SOME RESULTS ON DIAGONAL MAPS

by Miguel FLORENCIO and Pedro J. PAUL

Summary. In this paper we study some results about diagonal maps between sequence spaces. Our purpose is two-fold: In §1, we characterize, for a large class of scalar sequence spaces λ and μ , those diagonal maps a: $\lambda \! + \! \mu$ wich transform bounded sets into relatively compact sets as those that can be approximated by finite sequences in the topology of uniform convergence on the bounded subsets of λ . Consequences within the frame of echelon spaces and examples are provided. In §2, we give a useful characterization of the space of compact diagonal maps bet-ween Cesáro sequence spaces. On the other hand, in §3, we deal with -the space $\lambda\{E\}$ of absolutely $\lambda-summable$ sequences from E (λ being a normal sequence space and E a Hausdorff lcs). Our main result establishes that, under certain conditions, the space $\ell^{\infty} \{\; L(E,F) \; (\tau_{h}) \; \}$ represives sents, both algebraic and topologically, the space of continuous diago nal maps between two such vector-valued sequence spaces. Some results in §2 were presented to the VII Congress of the Group of Latin Expression Mathematicians held in Coimbra (Portugal) in 1985.

1. DIAGONAL MAPS ON T-BS SPACES.

<u>Definitions</u>. We use the notation and concepts of [10 and 17] for general theory and sequence space theory, respectively. We assume throughout that every sequence space to be considered contains the space ϕ .

1980 AMS Subject Classification: 46A45

Key Words: Diagonal maps. Schwartz echelon spaces. Cesáro sequence spaces. Absolute summability in l.c.s.

Présenté par J. Schmets le 18 septembre 1986.

A locally convex sequence space λ is called a K-space if its topology is finer than $\sigma(\lambda, \phi)$. If λ and μ are K-spaces, $M(\lambda, \mu)$ stands for the space of those diagonal maps

$$a:x \in \lambda \longrightarrow ax:=(a_n x_n)_n \in \mu$$

wich are continuous. It is clear that $\phi \in M(\lambda,\mu)$. Moreover, if τ_b stands for the topology of uniform convergence on the bounded subsets of λ , then $M(\lambda,\mu)$ is a closed subspace of $L(\lambda,\mu)$ (τ_b); therefore we can define the space $S(\lambda,\mu) := \overline{\phi}^{\tau b} \in M(\lambda,\mu)$.

Let $T=(t_{nk})_{n,k}$ be an infinite, row-finite matrix such that $\lim_{n \to \infty} t_{nk} = 1$ for each k, i.e. a Sp_1 -matrix. Let $t^n := (t_{nk})_k \in \phi$ be the n-th row of T. If x is a sequence, $t^n x$ is called the n-th Toeplitz section of x with respect to the matrix T. A K-space λ is said to be a T-BS space if the set $\{t^n x : n=1,2,\ldots\}$ is bounded for each x in λ . A sequence x in λ is said to have the property T-AK if $x=\lim_{n\to\infty} t^n x$ in the topology of λ . If every x in λ has the property T-AK we say that λ is a T-AK space. T-BS and T-AK spaces have been widely studied by Buntinas [2] and Meyers – [12] as a generalization of T-BS and T-AK spaces studied by T-AK, respectively when T is the summability matrix: $t_{nk} = 1$ if T-AK and T-AK, respectively when T is the summability matrix: $t_{nk} = 1$ if T-AK and T-AK an equicontinuous set in T-AK implies T-BS and T-BS plus barrelledness — implies T-ES.

Theorem 1. Let λ be a T-BS space and μ a quasi-complete U-ES space - with respect to Sp₁-matrices T and U, respectively. Then $S(\lambda,\mu)$ coincides with the space of all continuous diagonal maps which transform -- each bounded subset of λ into a relatively compact set of μ . In fact, if a $S(\lambda,\mu)$, then a has the property U-AK.

<u>Proof.</u> One part is well-known [11,§42.1.(3)]. Now let $a \in M(\lambda,\mu)$ be —such that a(A) is relatively compact for every bounded subset A of λ . Firstly, let us see that $ax=\lim_{m} at^{m}x$ in μ for every x = n. Indeed, $\{x,t^{m}x: m \in \mathbb{N}\}$ is a bounded subset of λ , thus $B:=\{ax,at^{m}x: m \in \mathbb{N}\}$ is

relatively compact; but, since $\lim_{m} t_{mk} = 1$ for all k, ax is the only possible limit point of every sequence from B. Now we have that $ax \in \overline{\phi}$ — (closure in μ) so that, by a well-known property of the equicontinuous sets $\begin{bmatrix} 11,\$39.4.(1) \end{bmatrix}$ and the fact that $y = \lim_{n} u^n y$ in μ if $y \in \phi$, we have that $ax = \lim_{n} u^n ax$ in μ . Finally, let us see that $a = \tau_b - \lim_{n} u^n a$. Indeed, if A is a bounded subset of λ and V is a zero-neighborhood in μ , then we can find $x^{(1)}, \ldots, x^{(p)}$ in A such that $a(\lambda) \subset \bigcup_{j=1}^p (ax^{(j)} + V/3)$. For each x in A take j such that $ax - ax^{(j)} \in V$ and write:

