionality
that allows it to accurately target a small area of the circuit. On the other hand, they
can also cause widespread faults. The works presented in [24,25] are examples of
these attacks.

– Electromagnetic Fault Injection: Induction of an electromagnetic field (EM) can cause
the malfunction of an encapsulated chip or change the contents of the memory. By
inducing Foucault currents on the surface of the chip, they can produce multiple
faults, including single bit faults [26].

– Power supply: An increase or decrease in the voltage supply to the chip above the
tolerance level of the devices (typically 10%), can cause faults in the combinational
operations or in the bits stored in the flip-flops. These faults can affect a part of the
circuit or cause widespread faults [27].

– Clock glitches: In synchronous circuits, it is possible to introduce faults by reducing
the time between two active edges of the clock signal. One or more flip-flops store
a value before it is stable at its input. This technique has the characteristic that, if
the time between two active edges is well controlled, then no generalized faults are
introduced in the circuit, but only in those flip-flops whose inputs cross the paths
with the greatest delay. This technique was used to obtain experimental results in the
work presented by Street and Lafayette [28], where these attacks are applied to RSA
and DES devices. Other works in which these techniques are used include [5,29–32].

– Combined approaches: These attacks include, as their name suggests, combinations
of several of the attacks described above. Physical attacks can be carried out simulta-
neously by altering the clock signal and the power supply voltage. In this way, it is
possible to achieve more advantageous scenarios for the injection of faults. It is also
possible to combine two or more attacks using, for example, power consumption and
electromagnetic emanations simultaneously [33,34].

The difference between this wide variety of attack types lies in the cost of their
implementation and the necessary granularity of the attack, i.e., the range of fault types that
can be achieved by the attacker. Attacks that allow the maximum fault insertion capacity
(single-bit or set of bit faults desired in any part of the circuit) will be the costliest and,
therefore, determine the most powerful attacker. The described attacks and their most
important characteristics are summarized in Table 1.

Table 1. Fault Injection Techniques Classification.

Attack Type References Fault Level Requirements Fault Control

Temperature [22,23] byte Control of the temperature limits Low

White light [24] byte Strip of the circuit and layout knowledge Medium

Laser beam [24,25] bit Strip of the circuit and layout knowledge High

Electromagnetic fault injection [26] bit Knowledge of the circuit Medium

Power supply [27] byte Fine control of the power supply Low

Clock Glitches [5,29–32] bit Clock cycle control and good signal generator Medium

Combined approaches [33,34] bit Combination of the previous ones High

Each of these methods has its requirements and necessary control from the attacker.
For example, by using a laser it is possible to inject single-bit faults, but it is also necessary
to perform a circuit stripping and carry out a study to know its routing and component
placement (and thus high level of knowledge and equipment is required). On the other
hand, an attack performed by means of clock glitches does not require the manipulation
of the circuit (requiring almost no knowledge of the circuit layout and very low cost of
equipment), but it will not be possible to inject faults with the same precision as with a laser
attack. Therefore, in this last example, the attacker will be less powerful when it comes to
achieving the theoretical requirements to perform a DFA successfully.
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3. Dfa on AES

Differential fault analysis is one of the most widely used techniques in the field of
cryptanalysis [3]. This technique consists of assuming the fault injection into a crypto-
graphic circuit, using any of the previously described FIAs, and comparing its faulty output
with the one obtained when it works correctly. The comparison between the correct and
faulty results obtained during the encryption or decryption process makes it possible to
recover the secret information from the device. This analysis, performed on different block
functions or cipher rounds, makes it possible to recover the secret key of the attacked cipher.
In order to accurately analyze AES DFAs, the AES cipher and the types of faults that can
occur during its operation are briefly described below.

3.1. Aes Block Cipher

The AES cipher is the NIST standard, using the Rijndael algorithm [4] with 128 bit
input blocks. Depending on the key size (128, 192, or 256 bits) AES performs the input
transformation over multiple rounds (10, 12, or 14, respectively).

The round process consists of processing the (16 byte) input state S through the
operations SubBytes(), ShiftRows(), MixColums() and AddRoundKey(), as illustrated in
Figure 2 for a 128 bit key.

Figure 2. Schematic representation of AES.

In the case of the 128-bit AES cipher, the cipher operates with 128-bit data matrixes,
both for the key and for the plaintext. The 128 bits of data in each matrix are divided into
16 blocks of 8 bits. This encryption algorithm can be divided into two blocks, state transfor-
mation block and key expansion block. The first block applies different transformations to
the state divided into 10 rounds. First, the state is loaded with the plaintext values, and
then the AddRoundKey() function is applied to it along with the first key value. Then, each
of the intermediate functions of the algorithm is applied to the state, transforming it in each
round, obtaining at the end of the rounds the ciphertext.

