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ON THE GRAPHS WHICH ARE THE EDGE
OF A PLANE TILING

R. AYALA, E. DOMINGUEZ, A. MARQUEZ and A. QUINTERO

0. Introduction.

In [2] it is proved that an infinite graph is planar if and only if each finite
subgraph is planar. Thus, the Kuratowski Theorem on planarity of graphs holds
for infinite graphs. In addition, R. Halin ([7]) has characterized the connected
graphs which admit a plane representation without vertex accumulation points
(VAP-free plane graphs). Later, C. Thomassen ([11; Cor. 4.1]) shows that all
connected VAP-free plane graphs admit locally finite plane representations
(EAP-free plane graphs in the sense of [11]).

Edge graphs of plane tilings provide a large class of locally finite plane
representations of graphs.

A natural question asks for all graphs whose locally finite plane representa-
tions always are edge graphs of plane tilings. In this paper we characterize that
family of graphs in (2.11). This result is a consequence of the characterization of
all graphs whose locally finite plane representations only have bounded compo-
nents (see (2.9) below). Previously we have also characterized the graphs whose
locally finite plane representations always have a unbounded component (see
(2.6) below).

An important consequence of (2.9) is the characterization of those graphs
which admit a locally finite representation (see (2.13) below) in terms of forbidden
graphs.

1. Properly planar graphs.

In this paper a graph is a locally finite 1-dimensional connected CW-complex.
Given a subgraph H < G, we denote by G — H’ the subgraph of G defined by all
the edges of G — H and their vertices. By a tree we shall always mean an infinite
tree.

Ina graph G, a vertex ve G is called a cutpoint of G if G — {v} is not connected.
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When G has no cutpoint, G is said to be 2-conneccted. See [4] for notations and
basic results of graph theory.

A graph is said to be planar if it can embedded in the plane, and properly planar
(p-planar) if it can be embedded in a locally finite way. A locally finite embedding
¢: G —» R? means in topological terms that ¢ is a proper map. We recall that
a proper map (p-map)is a continuous map f: X — Y such that f~*(K) is compact
for each compact K < Y.

It is easy to check that the planar graphs pictured in Figure 1 are not properly
planar. Those are the graphs such that their one-point compactification are
homeomorphic to either K5 or K3 ; (the complete graph with 5 vertices and the
complete bipartite graph with 3 + 3 vertices respectively).

A) B)
0) D)

Figure 1: The graphs A = K2, B= L% ;,C = K$;, D = L3.

An important notion for a non-compact space X is the set of ends of X. More
explicitly, the ends of X are the elements of the inverse limit #(X) =
lim, 7o(X — K) where K ranges the family of compact sets of X and no(X — K)
stands for the set of connected components. The cardinal number of #(X) is
denoted by e(X). When G is a graph we can use a countable sequence
G, € G, < ... of finite subgraphs to define #(G). See [3] for details.

An end of a graph G is defined by a tree F < G homeomorphic to the positive
half-line R, (see [1]). Two trees F; and F, homeomorphic to R, represent the
same end if given any compact subset K < G, there exists a pathin G — K joining
F, to F,. An end defined by F is said stable if for some K compact subset of G, the
connected component of G — K defined by F is a tree, otherwise the end is said to
be unstable (see [1]).
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1.1 ReMARK. a) Notice that e(K) = 4, e(L%3) = (L3 ;) = 2, and (K5 3) = 3.
Furthermore, all the ends are stable.

b) If we join two vertices of different infinite edges in K¢ we get a copy of
K3 ; embedded in the new graph. When we proceed in the same way with K5 ; we
get an embedding of LY ;. And, if we pairwise join three vertices of three different
infinite edges of K we get an embedding of LY ; in the new graph.

In [7] R. Halin characterizes VAP-free graphs in terms of the family of
forbidden subgraphs consisting of the Kuratowski graphs and the four graphs in
Figure 1. Moreover, C. Thomassen ([11; Cor. 4.1]) shows that any connected
VAP-free plane graph admits a locally finite representation. That is, the follow-
ing result holds.

1.2 THEOREM. A connected planar graph G is p-planar if and only if G contains
no subgraph homeomorphic to K%, K% 3, L5, or LY 5. These graphs will be called
minimal non-p-planar graphs.

