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SOME RESULTS ON DIAGONAL MAPS

by Miguel FLORENCIO and’ Pedro J. PAUL

Summary. In this paper we study some results about diagonal maps bet-
ween sequence spaces. Our'pﬁrpose is two-fold: In §1, we characterize,
for a large class of scalar sequence spaces A and u, those diagonal -
maps a:A+p wich transform bounded sets into relatively compact sets as
those that can be approximated by finite sequences in the topology of
uniform convergence on the bounded subsets of . Consequences within -
the frame of echelon spaces and examples are provided. In §2, we give
a useful characterization of the space of compact diagonal maps bet--
ween Cesdro sequence spaces. On the other hand, in §3, we deal with --
the space »{E} of absolutely \-summable sequences from E (A being a -
normal sequence space and E a Hausdorff lcs). Our main result establi-
shes that, under certain conditions, the space 27 { L(E,F) ( Tb)} repre-
sents, both.algebraic and topologicélly, the space of continuous diagg
nal maps between two such vector-valued sequence spaces.

Some results iﬁ §2 were presented to the VII Congress of the Group of

Latin Expression Mathematicians held in Coimbra (Portugal) in 1985.

1. DIAGONAL MAPS ON T-BS SPACES.'.-:"

Definitions. We use the notation and concepts of [10 and 17] for gene-
ral theory and sequence space theory, respectively. We assume throu-

l;hout that every sequence space to be considered contains the space ¢.

1980 AMS Subject classification: 46A45
Key Words: Diagonal maps. Schwartz echelon spaces. Cesdro sequence spaces. Absolute
summability in l.c.s.
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A locally convex sequence space A is called a K-space if its topology
is finer than o(A,¢). If A and u are K-spaces, M(A,u) stands for the
space of those diagonal maps

IXE A— =
a:xe€ A ax (anxn)n€11

wich are con;inuous.:It is clear that ¢ CM(A,u). Moreover, if Ty -
stands for the topology of uniform convergence on the bounded éubsets
of A, then M(X,u) is a closed subspace of L(A,u)(rb);therefore we can
define the space S(A,u):= E'TbCM(A,u) .
I‘.v.e'l:.-IT=(1:nk)n,k be an infinite, row-finite matrix such that,l%m tnk=1
for each k, i.e. a Spl-matrix. Let tn:=(tnk)ke ¢ be the n-th row of T.
If x is a seqﬁenqé, thx is called the n-th Toeplitz section of x with
respect to the matrix T. A K-space A is said to be a T-BS space if the
set {t"x: n=1,2,...} is bounded for each x in A. A sequence x in A is
said to have the property T-AK if vx=1%m_tnx in the topology of A. If
every x in A has the property T-AK we say that A is a T-AK space. T-BS
and T-AK spaces have been widely studied by Buntinas [2] and. Meyers -
(12] as a generalization of BS and AR spaces studied by Zeller[22],Sar
gent.[18] and Garling [7,8] (BS and AK are T-BS and T-AK, respectively
when T is the summability matrix: tnk=1 if n2k and 0 otherwise). We -
~say that X is a T-ES space if (" n=1,2,...} is an equicontinuous set
in M(A,A). Plainly T-AK implies T-BS and T;BS plus barrelledness ;

implies T-ES. 4

Theorem 1. Let X be a T-BS space and p a guasi-complete U-ES space -

with respect to §21-matfices T and U, respectively. Then S(\ ,n)coinci-

des with the space of all continuous diagonal maps which transform --

each bounded subset of A into a relatively compact set of u. In fact,

ig;a S(\,u), then a has the property U-AK.

Proof. One part is well-known [11,542.1.(3)]. Now let a€M(A,u) be —-—
suéh that a(A) is relatively compact for every bounded subset A of A.
Firstly, let us see that ax=l$m at™x in u for every x:in A. Indeed,

m .
{x,t™x: m € N} is a bounded subset of A, thus B:=hx,at'x: m € IN} is
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relatively compact; but, since l%m tmk=1 for all k, ax is the only po-
ssible limit point of every sequence from B. Now we have that ax€ ¢ -
(closure in u) so that, by a well-known property of the equicontinuous
sets [11,539.4.(1)] and the faect that yzlﬁm uny in uif.y €¢ , we have
that ax=l%m wax in'u.-Finally, let us see that a=rb-lig Pa. Indeed,
«if A is a bounded subset of A and V is a zero;neighborhood'in u, then
we can find x(1),..., x(P) in A such that a(a) C U?=1(ax(j)+v/3).For

each x in A take j such that ax—ax(])e V and write:

ax=u"ax = (ax-ax(j))+(ax(j)—unax(j))+(un(ax(j)-ax))

then, by the equicontinuity of {u?:n=1,2...} and the fact that'ax(j)=
(3)

.=l%m unax‘ j=1,...,p it is easy to deduce that ax-u"ax is in V for

each n greater than a suitable n, and every x in A Q.E.D.

