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HIGHLIGHTS 

1. Squalene has anti-inflammatory activities on LPS-mediated inflammatory response. 

2. Squalene targets pro-inflammatory mediators such as TLR4, iNOS, COX-2 or MPO. 

3. Squalene enhanced expression of anti-inflammatory enzymes (HO-1). 

4. Squalene modulated Nrf2, NF-κB, MAPKs, MMPs and PPARγ signalling pathways. 

5. Squalene prevents the over activation of neutrophils/monocytes/macrophages. 
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ABSTRACT 

Squalene is a natural triterpene consumed as an integral part of the human diet. 

Increasing evidence demonstrates that squalene has antioxidant, cardioprotective and 

anti-carcinogenic activities. Nevertheless, its anti-inflammatory properties remain 

unclear. The effects of squalene on lipopolysaccharide (LPS)-mediated inflammatory 

response in murine macrophages and human monocytes and neutrophils were 

investigated. Squalene reduced intracellular levels of ROS, nitrites, cytokines (TNF-α, 

IL-1β, IL-6 and IFN-γ) and pro-inflammatory enzymes (iNOS, COX-2 and MPO), 

including a decreased expression of TLR4 and key proteins for signalling pathways 

mediated by NF-κB (IκBα), MAPKs (JNK) and MMPs (1, 3 and 9). In addition, 

squalene enhanced expression levels of anti-inflammatory enzymes (HO-1) and 

transcription factors (Nrf2 and PPARγ). This study establishes that squalene has 

significant potential for management of inflammatory conditions characterized by an 

over-activation of neutrophils/monocytes/macrophages and thereby for the efficient 

termination of the inflammatory response. 
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1. Introduction 

Squalene (2,6,10,15,19,23-hexamethyl tetracosahexaene) is a natural lipid belonging to 

the terpenoid family, containing six isoprene units, and a biochemical precursor of 

cholesterol biosynthesis and other biological substances. Besides, to be synthesized in 

the liver and the skin of human, squalene is widely present in nature, especially in wheat 

germ, rice bran, shark liver and olive oils. Therefore, it is consumed as an integral part 

of the human diet. Up to date, anticancer, antioxidant, drug carrier, detoxifier, skin 

hydrating and emollient activities of squalene have been reported both in animal models 

and in vitro environments (Kim & Karadeniz, 2012; Reddy & Couvreur, 2009). In fact, 

squalene is a highly effective antioxidant acting as a direct reactive oxygen species 

(ROS) scavenging agent reducing intracellular oxidant stress and also protects human 

skin surfaces from lipid peroxidation as a quencher of singlet oxygen (Kabuto, 

Yamanushi, Janjua, Takayama, & Mankura, 2013). Moreover, this natural isoprenoid 

has been shown to ameliorate atherosclerotic lesions through the reduction of CD36 

scavenger receptor expression in macrophages (Granados-Principal et al., 2012), in 

addition to important cardioprotective effects in several experimental models mainly by 

blocking lipid peroxidation (Lou-Bonafonte, Arnal, Navarro, & Osada, 2012; Sabeena 

Farvin et al., 2004). However, although the importance as a powerful antioxidant agent 

of squalene has been largely described (Kim & Karadeniz, 2012), its anti-inflammatory 

properties still remain unclear.  

Monocytes and macrophages are closely related to phagocytic cells that cooperate 

during the onset, progression and resolution of inflammation (Soehnlein & Lindbom, 

2010). Pro-inflammatory, metabolic and immune stimuli increase recruitment of 

monocytes from blood vessels to peripheral sites where the differentiation into 

macrophages and dendritic cells occurs contributing to host defence, tissue remodelling 
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and repair (Gordon & Taylor, 2005; Shi & Pamer, 2011). Furthermore, neutrophils, as a 

key component of the inflammatory response, generate chemotactic signals that attract 

monocytes and dendritic cells, and influence whether macrophages differentiate to a 

predominantly pro- or anti-inflammatory state (Nathan, 2006). In these cell types, 

lipopolysaccharide (LPS) acts as an endotoxin by its binding to the CD14/TLR4/MD2 

receptor complex, which promotes the secretion of pro-inflammatory cytokines such as 

tumour necrosis factor alpha (TNF-α), interleukin (IL)-8, IL-6 or interferon gamma 

(IFN)-γ among others (Chanput, Mes, Vreeburg, Savelkoul, & Wichers, 2010). 

Moreover, some transcription factors such as the peroxisome proliferator-activated 

receptor gamma (PPARγ), nuclear transcription factor (NF)-kB, nuclear factor-E2-

related factor-2 (Nrf2) or mitogen-activated protein kinase (MAPK) family (Jung et al., 

2010; Kang & Kim, 2013) have been shown to be major effectors in the LPS-induced 

inflammatory response through the induction of several pro-inflammatory enzymes 

including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX)-2 

(Takahashi, Kozaki, Yatabe, Achiwa, & Hida, 2002) or antioxidant enzymes, such as 

heme oxygenase 1 (HO-1) (Alexander, Mathie, & Peters, 2011). Importantly, matrix 

metalloproteinases (MMPs) regulate aspects of immune cell development, effector 

function, migration and ligand–receptor interactions and activate signal transduction 

pathways that control cytokine biosynthesis and direct systemic inflammation or barrier 

immunity. For this reason, the stimulation with LPS constitutes an excellent model for 

the screening and subsequent evaluation of the effects of candidate drugs on the 

inflammatory pathway (Sanchez Miranda, Perez Ramos, Fresan Orozco, Zavala 

Sanchez, & Perez Gutierrez, 2013). 