On the other hand, there is the key expansion. This block is used to generate the
intermediate keys used in each round. Each of the keys in each round is obtained from the
previous expanded key. Thus, in each round, the state will be mixed with a different key.

AddRoundKey()—Performs the XOR operation between the state matrix and the
expanded key of each round. SubBytes()—In this function the transformation of the state
matrix with the Sbox8 of the AES byte by byte is applied. ShiftRows()—This function
rotates each row of the state matrix. MixColumns()—Multiplies the internal state by a fixed
data matrix defined by the algorithm.



Appl. Sci. 2022, 12, 2443 6 of 20

3.2. Type of Faults

The types of faults that are considered in the theoretical models of DFA that can be
achieved experimentally are briefly described below and listed in Table 2. These faults
have been classified according to the requirements of the theoretical models of the DFA.
For example, it is necessary to differentiate between faults inserted in multiple bits because
they can occur in the same byte in an odd or even number, or on the contrary, they can
occur between different bytes in an odd or even number. In the case D, the injection of a
single-byte is one that considers the change of a whole byte, not considering the reset of all
its values. In case F, the faults considered are those that are randomly produced, i.e., those
that can be of any type without any control over them or their repetitiveness.

The type of fault denoted as A can be considered the most difficult to achieve due
to the complexity of changing the value to a single bit of the cipher state, for example,
between the operations during encryption process, at a given clock cycle and which must
be repeated in different attacks for the same cipher input. On the contrary, the fault denoted
as F can be considered the simplest to achieve, since, being a random fault, it can occur at
any clock cycle and location.

Table 2. Type of Possible Faults Classification.

Type of Fault Description

A Single Bit Fault
B.1 Multiple Bits in the same Byte (odd)
B.2 Multiple Bits in the same Byte (even)
C.1 Multiple Bits in different Bytes (odd)
C.2 Multiple Bits in different Bytes (even)
D Single Byte Fault
E Multiple Byte Faults
F Random Faults

Thus, the attacker capable of obtaining faults of any type is considered the most
powerful. On the other hand, the attacker who is only able to inject one type of fault
or faults of type F will be the one who has less power when it comes to achieving the
theoretical scenarios and obtaining information about the circuit, since his control over the
generation of faults is minimal.

When considering the fault injection into the AES cipher, depending on where the
fault occurs (the state matrix, or on the S-box(), or KeySchedule() operation) the capacity of
the attacker varies notably, since the successful insertion of faults will depend on the type
of implementation of the AES cipher used. For example, in the case of an attack targeting
the KeySchedule() generated and stored in advance, it will be difficult to inject faults inside
it. On the other hand, on a rolled implementation of the AES cipher, performing a single
round each clock cycle forces the attacker to optimize the fault injection in order to make
them occur herein on specific clock cycle. Note that, in order to study and compare the
total coverage of each of the countermeasures, we will consider that the attacker is capable
of achieving any type of fault in any scenario.

3.3. Aes Vulnerabilities

The use of differential fault analysis on the AES cipher [5–17] has shown its vulnera-
bility to this type of analysis. The vulnerabilities found can be classified according to the
block or function where the attack is carried out (state matrix, S-box() or KeySchedule()),
the type of fault injected (single fault, multiple fault, etc.), or the round on which the attack
must be carried out. Table 3 presents a classification of the different types of cryptanalysis
reported in the literature where the DFA on the AES cipher is carried out.
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Table 3. DFA on AES Classification.

Reference
Attack on Attack on Attack on Type of Attack in

State S-Box KeySchedule Attack Round

[6] 4 8 4 S.Bit|S.Byte 8 and 9

[7] 4 ∼ 8
M.Bit (Same

Byte) 7, 8 and 9

[8] 4 4 8 S.Byte 8

[9] 4 ∼ 8 S.Byte 9

[10] 8 8 4 S.Byte 8 and 9

[11] 8 8 4 S.Byte 8

[12] 4 8 4 S.Byte 7, 8 and 9

[13] 8 8 4 M.Byte 9

[14] 8 8 4 M.Byte 9

[15] 8 8 4 M.Byte 9

[16] 4 8 8 S.Byte|M.Byte 8

[17] 4 8 8 S.Byte|M.Byte 8
4 = Applicable. 8 = Not applicable. ∼ = Maybe applicable. S.Bit and M.Bit = Single Bit and Multi Bit, respectively.
S.Byte and M.Byte = Single Byte and Multi Byte, respectively.

