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Background: Proton-induced knockout reactions of the form (p,pN ) have experienced a renewed interest in
recent years due to the possibility of performing these measurements with rare isotopes, using inverse kinematics.
Several theoretical models are being used for the interpretation of these new data, such as the distorted-wave
impulse approximation (DWIA), the transition amplitude formulation of the Faddeev equations due to Alt, Grass-
berger, and Sandhas (FAGS) and, more recently, a coupled-channels method here referred to as transfer-to-the-
continuum (TC).
Purpose: Our goal is to compare the momentum distributions calculated with the DWIA and TC models for the
same reactions, using whenever possible the same inputs (e.g., distorting potential). A comparison with already
published results for the FAGS formalism is performed as well.
Method: We choose the 15C(p,pn)14C reaction at an incident energy of 420 MeV/u, which has been previously
studied with the FAGS formalism. The knocked-out neutron is assumed to be in a 2s single-particle orbital.
Longitudinal and transverse momentum distributions are calculated for different assumed separation energies.
Results: For all cases considered, we find a very good agreement between DWIA and TC results. The energy
dependence of the distorting optical potentials is found to affect in a modest way the shape and magnitude of
the momentum distributions. Moreover, when relativistic kinematics corrections are omitted, our calculations
reproduce remarkably well the FAGS result.
Conclusions: The results found in this work provide confidence on the consistency and accuracy of the DWIA
and TC models for analyzing momentum distributions for (p,pn) reactions at intermediate energies.
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I. INTRODUCTION

Thanks to the development of radioactive isotope beam
technology, experiments on unstable nuclei in inverse kinemat-
ics have been made possible. Among them, studies on single-
particle structure and its evolution in nuclei away from the sta-
bility valley is one of the main subjects of study in present day
nuclear physics. Knockout reactions induced by intermediate
energy protons have been one of the most successful tools for
studying the single-particle nature both of stable and unstable
nuclei. The distorted-wave impulse approximation (DWIA)
is one of the reaction models which has been successfully
applied to the analysis of these reactions [1–6] (for a recent
review, see Ref. [7]). Most DWIA applications have been done
for exclusive measurements and under quasifree scattering
conditions. It remains to assess the accuracy of the method for
more inclusive observables, such as total nucleon removal cross
sections and momentum distributions of the residual heavy
fragment. A recent step toward this goal is provided by the
eikonal DWIA formalism recently proposed in Ref. [8].

In recent years, the Alt-Grassberger-Sandhas formulation
of the Faddeev equations (FAGS) [9,10], which uses a
momentum-space representation of the scattering transition
amplitude, has been put forward as an alternative for the
analysis of these kinds of processes [11–14].
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Very recently, another reaction model, referred to as the
transfer-to-the-continuum (TC) framework, has been devel-
oped and applied to (p,pN ) reactions [15,16]. Since these three
formalisms are being used to analyze experimental data, it is
of timely importance to establish the consistency among them,
and understand the limitations and range of validity in each
case.

Within the same scope, it has been shown in [11,12] that one
can recover the DWIA formalism using a truncated Faddeev
multiple-scattering series. However, the DWIA so obtained
differs in some aspects from the one commonly used in actual
analyses of (p,pN ) data, since the latter usually involves
additional approximations.

It is therefore essential to make a comparison between these
models and, as a first step towards this goal, in this paper
we make a benchmark comparison between DWIA, TC, and
FAGS, for a given (p,pn) reaction using, whenever possible,
the same input ingredients in the calculations.

The content of the paper is as follows. In Sec. II the
formulation of the DWIA and the TC formalisms is given.
In Sec. III the longitudinal momentum distributions (LMDs)
of the 15C(p,pn)14C reaction with DWIA an TC are compared,
for different separation energies and studying the effect of the
energy dependence of the distorting potentials for the emitted
nucleons. A comparison with the FAGS transversal momentum
distributions (TMDs) published in Ref. [14] is also presented.
Finally, the summary is given in Sec. IV.
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II. FORMALISM

We consider A(p,pn)B knockout reaction in inverse kine-
matics. Observables shown below with superscript A are
evaluated in the so-called A-rest frame.

A. DWIA framework

In the DWIA formalism, the transition amplitude for a
A(p,pn)B reaction is given by

T
nljm
K 0 K 1 K 2

= 〈
χ

(−)
1,K 1

χ
(−)
2,K 2

∣∣ tpn

∣∣χ (+)
0,K 0

ϕnljm
〉
, (1)

where χ0, χ1, and χ2 are the scattering wave functions of the
p-A, p-B, and n-B systems, respectively, ϕnljm is the single-
particle wave function with n, l, j , and m being the principal
quantum number, the orbital angular momentum, the total
angular momentum, and its third component of n bound in
A, respectively. The transition interaction tpn is the effective
interaction between p-n pair which reproduces p-n binary
scattering.