Therefore, we investigated the anti-inflammatory activity of squalene on LPS-

stimulated murine peritoneal macrophages and human blood monocytes and 
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neutrophils. In this model, redox changes, myeloperoxidase (MPO) activity, pro-

inflammatory (IL-1β, IL-6, TNF-α and IFN-γ) and anti-inflammatory (IL-10) cytokines 

production, gene/protein expression of pro-inflammatory (iNOS and COX-2) and anti-

inflammatory (HO-1) enzymes were measured. NF-kB, Nrf2, MAPKs, MMPs (MMP-1, 

MMP-3 and MMP-9) and PPARγ signalling pathways were also explored to understand 

the underlying mechanisms by which squalene may prevent inflammation. 

 

2. Materials and methods 

2.1. Murine peritoneal macrophage isolation  

Thirty 8–10 weeks-old male Swiss mice (Harlan Interfauna Ibérica, Barcelone, Spain) 

weighing 20-30 g were injected intraperitoneally with 1 ml of sterile thioglycollate 

medium (10 g w/v) (Scharlau, Barcelone, Spain). After 3 days, murine peritoneal 

macrophages were isolated as described previously (Cardeno, Sanchez-Hidalgo, 

Aparicio-Soto, & Alarcon-de-la-Lastra, 2014). Cells were treated with 5 µg/ml LPS 

from E. coli (Sigma-Aldrich, Madrid, Spain) in presence or absence of squalene (12.5, 

25 and 50 µM) for 18 h. All animal care and experimental procedures complied with the 

Guidelines of the European Union regarding animal experimentation (Directive of the 

European Counsel 86/609/EC), followed a protocol observed by the Animal Ethics 

Committee of the University of Seville and reported in accordance with the ARRIVE 

guidelines for reporting experiments involving animals.  

2.2. Human monocyte and neutrophil isolation 

Study subjects were recruited at Virgen del Rocio University Hospital, Seville, Spain. 

Venous blood were obtained from healthy adult volunteers (<35 years old) non-smokers 

and not taking any medication. Donors were recognised as healthy, according to 

medical history and routine laboratory test. Neutrophils were isolated by dextran 
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sedimentation (2% dextran/0.9% NaCl) coupled to differential centrifugation over 

Histopaque 1077 (Sigma-Aldrich, Madrid, Spain). Residual erythrocytes were removed 

using hypotonic lysis with 0.2% and 1.6% saline solutions. The purity of neutrophils 

preparation was >97% by trypan blue exclusion. Peripheral blood mononuclear cells 

(PBMCs) were isolated by centrifugation over Ficoll Histopaque (Sigma-Aldrich, 

Madrid, Spain) gradient and monocytes isolated from PBMCs using positive selection 

with CD14 MicroBeads according to the manufacturer’s instructions (MACS, Myltenyi 

Biotec, Madrid, Spain). Monocytes were tested for purity by CD14 fluorescein 

isothiocyanate labeling and fluorescence-activated cell sorter analysis using a 

FACScanto II flow cytometer and FACSDiva software (BD) (Varela et al., 2011). 

Following isolation, the cells were suspended in a RPMI 1640 medium supplemented 

with L-glutamine, penicillin, streptomycin and 1% heat-inactivated fetal bovine serum. 

Neutrophils were seeded at a density of 3x106 cells/ml and monocytes at 5x105 cells/ml. 

Cells were treated with 0.1 µg/ml LPS in presence or absence of squalene (50 µM) for 

18 h. The study conformed to the principles outlined in the Helsinki Declaration of the 

World Medical Association. 

2.3. Reagents 

Squalene was purchased by Sigma-Aldrich and was always freshly prepared as stock 

solutions in dimethyl sulphoxide (DMSO) (Panreac, Barcelona, Spain) and diluted to 

desired concentration in the culture medium. The assayed concentrations of squalene in 

murine macrophages were 12.5, 25 and 50 µM.  Squalene concentration in human 

monocytes and neutrophils (50 µM) was selected based on the previous result obtained 

in murine macrophages. The final concentration of DMSO in the culture medium was 

≤1% in all experiments and it had not significantly influence cell response (data not 

shown).  
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2.4. Cell viability 

Cells seeded in 96-well plates (1x105 cells/well) were incubated in presence or absence 

of different squalene concentrations for 18 h. At the end of the exposure time, the effect 

on cell growth/viability was analysed by sulphorhodamine B (SRB) (Sigma-Aldrich) 

assay (Skehan et al., 1990). Cell survival was measured as the percentage of absorbance 

compared with that obtained in control cells (non-treated cells). 