0

Corollary 1. Under the assumptions of the theorem, if X is a normed -

space then S(A,u) is the space of all compact diagonal maps from A in

to u. The same conclusion holds (see [5]) if X\ is a DF-space and u is

a Fréchet space.

This corollary generalizesbresults due to Crofts [3] and FLorencio[G]

Corollary 2. If X 1is a Montel, T-BS space then A has the approxima-

tion property.

Example 1. If A is a normal (in the sense of Kothe) sequence space —
such that A(B(A,Ax)) is a Bangch spacé, then M(X,)) is 2~ and, there-
fore, S(A,X) equals Co-
Example 2. The space A of all bounded linear maps from 12 into itself
is a Banach space without the approximation property [19]. The ele--
mehts of this space can be viewed as infinite matrices [17,4.1.6]. -

Reordering a matrix A=(apk) according to:
3p,k+1 if n=k +p pP=1,2,..., k1
3%41,k+1+p if n=k +k+1+p p=1,2,...,k
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we can associate the sequence b=(bn) with A in a unique way. In this -
sense, A can be viewed as a Banach K-space. If we show that A is a —-
T-BS space then, by using corcllary 1, we obtain that every compact -
diagonal map from A into A can be approximated by finite rank al-—
though A does not have the approximation property.

Let us take thé operatérs Tn that assign to each matrix its square -
box of order n: (Th(A))ij=aij if 0<i , jsn and zero otherwise. Then
Tn<EL(A,A) when A is taken as a matrix space. To each Tn corresponds
the diagonal map Pnz (Pn:=(1’1""’1'0’0"") the last 1 in the n-~th
place) defined on A when A is taken as a sequence space. If T is the
matrix whose—rows.are'Pnz;we need only to show _.that the operators Tn
are uniformly bounded in L(A,A): Let ne€ N,: if x is in %* +then

lenx||2§ || b4 !Iz' Now if (aij) is in A we have

[ T, (ay5) IlA = sup {|] (Tn(a; ))x |I2:|| x |],51}

but it is easy to see that (Tn(aij))x = Pn((aij)an), therefore we ob

tain:
I T, (a;4) ||A < supf || (a;4) % [12: |1 % |].s13: ¢
s swt || (agy [l [Ty Hs1y=11 @y

then ||'Tn llL(A,A)S1 for all n in N.

(k): k=1,2,...} be an echelon system, i.e

(k)

Echelon spaces. Let {Ak, a

each Xk is a Fréchet K-space and a is a sequence of non-zero terms

(k)/a(k+1)

such that a Ak) so that we can write the conti

is in M(Ak+1,

' nuous embeddings:

(/aMne ea/a®yie <.
tﬁe space A:=proj lim (1/a(k))>\k is called the echelon space associa
téd to {lk, a(k)}. A is a Fréchet K-space. The following result is a

straightforward corollary of our preceding results:

Corollary 3. Let {X, a (k) } be an echelon system such that each A\
is a T,~BS space for Ty §.§21-matrix. If for each k in NN there -
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exists r>k such that a¥)/al®) is in S(A_,X,) then X is a Montel space.

Moreover, if each Ak is a Banach space then the above condition is e-

gquivalent to X be a Schwartz space.

This corollary includes and reproves the characterizations of the --
"Schwartzness" of an echelon space given for the classical cases,see

e.g. [3, 6, 14 or 20].

2.. AN EXAMPLE WITH CESARO SUMMABILITY

Definitions. Let o be a nonnegative integer. The space Ca of those --
sequences which are summables in the sense' of Ces&ro of order a is

the summability field associated- to the Spi—matrlx Ta=(tnk)n,k§0
with

(n—k+a)(n+a)e1

£, = .

akTl o

in other words:

if nak,'and tnk=0 otherwise

Ca:={(xn)n= ( ﬁ thkxk)n converges}
Under the norm

|  |lg := sup{| ﬁ tnkxklz n=0,7,2,...}
Ca is a Banach, Tu—AK space [2, 17, 211. Therefore S(Ca,CB)is the --
space of compact diagonal maps from Ca into CB' Our purpose in this -
section is to derive a useful characterization of this space. If asB
then, according ﬁo Bosanquet.[1], we have:

