
Abstract—In the last few years several new programming
techniques for achieving a better separation of concerns have
been defined. One of the most accepted has been Aspect-Oriented
Programming (AOP). Those attending this tutorial will learn how
to improve the modularization, maintainability and evolution of
secure applications by using AOP to achieve a better separa-
tion of the security concerns (e.g. authentication, authorization,
encryption). A running example will be used throughout the
tutorial to illustrate how AOP works. The tutorial will principally
illustrate the use of the AspectJ programming language, although
other AOP languages will be used to cover features that are
not included in AspectJ. As a proof of concept we will discuss
the use of AOP in the context of the INTER-TRUST project, a
STREP project that brings together experts from the security
and aspect-oriented research communities to demonstrate that
security policies can be dynamically deployed and adapted at
runtime using AOP.

I. BRIEF SUMMARY AND OUTLINE

Security has been largely identified by software engineers as
a crosscutting concern [1], [2]. A crosscutting concern is either
a functional or a non-functional concern that is tangled and/or
scattered with other concerns of the application. On the one
hand, a concern is scattered when it is not well-encapsulated
in a software module. On the other hand, a concern is tangled
with other concerns when the same software module contains
more than one concern. For instance, a software module that
implements part of a bank application will usually include
code related to the core behaviour of the application, such
as accounts, clients, automatic teller machines, etc., but also
security code that appears tangled with the bank application
code. Moreover, security will be needed by several software
modules of the bank application, being scattered among them.

Thus, crosscutting concerns are concerns than cannot be ap-
propriately modularized using traditional programming tech-
niques, such as Object-Oriented Programming (OOP) or
Component-Based Software Engineering (CBSE). This prob-
lem has been identified as the Tyranny of the Dominant De-
composition problem, and indicates that the software modules
that are used by these traditional approaches (i.e. the objects
and components), as well as their composition mechanisms
(i.e. object/component communication through references be-
tween them) are not always appropriate for achieving a good
separation of concerns. The consequence is that the system

modularity, maintainability and evolution are negatively af-
fected.

In the last few years several new programming techniques
for achieving a better separation of concerns have been de-
fined. One of the most accepted has been Aspect-Oriented
Programming (AOP) [3]. AOP is an evolution of OOP
and CBSE and it is basically based on: (1) the definition
of a new software module named “aspect”, which helps to
improve the encapsulation of crosscutting concerns, and (2)
a new composition mechanism known as “aspect weaving”,
which avoids direct references between objects/components.
As nowadays the aspect-oriented separation of concerns is ap-
plied not only at the implementation level, where it was firstly
defined, but to all the phases of the software development –i.e.
from requirements specification to the testing and maintaining
phases, the general term normally used is Aspect-Oriented
Software Development (AOSD) [4]. The term AOP is still
used at the implementation level.

An important number of AOSD proposals exist at each level
of the development. At the implementation level, the most
well-known and mature one is AspectJ [5]. In fact, it was the
AspectJ language which initially introduced the concept of
“aspect” and the fact is that the rest of proposals basically use
the same terminology defined by AspectJ. Other interesting
approaches in the Java world are JBoss AOP 1 and Spring
AOP [6]. Moreover, there are also aspect-oriented versions of
other programming environments, such as AspectC 2 for C,
AspectC++ [7] and FeatureC++ 3 for C++ and Spring .NET 4

por .NET.
As previously stated, in the aspect-oriented community,

security is a typical example of crosscutting concerns [2].
Thus, it is usually taken as an example to show the benefits
of AOP. When we talk about the separation of the security
concerns, we mean to separate security functionalities, such
as authentication, authorization, privacy or encryption, from
the core functionality of the applications requiring them.
Thus, the primary aim of this tutorial is to introduce the
audience to the use of aspect-oriented techniques as a means

1http://www.jboss.org/jbossaop
2http://www.aspectC.net
3http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/
4http://www.springframework.net