2.5. Measurement of intracellular ROS 

Intracellular ROS production was measured using 2',7'-dichlorfluorescein-diacetate 

(DCFH-DA) (Sigma-Aldrich, St Louis, MO, USA). DCFH-DA penetrates into the cells 

and is hydrolysed by intracellular esterases to the non-fluorescent 2,7-

dichlorofluorescein (DCFH), which can be rapidly oxidized to the highly fluorescent 

2,7-dichlorofluorescein (DCF) in the presence of ROS. Peritoneal macrophages were 

seeded at 1x106 cells/well in 24-well plates, incubated with or without squalene and 

after 30 min treated with LPS for 18 h. The fluorescence intensity was measured as 

described previously (Cardeno et al., 2014). Results were expressed as intracellular 

ROS production percentage compared with LPS control cells (stimulated LPS-treated 

cells). H2O2 (100 µM) (30% pure) (Panreac, Barcelona, Spain) was used as pro-oxidant 

positive control. 

2.6. Measurement of nitrite production 

Peritoneal macrophages in 24-well plates were incubated in presence or absence of 

squalene (12.5, 25 or 50 µM), and 30 min later treated with LPS for 18 h. The culture 

supernatants (100 µl) were transferred to a 96-well assay plate mixed with Griess 

reagent (Sigma, St Louis, MO, USA). The amount of nitrite, as an index of NO 

generation, was determined by a spectrophotometric method using the Griess reaction 

(Moorcroft, Davis, & Compton, 2001) and obtained by extrapolation from a standard 
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curve with sodium nitrite. The absorbance at 540 nm was measured by an enzyme-

linked immunosorbent assay reader (BioTek, Bad Friedrichshall, Germany). Results 

were expressed as the nitrite production percentage compared with LPS control cells 

(stimulated untreated cells). Dexamethasone 1 µM (Sigma-Aldrich) was used as a 

positive control (data not shown). 

2.7. Isolation and immunoblotting detection of cytoplasmic and nuclear proteins 

Peritoneal macrophages (1×106 cell/ml) were incubated in presence or absence of 

squalene and treated with LPS for 18 h. Then, cells were rinsed, scraped off and 

collected in ice-cold PBS containing a cocktail of protease and phosphatase inhibitors 

and processed as described (Sanchez-Hidalgo, Martin, Villegas, & Alarcon De La 

Lastra, 2005) in order to isolate cytoplasmic or nuclear proteins. Protein concentration 

was measured for each sample using a protein assay reagent (BioRad, Hercules, CA, 

USA) according to the Bradford´s method and using γ-globulin as a standard (Bradford, 

1976). Aliquots of supernatant contains equal amount of protein (20 µg) were separated 

on 10% acrylamide gel by sodium dodecyl sulphate polyacrylamide gel electrophoresis. 

In the next step, the proteins were electrophoretically transferred into a nitrocellulose 

membrane and incubated with specific primary antibodies: rabbit anti-COX-2 and rabbit 

anti-iNOS (Cayman, Ann Arbor, MI, USA) (1:2500 and 1:1000, respectively), rabbit 

anti-inhibitory NF-κB protein alpha (IκBα) (Cell Signalling, Danvers, MA, USA) 

(1:1000), rabbit anti-p65, mouse anti-phosphorylated c-Jun N-terminal kinases (JNK), 

rabbit anti-JNK, mouse anti-phosphorylated p38, rabbit anti-p38 (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) (1:1000) and rabbit anti-Nrf2 (Santa Cruz 

Biotechnology) (1:500), overnight at 4ºC. After rinsing, the membranes were incubated 

with a horseradish peroxidase-labelled (HRP) secondary antibody anti-rabbit (Cayman 

Chemical, Ann Arbor, MI, USA) (1:50000) or anti-mouse (Dako, Atlanta, GA, USA) 
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(1:2000) containing blocking solution for 1-2 h at room temperature. To prove equal 

loading, the blots were analysed for β-actin expression using an anti-β-actin antibody 

(Sigma-Aldrich). Immunodetection was performed using enhanced chemiluminescence 

light-detecting kit (Pierce, Rockford, IL, USA). The signals were captured using LAS-

3000 Imaging System from Fujifilm Image Reader (Stamford, CT, USA) and 

densitometry data were studied following normalization to the housekeeping loading 

control. The signals were analysed and quantified by an Image Processing and Analysis 

in Java (Image J, Softonic) and expressed in relation to the LPS-treated cells. 

2.8. RNA isolation and quantitative real-time PCR analysis 

Total RNA was extracted from human neutrophils and monocytes by using Trisure 

Reagent (Bioline, London, UK), as instructed by the manufacturer. RNA quality was 

assessed by A260/A280 ratio in a NanoDrop ND-1000 Spectrophotometer (Thermo 

Scientific, Wilmington DE, USA). RNA (1 µg) was subjected to reverse transcription 

according to the manufacturers’ protocol (iScript cDNA synthesis kit, BioRad). An 

amount of 20 ng of the resulting cDNA was used as a template for real-time PCR 

amplifications. The mRNA levels for specific genes were determined by real-time PCR 

in a MX3000P system (Stratagene, Madrid, Spain). For each PCR reaction, cDNA 

template was added to Brilliant SYBR green QPCR Supermix (BioRad) containing the 

primer pairs for either gene or for glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) and hypoxanthine phosphoribosyltransferase (HPRT) as housekeeping genes. 