(B1) M(Ca’cé)=M(ca'ca)={ u: || u ||:=(n§0 n Aa+1un|+|lu|L’< o}

Using this and [Z,Prop.S] we can deduce readily:

Proposition 1. Let asB be nonnegative integers, then

(1) The norm l| Il that appears_ig (B1) induces the topology 15_29 -
M(Ca’cﬁ)

(2) S(Ca,CB) coincides with M(Ca’ca)n Cy=

={u: u has T,~AK in M(Cq,Cq) (Ty) }
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If a>B8 then, again by Bosanquet [1]:-

* .
(B2) M(Ca,CB)={u:“ u || =L n°‘|A°‘”un|+1|((n+1>“ Bun)n[L) <}

Proposition 2. Let a>f be nonnegative integers. Then,

*
(1) || ” in (B2) is a norm on M(Ca,CB) and induces the topology T+

i .= . a~8 Do s
(2) S(Ca,CB) is the space .-{ueM(Ca,CB).((nM) u ) is in c,}
Proof. (1) By using the linearity of the difference operator A we ob-

tain that || ”* is a norm. Since the identity M(Ca,CB) (|| H*)—» M(Cy

CB) (-rb). has closed graph, we only need to show that M(Ca,CB) (|[ ||*) is

*
complete. Let u(m)= (ur(xm))n m=1,2,... be a [| “ -Cauchy sequence in

(m)

M(Ca'cs)' then v ™ .= ((nse1)® B ur(xm)v)n m=1,2,... is a || || -Cauchy

(m)

sequence. Set v=“ [Ln—lr:iﬁm v , then u:=((n+1) E’-O‘Vn)n is such that

((n+1)°"'ﬁun)n € 2~ and ”((n+1)°‘-e’(u,(1m)-un) )nlL—+0. Since the inclu--

sion M(Ca,cs) (|| ||*)—-—->M(Ca,ca) (|[ H ) is continuous, u(m) is || H -Cau—
chy and, a. fortiori, || || -convergent to some z in M(C‘a'ca) .. Necessari
ly z=u€M(C ,C,) and w=|| |[f -lim g (@

(2) Let ue ECM(Ca’CB) CM(Ca,Ca)ﬁcc):S(Ca,Ca) . Using (2) from the abo-
ve proposition, we have that

(1) 1jm ngono‘Ma” (un-(tmu)n) [=0

where t™ is the m-th row of Tu' Let

(m)

2™ cg-tMu= (0, (1=t )u,,eee, (1=t Ju ,u .2)

u .
m+1’ m+2’

since u€E and Ostmk§1, given ¢>0 there exists n, in W such that -

for all m in N and nzn, we have

(1) [ e ® B2 (™ <] (nen) * By _|< ¢

On the other hand, lljﬂm tmn=1, hence mo(zno) exists such that if mzm

0
and 0§n§no then
. 0-B_(m . a-8
(114) | (n+1) 820 | sti-e ) [ (me) u|< e
B *
(i), (ii) and (iii) yield || u-t™u| —50, i.e, uEs(C ,Cp).
Conversely, it is clear that E is “ “* -closed, therefore ¢C ECS(Ca

CB) implies E=S(Ca,CB) by using (1) and the definition of S(Ca'CB)

Q.E.D.
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Example 3. Given k in N, we take a(k)=((n+1)k)n. Since a(k)/a(k+1)=

=(1/(n+1))n is in M(Ck+1’ck) , we can consider the echelon space A asso

a(k)}. Now, if r>k, then a(k)/a(r)=

ciated to the system {Ck,
=(1/(n+1)r-k)r1 is not in S(Cr,Ck); therefore, A is not a Shwartz space

although the quotients a(k) /a(r) are absolutely summable if r2k+2.

3. DIAGONAL MAPS ON VECTOR SEQUENCE SPACES.

Definitions. Let A be a normal sequence space. Let E(tT) be a Hausdorff
lcs and U(E) a zero-neighborhood basis for 1. A sequence (xn)n'from E
is said to be absolutely A-summable if (qU(xn))'n is in A for all U in
U(E). The space A{E} of all absolutely A-summable sequences from E is

(I)

a linear subspa_ce of EN that contains E . From T a.nd the strong
topology B(A,Ax) we can define a topology, which we cali 7B, given by
the seminorms:

G,y (x) :=sup {Zanlqu(xn): BEM}= qMO((qU(xn)n) , x=(xn)n€>\{E}
where U runs through U(E) and M runs through the family B(A*) of all
normal,g (X%, ) -bounded sets of Ax(the topology on A of uniform conver-
gence on B(\*) is, precisely, B(A,Ax)) .