How to develop secure applications with
Aspect-Oriented Programming

Mónica Pinto, José M. Horcas
Dept. de Lenguajes y Ciencias de la Computación

University of Málaga, Málaga, Spain
{pinto,horcas}@lcc.uma.es

CAOSD Group, http://caosd.lcc.uma.es



to improve the modularity, maintainability and evolution of
secure applications. In order to achieve this goal, the outline
of this tutorial is as follows:

1) Problem statement
a) A running example

2) The AOP solution
a) Terminology: joinpoint, pointcut, advice, aspect,

weaving
b) Types of weaving: static weaving versus dynamic

weaving
3) Developing secure applications with AOP

a) Definition and implementation of security aspects
b) Weaving security aspects with applications

4) Showing evidences of the benefits of AOP
5) A practical example: The INTER-TRUST project

II. SPECIFIC GOALS AND OBJECTIVES

In this section we describe the specific goals and objectives
of this tutorial. We follow the outline described in the previous
section.

1) Problem statement. In this section the motivations to
use AOP to improve the development of secure applica-
tions by implementing the security concerns as aspects
are presented. We will briefly introduce the running
example that will be used throughout the tutorial. The
main objectives will be to:

a) Introduce the concepts of concern, tangled concern,
scattered concern and crosscutting concern.

b) Describe an example that makes intensive use of
security.

c) Use the aformentioned example to illustrate the
problematic of implementing crosscutting concerns
using traditional programming techniques.

2) The AOP solution. This part of the tutorial will be an
introduction to the AOP paradigm. The goal is to briefly
discuss existing AOP approaches, defining at the same
time the main concepts of AOP. The main objectives
will be to:

a) Introduce the AOP terminology: joinpoint, point-
cut, advice, aspect, weaving.

b) Define the different types of weaving: static weav-
ing versus dynamic weaving.

c) Briefly present existing proposals at implementa-
tion level, as well as at other development levels.

3) Developing secure applications with AOP This section
will be of special interest to the attendees since it is
the section where they will learn how to use AOP to
develop secure applications. That is, they will learn how
to “separate” the security concerns from the core appli-
cation (i.e., the functionality of the application without
security) and how to implement them as aspects. They
will also learn how the previously separated aspects are
then “weaved” again with the core application. The main
objectives will be to:

a) Learn the basics of implementing security using
aspect-oriented languages (AspectJ, JBoss AOP,
Spring AOP, ...).

b) Learn the basics of weaving security aspects with
applications using compile-time weavers (AspectJ),
load-time weavers (AspectJ, JBoss AOP) and run-
time weavers (JBoss AOP, Spring AOP).

c) Learn how to deploy a security policy using AOP.
4) Showing evidences of the benefits of AOP. Learn-

ing and using a new programming technique is not a
straightforward task. Moreover it requires having some
evidences (either qualitative or quantiative ones) that
demonstrate that the time and effort invested in learning
the new approach is worthwhile. The goal of this section
is to show existing evidences of the sucessful use of AOP
in both research and industrial projects, showing:

a) How AOP improves the modularisation of secure
applications.

b) How AOP improves the evolution of secure appli-
cations.

5) A practical example of applying AOP to separate
security: The INTER-TRUST project. The INTER-
TRUST (Interoperable Trust Assurance Infrasstructure)
project is a STREP project that uses AOP to achieve
the following goals: (1) separate security aspects from
the core applications; (2) negotiate the security policies
between different distributed parties at runtime; (3) take
advantage of the runtime weaving of security aspects
to dynamically deploy and adapt the negotiated security
policy at runtime, and (4) take advantage of AOP to
monitor and test the behaviour of applications (regarding
its impact on security) both during the application’s
deployment and at runtime. Partners from different top
European universities and industries are participating in
this project, which is in its first year of development. The
goal of this section is to demonstrate that the use of AOP
in the development of security applications is already in
demand, equally in research as in the industry, and that
it has very promising prospects in the near future.