The sequence and information for the primers used in this study are in Supporting 

Information Table 1S. All amplification reactions were performed in triplicate and 

average threshold cycle (Ct) numbers of the triplicates were used to calculate the 

relative mRNA expression of candidate genes. The magnitude of change of mRNA 

expression for candidate genes was calculated by using the standard 2-(ΔΔCt) method. All 
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data were normalized to endogenous reference (GAPDH and HPRT) gene content and 

expressed as percentage of controls.  

2.9. Statistical evaluation 

All values in the figures and text are expressed as arithmetic means ± standard error 

(S.E.M). Experiments were carried out in triplicate. Data were evaluated with Graph 

Pad Prism Version 5.01 software (San Diego, CA, USA). The statistical significance of 

any difference in each parameter among the groups was evaluated by one-way analysis 

of variance (ANOVA); using Tukey multiple comparisons test as post hoc test. P values 

of <0.05 were considered statistically significant. In the experiments involving 

densitometry, the figures shown are representative of at least three different experiments 

performed on different days. 

 
3. Results 

3.1. Effect of squalene on cell viability of murine peritoneal macrophages and 

human monocytes and neutrophils 

After 18 h of treatment, squalene at concentrations up to 50 µM had no significant 

effect on viability of murine peritoneal macrophages (by means of SRB assay) and 

human monocytes or neutrophils (by means of Trypan Blue exclusion test) (data not 

shown). 

3.2. Squalene functions as antioxidant in LPS-treated murine peritoneal 

macrophages 

ROS are suggested to be signalling messengers in LPS-mediated inflammatory response 

(Brune et al., 2013). Thus, we tested the effects of squalene on LPS-induced 

intracellular ROS production in murine peritoneal macrophages using the fluorescent 

probe DCFH-DA, which can be oxidized to the highly fluorescent compound DCF. As 
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shown in Fig. 1A, cells incubated with 50 µM of squalene for 18 h caused a significant 

decrease (P < 0.05 vs. LPS-control) in intracellular ROS.  

To deep insight into the intracellular mechanisms for squalene antioxidant activity, we 

investigated the protein expression of Nrf2, which is a key transcription factor that 

regulates the cellular antioxidant response (Jaiswal, 2004). As shown in Fig. 1B, LPS 

induced a reduction of Nrf2 protein expression in murine peritoneal macrophages; 

however, the incubation with 50 µM of squalene for 18 h caused a significant increase 

of Nrf2 protein expression in LPS-treated cells (P < 0.01 vs. LPS-control), reaching a 

level comparable with that of untreated cells. 

3.3. Squalene counteracts nitrite production and suppresses iNOS and COX-2 

protein expression in LPS-treated murine peritoneal macrophages 

It is known that LPS may induce NO synthesis and release in murine macrophages 

(Gordon & Taylor, 2005). Our study demonstrated a marked increase of nitrites as an 

indicator of NO production in the medium of LPS-treated murine peritoneal 

macrophages; however, this effect was almost abrogated by squalene (P < 0.001 vs. 

LPS-control, Fig. 1C). Accordingly, the incubation with 25 and 50 µM of squalene for 

18 h elicited a significant reduction of iNOS protein expression in LPS-treated cells (P 

< 0.05 and P < 0.01 vs. LPS-control, respectively; Fig. 1D). We also investigated the 

potential effect of squalene on COX-2. As shown in Fig. 1D, LPS induced an increase 

of COX-2 protein expression in murine peritoneal macrophages; however, the 

incubation with 25 and 50 µM of squalene for 18 h caused a significant reduction of 

COX-2 protein expression in LPS-treated cells (P < 0.05 and P < 0.01 vs. LPS-control, 

respectively) with a very similar pattern to that observed for iNOS protein expression. 

3.4. Squalene modulates MAPK and NF-κB signalling pathways in LPS-treated 

murine peritoneal macrophages 



13 
 

The expression of many inflammatory mediators such as iNOS and COX-2 is known to 

be mediated by MAPKs (Kaminska, 2005). Therefore, to further explore the molecular 

mechanism underlying the ability of squalene to minimize pro-inflammatory signals, we 

next investigated whether squalene can target the activity of MAPK pathways. As 

shown in Fig. 2A, LPS induced an increase of phosphorylated JNK and p38 MAPK 

expression in murine peritoneal macrophages; however, the incubation with 25 and 50 

µM of squalene for 18 h caused a significant decrease of only phosphorylated JNK (P < 

0.05 vs. LPS-control) but not p38 MAPK expression in LPS-treated cells, reaching a 

level comparable with that of untreated cells. Besides, NF-κB is one of the key 

regulators of the cellular responses to oxidative stress in mammalian cells (Helenius, 

Kyrylenko, Vehviläinen, & Salminen, 2001). Analogously to MAPKs, the NF-κB 

transcriptional system is a major effector pathway involved in inflammation and its 

activation may be mediated by LPS (Andreakos et al., 2004). As shown in Fig. 2B, LPS 

induced a decrease of the inhibitory protein IκBα in the cytoplasm but an increase of 

p65 NF-κB protein in the nucleus of murine peritoneal macrophages; however, the 

incubation with 25 and 50 µM of squalene for 18 h caused a significant increase of IκBα 

(P < 0.05 vs. LPS-control), but a significant decrease of p65 in LPS-treated cells (P < 

0.05 vs. LPS-control), reaching levels comparable with those of untreated cells. 