1.3. COROLLARY. Let G be a connected planar graph with e(G) = k, then G is
p-planar if and only if it contains no subgraph homeomorphic to a minimal
non-p-planar graph H with e(H) < k.

Proor. If H < G is a minimal non-p-planar graph with e(H) = k + 1, we can
use (1.1.b)) to get a new minimal non-p-planar graph with H' = G withe(H') < k.

1.4 CoOROLLARY. Let G be agraphwithe(G) = 1, then G is p-planar if and only if
it is planar.

Later, we shall also use the following lemma, whose first statement is actually
used in Halin’s proof of Theorem (1.2).

1.5 LEMMA. Let G be a graph. There exists an increasing sequence {G;};>, of
connected finite subgraphs such that G = U {G;;i 2 1}, all the components of
G — G; are unbounded, and H; = G; n (G — G;) is a finite set of vertices.

Moreover, if for any tree T < G, e(T) = 1 we can choose the above sequence in
such a way that each H; is just a cutpoint of G.

PrOOF. We start with any incressing sequence {C;};>; of connected finite
subgraphs of G with G = U {C;;i = 1}.

Since G is locally finite there are only finitely many components in G — C;. If
{K,;ael;} is the family of bounded components of G — C;, we take
C; = C;u {K,;aeI;}. Finally we define G; to be the union of C; with all the edges
whose vertices are in C;.

Assume now that ¢(T) = 1 for any tree T < G, and let S be the set of cutpoints
of G. The set S is infinite since, otherwise, by the Menger Theorem for infinite
graphs ([6; Th. 3]), if from a vertex v there are not two infinite paths, ver-
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tex-disjoint apart from v, then there is a cutpoint w such that the component of
G — w containing v is finite. It follows that, if G contains only finitely many
cutpoints, choosing v suitably we could find a tree T with ¢(T) = 2.

The sequence {G;};» is now constructed as follows. We take a vertex v; € S.
Then G — {v,} has a finite set { H; f€ I,} of bounded components and only one
unbounded component since ¢(G) = 1. Let H; denote the union U {Hy; fel,},
and G, = H; = H, u {v,}.

As S is infinite, we can choose a vertex v,€S n U;. Again, we know that
G — {v,} has a finite set {Hy;fel,} of bounded components and only one
unbounded component U,. If H, = U {Hy; fel,}, it is clear that G, = H,. Let
G,=H,=H,u {v,}.

We proceed inductively to define the increasing sequence {G,};> ;.

2. Spanning graphs.

Given a graph G, a locally finite (proper) embedding ¢: G —» R? is said to be
a spanning embedding if all the components of R? — ¢(G) are bounded. There
exist obvious examples of infinite graphs which admit both spanning and
non-spanning embeddings (see Example 2.3):

A graph G is a spanning graph if all of its properly planar embeddings are
spanning embeddings.

2.1 LEMMA. If a graph G admits a spanning embedding then e(G) = 1 and the
end is unstable.

Proor. Let Fy, F, < ¢(G) be disjoint subgraphs homeomorphicto R .. Given
a disk B(n) of center (0, 0), and radius n, we take k = k(n) such that the subgraph
G-, € G given by (1.5) satisfies ¢~ '(B(n)) < G,_,. Then the subgraph C(k)
which defines the outer face of G, contains a cycle in R? — B(n) which meets F,
and F,, and so C(k) provides paths joining F; and F, outside B(n). Therefore F;
and F, define the same end and e(G) = 1. Itis clear that this end must be unstable
since otherwise an unbounded component would appear in R* — ¢(G).

2.2 LEMMA. Assume e(G) =1 and the proper embedding ¢: G — R* is not
spanning. Then R? — ¢(G) has only one unbounded component U. Moreover, if
e(FrU) =1 then any tree T = G, ¢(T) = 1. Here FrU denotes the subgraph
consisting of all the edges which define the unbounded component U.

