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Abstract

Let A be a perfect Kothe function space in the sense of Dieudonné, and A* its
Ko6the-dual. Let £ be a normed space. Then the topological dual of the space A(£)
of A-Bochner integrable functions equals the corresponding AX(E’) if and only
if £’ has the Radon—Nikodym property. We also give some results concerning
barrelledness for spaces of this kind.

1. Introduction

The purpose of this paper is to study several results concerning vector function
spaces with values in a normed space. These spaces are obtained as a generalization
of the Kéthe function spaces studied by Dieudonné[3].

Let A be a Kothe space defined on a measure space X and A* its Kothe-dual, and
let £ be a normed space with dual E’. We define the space A(E) of A-Bochner
integrable functions as the space of (classes of) strongly measurable functions f: X - E
such that the composition || f(+)| is a function in A. There is a natural topology on
A(E) defined from the topology of A and the norm on E, and the locally convex
structure of these spaces has been studied by Clauzure[l], Jorddn Lluch and
Torregrosa Sdnchez[6], Macdonald[8], and Phuong-Cac[9], among others.

Macdonald [8] provides a characterization of the dual of A(£) when ¥ is a locally
convex Hausdorff space and the topology on A is compatible with the dual pair
(A, A*). This characterization is not easy to use even when £ is a normed space, in
which case it reads as follows: the topological dual of A(E) can be identified with the
set of all o(£’, E)-measurable functions g: X — £’ satisfying that for every compact
set K < X, the restriction ¢|, can be written as g|;, = ¢k where k is a o(#', E)-
measurable function such that ||A(-)|| < 1 almost everywhere and ¢ is in AX.

In some particular cases, e.g. when ¥ is a reflexive Banach space or £ is a Banach
space with separable dual, the characterization above can be considerably simplified,
the result reducing to A(£)" = A*(E’). This situation is much more manageable and
comparable with the case of vector-valued sequence spaces studied by Rosier [10]. It
seems, then, desirable to characterize those normed spaces £ for which the dual of
A(EF)equals A*(E’). For the case of Bochner integrable functions it is well-known that
the characterization of the dual of L'(¥) as L*(£’) is equivalent to £’ having the
Radon—-Nikodym property ([2], IV-1, theorem 1, p. 98). This is also the case when A
is a Fréchet echelon space and £ is a Banach space [6]. Here we prove that this
characterization holds in general. In the last section, we study the permanence
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of some properties related to barrelledness. Concerning the references given above,
we think that this paper can be considered as a continuation of N. Phuong-Cdc’s

paper [9].

2. Terminology and notation

We refer the reader to Kothe’s monograph [7] and to the book [2] of Diestel and
Uhl for the terminology used in this paper.

Let X be a locally compact and Hausdorff topological space and # be a non-
negative Radon measure on X. We assume that X is countable at infinity, so that we
can write X = {J¥.,X,,, where each X, is compact and X, < int(X,,,,). We shall
always identify those functions that are equal almost everywhere with respect to
M4 (p-a.e. in short).

We denote by Q the space of all locally integrable real-valued functions defined on
X, and by @ the subspace of all measurable essentially bounded functions with
compact support. When X is compact we obtain the spaces L'(u) and L%(u)
respectively.

For a subset A = Qits K&the-dualis the set A* of all fe Q such that f-g is integrable
for each geA. We have A ¢ A’ = (A™)*, and A is said to be a perfect space if
A = A**. When A is a subspace of Q containing @, in particular if A is perfect, then A
and A are put into duality by the canonical bilinear form on A x AX:

fo) > <> = f )90 dult).

A subset H of Q is said to be normal (or solid) if whenever H contains f it also
contains all geQ satisfying |g(¢)| <|f(¢)] p-a.e. The strong topology A(A,A*) on
A equals the polar topology on A generated by the family # of all normal and
o (A, A)-bounded subsets of A*, and it is given by the seminorms

Pai fe A paalf) = sup{f ) .91 dutt) geM} MeB)
X

In what follows, A remains a perfect Kéthe space endowed with its strong topology
LA, AX). We refer the reader to Dieudonné’s paper [3] for additional information
about K&the function spaces.

Let E be a normed space with dual E'. We define the space A(E) of A-Bochner
integrable functions as the space of (classes of) strongly measurable functions
f: X — E such that the composition || f(-)|| is a function in A.