Squalene also reduced mRNA levels of NF-κB downstream genes such as TNF-α (-

78.5%, P < 0.001) and IL-1β (-88.1%, P < 0.001) in LPS-treated cells. 

3.5. Squalene down-regulates MPO and up-regulates HO-1 gene expression in 

LPS-treated human monocytes and neutrophils 

MPO is a human protein stored in the azurophilic granules of neutrophils and in the 

lysosomes of monocytes (de Araujo et al., 2013). MPO is released upon LPS-activation 

to catalyse the formation of a powerful oxidant such as hypochlorous acid, which is a 
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reactive chlorine species that accumulates at sites of chronic inflammation (M. Liu et 

al., 2014). As shown in Fig. 3A, the mRNA level of MPO was down-regulated in LPS-

treated human monocytes and neutrophils after the incubation with 50 µM of squalene 

for 18 h (P < 0.001 vs. LPS-control). On the contrary, the anti-inflammatory gene HO-1 

was up-regulated by squalene both in LPS-treated human monocytes and in LPS-treated 

human neutrophils (P < 0.05 and P < 0.001 vs. LPS-control, respectively; Fig. 3B). 

3.6. Squalene down-regulates gene expression of TLR4 and pro-inflammatory 

cytokines in LPS-treated human monocytes and neutrophils 

The stimulation of TLR4 by LPS induces the release of critical pro-inflammatory and 

immunoregulatory cytokines that are crucial to potently activate the innate immune 

response (Chang, Kim, & Chang, 2014). Our study shows a down-regulation of TLR4 

gene expression in LPS-treated human leukocytes, but more markedly in monocytes 

after the incubation with 50 µM of squalene for 18 h (P < 0.001 vs. LPS-control, Fig. 

4A). The expression of the pro-inflammatory cytokine genes TNF-α and IL-1β but not 

IL-6 or IL-10 was significantly reduced by squalene (50 µM, 18 h) in LPS-treated 

human monocytes (P < 0.001 and P <0.01, respectively vs. LPS-control; Fig. 4B). 

Moreover, the expression of cytokine genes TNF-α, IL-1β, IL-6 and IFN-γ was 

significantly reduced by squalene (50 µM, 18 h) in LPS-treated human neutrophils (P < 

0.01, P < 0.001, P < 0.01, P < 0.001 vs. LPS-control, respectively; Fig. 4B). 

3.7. Squalene down-regulates overexpressed iNOS and COX-2 enzymes in LPS-

treated human monocytes and neutrophils 

We also investigated the influence of squalene on gene expression of enzymes related to 

LPS-induced inflammatory response in human monocytes and neutrophils. As shown in 

Fig. 5, the incubation with 50 µM of squalene for 18 h caused a marked down-

regulation of iNOS and COX-2 gene expression in LPS-treated human monocytes (P < 
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0.001 vs. LPS-control), whereas only iNOS (P < 0.001 vs. LPS-control) but not COX-2 

gene expression was significantly down-regulated in LPS-treated human neutrophils. 

3.8. Squalene down-regulates MMPs and up-regulates PPARγ gene expression in 

LPS-treated human monocytes and neutrophils 

MMPs regulate aspects of immune cell development, effector function, migration and 

ligand–receptor interactions, which are all relevant for persistent inflammatory response 

(Khokha, Murthy, & Weiss, 2013). Therefore, we investigated the influence of squalene 

on gene expression of three major MMPs (MMP-1, MMP-3 and MMP-9). As PPARγ 

agonists have been shown to inhibit LPS-mediated MMPs and pro-inflammatory 

cytokines (Renga et al., 2011; Wang et al., 2011), our study also undertook to explore 

whether squalene can affect PPARγ gene expression in LPS-treated cells. As shown in 

Fig. 6A, the incubation with 50 µM of squalene for 18 h caused a significant down-

regulation of MMP-1 and MMP-9 gene expression in LPS-treated human monocytes (P 

< 0.001 and P < 0.01 vs. LPS-control, respectively), and of MMP-1 and MMP-3 gene 

expression in LPS-treated human neutrophils (P < 0.001 vs. LPS-control). These 

findings were also supported by a significant up-regulation of PPARγ gene expression 

in LPS-treated human monocytes and neutrophils after the incubation with 50 µM of 

squalene for 18 h (P < 0.001 vs. LPS-control, Fig. 6B). 
 
4. Discussion 

Herein, we elucidate for first time the underlying mechanisms by which the natural 

isoprenoid squalene exhibits antioxidant and anti-inflammatory effects on LPS-

activated murine peritoneal macrophages, human monocytes and neutrophils. 