By applying the so-called factorization approximation,
which has been reconfirmed to be valid in Ref. [17], Eq. (1) is
reduced to

T
nljm
K 0 K 1 K 2

≈ 〈κ ′ | tpn | κ〉
∫

d R F (R)ϕnljm(R), (2)

where F (R) is defined by

F (R) ≡ χ
∗(−)
1,K 1

(R) χ
∗(−)
2,K 2

(R) χ
(+)
0,K 0

(R) e−i K 0·R/A. (3)

The initial and final relative momenta of the p-n system are
defined by

κ ≡ (α0 K 0 − K n)/2, (4)

κ ′ ≡ (K 1 − K 2)/2 (5)

with α0 = (A + 1)/A. The momentum of n in the initial state
K n is evaluated from asymptotic momenta by assuming the
momentum conservation in the p-n system:

K n = K 1 + K 2 − α0 K 0. (6)

In the present study on-the-energy-shell (on-shell) approxima-
tion is adopted in taking the squared modulus of Eq. (2):

μ2
pn

(2πh̄2)2
|〈κ ′ | tpn | κ〉|2 ≈ dσpn

d�pn

(Epn,θpn), (7)

where μpn is the reduced mass of the p-n system, θpn is
the angle between κ ′ and κ , and the p-n scattering energy is
given by

Epn = h̄2(κ2 + κ ′2)/2

2μpn

. (8)

In the present DWIA, the momentum distribution (MD) is
given by

dσ

d K A
B

= C0

∫
d K A

1 d K A
2 ηA

Mφlδ
(
EA

f − EA
i

)
δ
(
K A

f − K A
i

)

× dσpn

d�pn

(Epn,θpn)
∑
m

(2π )2
∣∣T̄ nljm

K 0 K 1 K 2

∣∣2
, (9)

where

C0 ≡ EA
0

(h̄c)2KA
0

1

(2l + 1)

h̄4

(2π )3μ2
pn

, (10)

ηA
Mφl ≡ E1E2EB

EA
1 EA

2 EA
B

, (11)

and the reduced transition amplitude is given by

T̄
nljm
K 0 K 1 K 2

=
∫

d R F (R)ϕnljm(R). (12)

Longitudinal and transverse MD are obtained from MD as
follows:

dσ

dKA
Bz

= 2π

∫
dKA

BbK
A
Bb

dσ

d K A
B

, (13)

dσ

dKA
Bx

=
∫

dKA
BydKA

Bz

dσ

d K A
B

. (14)

B. Transfer to the continuum model

The transfer to the continuum formalism is based on the
prior representation of the transition matrix for the A(p,pn)B
process:

T
nljm

if = 〈


3b(−)
f

∣∣Vpn + VpB − UpA

∣∣χ (+)
0,K 0

ϕnljm
〉
, (15)

where ϕnljm and χ
(+)
0,K 0

are defined as above, Vpn and VpB are
the corresponding binary potentials,UpA is the optical potential
used to generate the distorted wave χ

(+)
0,K 0

, and 
3b(−)
f is the final

state wave function, which is formally treated as a three-body
wave function, under the approximation that the state of B is
not modified during the reaction.

In order to perform the calculation, 
3b(−)
f is expanded in

terms of p + n eigenstates, that is,


3b(−)
f (r,R) =

∑
j ′π

∫
dkφj ′π (k,r)χj ′π (K,R), (16)

where k is the relative wave number of the p + n pair and
K is the wave number for the relative motion between B and
the p + n pair and is related to k through energy conservation.
φj ′π (k,r) are the eigenstates for thep + nHamiltonian with the
interaction Vpn and wave number k, total angular momentum
j and parity π while χj ′π (K,R) describes the motion of the
p + n pair with respect to B for a wave number K, with the
p + n pair having total momentum j and parity π . Note that the
expansion (16) contains also the term with the bound deuteron.
This term is omitted here for brevity.