 $ax-u^n ax = (ax-ax^{(j)}) + (ax^{(j)}-u^n ax^{(j)}) + (u^n (ax^{(j)}-ax))$

then, by the equicontinuity of $\{u^n: n=1,2...\}$ and the fact that $ax^{(j)} = \lim_{n \to \infty} u^n ax^{(j)}$ j=1,...,p it is easy to deduce that $ax-u^n ax$ is in V for each n greater than a suitable n_0 and every x in A Q.E.D.

Corollary 1. Under the assumptions of the theorem, if λ is a normed - space then $S(\lambda,\mu)$ is the space of all compact diagonal maps from λ in to μ . The same conclusion holds (see [5]) if λ is a DF-space and μ is a Fréchet space.

This corollary generalizes results due to Crofts [3] and Florencio[6]

Corollary 2. If λ is a Montel, T-BS space then λ has the approximation property.

Example 1. If λ is a normal (in the sense of Köthe) sequence space – such that $\lambda(\beta(\lambda,\lambda^{\times}))$ is a Banach space, then $M(\lambda,\lambda)$ is λ^{∞} and, therefore, $S(\lambda,\lambda)$ equals c_0 .

Example 2. The space Λ of all bounded linear maps from ℓ^2 into itself is a Banach space without the approximation property [19]. The elements of this space can be viewed as infinite matrices [17,4.1.6]. - Reordering a matrix $A=(a_{pk})$ according to:

$$b_{n} = \begin{cases} a_{p,k+1} & \text{if } n=k + p = 1,2,...,k+1 \\ \\ a_{k+1,k+1+p} & \text{if } n=k + k+1+p = p=1,2,...,k \end{cases}$$

we can associate the sequence $b=(b_n)$ with A in a unique way. In this -sense, A can be viewed as a Banach K-space. If we show that A is a -- T-BS space then, by using corollary 1, we obtain that every compact - diagonal map from A into A can be approximated by finite rank al-- though A does not have the approximation property.

Let us take the operators T_n that assign to each matrix its square—box of order n: $(T_n(A))_{ij} = a_{ij}$ if $0 \le i$, $j \le n$ and zero otherwise. Then $T_n \in L(\Lambda,\Lambda)$ when Λ is taken as a matrix space. To each T_n corresponds the diagonal map P_{n^2} $(P_n := (1,1,\ldots,1,0,0,\ldots))$ the last 1 in the n-th place) defined on Λ when Λ is taken as a sequence space. If T is the matrix whose rows are P_{n^2} , we need only to show that the operators T_n are uniformly bounded in $L(\Lambda,\Lambda)$: Let $n \in N$, if x is in ℓ^2 then $||P_nx||_{2^{\le k}} ||x||_{2^k}$. Now if (a_{ij}) is in Λ we have

$$|| T_n(a_{i,j}) ||_{\Lambda} = \sup \{|| (Tn(a_{i,j}))x ||_2 : || x ||_2 \le 1\}$$

but it is easy to see that $(T_n(a_{ij}))x = P_n((a_{ij})P_nx)$, therefore we obtain:

$$\begin{split} & \big| \big| \ \, T_{n} \left(a_{ij} \right) \ \, \big| \big|_{\Lambda} \leq \sup \big\{ \big| \big| \ \, \left(a_{ij} \right) P_{n} x \ \, \big| \big|_{2} \colon \ \, \big| \big| \ \, x \ \, \big| \big|_{2} \leq 1 \big\} \big\} \leq \\ & \leq \sup \big\{ \big| \big| \ \, \left(a_{ij} \right) y \ \, \big| \big|_{2} \colon \, \big| \big| \ \, y \ \, \big| \big|_{2} \leq 1 \ \, \big\} = \big| \big| \ \, \left(a_{ij} \right) \ \, \big| \big|_{\Lambda} \end{split}$$

then $|| T_n ||_{T_n(\Lambda,\Lambda)} \le 1$ for all n in N.