Macrophages play a central role in inflammatory response controlling key events in the 

initiation and resolution processes. LPS-stimulated macrophages have disrupted the 

balance of the intracellular reduction-oxidation state, which is usually accompanied by a 
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ROS-mediated damage that mediates the progression of inflammatory disorders (Kang 

& Lee, 2012). Therefore, modulators of ROS production and ROS-induced signalling 

pathways could represent potential targets for anti-inflammatory intervention (K. J. 

Kim, Yoon, & Lee, 2012). Our study demonstrated that squalene has the capacity to 

inhibit ROS intracellular generation and to activate Nrf2 signalling by the increase of 

total Nrf2 protein expression (Gjyshi et al. 2014); Nrf2 is a master regulator of cellular 

antioxidant processes against ROS that has a cytoprotective role against acute 

inflammatory response (Jung et al., 2010). Activated macrophages are also known to 

stimulate the expression of a number of inflammatory mediators that include iNOS and 

COX-2 (Epelman, Lavine, & Randolph, 2014). NO acts as an intracellular messenger in 

modulating the formation of endogenous ROS such as hydrogen peroxide and 

peroxynitrite that orchestrate inflammatory responses (Li, Xue, Geng, & Chen, 2012). 

Moreover, COX-2 activity also leads to ROS production inducing tissue damage 

(O'Connor, Lapointe, Beck, & Buret, 2010). We found that LPS-mediated increase of 

iNOS and COX-2 activity was markedly attenuated by squalene in murine peritoneal 

macrophages. Collectively, these data suggest that squalene may dampen intracellular 

oxidant stress in response to inflammatory stimulus via blocking iNOS, COX-2 and 

Nrf2 signalling pathways. 

MAPKs are essential for both induction and propagation of LPS-mediated inflammatory 

response in macrophages (Radnai et al., 2009). MAPKs include extracellular signal-

regulated kinases (ERK-1 and -2), JNKs and p38 (Gurgis, Ziaziaris, & Munoz, 2014). 

Previous studies have recognized that JNK and p38 MAPK are primarily involved in 

LPS-induced expression of iNOS and COX-2 in macrophages (Kyriakis & Avruch, 

2012; Kwon et al. 2013). In the present study, we found that LPS-mediated 

phosphorylation of JNK, but not p38 MAPK, was markedly attenuated by squalene in 
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murine peritoneal macrophages. Taking NF-κB as a dimeric redox-sensitive 

transcription factor that is downstream of MAPKs signalling, binds to the promoter of a 

vast collection of inducible pro-inflammatory genes including iNOS and COX-2 (Lee & 

Surh, 2012; Tak & Firestein, 2001) and coordinates its activity with Nrf2 (Cardozo et 

al., 2013), we also analysed the effect of squalene on phosphorylation of IκB proteins. 

IκBs are a family of related proteins required for cytoplasmic sequestration of five NF-

κB member subunits [RelA/p65, RelB, c-Rel, NF-kB1 (p50/p105) and NF-kB2 

(p52/p100)] as an inactive complex in unstimulated cells; the major IκB protein is IκBα 

(Tak & Firestein, 2001). Consistently, our data show that squalene induced a reduction 

of IκBα phosphorylation and degradation, decreasing p65-NF-κB levels and gene 

expression of NF-κB target genes (TNF-α and IL-1β) in LPS-activated murine 

peritoneal macrophages. Therefore, squalene emerges as a potentially important 

molecule for modulating inflammatory processes involving JNK and NF-κB signalling 

pathways. 

Recent evidence suggests that the heme-enzyme MPO, whose expression remains 

restricted to neutrophils and monocytes, is a critical determinant for the course of 

inflammation (Liu et al., 2014; Nussbaum, Klinke, Adam, Baldus, & Sperandio, 2013). 

MPO catalyses via the MPO-hydrogen peroxide-halide system the production of highly 

reactive intermediates such as hypochlorous acid that interfere with various cell 

functions; MPO also has extracatalytic properties that contribute to injury in inflamed 

tissues. The present study demonstrates that LPS-mediated increase of MPO expression 

was markedly attenuated by squalene in human neutrophils and monocytes. This finding 

is in accordance with the above described antioxidant and anti-inflammatory effects of 

squalene in murine peritoneal macrophages. Consistent with this activity, squalene also 

induced HO-1 up-regulation in LPS-activated human neutrophils and monocytes. HO-1 
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is an Nrf2-regulated gene and its inducible expression has been described as a host 

defence mechanism that protects against oxidative stress and contributes to the anti-

inflammatory activity (Araujo, Zhang & Yin, 2012).  

Recognition of LPS by mainly TLR4 initiates several signalling cascades leading to the 

activation of NF-κB and MAPK pathways that mediate the expression of inflammatory 

cytokines and transactivation of pro-inflammatory enzymes such as iNOS and COX-2 

in cells of innate system (Chang et al., 2014; Murad, 2014). Our study shows that 

squalene abrogated gene expression of TLR4, TNF-α, IL-1β, IL-6, IFN-γ, iNOS and 

COX-2 in LPS-activated human neutrophils and monocytes. All of these effects are 

likely contributing to the idea of squalene as a disruptor of TLR mediated pro-

inflammatory responses in several types of inflammatory cells. 

