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Abstract

This paper presents a robust learning-based predictive control strategy for nonlinear systems subject to both input and output constraints,
under the assumption that the model function is not known a priori and only input-output data are available. The proposed controller
is obtained using a nonparametric machine learning technique to estimate a prediction model. Based on this prediction model, a novel
stabilizing robust predictive controller without terminal constraint is proposed. The design procedure is purely based on data and avoids the
estimation of any robust invariant set, which is in general a hard task. The resulting controller has been validated in a simulated case study.
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1 Introduction

Model-based control design, and particularly model predic-
tive control (MPC), relies on the availability of an accurate
description of the plant. When a model of the plant dynam-
ics is unavailable a priori, system identification methods can
be employed to devise such models automatically from ob-
servational data. The objective of this paper is to design a
predictive controller based on such a learning method. In
this setting, the learning method should be flexible enough
to learn rich classes of dynamical systems, while at the same
time, it should offer bounds on its predictive performance.
The latter is important in the predictive control setting if
one wishes to give guarantees on the performance and fea-
sibility of the data-based controller, e.g. for nonlinear [1] or
ciber-physical systems [2].

Learning and data-driven predictive controllers have re-
cently gained the attention of the control community [3]. An
approach to learning-based MPC that is independent of the
concrete learning paradigm was proposed in [4]. A broad
scope opens up when considering the learning method-
ology: some research consider direct weight optimization
methods [5, 6], others Gaussian processes [7, 8], or random
forests [9], among many others. Several previous works
on this topic have used nonlinear set membership (NSM)
methods [10] for learning, like [11,12]. In previous works,
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the authors proposed to use kinky inference methods [13]
in a model predictive control setting. Kinky inference (KI)
methods encompass Lipschitz interpolation [11, 14] and
NSM methods [12], and they have several properties that
are interesting for MPC. A modified version of this method,
tailored to model predictive control, was proposed and used
to design a MPC with guaranteed closed-loop properties
for systems subject to input constraints [15]. The main lim-
itation of this controller is that it cannot guarantee robust
satisfaction of output constraints.

In this paper, the main contribution is a new robust predic-
tive controller for systems that also have output constraints.
A design method that takes into account the prediction error
bounds in an explicit way to tighten the problem constraints
and that guarantees closed-loop constraint satisfaction and
input-to-state stability (ISS) [16] is provided. One of the
main characteristics of this design is that it is not based on
a terminal region constraint. In general, this terminal con-
straint is based on robust invariant sets which, for the class
of systems considered (that is, unknown systems, possibly
nonlinear, for which a priori only input/output data is avail-
able), are difficult to obtain.

Another contribution of this work is the procedure to define
the tightened constraints of the MPC optimization problem.
They are specifically tailored to the inference model used,
in order to obtain the least conservative possible bounds. In
contrast to the preliminary version of this controller, pre-
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sented in [17], an output-feedback formulation is considered,
and the stability analysis is addressed.

Notation: For two column vectors v, w, (v, w) implies
[vT , wT ]T . Given two sets A,B, A ⊕ B is the Minkowski
sum and A 	 B the Pontryagin difference. The set of the
integers in the interval [a, b] is denoted Iba. A function
α : R≥0 → R≥0 is a K-function if it is continuous, strictly
increasing and α(0) = 0. Given a vector v ∈ Rny , the ball
B(v) ⊂ Rny is defined as B(v) = {y : |ys| ≤ vs, s ∈ Iny1 };
and |v| denotes the vector whose components are the abso-
lute value of the components of v. In is an identity matrix
of size n. Given a compact set Ω, ‖Ω‖q = maxx∈Ω ‖x‖q ,
for some norm ‖ · ‖q .

2 Problem setting

In this paper it is assumed that the system to be controlled
is a sampled continuous-time system described by an a pri-
ori unknown discrete-time model, where y(k) ∈ Rny is its
measured output and u(k) ∈ Rnu is the control input. Both
inputs and outputs are subject to hard constraints

u(k) ∈ U , y(k) ∈ Y, (1)

where both U and Y are compact sets. It is assumed, without
loss of generality, that the origin is the equilibrium point of
the system where the plant must be stabilized.

It is assumed that the only information available from the
plant is historical data, containing a certain set of measured
inputs and outputs trajectories,D. The objective of the paper
is to design an output-feedback control law

u(k) = κ(y(k);D), (2)

such that from the data set D and the current output mea-
surement y(k), the control action is computed. It is desired
to devise the control law such that the closed-loop system
is asymptotically stable and that the constraints are satisfied
for all time steps k ∈ N.