Echelon spaces. Let $\{\lambda_k, a^{(k)}: k=1,2,\ldots\}$ be an echelon system, i.e each λ_k is a Fréchet K-space and $a^{(k)}$ is a sequence of non-zero terms such that $a^{(k)}/a^{(k+1)}$ is in $M(\lambda_{k+1},\lambda_k)$ so that we can write the continuous embeddings:

$$(1/a^{(1)})\lambda_1 \leftrightarrow \dots \leftrightarrow (1/a^{(k)})\lambda_k \leftrightarrow \dots$$

the space λ :=proj lim $(1/a^{(k)})\lambda_k$ is called the echelon space associated to $\{\lambda_k, a^{(k)}\}$. λ is a Fréchet K-space. The following result is a straightforward corollary of our preceding results:

Corollary 3. Let $\{\lambda_k, a^{(k)}\}$ be an echelon system such that each λ_k is a T_k -BS space for T_k a Sp_1 -matrix. If for each k in $\mathbb N$ there

exists r>k such that $a^{(k)}/a^{(r)}$ is in $S(\lambda_r, \lambda_k)$ then λ is a Montel space.

Moreover, if each λ_k is a Banach space then the above condition is equivalent to λ be a Schwartz space.

This corollary includes and reproves the characterizations of the -"Schwartzness" of an echelon space given for the classical cases, see
e.g. [3, 6, 14 or 20].

2. AN EXAMPLE WITH CESARO SUMMABILITY

<u>Definitions</u>. Let α be a nonnegative integer. The space C_{α} of those — sequences which are summables in the sense of Cesáro of order α is the summability field associated to the Sp_1 -matrix $T_{\alpha}=(t_{nk})_{n,k\geq 0}$ with

 $t_{nk}:=({n-k+\alpha\over\alpha})\;({n+\alpha\over\alpha})^{-1}\quad \text{if}\quad n\ge k, \text{ and } t_{nk}=0 \text{ otherwise}$ in other words:

$$C_{\alpha} := \{(x_n)_n : (\sum_k t_{nk} x_k)_n \text{ converges}\}$$

Under the norm

$$\|\mathbf{x}\|_{\alpha} := \sup\{\|\mathbf{x}\|_{\mathbf{k}} \mathbf{t}_{\mathbf{nk}} \mathbf{x}_{\mathbf{k}}\| : \mathbf{n=0,1,2,...}\}$$

 C_{α} is a Banach, T_{α} -AK space [2, 17, 21]. Therefore $S(C_{\alpha},C_{\beta})$ is the --space of compact diagonal maps from C_{α} into C_{β} . Our purpose in this -section is to derive a useful characterization of this space. If $\alpha \leq \beta$ then, according to Bosanquet [1], we have:

Proposition 1. Let $\alpha \le \beta$ be nonnegative integers, then

- :(1) The norm \parallel \parallel that appears in (B1) induces the topology τ_b on $M(C_{\alpha}, C_{\beta})$
- (2) $S(C_{\alpha}, C_{\beta})$ <u>coincides</u> with $M(C_{\alpha}, C_{\alpha}) \cap C_{0} =$ $= \{u: u \text{ has } T_{\alpha} AK \text{ in } M(C_{\alpha}, C_{\alpha}) (\tau_{b}) \}$

If $\alpha > \beta$ then, again by Bosanquet [1]:

(B2)
$$M(C_{\alpha}, C_{\beta}) = \{u: || u ||^* := (\sum_{n \ge 0} n^{\alpha} |\Delta^{\alpha+1} u_n| + ||((n+1)^{\alpha-\beta} u_n)_n||_{\infty}) < \infty \}$$