In the case of a single fault injection into the state matrix, the AES cipher has vulnera-
bilities if this fault is inserted before the S-box() operation of the ninth round [6]. In this
case, only 50 faulty ciphertext are needed to recover the key. This vulnerability was experi-
mentally shown by inserting glitches in the cipher clock signal [5]. In this case, the attacker
must be able to repeat the fault in three different positions within the same byte using the
same plaintext. For faults inserted in the seventh or eighth rounds, the attacker must be
able to inject faults in different positions within the same byte of the state matrix, being
their positions known or not [7]. It is also possible to attack the MixColumn() operation in
the seventh, eighth, and ninth rounds. For the attack made on the MixColumn() operation
in the eighth round, 20 pairs of correct/faulty ciphertext are necessary. For the attack on
the MixColumn() operation in the ninth round, 40 to 50 different pairs of correct/faulty
ciphertext are needed [7].

In the scenario where an attacker is able to change a whole byte [6,8–12,16,17], the
vulnerability of the cipher is extended to the three attack points presented in Table 3. When
injecting a full byte, the attacker can recover the key preforming the attack during the
generation of the state matrix, or the S-box() process, or the KeySchedule(). These attacks
can be carried out from round 7 onwards [6,8,10–12,16,17]. In the case of [9] the attack
is carried out on round 9, but the authors claim that their attack could be adapted and
implemented in previous rounds.

On the other hand, if the attack scenario considered includes the injection of multiple
bytes, it can only be exploited in the state matrix and in the KeySchedule(), as this vulner-
ability cannot be exploited in the S-box() process [13–17]. These works suggest that this
attack can be deployed in the eighth and ninth rounds of the cipher when targeting the
state matrix, but only possible in the eighth round when targeting the KeySchedule().

4. Countermeasures against DFA

In order to protect the cryptographic system against the attacks, there are different
techniques and schemes that allow detecting if the circuit is being attacked by fault injection.
It should be noted that in this paper, we will focus on fault detection schemes and not on
correction schemes because in the literature most of the protection solutions are only fault
detection oriented. Additionally, fault correction has a higher resource consumption and
is out of our scope. These techniques are basically divided into three groups: hardware
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redundancy, temporal redundancy, information redundancy, or a combination between
them. The following describes each type of protection.

1. The hardware redundancy [35,36] countermeasure consists of duplicating the circuit
to be protected or part of it in order to compare the result obtained after encryption
or decryption to check if there is a difference. Figure 3 depicts the representation
of two examples of hardware redundancy. Figure 3a the complete redundancy of
the cryptographic circuit, while Figure 3b depicts an example of partial redundancy.
This type of countermeasure is the most direct and simplest, but at the same time,
it is the one with the highest resource cost. Given that in the AES cipher, the main
vulnerability, regarding fault injection, is based on the propagation of faults in the
last rounds, the protection against this type of countermeasures would consist of
distorting this propagation. To do this, it is possible to use two redundant state
matrixes and exchange their values with the aim of both distorting and detecting a
possible fault [35]. Another protection solution using redundant logic is to duplicate
vulnerable operations such as S-boxes. A scheme of this type allows to execute the
same function on multiple data at the same time, i.e., duplicating the S-boxes for the
same data and verifying the correct operation in an iterative way [36].

Cryptographic
Device

Cryptographic
Device
Copy

In

Out Error Detection

a)

Function 1

Function 2

Function n

Function 2 Copy

Error Detection

In

Out

Cryptographic
Device

b)

Figure 3. Representation of hardware redundancy, (a) Full redundancy, (b) partial redundancy.

2. The temporal redundancy [37–39] countermeasure is based on repeating operations of
the cipher in a reverse way or by duplication, thus being able to check the result of an
operation with its previous value or the one obtained from the second run. Figure 4
depicts two examples of temporal redundancy. Figure 4a) depicts the encryption and
decryption, allowing to compare the result, after decryption, with the input value.
In the case of Figure 4b), the reverse operation belonging to the decoding of a single
function is repeated. This type of countermeasure takes advantage of the fact that
most cryptographic circuits implement both encryption and decryption. While having
a low resource cost, it significantly increases the time required since it needs to operate
twice as long to perform the inverse operations for the verification. On the other hand,
depending on the level of security and redundancy, protection can be achieved with
greater or lesser resource consumption.
In [37], the use of pipeline architectures that use both edges of the clock signal is
proposed in order to reduce the throughput degradation when duplicating the cipher
function. A solution called recomputing with permuted operands (REPO) is presented
in [38]. This approach consists of the duplicate computation of two inputs and the
permutation between them to perform a new computation and check if the result is
the same or if any faults have been introduced. In [39], a solution is presented where
the result of each round is stored in a register and is used to repeat the round. In
addition, using the multiplexed keys of KeySchedule() allows to perform the rounds
alternately and compare the results in search for faults.
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Cryptographic

Device

Encrypt

Cryptographic

Device

Decrypt

In

Out

Error Detection

a)

Function 1

Function 2

Function n

Function 2

Error Detection

In

Out

Cryptographic

Device

b)

Register

-1

Encrypt

Decrypt

Figure 4. Representation of temporal redundancy, (a) Total redundancy, (b) partial redundancy.