MMPs, particularly LPS-induced interstitial collagenase-1 (MMP-1), stromelysin-1 

(MMP-3) and gelatinase B (MMP-9), have been reported to be involved in 

inflammation by degrading components of the extracellular matrix and regulating 

cytokine signalling through coupling with COX-2 and NF-κB/MAPK pathways (Lai, 

Zhou, Shankavaram, Peng, & Wahl, 2003; Nissinen & Kahari, 2014; Steenport et al., 

2009). Our results demonstrate that squalene repressed gene expression of MMP-1 and 

MMP-3 in LPS-activated human neutrophils but MMP-1 and MMP-9 in LPS-activated 

human monocytes, revealing another mechanism by which squalene can supress 

inflammation probably at the level of the transmigration, recruitment or influx of 

inflammatory cell subsets (Nissinen & Kahari, 2014). These findings are in accordance 

with the above-described effects of squalene on COX-2 gene expression in human 

monocytes, and COX-2 protein expression and NF-κB/MAPK pathways in murine 

peritoneal macrophages. We further demonstrate that squalene induced PPARγ up-

regulation in LPS-activated human neutrophils and monocytes. PPARγ is known to 
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modulate oxidative stress-sensitive and NF-κB pathways (Bordet, Gele, Duriez, & 

Fruchart, 2006), and plays a pivotal role in the dynamic balance among overall matrix 

synthesis, deposition and degradation by inhibiting MMP expression in inflamed tissues 

(Jeon et al., 2014). 

While the cardioprotective effects of squalene have been largely described and 

discussed (M. Liu et al., 2014; Y. Liu et al., 2009; Ostlund, Racette, & Stenson, 2002; 

Scolastici, Ong, & Moreno, 2004; Zhang, Yeung, Huang, & Chen, 2002) the hypothesis 

of squalene as anti-inflammatory compound remains almost unexplored. However, it 

has been recorded that the unsaponifiable fraction of virgin olive oil, which contains 

40% of squalene, has anti-inflammatory effects in vitro in murine macrophages 

(Cardeno et al., 2014) and prevented in vivo acute colitis in mice (Sanchez-Fidalgo et 

al., 2012). It is therefore important to investigate the possible beneficial effects of 

squalene as a non-synthetic anti-inflammatory dietary complement. Although, the major 

weakness of this study is that only in vitro effects of squalene in murine and human 

inflammatory cells were addressed, it does provide the first evidence that squalene has 

antioxidant and anti-inflammatory activities by mechanisms targeting pro-inflammatory 

(iNOS, COX-2, NF-κB, MAPKs, MPO, TLR4, MMPs) and anti-inflammatory (Nrf2, 

HO-1, PPARγ) mediators and pathways in closely related phagocytic cells that 

cooperate during the onset, progression and resolution of inflammation.  

5. Conclusion 

Taken together, our results suggest that squalene has significant potential for 

management of inflammatory conditions characterized by an over-activation of 

neutrophils/monocytes/macrophages and thereby for the efficient termination of the 

inflammatory response. 
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Figure Legends 

Fig. 1 - Squalene functions as antioxidant in LPS-treated murine peritoneal 

macrophages. Cells were incubated with squalene (SQ) (12.5, 25 or 50 µM) for 30 min 

and then treated with LPS for 18 h; U, untreated cells; C, LPS-treated control cells. (A) 

Intracellular ROS production. DCF fluorescence intensity values are expressed as 

percentage of LPS-control. H2O2 was used as pro-oxidant positive control. Data shown 

are means ± S.E.M. (n = 3). *P < 0.05 vs. LPS-control. (B) Densitometry analysis of 

Nrf2 protein expression. β-actin housekeeping protein was served for normalization. 

The plot represents band intensities measured by Image J software. Data shown are 

means ± SEM (n = 3). *P < 0.01 vs. LPS-control. (C) Nitrite generation. Values are 

expressed as percentage of LPS-control. ***P < 0.001 vs. LPS-control. (D) 

Densitometry analysis of iNOS and COX-2 protein expression. β-actin housekeeping 

protein was served for normalization. The plot represents band intensities measured by 

Image J software. Data shown are means ± SEM (n = 3). *P < 0.05 and **P < 0.01 vs. 

LPS-control. 

Fig. 2 - Squalene modulates MAPK and NF-κB signalling pathways in LPS-treated 

murine peritoneal macrophages. Cells were incubated with squalene (SQ) (12.5, 25 or 

50 µM) for 30 min and then treated with LPS for 18 h; U, untreated cells; C, LPS-

treated control cells. (A) Densitometry analysis of phosphorylated-JNK (pJNK) vs. JNK 

and of phosphorylated-p38 (pp38) vs. p38 protein expression. (B) Densitometry 

analysis of nuclear p65 and cytoplasmic IκBα protein expression. β-actin housekeeping 

protein was served for normalization. The plots represent band intensities measured by 

Image J software. Data shown are means ± SEM (n = 3). *P < 0.05 vs. LPS-control. 
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Fig. 3 - Squalene down-regulates MPO and up-regulates HO-1 gene expression in LPS-

treated human monocytes and neutrophils. Cells were treated with squalene (SQ) and 

LPS as indicated for 18 h. (A) qRT-PCR analysis of MPO mRNA expression. (B) qRT-

PCR analysis of HO-1 mRNA expression. GAPDH and HPRT housekeeping genes 

were served for normalization. Values are expressed as percentage of LPS-control. Data 

shown are means ± SEM (n = 3). *P < 0.05 and ***P < 0.001 vs. LPS-control. 