Proposition 2. Let $\alpha>\beta$ be nonnegative integers. Then,

- (1) $\parallel \quad \parallel^* \quad \underline{\text{in } \quad (B2)} \quad \underline{\text{is a norm on}} \quad \underline{\text{M}(C_{\alpha}, C_{\beta})} \quad \underline{\text{and induces}} \quad \underline{\text{the topology}} \quad \tau_{b}.$
- (2) $S(C_{\alpha}, C_{\beta})$ <u>is the space</u> $E:=\{u\in M(C_{\alpha}, C_{\beta}): ((n+1)^{\alpha-\beta}u_n)_n$ <u>is in $C_0\}$ Proof.</u> (1) By using the linearity of the difference operator Δ we obtain that $\|\cdot\|^*$ is a norm. Since the identity $M(C_{\alpha}, C_{\beta})$ ($\|\cdot\|^*$) $\longrightarrow M(C_{\alpha}, C_{\beta})$ (τ_{α}) has closed graph, we only need to show that $M(C_{\alpha}, C_{\beta})$ ($\|\cdot\|^*$) is complete. Let $u^{(m)}=(u_n^{(m)})_n$ $m=1,2,\ldots$ be a $\|\cdot\|^*$ -Cauchy sequence in $M(C_{\alpha}, C_{\beta})$, then $v^{(m)}:=((n+1)^{\alpha-\beta}u_n^{(m)})_n$ $m=1,2,\ldots$ is a $\|\cdot\|_{\infty}$ -Cauchy sequence. Set $v=\|\cdot\|_{\infty}-1$ m $v^{(m)}$, then $u:=((n+1)^{\beta-\alpha}v_n)_n$ is such that $((n+1)^{\alpha-\beta}u_n)_n\in \ell^\infty$ and $\|\cdot\|((n+1)^{\alpha-\beta}(u_n^{(m)}-u_n))_n\|_{\infty}\longrightarrow 0$. Since the inclusion $M(C_{\alpha}, C_{\beta})$ ($\|\cdot\|^*$) $\longrightarrow M(C_{\alpha}, C_{\alpha})$ ($\|\cdot\|$) is continuous, $u^{(m)}$ is $\|\cdot\|$ -Cauchy and, a fortiori, $\|\cdot\|$ -convergent to some z in $M(C_{\alpha}, C_{\alpha})$. Necessarily $z=u\in M(C_{\alpha}, C_{\beta})$ and $u=\|\cdot\|^*$ -1 m $u^{(m)}$.
- (2) Let $u \in E \subset M(C_{\alpha}, C_{\beta}) \subset M(C_{\alpha}, C_{\alpha}) \cap c_0 = S(C_{\alpha}, C_{\alpha})$. Using (2) from the above proposition, we have that

$$(i) \quad \lim_{m \to \infty} \sum_{n \geq 0} n^{\alpha} \left| \Delta^{\alpha+1} \left(u_n - \left(t^m u \right)_n \right) \right| = 0$$

where $\textbf{t}^{\textbf{m}}$ is the m-th row of $\textbf{T}_{\alpha}.$ Let

 $z^{(m)}:=u-t^mu=\ (0,(1-t_{m1})u_1,\ldots,(1-t_{mm})u_m,u_{m+1},u_{m+2},\ldots)$ since $u\in E$ and $0\le t_{mk}\le 1$, given $\varepsilon>0$ there exists n_0 in $\mathbb N$ such that — for all m in $\mathbb N$ and $n\ge n_0$ we have

(ii)
$$|(n+1)^{\alpha-\beta}z_n^{(m)}| \le |(n+1)^{\alpha-\beta}u_n| < \varepsilon$$

On the other hand, $\lim_m t_{mn} = 1$, hence $m_0 (\ge n_0)$ exists such that if $m \ge m_0$ and $0 \le n \le n_0$ then

$$\text{(iii)} \mid (n+1)^{\alpha-\beta} z_n^{(m)} \mid \ \leq (1-t_{mn}) \mid (n+1)^{\alpha-\beta} u_n^{} \mid < \ \epsilon$$

(i), (ii) and (iii) yield $\|\mathbf{u}-\mathbf{t}^{m}\mathbf{u}\|^{*} \xrightarrow{m} 0$, i.e, $\mathbf{u} \in S(C_{\alpha}, C_{\beta})$. Conversely, it is clear that E is $\|\cdot\|^{*}$ -closed, therefore $\phi \in E \subset S(C_{\alpha}, C_{\beta})$ implies $E = S(C_{\alpha}, C_{\beta})$ by using (1) and the definition of $S(C_{\alpha}, C_{\beta})$ Q.E.D.

Example 3. Given k in N, we take $a^{(k)} = ((n+1)^k)_n$. Since $a^{(k)}/a^{(k+1)} = (1/(n+1))_n$ is in $M(C_{k+1}, C_k)$, we can consider the echelon space λ associated to the system $\{C_k, a^{(k)}\}$. Now, if r>k, then $a^{(k)}/a^{(r)} = (1/(n+1)^{r-k})_n$ is not in $S(C_r, C_k)$; therefore, λ is not a Schwartz space although the quotients $a^{(k)}/a^{(r)}$ are absolutely summable if $r \ge k+2$.

3. DIAGONAL MAPS ON VECTOR SEQUENCE SPACES.

Definitions. Let λ be a normal sequence space. Let $E(\tau)$ be a Hausdorff lcs and U(E) a zero-neighborhood basis for τ . A sequence $(x_n)_n$ from E is said to be absolutely λ -summable if $(q_U(x_n))_n$ is in λ for all U in U(E). The space $\lambda\{E\}$ of all absolutely λ -summable sequences from E is a linear subspace of E^N that contains $E^{(N)}$. From τ and the strong topology $\beta(\lambda,\lambda^{\times})$ we can define a topology, which we call τB , given by