Starting from the strong topology A(A,AX) on A and the norm on K, we can
generate in A(E) a natural topology defined by the seminorms

4l =P 1) = sup{ L LA lg(0)] duutt: geM} MeB).

We will refer to this topology as the natural topology of A(E). When A = L?(u)
with 1 < p < + 00, we obtain the space L?(u, E) of p-Bochner integrable functions
(see [2], IV-1, p. 97). In particular, L®(y, K) is the space of strongly measurable,
essentially bounded functions from X into £ with the ess-sup norm. Denote by
B the unit ball of L*(u, E); thus a function b: X > E is in B if it is g-measurable
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Kothe function spaces 167
and ||A(t)]| <1 u-a.e. Note that if ¢eA and heB then the function f given by
ft)=¢(t).h(t) is in A(E). On the other hand, every function feA(£) can be
decomposed in the same way, namely ¢(t) = | f(t)|| and

o
ht) = {f(t)- IF@I i If@o) +0

0 otherwise.

Using this decomposition and the form of the seminorms g,,, it is easy to check
that the bounded sets of A(E) are obtained from the bounded sets of A by
multiplication with B, i.e. a set § < A(¥) is bounded if and only if there is a bounded
set B < A such that S < R.B.

Two properties of these spaces that we shall use are the fact that the space of
compact support simple functions is dense on A(E) for the natural topology ([9],
proposition 1), and that if £ is a Banach space, then A(E) is complete ([9],
proposition 2).

3. A characterization of the dual of vector-valued Kothe function spaces

We say that a Banach space £ has the Radon—Nikodym property with respect to
4 if whenever ¢: X — I is a o-additive vector measure that has bounded variation
and vanishes on sets of measure zero, there exists a Bochner integrable function
geLl(u, E) such that

G(A) = J gdu.
4

In the sequel, we will use the following lemma which was stated in [4].

LEMMA. Let g: X — E and €: X - R be yu-measurable functions, € in addition strictly
postitive. Then there exists a p-measurable function y: X - E such that
(1) y is countably valued with values in the unit ball of B, and

2) llg)ll < <g(t), y(t)> +¢(t) p-a.e. in X.

THEOREM 1. Assume that the dual of A(B(A, AX)) is A*. Then A(E) = A*(E’) if and
only iof B’ has the Radon—Nikodym property with respect to .

Proof. We start by noting that A*(£’) can always be identified with a subspace of
A(E) . Indeed, for ge A*(E’) consider the element

fro kg f> = L (0. 7t)> dult)
of A(E). We have

Kg.f3] < L Ko, f O dult) < L 19 170 dt) < g (-

where M is a set in & such that |[g(-)| eM.

For the implication in one direction, assume that £’ has the Radon-Nikodym
property with respect to u. First, we deal with the case when X is compact. Let u be
a continuous linear form on A(£). Then there is some M € & such that [u(f)] < ¢ {(f)
for all fe A(E). For each measurable set 4, define G(4) by

(GA),z) =u(x.x,), forzek.
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Since [KGA), 2D} = |u(x. x ) < ¢u(®.X4) = Pulxa)-llzll, G defines a vector measure
on E’. Clearly G(4) = 0 whenever u(4) = 0. We prove now that ¢ is o-additive. Let
(4,) be a sequence of disjoint measurable sets with union 4. For each neN, the
function

M=

Palt) = Xalt)— 2 x.4,(0)

i=1

is in A because X is compact and ® = A. Moreover, the sequence (¢,) decreases to
zero. Now, by hypothesis, #(A, A*) equals the Mackey topology 7(A, A*) and ¢, —~0
in this topology (see [9], lemma 1). Therefore for all xe £/ we have

] <G(A>— 5 G(Ai>,x> ‘ = [y ) < daa(r-2) = Poa(br)- .

=1

As n— o0, the latter expression converges to zero uniformly on the unit ball of £.
Hence G(4) = 22, G(4,) in the dual norm of E’.

Let us show now that ¢ has bounded variation. Let {4,,4,,...,4,} be a partition
of X and take arbitrary points x,x,,...,z, in the unit ball of E. Take scalars
&y, Ay, ..., &, of modulus 1 such that

[KG(A4,), x| =<(G(4,), 2> (1 <i<n).