PRrOOF. Obviously R? — ¢(G) has unbounded components. Assume that there
are two unbounded components U,, U, = R? — ¢(G). By joining two points
x;€U; (i =1,2) by an arc 7, we can construct an embedding &: R — R? with
gR)N @(G) =y, and such that U;, and U, meet the two components
Wy, W, < R? — ¢(R). Therefore the graph ¢(G) must also meet both components.
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In addition, (G) N W, (i = 1,2)is infinite. Otherwise, if W, N ¢(G) is finite we can
replace y by a new are y’ such that all the graph ¢(G) is contained in W,.

Finally, as &(R) N ¢(G) is compact, we can find at least two ends in ¢(G), and
this leads to contradiction.

Assume now that e(Fr U) = 1. If T < G is a tree with ¢(T) = 2, by connected-
ness U is contained in a component Q = R? — ¢(T).If F = U isan infinite ray, we
can find two unbounded sequences, {1}, {r,}, in Fr U = Q U ¢(T), one on each
side of F. Since e(Fr U) = 1 both sequences define the same end and there exists
a locally finite family of arcs y, < Fr U joining I, to r,. But this can occur only if
7. 0 F # @ for finitely many 7,’s. This fact leads to a contradiction.

2.3 ExaMpLE. Figure 2 shows that we can find spanning embeddings and non
spanning embeddings of the same graph. More generally, we can prove

Figure 2: Two different embeddings of the same graph.

2.4 PROPOSITION. Let G be an unstable one-ended planar graph. If for any tree
T = G we have e(T) < 2 then G always admits a spanning embedding.

PrOOF. Let ¢: G — R? be a proper embedding. If ¢ is not spanning, R? — ¢(G)
has only one unbounded component U according to (2.2).

a) Assume that there exists T < Fr U with ¢(T) = 2. We can also assume that
T has no endpoints. Moreover, we can identify ¢(T) with the OX-axis R < R?
since there exist homeomorphisms h: R? — R?* carrying ¢(T) to R.
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As G is one-ended, we can find a sequence of pairwise disjoint arcs {y;};>1
which join the two branches of T. In addition, since R = ¢(T) < Fr U, we have
that all the arcs ¢(y;) must be contained in the same component of R*> — R.
Assume ¢(y;) € R} = {(x,y);y = 0}.

If R2 denotes the lower half-plane, the subgraph ¢(G) n R% is a union of
a sequence {K,} of pairwise disjoint finite subgraphs such that each K, meets
¢@(T) in a vertex. Indeed, for each vertex ve ¢(T) let K, be the subgraph of
¢(G) N R~ generated by all the vertices which are joined to v outside ¢(T). Since
R = ¢(T) = Fr U, it is easy to check that K,nK,, =@ id v & w.

Therefore, it will suffice to find a spanning embedding of L = ¢(G) N R? since
it is easy to extend any proper embedding of L to a proper embedding of the
whole graph ¢(G).

We now proceed to construct a spanning embedding i: L — R2. We consider
the sequence of arcs {y;} given above, and we start by defining L, < L as the
subgraph generated by ¢(y,} and all the vertices which can be joined to ¢(y,)
outside ¢(T). The subcomplex L, is finite. In fact, if L, is infinite we can apply the
Konig Lemma ([8; VI.2.6]) to get an infinite ray in L; which together with
T defines a tree T' with ¢(T") = 3.

As L is finite, we take a disk B(n,) with L; < B(n,), and we choose a new arc
¢(y;,) outside B(n;). We use this arc to define L, = Lin the same way as L, above.
Itis clear that L, n L, = @, and we can inductively proceed to define a sequence
of arcs {y;, } and the corresponding sequence of subgraphs {L,} with ¢(y; ) < L.

Notice that for any vertex v outside L, U ¢(T) there is no arc in ¢(G — T)
joining v to L. This remark allows us to define y: L —» R? as the identity in
@(G) — U {Ly -3k =1}, and ¥ |Ly -, is the reflection with respect to the
OX-axis. In this way we have defined a spanning embedding of L.

b) Assume that e(FrU) = 1. Then by (2.2) we have ¢(T) =1 for any tree
T = G. We fix a tree T. By using (1.5) it is easy to find a sequence {G,} of finite
subgraphs with G=u{G;n21}, G,nG,=0 if |n—ml =22, and
G, G,y = {x,} with x, a cutpoint of G.

As G is planar, we find embeddings ¢,: G, - [n— 1,n] x (—1,1) with
o '({i} x (=1, 1)) = x;(i = n — 1,n;n 2 2). By gathering together all the ¢,’s we
get a proper embedding ¢: G » R, x (—1,1) < R?.

We shall now change ¢ into a spanning embedding as follows. We pick an edge
e, of G, ending at x,and such that ¢(e,)is an edge of Fr U with U the unbounded
component of R? — ¢(G). Then, we reembed e, by carrying it to an arc ¢, < U
such that &; U ¢(e;) define a non-trivial cycle in R? — {(0,0)}. We inductively
follow this procedure by taking anedge e, in G, with ¢(e,) in Fr U, and reembed e,
by choosing an arc &, < U — U {&;;i < n — 1} in such a way that &, U ¢(e,) is
a non-trivial cycle of R* — {(0,0)}.
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Itis now clear that we have a spanning embedding ¢': G — R” given by ¢’ = ¢
on G — {e;i 2 1}, and ¢'(e,) = &,

2.5 REMARK. It is not possible to give a characterization of graphs which
admit an spanning embedding in terms of minimal graphs with such a property,
since it is easy to check that the graph described in Figure 3 not have a spanning
embedding, but, it contains a subgraph homeomorphic to that one of (2.3).

LY

Figure 3: The graph of Remark 2.5.

2.6 THEOREM. Let G be an unstable one-ended planar graph. Then G does not
admit a spanning embedding if and only if there exists a proper embedding
o: Ry — Gsuchthat e(G — N(a)) = 2, for some open neighbourhood N(o) of «(R ).

PrOOF. Let ¢: G — R? be a spanning embedding, and assume that we can find
a tree T < G — N(«) homeomorphic to R which defines two different ends of
G — N(a). Then N(a) is contained in one of the two unbounded components, U,
U,,of R — ¢(T). Assume (R ;) < U,. Asinthe proofof (2.1),let C(k) < G be the
subgraph which defines the outer face of G, = G with ¢ ~(B(n)) < G,_,. Then
C(k) meets the two branches of T and provides a path #, = G n U, outside B(n)
for each n = 1. Thus the two branches of T define the same end of G. This is
a contradiction.

Conversely, if G does not admit a spanning embedding we can find a tree
T < G with ¢(T) = 3 according to (2.4).

If ¢: G = R? is a proper embedding, we can assume without loss of generality
that o(T) = 0X L 0Y, with OY, = {(0,y);y = 0}. In fact, we can always find
a homeomorphism h: R? - R? such that ho ¢ satisfies the required condition.

Since ¢ is not spanning, we know that all (except possibly finitely many) of the
arcs {y;} joining 0X , to OX _ must be contained in one of the half-planes defined
by 0X.

If the arcs {y;} are contained in the upper half-plane then e(G — N(0Y,)) = 2.

Assumes that {y;} is contained in the lower half-plane R%. We can argue with
0X, U 0Y, as we have already done with OX and all the arcs {o;} joining OY,
to OX, must be contained in the region {(x,y);x,y = 0}. Otherwise
e(G — NOX_) =2
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Therefore, as ¢ is not spanning, all the arcs joining OY, to OX_ must meet
0X, and so e(G — N(OX.)) = 2.

As a consequence of (2.6) we can state

2.7 COROLLARY. Let G be as in (2.6), and assume that we can find atree T < G
with e(T) = 3. Then G admits a spanning embedding if and only if G is a spanning
graph.

PROOF. Assume that G admits a spanning embedding and let ¢: G — R? be
a proper embedding. We choose a tree T = G with ¢(T) = 3. As in the proof of
(2.6), we can assume that ¢(T) = 0X L OY,.

By (2.6) we have ¢(G — N(L)) = 1 for L= 0X,,0X_,0Y,, and so there must
exist locally finite families of disjoint arcs in the three regions of R? defined by
@(T). This shows that ¢ is a spanning embedding.

2.8 REMARK. The proof of (2.7) also shows the existence of an embedding of
the graph pictured in Figure 4 in any spanning graph G for which there exists
atree T < G with ¢(T) = 3.

Figure 4.