 $\begin{aligned} & q_{M,\,U}^{}(\mathbf{x}) := & \sup \; \{\boldsymbol{\Sigma} \, \big| \, \beta_n \, \big| \, q_u^{}(\mathbf{x}_n) : \; \boldsymbol{\beta} \in \mathbf{M} \} = \; q_{M^0}^{}(\, (q_u^{}(\mathbf{x}_n)_n^{}) \,, \quad \mathbf{x} = (\mathbf{x}_n^{})_n^{} \in \boldsymbol{\lambda} \{ \mathbf{E} \} \\ & \text{where U runs through U(E) and M runs through the family B}(\boldsymbol{\lambda}^{\times}) \; \text{of all} \\ & \text{normal,} \sigma(\boldsymbol{\lambda}^{\times}, \boldsymbol{\lambda}) - \text{bounded sets of } \boldsymbol{\lambda}^{\times} \; \text{(the topology on } \boldsymbol{\lambda} \; \text{ of uniform convergence on B}(\boldsymbol{\lambda}^{\times}) \; \text{ is, precisely, } \boldsymbol{\beta}(\boldsymbol{\lambda}, \boldsymbol{\lambda}^{\times}) \; \text{)} \; . \end{aligned}$

The spaces $\lambda\{E\}$ were introduced by Pietsch [15] and studied by De Grande-De Kimpe [4] and Rosier [16]. From these papers we recall that the maps:

$$I_{k}: x \in E \longrightarrow I_{k}(x) := xe_{k} \in \lambda\{E\}$$

$$I_{k}: x = (x_{n})_{n} \in \lambda\{E\} \longrightarrow I_{k}(x) := x_{k} \in E$$

are continuous for all k=1,2,... and also that the projections $\{P_n:n\in \mathbb{N}\}\ (\text{defined analogously to the scalar case})\ \text{ form an equicontinuous subset of L}(\lambda\{E\},\lambda\{E\}).\ \text{It is also clear (see [16]) that }\lambda\{E\}\ \text{ is an AK-space }(x=\tau B-l_n^im\ P_n(x)\ \text{ for all }x\ \text{ in }\lambda\{E\})\ \text{ if and only if }\lambda(\beta(\lambda,\lambda^X))\ \text{ is also an AK-space. Following Rosier [16], E is said to be fundamentally λ-bounded if the sets}$

$$[R,B] := {\alpha x = (\alpha_n x_n)_n : \alpha \in R, x_n \in B, n=1,2,...}$$

form a fundamental system of bounded sets in $\lambda\{E\}$ (TB) when R runs through the (absolutely convex) normal bounded sets in λ and B runs through the (absolutely convex and closed) bounded sets in E. (Recall that all the $(\lambda, \lambda^{\times})$ -polar topologies in λ have the same family of bounded sets because λ^{\times} is weakly sequentially complete [20,Ch.2,4. (14)]). In particular, if E is normed then E is fundamentally λ -bounded for all normal spaces (see [6] for further examples). If μ is another normal sequence space and F another Hausdorff lcs, we denote by $M(\lambda\{E\}, \mu\{F\})$ the space of all continuous diagonal maps from $\lambda\{E\}$ into $\mu\{F\}$, i.e. of those sequences $A=(A_n)_n$ from L(E,F) such that

$$\mathtt{A}(\mathtt{x} = (\mathtt{x}_n)_n \in \lambda\{\mathtt{E}\}(\mathtt{\tau}\mathtt{B}) \longrightarrow \mathtt{A}\mathtt{x} := (\mathtt{A}_n\mathtt{x}_n)_n \in \mu\{\mathtt{F}\}(\mathtt{\tau}\mathtt{B})$$

is continuous. On $M(\lambda\{E\},\mu\{F\})$ we consider the topology τ_b of uniform convergence on the family of all τB -bounded subsets of $\lambda\{E\}$. We shall need the following scalar-type lemma:

Lemma 1. Let λ be a normal sequence space, then

- (1) If μ is a normal sequence space such that $\lambda \subseteq \mu$ then the injection $\lambda(\beta(\lambda,\lambda^{\times})) \rightarrow \mu(\beta(\mu,\mu^{\times}))$ is continuous.
- (2) $\beta(\lambda^{\times\times},\lambda^{\times})$ induces on λ the strong topology $\beta(\lambda,\lambda^{\times})$
- (3) If $\lambda^{\times} \subset \ell^{\infty}$ and M is a normal $\sigma(\lambda^{\times}, \lambda)$ -bounded subset of λ^{\times} , then M is $\|\cdot\|_{\infty}$ -bounded.