3. The information redundancy [40–52] countermeasures consists of adding information
to the state of the ciphers before the intermediate operations. This information allows
to detect if the state was tampered during the process. It is possible, for example, to
detect whether faults have been injected during state transformation processes using
a parity predictor and a parity checker. A representation of an example of information
redundancy can be seen in Figure 5. In this case, it has been chosen to add a parity bit
to the state matrix and compare this parity after performing the encryption operation.
The main advantage of this type of approach is the low resource overhead. Depending
on the type of added information, the cost can be very small. However, the main
advantage of this type of countermeasure is the difficulty of relating the parity before
and after the encryption operations, since these are non linear. However, different
types of faults will not be detected, depending on the number of bits used for fault
detection. For example, the use of a single parity bit can detect odd state changes, but
if the injected fault changes an even number of bits, it will not detect it.
When this type of solution is applied to the AES cipher, it is necessary to take into
account whether the nonlinear S-box() function is implemented through the use
of Lookup Tables (LUTs) or not. For example, if the solution needs to access the
intermediate result of the reverse multiplication of the S-box(), the scheme cannot
be applied if the S-box() is implemented in a memory since there is no access to that
intermediate result. On the contrary, if the scheme involves adding a parity bit in
memory, as a signature of the input data, this scheme cannot be applied if the S-box()
implementations are not implemented with memories.
Taking this into account, there are numerous options available by applying this type
of scheme to the AES cipher. An option is to calculate the parity of input data of the
S-box() and add it to the memory in order to compare the parity at the input and
output of the S-box() [41,42]. The same approach is also applicable if the differential
result between the input and output data of the (S-box()) is added as a memory
output instead of computing the parity [44]. It is possible to detect fault injection by
validating the operation Sboxinput ⊕ Sboxoutput = Di f f .
In [45] a Hamming code signature generator targeting an AES cipher based on
T-boxes() is presented. It generates a signature of the data before and after the opera-
tions of the T-boxes(). This allows to determine if any fault has been introduced in the
S-box() and MixColumn() operations. This approach is applicable to both encryption
and decryption and is capable of protecting the state matrix and S-box(), and also is
applicable to KeySchedule().
In addition to the parity prediction added to the S-box(), it is also possible to add
backup and multiplexing elements composed of an additional S-box() that allows
reconfiguration of a possible injected fault. This allows to drive the data by the correct
line in online mode [47]. On the other hand, depending on the type of parity predictor
and the types of considered faults covered, different solutions with different resource
consumption can be obtained, such as [40,52]. These works attacks both at bit and byte
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level, being applicable to the KeySchedule(). In [48,51], the authors present different
approaches in which the S-box() is implemented in composite fields and faults can be
detected as data transformations result in odd faults being changed to even faults.

Error Detection

In

Out

Parity 

computation

State

State + 

Parity bit A

Cryptographic

Device

Encrypt

State + 

Parity bit B

Parity 

checker

Figure 5. Representation of information redundancy.

Another possible approach is to divide the detection logic between linear and non-
linear layers [49]. In the first case, a simple linear code can be used, while in the
second case, by computing the inverse operation, the necessary fault detection can
be provided. In addition, since the S-boxes are based on the computation of the
multiplicative inverse, it is possible to compute the least significant bits of the inverse
product as proof of the accuracy of the result. The number of computed bits can be
adjusted according to the desired cost/protection ratio. This scheme requires the
intermediate result of the inverse multiplication and cannot be applied to memory-
based S-box() implementations as the intermediate result is not accessible. To solve
this problem, it is possible to develop a new mathematical formulation for the S-
box() that considers both the inverse multiplication and the affine transformation and
therefore does not matter the way in which the S-box() is implemented [43].
On the other hand, it is possible to develop a fault detection scheme based on a
nonlinear (n, k)− code and a robust cubic network [50]. In this solution, the length of
the signature used to verify the data is configurable, so that it is possible to achieve the
desired coverage/cost ratio, depending on the number of bits used for the signature.
A solution based on the use of polynomial residue number systems (PRNS) is pre-
sented in [52]. In PRNS, irreducible polynomials over GF(24) are used and error
detection is achieved by applying redundant modules. Due to the independence
between PRNS operations, the cipher has intrinsic resistance to attacks, being able to
detect up to 4-bit errors that may occur in a single GF(24) AES core.

4. A combination of techniques [53,54] can be used to mitigate the limitations that
each one of them presents individually. Figure 6 depicts the combination between
hardware redundancy with the use of a parity bit. The combination of different
countermeasures depends on the balance between resource consumption and security.
Depending on the targeted protection level, different schemes can be obtained. Three
types of protection can be designed, being these at the algorithm level, at the round
level, or at the operation level. The first consists of performing the complete process
of encryption and decryption, the second compares the result of encryption and
decryption for each round and the third performs the comparison after each operation
of each round [53].
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Figure 6. Representation of combined redundancy.