Since a model of the dynamics is not available a priori, it is
assumed that the measured output can be used to describe
the model of the system with the following nonlinear au-
toregressive exogenous (NARX) model of the plant [18,19]:

y(k + 1) = f(x(k), u(k)) + e(k), (3)

where x(k) = (y(k), · · · , y(k − na), u(k − 1), · · · , u(k −
nb)) ∈ X := Y(na+1) × Unb ⊆ Rnx with nx = (na +
1)ny+nbnu, for some memory horizon lengths na, nb ∈ N.
The residual e(k) models process noise and it is assumed
to be confined to a compact set E ⊂ Rny . For notational
convenience, the inputs of f are aggregated into a joint vector
w := (x, u) ∈ W , which is referred to as regressor.

Remark 1 The horizons na and nb represent the model or-
der. In [19], the conditions under which they could be taken
as na = nb = 2n were given, where n is the order of the
system. If n is unknown, one would have to use the best
guess, or cross-validation methods to estimate na and nb.

Assumption 1 (Hölder continuity) Each output compo-
nent of the function f(·), referred to as ground truth function,
is Hölder continuous. That is, there exist some constants
Lf,i > 0 and pf,i ∈ (0, 1] (i ∈ Iny1 ) such that ∀w1, w2 ∈ W

|fi(w1)− fi(w2)| ≤ Lf,i‖w1 − w2‖
pf,i
W , i ∈ Iny1 , (4)

where ‖ · ‖W stands for a specific norm defined for the
regressors, and the sub-index i denotes the i-th component of
the vector. For each i ∈ Iny1 , any constant Lf,i that satisfies
this condition is called a Hölder constant, while the lowest
of them is called the best Hölder constant, L∗f,i.

Remark 2 Assumption 1 can be relaxed to general conti-
nuity, provided that both Y and U are compact sets.

2.1 The learning method

In this section the machine learning method used to esti-
mate f is presented, sometimes called kinky inference [13].
Using the available experimental data, a data set D of ND
regressor/outputs is collected; that is

D := {(y(j), w(j)) | j = 1, · · · , ND}. (5)

The structure of D depends on the value of na and nb. To
predict an unseen query point w, KI makes use of the data
baseD, and provides an estimation of the Hölder parameters,
denoted L and p, which are vectors of dimension ny . 1

Definition 1 (Kinky inference rule ) The i-th output com-
ponent function of the KI predictor, for i = 1, ..., ny , shall
be defined by

f̂i
(
w;Li, pi,D

)
:=

1

2
min

j=1,...,ND
yj,i + Li‖w − wj‖piW

+
1

2
max

j=1,...,ND
yj,i − Li‖w − wj‖piW . (6)

Given the hyperparameters L and p and the data set D, the
predictor f̂ of the ground-truth f is constructed, yielding the
output prediction: 2

ŷ(k + 1) = f̂(x(k), u(k)). (7)

1 In order to reduce the estimation error, different Hölder constants
Li are used to estimate the i-th entry of the output vector. With a
slight abuse of notation L and p will denote a vector in Rny .
2 For the sake of conciseness, the dependence of f̂ with L, p and
D may be omitted in the rest of the paper.
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This predictor f̂ is Hölder continuous, and as proven in [20,
Lemma 5], the Hölder parameters of f are also Hölder pa-
rameters of f̂. That is, for a given exponent p, the Lipschitz
constant L∗ is also a Lipschitz constant of f̂. However, the
estimated L and p will suffice to derive the stability proper-
ties of the proposed controller, as it will be explained later.

Remark 3 While in several works a priori knowledge of
the correct parameters Lf and pf is assumed [10, 21],
other works provide methods of calculating these parame-
ters from the available data [12, 20]. In this paper, the so-
called LACKI method [20] is applied. It obtains the Lips-
chitz constant L as the minimum one that is consistent with
the data. The learning feature of the proposed predictor is
also demonstrated in [20]. Note that, w.l.o.g., this paper ex-
tends the LACKI method to each output component function
in isolation.

In this paper, the paradigm of predictive control will be em-
ployed to derive the data-based control law (2). MPC re-
quires repeated optimization of the predicted control inputs
subject to constraints. Therefore, in order to give guaran-
tees on the controller’s closed-loop performance, recursive
feasibility and constraint satisfaction must be ensured. That
is, it is necessary to ensure that all constraints remain satis-
fiable during runtime, or equivalently, to guarantee that the
controlled system will not leave the feasibility region. How-
ever, since the controller will not be based on the ground-
truth dynamics f , but on the learned model f̂ inferred from
a sample of the ground-truth, recursive feasibility can only
be guaranteed if a bound on the discrepancy between f and
f̂ is known a priori and taken into account by the controller.