The spaces A{E} were introduced by Pietsch [15] and studied by De -
Grande-De Kimpe [4] and Rosier [1 61. From these papers we recall that

the maps:

I :X€E — I, (x) :=xe € ME}

k

iﬂk;x =(xn)n e ME} —rﬂk(x) 1=x, € E

are continuous for all k=1,2,... and also that the projections

{Pn:n € N} (defined analogously to the scalar case) form an equiconti--—
nuous subset of L(A{E},A{E}). It is also clear (see [16]) that A{E} is
dn AK-space (x=1B-lim Pp(x) for all x in AME}) if and only if
A(B(A,2%)) is also an AK-space. Following Rosier [1 6], E is said to

)

be fundamentally A-bounded if the sets

[R,B]::{ax:(anxn)n: @ €R, x €8, n=1,2,...}
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form a fundamental system of bounded sets in A{E}(tB) when R runs
through the (absolutely convex) normal bounded sets in X and B runs
through the (absolutely convex and closed) bounded sets in E. (Recall
that all the (A,1*)-polar topologies in A have the same family of
bounded sets because \* is weakly sequentially complete [20,Ch.2,4.
(14)]). In particular, if E is normed then E is fundamentally’ A-boun
ded for all normal spaces (see ﬁG] for further examples).

If y is another normal sequence space and F another Hausdorff lcs, we
denote by M(A{E},u{F}) the space of all continuous diagonal maps -
from A{E} into u{F}, i.e. of those sequences A=(An)n from L(E,F) such
that

A:x=(xpn) € ME}(1B). —>Ax:=(Apxp) € u{F}(1B)

is continuous. On M(A{E},u{F}) we consider the topology Ty, of uniform
convergence on the family of all tB-bounded subsets of AME}. We shall

nee& the following scalar—type lemma:

Lemma 1. Let A be a normal sequénce space, then

(1) If u is a normal sequence space such that AC u then the injection

A(B(A,A)) »u(B(u,u*)) 1is continuous.

(2) B(A**,XX) induces on X the strong topology B8(\,Ar")

(3) If X\*c e and M is a normal o(A*,))-bounded subset of 2" ythen M
is |||L-bounded.
Proof. (1) is stréightforward. Now, using [20,Ch.2,4(14) and 5.(1)]
and the Banach-Mackey theorem we obtain thatic(kx,kxx) and c(Ax,A) ha
’Vve the same family of bounded sets, hence (2). (3): as in (2) M is

X XX
)

(A, X ~bounded so that M is also B(Xx,lxx)-bounded and finally, by

(1), M is 8(2”,2')-bounded Q.E.D.

Theorem 2. Let A and W be normal sequence spaces such that

; (1) Arcuce® and (i) Afcp”
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Let E and F be Hausdorff lcs, then:

(1) MA{E},u{F}) = (a€ (L(E,F)) M: {(a_:

ni B=1,2,... is equicontinuous}}

(2) If in addition E is quasi- Nbarrelled, then

M(A{E}, p{F} = ¥ {L(E,F) (1)}

(3) If in addition to (2), E is fundamentally A-bounded, then the

following topological equality holds:

MOME}, w{F}) (1,) = 27(L(E,F) (1) } (TB)

Proof. (1) (C ) Assume A=(An)n is in M(A{E},u{F}), thén for each

k=1,2,..‘. we have Ak=T[k A Ik. By the hypothesis A is continuous, so

we will deduce the eguicontinuity of {An: n=1,2,...} by showing that

{Hk}k and {Ik}k are, respectively, equicontinuous subsets of oo

L(u{F},F) and L(E,A{E}). On one hand, if M is in B()\x) we can find

r>0, by (3) in the lemma above, such that IBnlﬁr for all n in N and

8 in M, hence qM’U(Ik(x))Squ(x) for all x in E. On the other hand,

if VeU(F) and x is in u{F}, then qv(I[k(.x))=qV(xk)§|| (q‘v(xn)nllm-, now

appiy (1) in the lemma above to u and £ .

(1) ( D) Given V€& U(F), let UE U(E) be such that Iy (A x)Sqp (%)

for all x in E and k=1,2,... Now, if x=(xn)1_1 is in A{E}, then ’ |
qV(Akxk)gqU(xk) . By using the normality of X and the fact that Acy,
~we obtain that Ax ¢ w{F}.Finally,A is continuous because

qM'V(Ax-) S,qM,U(x) and MeB(ux’) cB()\x) (the last inclusion by (1) in the
lemma above) .