Another possible approach is the combination of hardware and temporal redundancy,
i.e., each encryption or decryption operation is duplicated and performed one after the
other in each round. Each round is divided into two, one half being used for encryption
and the other for decryption, in an alternate mode, thus allowing the check to be carried out.
This type of approach doubles the number of cycles required to encrypt the information,
but is able to balance it since it is able to operate at a higher frequency [54].

Table 4 lists the different protection proposals and their classification. This table shows
the block or function where each countermeasure offers protection (state matrix, S-box() or
KeySchedule()), type of fault injection that is able to detect, and, finally, the fault coverage
against the type of fault considered. Note that only proposals that have been implemented
and tested experimentally are listed, leaving out those that are only described theoretically
without test data or implementation costs. Without their data, it is not possible to make a
comparison. For example, in the case of [40], the proposed information redundancy can
protect against the injection of any type of fault in the state matrix or in the S-boxes, but
does not protect the KeySchedule(), with a fault coverage of 80.47%. On the other hand, in
the case of [37], the proposed temporal redundancy can protect against D and E type faults,
that is, single-byte faults or multi-byte faults and has a 99.82% of fault coverage. However,
it leaves the circuit unprotected against other types of faults.

Table 4. Countermeasure classification.

Reference Type of Protects the Protects the Protects the Type of Fault Fault
Countermeasure State S-Box KeySchedule Detection Coverage (%)

[35] HW Red. 4 8 ∼ All 100
[36] HW Red. 8 4 8 All 98.22
[37] Temp. Red. 4 4 8 D and E 99.82
[38] Temp. Red. 4 4 4 All 99.99
[39] Temp. Red. 4 4 8 A 100
[40] Info. Red. 4 4 8 All 80.47
[41] Info. Red. 4 4 8 B.1 and C.1 75.6
[42] Info. Red. 4 4 8 B.1, C.1 and F 88
[43] Info. Red. 4 4 8 All 77.48
[44] Info. Red. 4 4 8 All 91∼98
[45] Info. Red. 4 4 4 All 100
[46] Info. Red. 8 4 4 A, B.1 and C.1 99.12
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Table 4. Cont.

Reference Type of Protects the Protects the Protects the Type of Fault Fault
Countermeasure State S-Box KeySchedule Detection Coverage (%)

[47] Info. Red. 8 4 8
A, B.1, C.1

and F 97

[48] Info. Red. 4 4 8 All 90
[49] Info. Red. 4 4 8 All 100

[50] Info. Red. 8 4 8
A, B.1, B.2, C.1

and C.2 97

[51] Info. Red. 8 4 8
A, B.1, B.2, C.1

and C.2 93.75

[52] Info. Red. 4 4 4 D and E 99.93
[53] Combined 4 4 8 All 100
[54] Combined 4 8 8 All 100

4 = Applicable. 8 = Not applicable. ∼ = Maybe applicable.

The fault coverage data in Table 4 correspond to those provided by the authors of
the countermeasures. It should be noted that in some cases the authors do not give exact
values and claim that their countermeasure is able to protect against one type of fault or
another completely. In the case of Table 5, the fault coverage data have been obtained by
applying Equation (1).

Table 5. Implementation cost, performance and fault coverage corrected of each scheme.

Type of
Scheme Technology

Area Frequency Throughput Fault Coverage

Countermeasure Overhead Degradation Degradation Corrected (%)

None Original - 1 1 1 0

HW red.
[35] Virtex 5 1.8655 1 1 100

[36] 0.35 µm 1.3573 0.6364 0.6363 98.22

Temp. red.

[37] 0.13 µm 1.36 NA NA 24.96

[38].1 Virtex 4 1.159 0.966 0.4838 99.99

[38].2 Virtex 4 1.131 0.904 0.4546 99.99

[39].1 Virtex 4 1.043 0.85 0.85 12.5

[39].2 Virtex 4 1.0758 0.8342 0.8342 12.5

[40] Virtex 5 1.1566 0.739 0.7389 80.47

[41] Virtex 1000 1.0781 0.7088 0.7088 18.9

[42] NA 1 1.731 0.6451 0.6449 33

[43] Virtex 4 1.167 0.886 0.4649 77.48

[44].1 Virtex 5 1.2538 0.8847 0.8848 98.22

[44].2 Virtex 5 1.2039 0.868 0.8638 91.14

[45] Spartan 6 1.16 1 1 100

[46] NA 1.44 NA NA 37.17

Info. red.
[47] NA 1.4 NA NA 48.5

[48] NA 1.35 NA NA 90

[49] XCV1000E 1.77 0.8653 0.87 100

[50].1 Virtex II PRO 1.3145 0.9778 0.9778 60.63

[50].2 Virtex II PRO 1.2845 0.9354 0.9354 60.63

[50].3 Virtex II PRO 1.2406 0.9654 0.9654 60.63

[51].1 Spartan 3 1.8102 1.0016 1.0016 58.59

[51].2 Spartan 3 1.5844 0.8308 0.8308 58.59

[52] 0.18 µm 1.18 0.65 0.74 24.98
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Table 5. Cont.