<u>Proof.</u> (1) is straightforward. Now, using [20,Ch.2,4(14) and 5.(1)] and the Banach-Mackey theorem we obtain that $\sigma(\lambda^{\times},\lambda^{\times\times})$ and $\sigma(\lambda^{\times},\lambda)$ have the same family of bounded sets, hence (2). (3): as in (2) M is $\sigma(\lambda^{\times},\lambda^{\times\times})$ -bounded so that M is also $\beta(\lambda^{\times},\lambda^{\times\times})$ -bounded and finally, by (1), M is $\beta(\ell^{\infty},\ell^{1})$ -bounded Q.E.D.

Theorem 2. Let λ and μ be normal sequence spaces such that

(i) $\lambda \in \mu \subseteq \ell^{\infty}$ and (ii) $\lambda^{\times} \subseteq \ell^{\infty}$

Let E and F be Hausdorff lcs, then:

- $(1) \ \ \texttt{M}(\lambda\{\texttt{E}\},\mu\{\texttt{F}\}) \ = \ \{\texttt{A} \in (\texttt{L}(\texttt{E},\texttt{F})) \ ^{\blacksquare \! N} \colon \ \{\texttt{A}_n \colon \ n = 1,2,\dots \ \underline{is} \ \underline{equicontinuous}\}\}$
- (2) If in addition E is quasi- \Re_0 -barrelled, then $M(\lambda\{E\},\mu\{F\}) = \ell^{\infty} \{L(E,F)(\tau_h)\}$
- (3) If in addition to (2), E is fundamentally λ -bounded, then the following topological equality holds:

 $M(\lambda\{E\},\mu\{F\})(\tau_b) = \ell^{\infty}\{L(E,F)(\tau_b)\}(\tau^B)$

Proof. (1) (C) Assume $A=(A_n)_n$ is in $M(\lambda\{E\},\mu\{F\})$, then for each $k=1,2,\ldots$ we have $A_k=\Pi_k$ A I_k . By the hypothesis A is continuous, so we will deduce the equicontinuity of $\{A_n\colon n=1,2,\ldots\}$ by showing that $\{\Pi_k\}_k$ and $\{I_k\}_k$ are, respectively, equicontinuous subsets of $L(\mu\{F\},F)$ and $L(E,\lambda\{E\})$. On one hand, if M is in $B(\lambda^\times)$ we can find r>0, by (3) in the lemma above, such that $|\beta_n| \le r$ for all n in N and β in M, hence $q_{M,U}(I_k(x)) \le rq_U(x)$ for all x in E. On the other hand, if $V \in U(F)$ and x is in $\mu\{F\}$, then $q_V(\Pi_k(x)) = q_V(x_k) \le ||(q_V(x_n)_n)||_\infty$, now apply (1) in the lemma above to μ and ℓ^∞ .

- (1) () Given V \in U(F), let U \in U(E) be such that $q_V(A_k^-x) \leq q_U^-(x)$ for all x in E and k=1,2,... Now, if $x=(x_n^-)_n$ is in $\lambda \in \mathbb{F}$, then $q_V^-(A_k^-x_k^-) \leq q_U^-(x_k^-)$. By using the normality of λ and the fact that $\lambda \in \mu$, we obtain that $Ax \in \mu \in \mathbb{F}$. Finally, A is continuous because $q_{M,V}^-(Ax) \leq q_{M,U}^-(x)$ and $M \in \mathbb{B}(\mu^\times) \subset \mathbb{B}(\lambda^\times)$ (the last inclusion by (1) in the lemma above).
- (2) follow from (1) and the definition of quasi- $\frac{1}{2}$ -barrelledness.
- (3) (τB is finer that τ_b). Suppose $q_{(B^*,V^*)}(\cdot)$ is a τ_b -seminorm on $M(\lambda\{E\},\mu\{F\})$, i.e. $B^*=[R,B]$ and $q_{V^*}(\cdot)=q_{M,V}(\cdot)$ for certain R (normal and bounded in λ), B (bounded in E), $V \in U(F)$ and $M \in B(\mu^{\times}) \subset B(\lambda^{\times})$. Now, if $A=(A_n)_n \in M(\lambda\{E\},\mu\{F\})$, then one can see that

 $\begin{aligned} q_{\left(B^{\star},V^{\star}\right)}\left(A\right) := & \sup\{q_{M,V}\left(\left(A_{n}x_{n}\right)_{n}\right) : \ x \in \left[R,B\right] \ \} \leq \\ & \leq & \sup\{q_{V}\left(A_{n}y_{n}\right) : y_{n} \in B, \ n \in \mathbb{N}\} \cdot & \sup\{\Sigma \left|\alpha_{n}\beta_{n}\right| : \beta \in M, \alpha \in R\} = \\ & = & r\left(R,M\right) \cdot \left|\left|\left(q_{\left(B,V\right)}\right)^{-}\left(A_{n}\right)\right|_{n}\right|\right|_{\infty} \end{aligned}$

being r(R,M) a constant and $\| (q_{(B,V)}(A_n))_n \|_{\infty}$ a τB -seminorm on $\ell^{\infty}\{L(E,F)(\tau_n)\}$.