The k continuum is discretized using a binning procedure
in a similar way to continuum-discretized coupled-channel
calculations (CDCC),


3b(−)
f (r,R) ≈

∑
Nj ′π

φ
j ′π
N (kN,r)χj ′π

N (KN,R), (17)
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where kN is an average momentum of the bin, and φN are the
bin wave functions. As such, the transition matrix results in

Tif ≈
∑
Nj ′π

〈
φ

j ′π
N χ

j ′π
N

∣∣Vpn + VpB − UpA

∣∣χ (+)
0,K 0

ϕnljm
〉
. (18)

In order to make a more meaningful comparison with the
DWIA calculations, the terms VpB − UpA have been ignored,
in what is called the no-remnant approximation,

Tif ≈
∑
Nj ′π

〈
φ

j ′π
N χ

j ′π
N

∣∣Vpn

∣∣ χ (+)
0,K 0

ϕnljm
〉
. (19)

This transition amplitude is computed employing a calcula-
tion akin to a coupled-channel Born approximation (CCBA),
from which the angular differential cross section to each of the
bin states can be computed. A double differential cross section
on the outgoing angle of B and the internal energy of the p + n
pair can be obtained from the angular differential cross section
to each of the bins through

d2σj ′π

dεpnd�B

∣∣∣∣
εpn∈�N

≈ 1

�N

dσN,j ′π

d�B

, (20)

where �N is the energy width of the bin {N,j ′,π}. Through
energy conservation and the proper Jacobians, the longitudinal
and transverse momentum distributions of B can be obtained
from this double differential cross section.

From the practical point of view, an appealing feature of the
TC method is that the sum in Eqs. (17)–(19) converges with a
few values of j ′ (typically j < 4 at the intermediate energies
considered here). A limitation is however that the interactions
p+B and n+B are assumed to be energy independent. The
accuracy of this will be investigated in the next section by
comparing with the DWIA calculations.

The transfer to the continuum calculations have been per-
formed using a modified version of the code FRESCO [18].
Further details can be found in [15].

III. RESULTS AND DISCUSSION

In this section, we compare the calculations with the TC
and DWIA methods described in the preceding section. We
consider the reaction 15C(p,pn)14C, calculating the knockout
of a neutron in a 2s single-particle orbital and for three different
separation energies: Sn = 1.22 MeV (i.e., the physical value),
5 MeV and 18 MeV.

A. Numerical inputs

The single-particle wave function of the struck neutron,
ϕnljm, is obtained for a Woods-Saxon central potential V (R) =
V0/(1 + exp[(R − r0B

1/3)/a0]) with r0 = 1.25 fm and a0 =
0.65 fm. The depth parameter V0 is adjusted so as to give neu-
tron separation energies Sn = 1.22 MeV, 5 MeV, and 18 MeV.

For the nucleon-nucleon interaction, we employ the Reid93
potential [19], a generalized version of the pioneering Reid soft
core potential [20], developed by the Nijmegen group. This po-
tential contains central, spin-orbit and tensor components, and
reproduces accurately the proton-proton and proton-neutron
phase-shifts up to an energy of 350 MeV (χ2/Ndata = 1.03).

As for the distorting potential of p-A, p-B, and n-B systems,
we use the EDAD2 parameter set of the Dirac phenomenology

FIG. 1. (a) Longitudinal momentum distribution of the
15C(p,pn)14C reaction at 420 MeV/u. The struck neutron
is assumed to be in a 2s orbital with a separation energy of
1.22 MeV. The solid, dashed, and dotted lines show the results of
DWIA (energy-independent potentials), DWIA (energy-dependent
potentials), and TC, respectively. (b) Same as (a) but with all
distorting potentials switched off.

[21]. In the comparison with the FAGS calculations, the global
optical potential parameters of Koning and Delaroche [22] will
be also considered.

B. Comparison between TC and DWIA

In Fig. 1(a) we compare the longitudinal momentum distri-
bution calculated with the DWIA and TC reaction frameworks.
A separation energy of Sn = 1.22 MeV is assumed for the
removed neutron in 15C. For the nucleon-nucleus distorting
potentials we use the Dirac phenomenology [21]. For the
incident proton, this potential was evaluated at 420 MeV,
whereas for the outgoing nucleus the potential was evaluated
at 210 MeV. It is seen that the TC and DWIA results are in
excellent agreement, both in shape and magnitude. From this
comparison, we conclude that these reaction formalisms yield
fully consistent results at this energy.

In Fig. 1(b) the same comparison with (a) but without
all distorting potentials are shown. It should be noted that
the agreement in the plane wave limit is worth investigating
because a difference between DWIA and TC may appear, since
the distortion effects suppress the tail region of MD, as shown
in Fig. 1(a) and 1(b). As a result, the perfect agreement is found
in the plane wave limit as well.

Since the outgoing nucleons are expected to emerge with
a broad range of energies, using optical potentials fixed at
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FIG. 2. Same as in Fig. 1(a) but for Sn = 5 MeV.

half of the incident energy may not be a good approximation.
In DWIA, this effect can be readily taken into account by
evaluating the outgoing distorted potentials at the energy given
by their asymptotic momenta. To assess the importance of
this effect, in Fig. 1(a) we show also the DWIA calculation
including this energy dependence (dashed line).

One can see that, by taking the energy dependence of
distorted waves into account, the LMD is reduced by 8.0%
at the peak in the DWIA calculation so, at least for this system
and incident energy, the energy dependence produces a minor,
although non-negligible, effect.