Type of Scheme Technology Area Frequency Throughput Fault Coverage
Countermeasure Overhead Degradation Degradation Corrected (%)

[53].1 Virtex 6 1.2097 0.7765 0.3825 100
[53].2 Virtex 6 1.189 0.8012 0.7344 100
[53].3 Virtex 6 1.3808 0.7818 0.7644 100

Combined [54].1 90 nm 1.2433 2.801 1.3337 100
[54].2 90 nm 0.8542 1.5325 0.2702 100
[54].3 90 nm 0.7857 1.5947 0.2406 100

1 NA = Not Applicable.

5. Comparison between Different Protection Solutions

Table 5 depicts the cost of each solution analyzed in Section 5. The table considers
the different alternatives presented for the same approach, considered technology, area
overhead, frequency degradation, throughput degradation, and percentage of Fault Cov-
erage Corrected (FCC). Note that the FFC is a metric used in this paper to compare the
approaches with each other. This factor is explained in detail in the next section. The cases
where an NA is used are those in which the authors do not provide information on a given
characteristic.

5.1. Fault Coverage-Corrected

Since each approach has a different fault coverage and considers the protection against
different types of DFA, it is necessary to create this factor in order to compare them. The
FCC is obtained after assigning a correction factor value to each countermeasure according
to the types of covered faults. This aspect is very important since there are countermeasures
where the authors consider only one type of fault and do not take into account that there are
DFA analyses that use other types of fault and that also allow the recovery of the secret key.
Not considering all types of faults, even if some of them are complex to achieve, can lead to
a security leak and offer incorrect fault coverage. Due to the different DFAs, we assume
eight different types of faults (Table 2). Given that we consider eight different types of faults
and considering that all of them are equally important because, depending on the DFA
used, they allow recovering the secret key, all of them have been assigned the same weight
and the correction factor is 12.5%. The value of each fault coverage corrected is obtained
by (1), where FCC is Fault Coverage Corrected, TFC is Type of Fault Considered and FC is
Fault Coverage. TFC represents the number of fault types that the countermeasure is able
to detect and this value is multiplied by the weight of each fault type, that is, 12.5%. FC
represents the percentage of fault coverage offered by the countermeasure considered.

FCC = TFC ∗ 0.125 ∗ FC (1)

For example, the solutions that have been designed and tested considering all types
of DFA faults have been assigned a correction factor of 100% and therefore their fault
coverage value corresponds to those presented in Table 4. On the other hand, if we consider
the countermeasure [37] and Table 4, it can be seen that this countermeasure can protect
against two types of fault, type D and E and its percentage of coverage is 99.82%. Therefore,
considering (1), the FCC = 2 × 0.125 × 99.82 = 24.96%. Despite having 99.82% coverage
against E and D in Table 4, it does not offer any protection against the other types of faults
and therefore its FCC in Table 5 is 24.96%.

5.2. Protection Solution Comparison

Hardware redundancy—[35,36]: In the first case [35], the fault coverage is 100% and
the resource consumption in terms of area is 86%. If the frequency and throughput is
considered, this solution does not have any penalty. In the second case [36], the fault
coverage is 98.22% and the resource consumption in terms of area is 35%. In this case,
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the scheme presents a 37% penalty for the frequency and throughput. In both cases,
neither of them offers protection for the KeySchedule(), and this, depending on the cipher
implementation, can be a point of vulnerability if the attacks presented in [6,10–15] are used.

Temporal redundancy—[37–39]: As seen in Table 5, in [38,39] two implementation
versions of this approach are proposed, herein denoted by .1 and .2, respectively. In [38],
pipeline and iterative architectures of the protection solution are presented. In [39], two
different pipeline architectures of the cipher with this protection approach are proposed.
In [37] the area consumption is 36%, while in the cases of [38] are 15.9% and 13.1% and in the
cases of [39] are 4.3% and 7.58%, respectively. If the frequency degradation is considered,
no data are available in [37] but in [38,39] they reach a penalty of up to 10% and 16.58%,
respectively. Only [38] presents a higher degradation if the throughput is considered,
reaching a 54.54% penalty. Despite this penalty, it can be seen that only the countermeasure
of [38] offers a level of protection greater than 99%, while [37,39], by covering only a few
types of fault, their coverage drops drastically to 24.96% and 12.5%. Therefore, of these
three, the most interesting is [38] since it is able to protect all blocks of the cipher, with a
high level of coverage, and its trade-off between resource consumption and frequency is
very close to that of the unprotected cipher but with a strong throughput penalty.