(3) (τ_b is finer than τB). Consider the injection

I:
$$M(\lambda\{E\}, \mu\{F\}) (\tau_b) \longrightarrow \ell^{\infty}\{L(E,F) (\tau_b)\}(\tau_B)$$

we can make the following descomposition: $I=I_2 \circ I_1$ where

$$I_1: M(\lambda\{E\}, \mu\{F\}) (\tau_b) \longrightarrow M(\lambda\{E\}, \ell^{\infty}\{F\}) (\tau_b)$$

$$I_2: M(\lambda\{E\}, \ell^{\infty}\{F\}) (\tau_b) \longrightarrow \ell^{\infty}\{L(E,F)(\tau_b)\}(\tau_B)$$

the three spaces being algebraically isomorphic. We are done if we show that I_1 and I_2 are continuous. On one hand, if $V^* \in U(\ell^\infty\{F\})$, then $V_1^* := V^* \cap \mu\{F\}$ is in $U(\mu\{F\})$ ($\mu\{F\} + \ell^\infty\{F\}$) is continuous: use (1) in lemma above). Therefore, since $q_{(B^*,V^*)}(A) = q_{(B^*,V^*)}(A)$ for all A in $M(\lambda\{E\},\mu\{F\})$ and all B* bounded in $\lambda\{E\}$, I_1 is continuous. On the other hand, suppose that $q_{\infty,W}(\cdot)$ is a τ^B -seminorm on $\ell^\infty\{L(E,F)(\tau_b)\}$,

i.e.
$$q_{\infty,W}(A) = \| (q_W(A_n))_n \|_{\infty} = \| (q_{(B,V)}(A_n))_n \|_{\infty}$$

for certain B (bounded in E) and $V \in U(F)$. Now the set of unit sequences $\{e_n: n=1,2,\ldots\}$ is $\beta(\lambda,\lambda^\times)$ -bounded (use $\ell^1 \subset \lambda^{\times \times}$, (1) and (2) in the lemma above. Take R as the normal hull of this set, R is a normal bounded set in λ . Now take $B^*:=[R,B]$ and V^* in $U(\ell^\infty\{F\})$ such that $q_{V^*}(\cdot)=q_{\infty,V}(\cdot)$. If A is in $M(\lambda\{E\},\ell^\infty\{F\})$, and bearing in mind that xe_n is in B^* for all.x in B, then

$$\begin{split} & q_{\infty,W}(A) = \sup \{ q_{(B,V)}(A_n) : n=1,2,\ldots \} = \sup \{ q_{V}(A_nx) : x \in B, n=1,2,\ldots \} \leq \\ & \leq \sup \{ q_{V}(A_ny_n) : y \in B^*, n=1,2,\ldots \} = \sup \{ q_{V^*}(Ay) : y \in B^* \} = q_{(B^*,V^*)}(A) \\ & q_{(B^*,V^*)}(\cdot) \text{ being a } \tau_b \text{-seminorm on } M(\lambda\{E\}, \lambda^{\infty}\{F\}) \quad \text{Q.E D.} \end{split}$$

Remark. Observe that (i) and (ii) in the theorem above are satisfied if λ and μ are normal sequence spaces such that $\ell^1 \subset \lambda \subset \mu \subset \ell^\infty$. So that the theorem holds if λ, μ are Dubinski's step spaces [3].

Proposition 3. Let λ and μ be normal sequence spaces such that $\lambda^{\times} \subset \ell^{\infty}$, $\lambda \subset \mu \in \ell^{\infty}$ and $\mu(\beta(\mu,\mu^{\times}))$ is an AK-space. Let E be a quasi- \Re_0 -barrelled Hausdorff lcs which is fundamentally λ -bounded. Let F be a Hausdorff lcs. Then a diagonal map $A \in M(\lambda\{E\},\mu\{F\})$ transform bounded sets into 578

precompact sets if and only if the following two conditions hold:

- (1) Each An transforms bounded sets into precompact sets.
- (2) $\{A_n: n=1,2,...\}$ is a null sequence in L(E,F) (τ_b) .

<u>Proof.</u> (\Longrightarrow (1)) This follows from the continuity of the maps I_k and I_k .

(=>(2)) Note that $Ax = (A_n x_n)_n$ has the property AK in $\mu\{F\}$ and proceed, with the obvious changes, as in theorem 1.

((1),(2)=>) If $\tau_b-\lim_n A_n=0$, then, by [16], $A=\tau B-\lim_n P_n(A)$ in $\ell^\infty\{F\}$. But, again because I_k and I_k are continuous, each map $P_n(A)=(A_1,\dots,A_n,0,\dots)$ transforms bounded sets of $\lambda\{E\}$ into precompact sets of $\mu\{F\}$. Now use [11,§42.1.(3)] Q.E.D.

Corollary 1. Let λ and μ be normal sequence spaces such that $\lambda(\beta(\lambda,\lambda^{\times})) \text{ is normed, } \mu(\beta(\mu,\mu^{\times})) \text{ is an AK-space, } \lambda^{\times} \subset \ell^{\infty} \text{ and } \lambda \subset \mu \subset \ell^{\infty}.$ Let E be a normed space and F be a Hausdorff lcs. Then a diagonal map $A \in M(\lambda\{E\},\mu\{F\}) \text{ is precompact if and only if each } A_n \text{ is precompact and } (A_n)_n \text{ is a null sequence in } L(E,F)(\tau_b).$

Remark. If $\lambda(\beta(\lambda,\lambda^{\times}))$ is a normal, normed sequence space such that $\|\mathbf{e}_n\|_{\lambda} = 1$, for all $n=1,2,\ldots$ and λ is an AK-space, then it is easy to see that λ and λ^{\times} are contained in ℓ^{∞} ; so that this corollary includes and reproves a recent result by Gupta and Patterson [9,Prop.4.6]

References

- [1] L.S. BOSANQUET: Note on convergence and summability factors. Jour. London Math. Soc. 20 (1949), 39-48
- [2] M. BUNTINAS: On Toeplitz sections in sequence spaces. Math. Proc. Cambridge Phil. Soc. 78 (1975), 451-460
- [3] G. CROFTS: Concerning perfect Fréchet spaces and diagonal transformations. Math. Ann. 182 (1971), 123-166
- [4] N. DE GRANDE-DE KIMPE: Generalized sequence spaces. Bull. Soc. Math. Belgique <u>23</u> (1971), 123-166

- [5] D. VAN DULST: (Weakly) compact mappings into (F)-spaces. Math. Ann. 224 (1976), 111-115
- [6] M. FLORENCIO: Una nota en espacios escalonados generales. Rev.Real Acad. Ci. Madrid <u>77</u> (1983), 221-226
- [7] D.J.H. GARLING: The $\beta-$ and $\gamma-$ duality of sequence spaces. Proc. Cambridge Phil. Soc. <u>63</u> (1967), 963-981
- [8] D.J.H. GARLING: On topological sequence spaces . Proc. Cambridge Phil. Soc. <u>63</u> (1967), 997-1019
- [9] M. GUPTA and J. PATTERSON: Matrix transformations on generalized sequence spaces. Jour. Math. Anal. Appl. <u>106</u> (1985), 54-68
- [10] H. JARCHOW: "Locally Convex Spaces".B.G. Teubner. Stuttgart (1981)
- [11] G. KÖTHE: "Topological Vector Spaces (I,II)". Springer-Verlag. Berlin Heidelberg, New York (1969,79)
- [12] G. MEYERS: On Toeplitz sections in FK-spaces. Studia Math. 51 (1974), 23-33
- [13] P. PAÚL and M.FLORENCIO: Sobre multiplicadores entre espacios de Cesáro. VII G.M.E.L. Coimbra (1985)
- [14] P. PÉREZ CARRERAS and J. BONET: "Locally Convex Spaces".
 Nort-Holland (to appear)
- [15] A. PIETSCH: Zur Theorie der topologischen Tensor-produkte. Math. Nachr. 25 (1963), 19-31
- [16] R.C. ROSIER: Dual spaces of certain vector sequence spaces. Pac. Jour. Math. $\underline{46}$ (1973), 487-501
- [17] W.H.RUCKLE: "Sequence Spaces". Pitman.Boston, London, Melbourne (1981)
- [18] W.L.C. SARGENT: On sectionally bounded BK-spaces. Math. Zeit. 83 (1964), 57-66
- [19] A. SZANKOWSKY: The space of all bounded operators on Hilbert space does not have the approximation property. Acta Math. <u>147</u> (1981), 89-108
- [20] M. VALDIVIA UREÑA: "Topics in Locally Convex Spaces".
 Nort-Holland. Amsterdam, New York, Oxford (1982)
- [21] A. WILANSKY: "Summability through Functional Analysis".
 Nort-Holland. Amsterdam, New York, Oxford (1984)
- [22] K. ZELLER: Abschnittskonvergenz in FK-Räumen. Math. Zeit. 55 (1951), 55-70
 - E. S. Ingenieros Industriales, Avda. Reina Mercedes s/n. 41012-Sevilla. SPAIN