Then every z; = o, 2; (1 < ¢ < n) is in the unit ball of £ and we have

()
=1

S qu (E Zi'XAi) S PM(E XAi) = puXx)
i=1 i=1

S K6, 2] =

=1

3, (@49, %

Taking appropriate suprema shows that ¢ has bounded variation. Since £ has the
Radon-Nikodym property with respect to u, there is ge L(x, £’) such that

G(4) =J gdu.
4

Let (B,) be an increasing sequence of measurable sets such that X = J?_, B, and
g is bounded on each B, . For each ne N, consider the functional u, defined by

walf) =JB GO FO dut) for feA(E).

This functional ,, is linear. It is also continuous because g is bounded on B,, so that
lxs,(*)g(- )l €® = A*. Clearly u, agrees with « on all simple functions supported on
B,. Fix fe A(E). Using again [9], lemma 1 to ensure that f.yp —fin A(#), and the
fact that simple functions are dense in A(E), we have

w(f) =limu(f.xp,) = limu,(f. x5, ) = lim f $g(8). f(t). xp,(t)> dpu(t).
n n n X
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Kathe function spaces 169
Since A is solid, we can apply the equality above to f.¢ for each scalar function

¢ €L™(u), and this enables us to use the Monotone Convergence Theorem to deduce
that the function |{g(-),f(-)>] is integrable and, in fact,

- f N du)

We now consider the o-compact case. Write X = J?_, X, where each X, is
compact and X, < int (X,,,,). Given ue A(E) and ne N, let u,, be the restriction of u
to the space Ay (E)={f.xx, :feA(E)}. This is a complemented subspace in A(E).
Then u,eAy (E). Therefore, as proved above, there is a function g,eL) (£") such
that

wnf X f<gn 0> du), for fe A(E)

Define g =27 ,9,.xy, where ¥, = X, and ¥, = X,\X,,_, for n > 2. This function g is
u-measurable. For fe A(K) we have, reasoning as before, that [<g(),f(-)>|isin L' and

J <g(e), f(8)) dp(t)

Finally, take an arbitrary function ke A, and apply the Lemma above to 4.¢ and
the positive function e(t) = X7, 27"xy (t) (#(¥,)+1)7". Then there is a y-measurable
function y from X into the umt ball of £ such that

17(2) . g(O) ]l < <A().g(e), y(t)> +e(t)  pace.

Consequently, we have

[ wortgonam < [ <00,y b0 a0 + ) <+ 0.

This proves that |g(-)|| € A* and, therefore, that ge AX(E").

For the opposite implication, suppose that A(E) = AX(£’). Again we assume, for
the first part of the proof, that X is compact. Let & be a o-finite vector measure,
having bounded variation on £’ that vanishes on p-null sets. Its variation |G| is
o-additive, finite and also vanishes on g-null sets. By the classical Radon-Nikodym
Theorem, there is ke l’(x) such that h is non-negative and such that for each
measurable set 4 we have

161 (4) =f hdp.
A

Let (B,) be a sequence of disjoint measurable sets covering X and such that A is
bounded on each B,. For each ne N, define u, as follows:

un(z xx) = 3 (G4, N B,),z).

i=1 i=1
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A straightforward computation shows that u,, is a continuous linear functional on the
space of simple functions. By the Hahn—Banach Theorem, », has a continuous linear
extension to the whole of A(E). Since the dual of A(E) is AX(E"), for this extension,
that we still call u,,, there is ¢, AXE") = L*(u, E’) such that

- [ o003 au0
X
for every fe A(F); hence for every measurable set 4, we have
G NB,) = f In dpe.
ANB,

Applying the Lemma above to k, =21 g;. x5, and ¢ = 1, we obtain a countably
valued pg-measurable function y from X into the unit ball of E, and we write
y = 2521 %;. Xc,» such that

I, < <hn(8), y(t)) +e(t),  p-ae.