In f ormation redundancy—[40–52]: These solutions present very different area consump-
tions due to the great variety of possible designs of the parity checker. In [40,41,43], data
item .2 in the table [44], and [45,51] the area consumption to implement the protection does
not exceed 20%. When they are analyzed, it can be seen that both the operating frequency
and the throughput decrease significantly, reaching 35% less, except for the case of [45]
where the frequency does not have a penalty. In the case of [40,41,43] it can be seen that
their fault coverage is below 85%, reaching 18.9% in the case of [41], since it only detects
odd-type faults. On the other hand, the solution presented in [45] is capable of offering a
coverage of up to 100% of all types of faults considered without presenting any frequency
or throughput penalty, with only a 16% cost in area. As seen in Table 4, this solution is able
to protect the state matrix, the S-box() and the KeySchedule().

Combination o f techniques—[53,54]: For these proposals, the authors present three
different solutions for each countermeasure. In [53], three solutions are presented one at
the algorithm level, another at the round level and another one at the operation level. In
the case of [54], results are presented for implementations optimized for size, speed and
efficiency of throughput per gate. As seen in Table 5, in [53] the area overhead ranges
from 18% to 38%, being the round protection the one with less frequency degradation. If
throughput is taken into account, it can be seen that the protection at the algorithm level
shows a degradation of 62% with respect to the unprotected implementation, with the other
two options being similar in terms of frequency and throughput. Considering that the
three options present the same level of security, the protection at round level would be the
most interesting, since the balance between resource consumption and operating frequency
is the most efficient one. In the case of the solution presented in [54], the data presented
should not be taken into account, since the authors implement them with optimizations.
This means that the data from the protection schemes together with the cipher are lower
than the unprotected cipher itself. However, these implementations are considered because
they represent a good example of a combination of protection solutions.

5.3. Overall Comparison

The trade-offs and relative comparison for each of the presented solutions are depicted
in Figures 7 and 8. Figure 7 trade-off is considered between the degradation of the operating
frequency versus the cost in terms of area. Figure 8 presents the trade-off between the
F.C.C. and the Area-Delay-Product (ADP). The reference identified in both figures as [0]
corresponds to the unprotected AES cipher and is used as a reference point. The green,
yellow and red stripes in Figure 8 denote the ranges of highest to lowest level of protection,
respectively, considering the fault coverage.
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Figure 7. Frequency degradation VS Area overhead of each countermeasure.

In the analysis of frequency overhead vs. area cost (Figure 7) it is necessary to note
that the solutions in Refs. [37,46–48] by not presenting data on frequency degradation, they
appear at the bottom. These data have been included in that figure because, although it is
not possible to analyze them together with other solutions, it allows us to visualize the cost
in area with respect to other countermeasures. For the analysis of fault coverage against
the Area-Delay-Product (Figure 8) these solutions do not appear, since it is not possible to
determine this factor.

Figure 8. Fault Coverage vs. Area and Frequency overhead.

According to Figure 7 and focusing on the area consumption, it can be seen that the
highest consumption countermeasures are those located above 30%, including hardware
redundancy [35,36], with [35] presenting the highest resource consumption. A second
group of countermeasures between 10% and 30% is where most solutions are located.
Finally, the solutions in [39,41] that are below 10%. Regarding the operating frequency after
adding the countermeasures, it can be seen that all are between 60% and 100%.

Of these, the ones that offer the best performance, with 99.99% or 100% fault coverage,
are [35,38,45,49,53]. Both [35,45] offer the same operating frequency as the unprotected
cipher, but with different implementation costs. In general, among all the countermeasures,
the best trade-offs in terms of area and frequency are [38,45].
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Taking into account the values depicted in Figure 8, it can be seen that the counter-
measures studied can be divided mainly into three groups. On the one hand, there are the
countermeasures that offer a high level of security, between 90% and 100% fault coverage.
Between 50% and 90% are the solutions that offer an intermediate level of security. Finally,
there is the group of countermeasures with a low level of security, less than 50%. The
countermeasures that are below 90%, medium and low level of protection, are due to the
penalty that they suffer by not offering protection against all types of considered possible
faults. For example, in the previous analysis it was possible to see how [39,41] were the best
proposals in term of costs, but in this analysis they fall significantly below 20% since they
only consider one or two types of faults. Among the different proposals, in this case, it can
be seen that the best options are [38,45] because they offer 100% coverage and their ADP
is less than 30%. By analysing [38,45] in Figure 7, it can be seen that they present a very
efficient trade-off, where the solution presented in [45] has an area cost bellow 20% and no
frequency degradation. On the other hand, the [38] solutions present a small penalty in
terms of frequency, but their area resources in the case of data item .2 in the table [38] is
even lower than [45].