The estimation method ensures that if the model function is
Hölder and the noise is bounded, then the estimation error
is bounded [20], which is required to design a deterministic
robust controller to regulate the plant. Any worst-case guar-
antee inevitably requires a priori knowledge. Hence, in the
following hypothesis, it is assumed that this bound is avail-
able for the design of the controller.

Assumption 2 It is assumed that for L, p, and D, a bound
on the error between the estimated output and the real output
is known, denoted µ ∈ Rny , such that

|̂fi(x, u)− fi(x, u)− ei| ≤ µi, (8)

for all i ∈ Iny1 , e ∈ E , x ∈ Yna+1 × Unb , and u ∈ U .

Remark 4 From a practical point of view the problem of
how to calculate the error bound must be addressed. Kinky
inference methods enjoy the property of providing a deter-
ministic error bound if the Lipschitz constant and an upper
bound of the noise are known [13]. Moreover, if a bound
on the second derivative is known, it is also possible to de-
rive an estimation error bound. If these parameters are not
known a priori, which is usual in practice, then they must

be estimated from experimental data. Consequently, the va-
lidity of the results presented in this paper is conditioned to
the validity of the estimated error bound. This is the reason
why this is considered as a standing assumption.

Remark 5 The KI prediction method has recently been
improved in [15] decreasing the computational cost and
smoothing the prediction, in order to enhance the optimiza-
tion that will be carried out by the controller.

3 Stabilizing data-based NMPC

In this section, a model predictive controller is derived based
on a prediction model learned from data of the plant. Since
the prediction model is not accurate, the effect of the esti-
mation error on the predictions must be analysed to be taken
into account in the design of the controller. For this analy-
sis, it is convenient to define the NARX model of the plant
in a state-space form as follows:

x(k + 1) = F (x(k), u(k)) + ξ(k) (9a)
y(k) =Mx(k), (9b)

where

F (x(k), u(k)) =
(
f(x(k), u(k)), y(k), · · · , y(k − na + 1),

u(k), · · · , u(k − nb + 1)
)
, (10)

M = [Iny , 0, · · · , 0], and ξ(k) = (e(k), 0, · · · , 0).

Let ŷ(j|k) denote the output that, at time k, is predicted
to be observed at time k + j, for a given candidate control
sequence u(k + j), j ∈ IN−1

0 . Then the predicted state is
given by

x̂(j|k) = (ŷ(j|k), · · · , ŷ(1|k), y(k), · · · , y(k + j − na),

u(k + j − 1), · · · , u(k + j − nb)),

where
x̂(j + 1|k) = F̂ (x̂(j|k), u(k + j)) (11)

and

F̂ (x̂(j|k), u(k + j)) = (̂f(x̂(j|k), u(k + j)),

ŷ(j|k), · · · , y(k), · · · ,
y(k + j − na + 1), · · · ,
u(k + j), · · · , u(k + j − nb + 1)).

The proposed robust MPC is based on nominal predictions
and tightened constraints. To guarantee robustness, a bound
on the propagation of the prediction error is calculated from
the following lemma:

Lemma 1 Assume that at sampling time k, the state of the
plant is x(k) and a sequence of future control inputs u(k+j)
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y(k)
y(k + 1)

y(k + j)

ŷ(1|k)

ŷ(j|k)

ŷ(j − 1|k + 1)

cjc1

Fig. 1. Propagation of the prediction error

for j ∈ IN−1
0 is given. Let x̂(j|k) and ŷ(j|k) be the predicted

states and outputs, respectively, derived from (11) for the
given sequence of future control inputs and the current state
x(k), i.e. x̂(0|k) = x(k).

Assume that at sampling time k + 1, the current output
y(k+ 1) is measured, and hence the current state x(k+ 1)
is known. Based on these new measurements, an updated
sequence of states and outputs x̂(j|k + 1) and ŷ(j|k + 1)
are predicted based on (11) with x̂(0|k+1) = x(k+1) and
the remaining sequence of the given future control inputs.

Let c1 ∈ Rny be a vector such that

|y(k + 1)− ŷ(1|k)| ≤ c1. (12)

Then, the mismatch between the predictions satisfies 3

|ŷ(j − 1|k + 1)− ŷ(j|k)| ≤ cj , j ∈ IN1 , (13a)
‖x̂(j − 1|k + 1)− x̂(j|k)‖X ≤ rj , j ∈ IN1 , (13b)

where cj ∈ Rny and rj ∈ R are obtained from the recursion

cj+1,i = Lir
pi
j , (14)

and rj = ‖Ξj‖X , j ