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ABSTRACT

This work presents a classification of the proper homotopy types of locally finite 1-dimensional CW-
complexes.

0. Introduction

A proper map (p-map) is a continuous map/: X-> Y such that f~\K) is compact
for any compact K. Proper homotopy (p-homotopy), proper homotopy equivalence,
etc., are defined in the natural way. A graph is the underlying space of a connected
locally finite 1-dimensional CW-complex. We consider on the half-line IR+ the natural
CW-structure whose 0-cells are the set of positive integers. Any cellular embedding
f:U+ -*G is called an infinite branch of the graph G. The vertex /[0) is called the root
vertex of the branch.

It is a well-known fact that any compact graph has the same ordinary homotopy
type as a wedge of finitely many copies of the 1-sphere S1. We call that number the
genus of the graph. So the genus classifies the ordinary homotopy type of compact
graphs and actually gives us an equivalence with the category of finitely generated free
groups. Nevertheless, there are easy examples of non-compact graphs with the same
ordinary homotopy type but different p-homotopy types. The aim of this work is to
state the corresponding proper homotopy classification of non-compact graphs. This
problem was posed to us by Professor H. J. Baues as the starting point for the study
of proper homotopy from a combinatorial point of view.

As in the case of open surfaces (see [6]), the notion of Freudenthal end is the main
tool used for obtaining such a classification. A Freudenthal end of a space X is an
element of the inverse limit ^(X) = \imnQ(X— K), where Granges over the family of
compact sets of X and no(X— K) stands for the set of connected components. When
A' is a 7 -̂locally compact cr-compact space, we can use a countable sequence Kx c K2

c ... of compact subsets to obtain !F{X). The topology of X can be enlarged to a
topology on X = X U ^(X) in such a way that ^(X) turns out to be homeomorphic
to a closed set of the Cantor set (see [3] and [1]), as follows. The topology on X is
generated by the topology of X and the sets U = U\J U*, where Ueno(X—Kn) for
some n and U* is the set of ends given by the sequences {Un} e lim no(X— Kn) such that
there is a positive integer «0 with Un a U.

Another useful proper invariant is the notion of proper end. A proper end is a p-
homotopy class of p-maps/: U+ -*• X. The set of proper ends of Xis denoted by F(X)
and there is a map 0 from F(X) onto
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A Freudenthal end a is said to be stable if ^-1(a) is just one point. Otherwise, a is
non-stable or unstable. We denote the set of unstable ends of X by ^ns(X), which
turns to be a closed subset of ^{X). In order to know whether a Freudenthal end a
is stable or not, we can use the bijection Vaxfn-^X—K^ = 6~\a) (see [5]), where *j
is a point in the component of X— K} belonging to a (see [1] for more details).

It is easy to check that any p-map f:X-*Y induces a continuous map
fm\{P{X), &ns{X))^{3?{X\ &n%Y)) such that i f / i s a p-homotopy equivalence,
f+ is a homeomorphism. Notice that there exist p-maps/which are not p-homotopy
equivalences but their induced /* are homeomorphisms.

If we embed Cantor's set in [0,1] x {0} e U2, it is a well-known result that there is
a binary tree, called the Cantor tree, embedded in IR2 in such a way that the following
conditions hold. (1) The number of vertices on the ith level is 2*. (2) The space of
boundary points of the embedded tree is Cantor's set. (3) There is a natural 1-1
correspondence between the points of the Cantor set and the set of infinite branches
of the tree starting from the root vertex.

1. Characteristic pair of a graph

DEFINITION 1.1. A graph is oo-stable or stable at infinity if any Freudenthal end
of X is stable. A graph is totally unstable if any end of X is unstable.

The following results are easy to prove.

PROPOSITION 1.2. (a) The stable ends and the unstable ends are p-homotopy
invariants.

(b) A graph is oo-stable if and only if its fundamental group is finitely generated.
(c) Any non-compact graph G ^ U+ is p-homotopy equivalent to a graph with no end-

vertices.

DEFINITION 1.3. The genus of an oo-stable graph G is the rank of the
fundamental group n^G). The characteristic pair of an oo-stable graph is (J5", g), where
!F is the space of Freudenthal ends of G and g is the genus of G. The characteristic
pair of a non-oo-stable graph is (&r,&'DS).

Two characteristic pairs (^gj and (&2ig2) are isomorphic if gx = g2 and 3FX and
^ 2 are homeomorphic. Two characteristic pairs (&'x,!Ff) and ($F2,!Ff) are
isomorphic if there exists a homeomorphism of pairs h.iJF^SF'f) -»• (^2,^ls).

PROPOSITION 1.4. (a) Given a pair {JF, g), where ^ is a closed subset of the Cantor
set and g is a natural number, there exists an oo -stable graph whose characteristic pair
is (f,g).

(b) Given a pair of closed subsets (#", !F') of the Cantor set there exists a graph
whose characteristic pair is the given one.

Proof. Given a pair (i^, g), we may consider in a natural way the Cantor subtree
defined by the subspace J5", and then we glue a wedge of g copies of 1-spheres at the
root vertex. We obtain in this way an oo-stable graph whose characteristic pair is
{^,g). A graph associated to (&',&'') is obtained by gluing exactly one 1-sphere at
each vertex belonging to an infinite branch determined by a point of $F'.
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DEFINITION 1.5. The graphs given in Proposition 1.4 are called canonical graphs.
An unstable branch of a canonical graph is an infinite branch where there is an
1-sphere attached at each vertex.

2. Proper classification of graphs

From Proposition 1.2(c) we shall deal only with graphs with no end-vertices.
Given a non-compact connected graph G with no end-vertices, we set up a sequence
of compact connected graphs Kx c K2 c ... with [j K} = G and a spanning tree
T c G, as follows.

Let Kx be any connected compact subgraph of G. Let K* be the extension of Kx

by adding all the incident edges to Kv Let {D)} be the connected components of
G — Kv The vertices in (K*—Kx) n D] are joined by a finite tree T) a D). We define
K2 by adding to K'2 = K\* U {[jj T)} all the edges with both vertices in K2. We iterate
that process to obtain the above sequence. Notice that if Z)" is a connected component
of G — Kn, we have that cl (Kn — Kn_x) D cl (Z>") is a compact connected graph L" joined
to Kn_x with a set of edges A".

We now choose a spanning tree T c: G as follows. We take a maximal tree in Kx

and all the trees TJ(n ^ 1). We join them with edges of A". Notice that those paths
in T going between two vertices of Kn — Kn_2 miss the subgraph Kn_2.

PROPOSITION 2.1. Given G and T as above, there is a graph G' p-homotopically
equivalent to G with the same tree T and such that all the cycles of G' are loops.

Proof. Given an edge eeG—T which determines a cycle of G, let ve and we be the
vertices of e and Le be the unique path in T running from ve to we. We subdivide e by
adding a new vertex ce and we attach a new edge ye with vertices ve and ce to G. We
can now glue a 2-disk D\ identifying dDe with Le U c~^W~e U ye, where cjwe is the 1 -cell
defined by ce and we. After doing that for each vertex e which does not belong to T
(notice that all those gluings are locally finite by the construction of T), we obtain a
2-dimensional CW-complex G p-homotopically equivalent to G relatively to T.
Performing now the obvious collapses, we obtain a graph G' p-homotopically
equivalent to G and such that all the cycles are loops.

PROPOSITION 2.2. Any graph G is p-homotopically equivalent to a canonical graph.

Proof By Proposition 2.1 we may assume that G is a directed tree Twith some
loops attached at the vertices. By an obvious p-homotopy equivalence we may
consider that the number of incident edges from a vertex is 1 or 2 and the number of
incident edges to a vertex is 1 (except the first vertex, which has no incident edge to
it). Therefore the tree of G is now a subtree of the Cantor tree.

If G is oo-stable, after a suitable p-homotopy equivalence we may regard all the
loops at the root vertex. Otherwise we can argue in the same way for each maximal
stable infinite branch whose root vertex belongs to an unstable branch. Only the
problem of distributing the loops remains. We now take any vertex v with n > 1 loops
and subdivide any incident edge from v adding (n— 1) new vertices. We may remove
(«— 1) loops from v and put each of them at one new vertex. This completes the proof.
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LEMMA 2.3. Let L be a subtree of the Cantor tree. Given a finite disjoint open
covering {Vx, V2,..., Vn) of ^(L), we can choose a compact subtree Locz L such that
each set U* of ends defined by a component U c L — Lo is included in some Vt.

Proof. We have that each Vt is closed in ^(L) and so compact. Since the family
of sets U*, where U is a component of L — K, K running over the compact sets of L,
is an open basis for the topology of i^(L), we can cover each Vt with only finitely
many U* and then we can easily choose the tree Lo we are looking for.