6. Discussion

The following discusses the considerations that must be taken into account when se-
lecting the most adequate type of countermeasure solution and the targeted fault coverage.

Taking into account Table 3, DFA analyses focus on attacking three different points,
the state matrix, the S-box() or the KeySchedule(). This is very important since many
countermeasures do not protect these three points at the same time, possibly leading to
DFA vulnerabilities. For example, in the analysis presented in Section 6, the solutions
in [35,49] are able to offer 100% fault coverage, but they are not able to protect the S-box()
in the case of [35] and the KeySchedule() in the case of [49]. It should be noted that,
depending on the selected protection solution, the cipher remains equally vulnerable to
attack. Therefore, if complete protection is desired, only the options [38,45] are useful. In
case there is no need for a KeySchedule() protection because it is generated and stored
before performing all the rounds of the cipher, refs. [37,39–44,48,49,53] would also be useful.

Figure 8 can be used to guide the selection of the approach to use. For example, if the
restrictions are very high and the fault coverage must be moderate, the proposals [43,50]
may be enough. On the other hand, if the application does not have a high level of time
or area restrictions, but, on the contrary, needs a maximum level of protection, valid
options may be [35,44,54]. Furthermore, depending on the type of implementation that
is performed, it may be possible to assume a lower level of protection. For example, if
the application uses rolled implementations instead of unrolled ones, it becomes difficult
to insert faults between operations of the rounds, since everything is done in the same
clock cycle.

Regarding the trade-off between each type of countermeasure, on the one hand,
hardware redundancy countermeasures are those that can offer the highest level of security
at a higher cost of resources. As a consequence, these solutions must be oriented to
environments where designs require a high level of security, but where resource limitations
are not a strong constraint. On the other hand, temporal redundancy countermeasures
allow for an improvement in the cost of resources compared to hardware redundancy, but
on the contrary, they will have a high cost in operation frequency. In the case of information
redundancy countermeasures, they have the great advantage of not presenting a high cost
of resources and operating frequency, but on the other hand, the difficulty in determining
parity in non-linear functions brings with it an increase in resources and execution time.
Furthermore, depending on the solution, they will not be able to detect even-type faults.
On the other hand, the use of information redundancy allows to determine faults inside the
operations, such as S-boxes(), but if the fault is injected in the transition values (between
the different functions), the countermeasures will not be able to detect them. Therefore, one
of the most interesting alternatives is the use of combined countermeasures that allow us
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to find a trade-off between the advantages of each one of the types of countermeasures and
to minimize the disadvantages that each one of them presents by itself.

From the designer point of view, access to the codes or designs that allow the imple-
mentation of the schemes is another problem to take into account. Most of the solutions
reported in the literature are described theoretically. For example, information redundancy
countermeasures can be very complex from the mathematical point of view that they
require, making it very difficult to implement in order to prove their viability in different
environments or applications.

7. Conclusions and Future Works

In this paper, a comprehensive study of the fault injection, DFA and protection solu-
tions for the AES cipher is presented. It shows that there are a large number of vulnerabili-
ties reported in the literature for the AES cipher when attacked by active attacks called fault
injection. At the same time, there are a large number of proposed protection solutions that
try to detect possible faults injected into the circuit. The three groups of protection schemes
involving fault injection protections have been studied, which are hardware redundancy,
temporal redundancy, information redundancy, or a combination of them. Each has differ-
ent advantages and disadvantages. Herein, a complete study of the main characteristics
of the protection approaches has been carried out, considering area overhead, frequency
degradation, throughput degradation, and fault coverage. In order to be able to compare
all of them, a metric called Fault Coverage Corrected (FCC) was introduced to recalculate
the fault coverage according to the types of faults they are able to detect. As a result of
this review, it has been possible to compare the most important protections, comparing
the trade-off between area consumption versus frequency degradation and the trade-off
between fault coverage and area delay product. This has allowed to group the different
protection solutions that can be used depending on the level of security and constraints.

As future work, different directions are proposed. The need to improve the transfer be-
tween theoretical studies and the availability of open access implementations. Adequately
test the design of countermeasures that consider protection against all possible faults used
by DFA in different technologies. Finally, it should not be left out that all countermeasures
used must be tested equally against Side Channel Attacks such as Differential Power Anal-
ysis or Correlation Power Analysis. The use of countermeasures against fault injection can
increase the leakage of information useful for this type of analysis since the greater the
data redundancy, the greater the leakage of information. Therefore, a joint countermeasure
analysis must be a priority element if maximum protection of this type of ciphers will
be achieved.
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DFA Differential Fault Analysis
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FIA Fault Injection Attack
NIST National Institute of Standards and Technology
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LUT Lookup Tables
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FCC Fault coverage corrected
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