Writing B = U2, B;, we have

S [ g0 xm 01 it fnh Wap) <3 [ i), 2, dut) + 1(B)
i=1J X j=1 Bncj
= S (OB N Cy), )+ u(B) < [GI(B) + u(B)

Sf R(t) dp(t) + p(X).
X
Now, define the function g from X to £’ by

Zgn .Xp,()EL" forallteX.

n=1

Then g is u-measurable, and, by applying the Monotone Convergence Theorem to the
chain of inequalities above, we have ||g(- )| € L'(#). Moreover, given a measurable set
A, we have

o0 oQ
E 4 nB,)=2 gdp

n=1JANB,

and by the Dominated Convergence Theorem

G(A) = j gdu.

Finally, let X = {2, X,, where each X, is compact and X, c int (X,,,,). Given a
o-finite vector measure ¢¢ on E’ that vanishes on g-null sets and has bounded
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variation, let G, be its restriction to the corresponding o-algebra in X,,. Since it is
clear from our hypothesis that (AX"(E))’ = (Ax,)*(£'), we can apply the case above
to obtain ge L) (£’) such that

A
Write ¥, =X, and Y, = X \X, , for n > 2. Define g= ann.xyn. Then g is u-
measurable and

o =Sednty =3[ ga=-X| g
n=1 n=1JA4ANnY, n=1JANY,
Moreover

[ towauo = 161, < 1610 <+ o.
Xq
Then, by the Monotone Convergence Theorem, [lg(-)||€L* and, in fact,

G4) = f gdu.
A
Thus ge L'(s, E') is the integrable function representing G. |

THEOREM 2. Assume that the dual of A(B(A, A™)) is A*. If E' has the Radon—Nikodym
property with respect to p then

(1) a set H < A(EY = AX(E’) is equicontinuous if and only if there is Me R, the
Sfamily of all normal and a(A*, A)-bounded subsets of A*, such that H c M .U, where U
is the unit ball of L®(u, E’), and

(2) the strong topology P(A*(E’), A(E)) is the natural topology of the space A*(E’) when
A* is endowed with the strong topology F(A*,A) and E’ carries its dual norm.

Proof. By Theorem 1| we know that A(EY = AX(E").
(1) Suppose that H c M .U for some MeZ. Then, of course, H = A*(E’) and for
feA(ll) and ge H we have

Kg. 3] < jX g fO dut) < L LU £ O dut) < g (f)-

Conversely, if H < A(#)" is an equicontinuous set, then there is an absolutely
convex and closed set M € # such that [{g,f>| < qp(f) for all fe A(E) and ge H. As
we pointed out, every g€ H can be written as g = {g||.» where he U, the unit ball of
L*=(u, E"). Therefore it suffices to show that {lig(-)|:geH} c M. Let ge H, let ¢ be
in the polar M° of M in A, and let a > 0. By applying the Lemma above to ¢.g and
e(t) = Ln-1a27"xy (8) (u(Y,)+1)7", where ¥, =X, and Y, = X \X,_, for n >2, we
obtain a g-measurable function ¥ from X into the unit ball of £ such that

o). gl < <P(0)-9(1), y(t)> +e(t), p-ae.

Now, by integration on X
[ worto1auo < [ <o0.60-90>dut
X X

Squ(@.y)+a=py(@)t+ta<1+ta.
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Since « was an arbitrary positive number, it follows that [g(-)| e M°° = M.

(2) Let S be o(A(E), A*(E’)-bounded. Since the dual of A(E) equals A*(£’), we have
that S is bounded for the natural topology of A(E). Then R = {||A(‘)|: heS} is
o(A, A¥)-bounded and for ge A*(E’) we have

sup{

This proves that every strong seminorm in AX(E’) is continuous for the natural
topology.

Conversely, given B < A normal and o(A, A*)-bounded, define 8 :=R.B, where B
is the unit ball of L*(u, £). Then S is o(A(E), A*(E"))-bounded. Now, given ge A*(£’)
and a > O there is some ¢ € R such that

L Co(0), b dp(t) ) heS} < sup{J Lol 1A dutt): keS} = 4a(9).

qrlg) S a+ L [B(E)] - llg(E)ll dpt).

By application of the Lemma above to ¢.g and e(t) = X7, a2 "xy (¢) (w(¥,)+1)7",
where Y} = X, and ¥, = X \X, _, forn > 2, we obtain a g-measurable function y from
X into the unit ball of £ such that

llg(®).g)]l < <p(t)-g(t), y(t)> +€(t), p-a.e.
Calling & = ¢.y €S, we obtain

4nlg) < 20+ j <o), M) dult) < 2ot sup{I<g.f: fES).