Finally we shall give a characterization of spanning graphs in terms of the two
minimal tiling graphs described in Figure 5.
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=P(K33)
= P(Ks)
Figure 5: The two minimal tiling graphs.
* — * =
Ks K 3.3
X y X y

Figure 6: The graphs K¥, K% ;.

. Al | I AZ l I \ Ak ‘ )
X Y Xz Y2 Xy Y

Figure 7: The graph P({ A}y > ) where Ay is either K¥ or K% ; in Figure 6.
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2.9 THEOREM. A graph G is a spanning graph if and only if G is a one-ended
planar graph which contains a subgraph homeomorphic to P(K s5), or P(K3 3) (see
Figure 5).

ProoF. Itiseasy to check that if a p-planar graph G has a spanning subgraph,
then G is a spanning graph. As P(K; 3), and P(Ks) are spanning graphs, the
condition is sufficient.

In order to prove the necessity of the condition, we shall actually show that
G contains a subgraph homeomorphic to the graph P({A4,},> ) (see Figure 7).

According to (1.5), we have an increasing sequence {G,},» ; of finite subgraphs
with H, = G, n (G — G,)’ a finite set of vertices for each n = 1.

Assume we have found an embedding a,: P({A,}x <, — G. In order to extend a,,
to oy41: P{Ax}k<n+1 — G, we consider G, such that o,(U{A;k <n})u
o,([0,2n]) = G,,.

Lett,+, = min{t€R;o,(t)€(G — G,+1)'}. Notice that 2n < t,,4,. Let H,, 44
be the graph obtained by identifying OeR, to a,(0)ea,([0,t,+1])V
(G — G,,+,). Since G is a spanning graph, one can apply (2.2) to check that H,, .
is not a p-planar graph. Then, by (1.3) there exists an embedding
p:R,UPA,.)— H,,, for some 4,.,. It is easy to replace § by f' with
B'1[0,2n] = a,, and so #, and «, define a, . ,. Starting with any proper embed-
ding oo: R4 — G, it can be straightforwardly checked that {,},>, defines
a proper embedding a: P({A4, }> ) — G. This finishes the proof.

2.10 REMARK. When we can find a tre T < G with ¢(T) = 3 there is simple
proof of (2.9). Indeed, G must contain an embedding of the subgraph S described
in (2.8). It is now easy to check that P(K; ;) can be embedded in S. Therefore, the
only graph P(K; ;) characterizes the spanning graphs with three or more ends.

Usually a plane tiling is defined as a locally finite family 4 of topological disks
TeJ which cover R? and whose interiors are pairwise disjoint. The boundaries
of the disks define a graph G(J) called the edge graph of 7. A tiling graph is
a p-planar graph each of whose locally finite plane representations is the edge
graph of a tiling. See [5; 3.1.3], and [ 10] for details and properties of plane tilings
and edge graphs.

2.11 COROLLARY.Given a graph G, G is a tiling graph if and only if it is
a 2-connected one-ended planar graph which contains a subgraph homeomorphic to
P(Ks) or P(K3 3).

Proor. It is known that the components of the complement of a plane graph
G are topological disks if and only if G is 2-conneccted (see [4; 1.6.1]). This result
and (2.9) yield the corollary.

2.12 REMARK. Notice that Theorem (1.2) does not hold for non-connected
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graphs, since there is no proper embedding of the graph union of the two graphs
pictured in Figure 8.

Figure 8: A non-p-planar graph which does not contain any of the forbidden subgraphs given by
Halin.

This fact is due to the existence of spanning graphs among the components.
Therefore (2.9) also gives the following extension of (1.2).

2.13 THEOREM. Let G be a non-connected infinite graph. Then G is p-planar if
and only if G does not contain a subgraph homeomorphicto K5, K3 3, K3, KS 3, L%,
L3 3, P(K3,3) or P(Ks). Here P'(H) denotes the disjoint union of P(H) and R ...

PrOOF. Assume G is not p-planar. If G is connected it follows from (1.2). If G is
non-connected then at least one component C < G is a spanning graph and
another component C' + C must be infinite. Therefore (2.9) yields an embedding
PH)c CuC for H=K;;or Ks.
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