An additional goal of this tutorial is to make it as practical
as possible. Thus, we will book some time for the attendees
to complete practical and guided exercises. In order to do this
the participants must attend the tutorial with the appropriate
hardware and software. Since at this point of the proposal, it is
not clear whether this requirement can be satisfied or not, we
will organize the tutorial in a way so as the impossibility of
doing these practical exercises does not negatively affect the
quality of the tutorial, or its attractiveness to the attendees.

III. INTENDED AUDIENCE

The intended audience of this tutorial are software develop-
ers from the securiy research community, who are experts on
modeling and/or implementing security issues, and who want
to learn how to use AOP/AOSD in the development of secure
applications.



IV. EXPECTED BACKGROUND OF THE AUDIENCE

The only requirement to be able to attend and to adequately
follow the tutorial is to have knowledge of OOP. A basic
knowledge of AOP can be useful but it is not required, since
the tutorial will introduce all the required AOP concepts.

V. BIOGRAPHICAL SKETCH OF THE PRESENTERS

a) Mónica Pinto: is an associate professor in the Lan-
guages and Computer Science Department at the University of
Málaga (Spain). She received her MSc. degree in Computer
Science in 1998 from the University of Málaga, and her Ph.D
in 2004 from the same University. Her main research areas are
component-based software engineering, aspect-oriented soft-
ware development, architecture description languages, model-
driven development, and context-aware mobile middleware.
In the last few years she has co-organised the Early Aspects
workshop at ICSE, and has been member of the programme
committee of several workshops and conferences on AOSD
and software composition. She was publicity co-chair at AOSD
2011 and AOSD 2012. She is involved in the AOSD European
Network of Excellence and currently participates in several
national and international projects on AOSD. She also partici-
pates in the INTER-TRUST STREP project that applies AOSD
techniques to dynamically deploy and adapt security policies
at runtime.

b) José Miguel Horcas: is a Ph.D student in the Lan-
guages and Computer Science Department at the University of
Málaga (Spain). He received his Computer Engineering degree
in 2012 from the University of Málaga, and will receive his
MSc later this year. In the last few years, he has participated
in the European Higher Education Area (EHEA) in the same
department of the University of Málaga in 2010, working in
the area of artificial intelligent. He has also been an engineer
intern in a startup company in Málaga, focusing on smart
document management and enterprise content management in
2011. He is currently working on aspect-oriented software
development, quality attributes, software product lines and
variability; and is also participating in the INTER-TRUST
STREP project.

ACKNOWLEDGMENT

Work supported by the European Project INTER-TRUST
317731 and the Spanish Projects TIN2012-34840 and Fami-
Ware P09-TIC-5231.

REFERENCES

[1] B. De Win, W. Joosen, and F. Piessens, “AOSD as an en-
abler for good enough security,” URL: http://www. cs. kuleuven. ac.
be/cwis/research/distrinet/resources/publications/41066. pdf, 2003.

[2] M. Huang, C. Wang, and L. Zhang, “Toward a reusable and generic
security aspect library,” AOSD: AOSDSEC, vol. 4, 2004.

[3] G. Kiczales and E. Hilsdale, “Aspect-oriented programming,” SIGSOFT
Softw. Eng. Notes, vol. 26, no. 5, pp. 313–, Sep. 2001. [Online].
Available: http://doi.acm.org/10.1145/503271.503260

[4] R. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-oriented software
development, 1st ed. Addison-Wesley Professional, 2004.

[5] R. Laddad, AspectJ in action: practical aspect-oriented programming.
Manning Greenwich, 2003, vol. 6.

[6] ——, AspectJ in action: enterprise AOP with Spring applications. Man-
ning Publications Co., 2009.

[7] H. Kim, “AspectC#: An AOSD implementation for C#,” Ph.D. disserta-
tion, Trinity College Dublin, 2002.