Since a was arbitrary, it follows that the seminorm g, is dominated by the strong
seminorm corresponding to S.

4. Other permanence properties

In this last section, we study some properties of the spaces A(E) related to
barrelledness. Note that our first result requires weaker hypotheses than the
theorems above.

TuroreMm 3. (1) If A(B(A, AX)) is quasi-barrelled, then A(E) is also quasi-barrelled.
Moreover, of £ is a Banach space, then A(E) is barrelled.
(2) If A(B(A, A)) is bornological then A(E) is also bornological.

Proof. (1) Let N be a S(A(F), A(E))-bounded subset of A(E)’. We have to prove
that N is equicontinuous. For every ue NV and every function A€ B, the unit ball of
L*®(u, K), consider the composition

T(u, b): > g b <, §. 1

from A to R. It is clear that T'(u, k) is a continuous linear form on A. Now, if R is a
bounded set in A, then {¢.h: ¢ R, he B} is bounded in A(¥), and since N is strongly
bounded, we have

sup{|<ZL(w, k), p>| = |<u,¢p.2)|: ueN,he B, ¢eR} < + 0.
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This shows that
N*={T(u,h): ueN,he B}

is a B(A’, A)-bounded subset of A’, the topological dual of A(S(A, A%)). Since A is
quasi-barrelled, it follows that N* is equicontinuous. Therefore there is a set Me %
such that

sup{|[K7'(u, k), p>}: ue N, he B} < py, (@), for all pe A.

Finally, given fe A(E) write f= || f(*)|| .k with he B. We have
sup{[<w, fl: ue N} < sup{[KTL'(u, ), [ f()IID]: ueN,he B} < ¢ (f)

and this proves that N is equicontinuous.

If £ is a Banach space then A(F) is complete from [9], proposition 2 and therefore
it is a barrelled space from [7], §27-1:(1).

(2) Since A is bornological, it is quasi-barrelled and, as we have just proved, A(X)
is quasi-barrelled. Now, let u be a locally bounded linear form on A(#). Using that
the bounded sets of A(E) can be lifted from the bounded sets in A multiplying by B,
the unit ball of L®(y, E), it is easy to see that the set

C={peA: |lu(¢.h) <1 for all heB}

is absolutely convex and bornivorous in A. Since A is bornological, ¢ is a
neighbourhood of zero in A. Hence there is M € & such that M° < C. Therefore, for all
heB and ¢e A, we have

fulg. 1) < Par(h)-

Finally, for fe A(E) write f = || f(* )|l .~ with A€ B. Then

() = Ll SN < pag(B O R) = que(S),
so that u is continuous. By [7], §28:1-(3), A(E) is bornological. |

For a study of when A(E) is a barrelled space when E is a normed space, not
necessarily complete, we refer the interested reader to [5]. For our next result, recall
that a locally convex space is said to be distinguished if its strong dual is a barrelled
space.

THEOREM 4. Assume that the dual of A(S(A, AX)) is A*. If A is distinguished and E
has the Radon-Ntkodym property with respect to u, then A(K) is distinguished.

Proof. By Theorems 1 and 2, the strong dual of A(E) is the space AX(£’) endowed
with its natural topology, when we consider in A™ the strong topology #(A*, A). Since
A*(B(A*, A)) is barrelled and E’ is a Banach space, the space A*(E’) is barrelled, by
Theorem 3.

THEOREM 5. If A and K are reflexive then A(E) is reflexive.

Proof. Assume that A and E are reflexive. Then, in particular, A is barrelled and
E’ has the Radon-Nikodym property with respect to . By Theorems 1 and 2, the
strong dual of A(Z) is the space A*(£’) endowed with its natural topology, when A*
carries the strong topology f(A*A).

Now the dual of A*(B(A*, A)) equals A because A is reflexive, and E” = E has the
Radon-Nikodym property with respect to # because it is reflexive. Therefore we can
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apply again Theorems 1 and 2 to A*(£”) and deduce that the dual of this space is
precisely A(E). Therefore A(X) coincides with its bidual and, by Theorem 3, is
barrelled. Hence A(E) is reflexive.

This research was partially supported by La Consejeria de Educacion y Ciencia de
la Junta de Andalucia.
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