C. Binding energy dependence

In this section we continue the benchmark test of DWIA and
TC changing by the neutron separation energy artificially. In
Figs. 2 and 3 LMD of 15C(p,pn)14C reaction with Sn = 5 MeV
and 18 MeV are shown, respectively.

It is found that EI-DWIA, ED-DWIA, and TC also agree
well in both Sn = 5 MeV and 18 MeV cases and at the same
level as in the Sn = 1.22 MeV case. The LMD is reduced by
9.3% (4.9%) at the peak when Sn = 5 MeV (18 MeV) by taking
the energy dependence of the optical potential parameters for
the emitted p and n. It is also found that the asymmetric shape
of LMD due to the asymmetry of the phase space, which is
discussed in Ref. [23], is gradually developed as Sn increases
through Figs. 1–3.

FIG. 3. Same as in Fig. 1(a) but for Sn = 18 MeV.
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FIG. 4. (a) Transversal momentum distribution of 15C(p,pn)14C
reaction at 420 MeV/u. The solid line is the FAGS result taken from
Fig. 4 of Ref. [14]. The dashed and dot-dashed lines are the TC
calculations with and without relativistic corrections, respectively.
(b) Same as (a) but with all distorting potentials switched off.

D. Comparison with FAGS

Finally, we compare our calculations with the more sophis-
ticated Faddeev-AGS (FAGS) framework. This in presented
in Fig. 4, where we show the transverse momentum distri-
bution for the 15C(p,pn)14C reaction at 420 MeV/u with
Sn = 1.22 MeV. As in previous cases, the upper and bottom
panels correspond to the full calculations and the calculations
assuming plane waves for the incoming and outgoing nucleons.
In each panel, the solid line is the FAGS calculation, taken
from Fig. 4 of Ref. [14]. This calculation was performed with
the Koning-Delaroche nucleon-nucleus potential, evaluated
at 200 MeV, and assuming nonrelativistic kinematics. The
dot-dashed line is the TC calculation using the same optical po-
tential without any relativistic corrections for consistency. The
agreement between these two calculations is excellent. It is to
be noted that the FAGS calculation employs the CD-Bonn NN
potential [24], whereas our TC implementation uses the Reid93
potential. These two NN potentials yield essentially the same
on-shell observables up to 350 MeV, so we believe that, despite
this different choice, the comparison is meaningful.

To highlight the importance of relativistic effects, we depict
also in this figure the TC calculation including relativistic kine-
matics corrections (dashed line). It is seen that these corrections
have a small effect on the shape of the momentum distribution,
but they increase significantly its magnitude by about 30%.
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Consequently, the inclusion of these relativistic effects will
be relevant for the extraction of reliable spectroscopic factors
from the analysis of (p,pn) data.

The same calculations shown in Fig. 4(a) but switching off
the distorting potential of the incoming and outgoing nucleons
are shown in Fig. 4(b) to see clearly the difference arising from
a different choice of NN potentials. One can see that the good
agreement between TC and FAGS remains in this case.

IV. SUMMARY

Transverse and longitudinal momentum distribution of the
residual 14C nucleus produced in the 15C(p,pn)14C knockout
reaction at an incident energy of 420 MeV/u have been
computed and compared using different reaction frameworks,
namely, the distorted-wave impulse approximation (DWIA),
the transfer-to-the-continuum (TC) method, and the Faddeev-
AGS (FAGS) formalism.

The longitudinal momentum distributions evaluated with
TC and EI-DWIA are found to be in excellent agreement
both in the shape and magnitude. The agreement remains
for increasing separation energies of the removed neutron,
giving only 0.3%, 0.8%, 1.4% difference at the peak when
Sn = 1.22 MeV, 5 MeV, 18 MeV, respectively, corroborating
the consistency of the two methods for weakly bound and
tightly bound systems. We found that the energy dependence of
the optical potentials for emitted nucleons, which are not taken
into account in TC, gives a minor, although non-negligible
effect on knockout cross section.

The TC calculation, omitting relativistic kinematics cor-
rections, is also found to reproduce remarkably well the FAGS
calculation reported for this reaction. However, the inclusion of
relativistic corrections increases the TC result by ∼30%, which
highlights the relevance of these effects for the extraction
of spectroscopic information from absolute (p,pN ) cross
sections.

From this study, we conclude that the DWIA and TC meth-
ods can be reliably used to analyze the momentum distributions
for (p,pn) cross sections, which are currently being measured
by several experimental campaigns. Extensions of the present
benchmark to other situations, such as the (p,2p) case or the
removal from non s-wave nucleons, are in progress and will
be published elsewhere.
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