Fig. 4 - Squalene down-regulates gene expression of TLR4 and pro-inflammatory 

cytokines in LPS-treated human monocytes and neutrophils. Cells were treated with 

squalene (SQ) and LPS as indicated for 18 h. (A) qRT-PCR analysis of TLR4 mRNA 

expression. (B) qRT-PCR analysis of TNF-α, IL-1β, IL-6, IL-10 and IFN-γ mRNA 

expression. GAPDH and HPRT housekeeping genes were served for normalization. 

Values are expressed as percentage of LPS-control. Data shown are means ± SEM (n = 

3). **P < 0.01 and ***P < 0.001 vs. LPS-control. 

Fig. 5 - Squalene down-regulates gene expression of iNOS and COX-2 in LPS-treated 

human monocytes and neutrophils. Cells were treated with squalene (SQ) and LPS as 

indicated for 18 h and qRT-PCR analysis of iNOS and COX-2 mRNA expression was 

evaluated. GAPDH and HPRT housekeeping genes were served for normalization. 

Values are expressed as percentage of LPS-control. Data shown are means ± SEM (n = 

3). ***P < 0.001 vs. LPS-control. 

Fig. 6 - Squalene down-regulates MMPs and up-regulates PPARγ gene expression in 

LPS-treated human monocytes and neutrophils. Cells were treated with squalene (SQ) 

and LPS as indicated for 18 h. (A) qRT-PCR analysis of MMP-1, MMP-3 and MMP-9 

mRNA expression. (B) qRT-PCR analysis of PPARγ mRNA expression. GAPDH and 

HPRT housekeeping genes were served for normalization. Values are expressed as 
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percentage of LPS-control. Data shown are means ± SEM (n = 3). *P < 0.05 and ***P < 

0.001 vs. LPS-control. 



Table 1S. Sequences of RT-PCR primers for gene expression analysis 

 

Target 
GenBank 

accession number 
Direction Sequence (5’→3’) 

MPO NM_000250 
Forward 

Reverse 

CAGCCCAGATATACCCCTCA 

GACAACACAGGCATCACCAC 

HO NM_002133 
Forward 

Reverse 

AGCTCCTGCAACTCCTCAAA 

GGGTGATAGAAGAGGCCAAGA 

TLR4 NM_138554 
Forward 

Reverse 

CTGCCACATGTCAGGCCTTAT 

AATGCCCACCTGGAAGACTCT 

iNOS NM_000625 
Forward 

Reverse 

ACCCAGACTTACCCCTTTGG 

GCCTGGGGTCTAGGAGAGAC 

COX-2 NM_000963 
Forward 

Reverse 

TTCAAATGAGATTGTGGAAAAAT 

AGATCATCTCTGCCTGAGTATCTT 

IL-1beta NM_000576 
Forward 

Reverse 

GGGCCTCAAGGAAAAGAATC 

TTCTGCTTGAGAGGTGCTGA 

TNF-alpha NM_000594                                                                                                                                                                                                                                                                                                                                                                        
Forward 

Reverse 

TCCTTCAGACACCCTCAACC 

AGGCCCCAGTTTGAATTCTT 

IL-6 NM_000600 
Forward 

Reverse 

TACCCCCAGGAGAAGATTCC 

TTTTCTGCCAGTGCCTCTTT 

IL-10 NM_000572 
Forward 

Reverse 

GCCTAACATGCTTCGAGATC 

TGATGTCTGGGTCTTGGTTC 

IFN-

gamma 
NM_000619 

Forward 

Reverse 

CAGGCAGGACAACCATTACTGGGATGCTC 

TGAACTCATCCAAGTGATGGCTGAACTGTCG 

MMP-1 NM_ 001145938 
Forward 

Reverse 

CTGCTTGACCCTCAGAGACC 

ATGCTGAAACCCTGAAGGTG 

MMP3 NM_002422 
Forward 

Reverse 

GAGTGTCGGAGTCCAGCTTC 

GCAGTTTGCTCAGCCTATCC 

MMP9 NM_004994 
Forward 

Reverse 

CAGGGATCTCCCCTCCTTAG 

GTCTTGTGGAGGCTTTGAGC 

PPAR-

gamma 
NM_005037 

Forward 

Reverse 

GCTGTGCAGGAGATCACAGA 

GGGCTCCATAAAGTCACCAA 

Table 1S



GAPDH NM_001289746 
Forward 

Reverse 

CACATGGCCTCCAAGGAGTAAG 

CCAGCAGTGAGGGTCTCTCT 

HPRT NM_000194 
Forward 

Reverse 

ACCCCACGAAGTGTTGGATA 

AAGCAGATGGCCACAGAACT 
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