PROPOSITION 2.4. Let G and G' be two canonical graphs with trees L and L'.
Then any continuous map h:{&r{G),P(Gns))->{&{G'),&{G'ns)) induces a p-map
h': (L, Lns) -»(Z/, L'ns) unique up to p-homotopy of pairs such that h'i, =

Proof. We take an increasing sequence of compact subtrees L[ c L'2 c ... of L.
Let nx be the number of connected components of L' — L[ and v} be the first vertex in
the component K^(l ^ y ' ^ nx). Applying the above lemma to

we may choose a finite subtree Lx of L such that the ends defined by each component
Vk of L — L1 are included in some h~xV'*k). Let vk be the first vertex in Vk. We define
h'{vk) = v'm. All the vertices in L1 are mapped to the root vertex v'o of L'. Now we take
L' — L[ and we argue replacing L and L by the maximal trees in each Vt and the
maximal tree in each Vk. So we may choose a finite subtree L2 a L such that the set
of ends defined by each component of L — L2 is mapped by h in the set of ends defined
by some component of L' — L'2. We define h' as above for the first vertices and h\v)
= v'm if v is a vertex in L2 — Lx and Vk is the component of v in L — Lv We may iterate
this procedure and define inductively a p-map h'.L^L' such that h't = h\,f(L).
Notice that h' actually maps Lns into L'ns.

Let h be another p-map with h# = h. By using a proper simplicial approximation
[2], we may assume that h maps vertices into vertices and h(v0) = h'(vQ), where vQ is
the root vertex of L. From the properness of h we can choose increasing sequences
^ c ^ c . c L and I J c L j C . c L ' o f compact subtrees such that any com-
ponent of L — K} is mapped by h into a component of L' — L'v We can easily define
a sequence Ln a Kn a Ln c= ATn c: ...,where Ln is given in the definition of h'.

Let Ai be the set of first vertices of components of L — Kn . As h'* = h* = h, we
claim that h'(v) and h(v) are in the same component of L' — L'n if veAr Indeed, if
h(v)eC[ and h'(v)eC2 then h'^C* and h'lC* are disjoint open sets in ^(L), and
taking an end a starting from v we obtain that h((x,)eC[* n C*. So we may take a path
ev in L' — L'n going from h(v) to h\v). In this way we can define the p-map

by Ho | L x {0} = h, Ho | L x {1} = h' and H0(v, t) = ev(t). Given veA} and weAJ+l, it is
obvious that the loop H0(vw x {0,1} U {v, w} x / ) is null-homotopic in L' — L'n. So Ho

extends to a p-homotopy H between h and h', which is easily checked to be a
p-homotopy of pairs.

COROLLARY 2.5. h\{^{G),^{Gm))^{^{G'),^{G'm)) is a homeomorphism if
and only if h' is a p-homotopy equivalence.
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LEMMA 2.6. Letf: A-* Xbe a p-map with the proper homotopy extension property
and h:X-> Yap-homotopy equivalence. Then A\JfX isp-homotopically equivalent to
A VhfX.

Proof. It is straightforward, following with minor changes the proof in ordinary
homotopy (see [7,1.3.10]).

THEOREM 2.7. Two graphs G and G' have the same p-homotopy type if and only if
their characteristic pairs are isomorphic.

Proof. By Proposition 2.2 we can consider these graphs canonical. If they are
both oo-stable the result follows from Proposition 2.4. Assume that they have non-
Stable ends and let h: C^(G), ^(Gn s)) -> (&(&), &(G'ns)) be a homeomorphism and T
and T' the trees of G and G' respectively. By Corollary 2.5 there is a p-homotopy
equivalence of pairs h! :(T,T0) -• (T,T'O), where To and T'o are the corresponding
non-stable subtrees. Actually, given any increasing sequence of compact subtrees
L[ <= L'2 e ... in 7", we may find a sequence of compact subtrees Lx c L2 c ... in T
such that if Ap B} are the sets of first vertices of components of T— L} and T' — L'}
respectively, h' maps A} into Bj and all the vertices of L} — L}_x into Bj_1 (see the proof
of Proposition 2.4). Now by Lemma 2.6, if we attach one copy of S1 to h'{v) for each
copy of S1 attached at v we obtain a new graph G* in the p-homotopy class of G with
tree 7". We finally apply Proposition 2.4 to reduce G* and G' to the same graph up
to p-homotopy equivalence.
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