(2) follow from (1) and the definition of quasi- HO -barrelledness.

(3) (1B is finer that T Suppose (g, v*) (+) is a 'rb-seminorm on
7

B

M(ME},u{F}, i.e. B*=[R,B] and qv*(')=qM'V(') for certain R (normal
and bounded in 1), B (bounded in E), V€ U(F) and M€ B(ux) c B(kx) . Now,
if A= (An)ne M(A{E},u{F}), then one can see that

9 (p*,v*) (A) :=sup{qM,V( (Anxn)n) : X E [R,B] } o<

ssup{qv(A'nyn) :y,€B, n€ N}‘sup{zlansnl :B € M,a€ R}=

c®M -l @z B
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being r(R,M) a constant and ||(q(B V)(An)')nl[Q0 a TB-seminorm on -
r
${L(E,F) (1)} .

(3) (1, is finer than TB). Consider the injection

b
I: M(ME}, u{F}) (1y) — & {L(E,F) (1) } (1B)
we can make the following descomposition: I=I,eI; where

I,;: MOME}, u{F} (ty) — M(A{E}, 27{F}) (1y)

1
Ip: M(ME},2Z{F}) (ty) — &%{L(E,F) (1p) } (tB)

the three spaces being algebraically isomorphic. We are done if we

show that'Il and I, are continuous. On one hand, if V*€U(2*{F}),then

Vf::V*fiu{F} is in U(u{F}) (n{F}+2®{F} is continuous: use (1) in lemma

above) . Therefore, since q(B*,V*}(A)=q(B*,VY)(A) for all A in

M(A{E},u{F}) and all B* bounded in A{E}, I; is continuous. On the

other hand, suppose that g W(') is a tB-seminorm on L¥{L(E,F) (1)},
, .

i.e. G @ =1l (a1l = Il (agg g Bl

for certain B (bounded in E) and VE U(F). Now the set of unit sequen
ces {eq:n=1,2,...} is e(A,Ax)-boﬁnded (use 2*c A**, (1) and (2) in the
lemma above. Take R as the normal hull of this set, R is a normal .
bounded set.in A. Now take B*::[R,B] and V* in U(22{F}) such that.
qv*(;)=qwlv(°). If A is in M(ME},2”{F}), and bearing in mind that

xe is in B* for all,.x in B, then

qm,W(A)=sup{q(B'V)(An): n=1,2,...}=sup{qV(Anx): X€ B, n=1,2,..15
Ssup{qv(Anyn) : yeB*, n=1,2,...}=sup{qv* (Ay) : yeB*}= D px, v*) ()

q(B*,V*)(f) being a rb-seminorm on M(A{E}(L {r}) Q.E D.

-Remark. Observe that (i) and (ii)- in the theorem above are satisfied
if A and p are normal sequence spaces such that 2! CA.Cu<I£w. So that

the theorem holds if A,u are Dubinski's step spaces [3].

Proposition 3. Let A and u be normal sequence spaces such that AX<:£?

1

rcuet” and u{B(u,u*)) is an AKR-space. Let E be a quasi-_Ho—barrelled

Hausdorff lcs which is fundamentally A-bounded. Let F be a Hausdorff

les. Then a diagonal map A€ M(A{E},u{F}) transform bounded sets into
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precompact sets if and only if the following two conditions hold:

(1) Each Ap transforms bounded sets into precompact sets.

Proof. (=>(1)) This follows from the continuity of the maps Iy and
M.

(=>(2)) Note that Ax = (Apxp), has the>propert§ AKX in u{F} and pro-
ceed, with the obvious changes, as in theorem 1.

((1),(2)=>) If 71h-lim Ay = 0, then, by [16], A=TB-1lim Pp(A) in
2¥{F}. But, again because I, and I, are continuous, each map
Pn(A)=(A1,.",An,O,.")transforms bounded sets of A{E} into precompact

sets of u{F}. Now use [11,542.1.(3)1 Q.E.D.

Corollary 1. Let X and u be normal seguence spaées such that

A(8(A,\)) is normed, u(B(u,u)) is an AR-space, A c 2~ and Ac pc 2 .

Let E be a normed space and F be a Hausdorff lecs. Then gidiagonal map

and (Ap), is a null sequence in L(E,F) (1p).

Remark. If A(B(A,Ax)) is a normal, normed sequence space such that
ilenllx=1' for all n=1,2,... and X is. an AK-space, then it is easy to
see that A and A" are contained in Zm; so that this corollary inclu-

des and reproves a recent result by Gupta and Patterson [?,Prop.4.6]
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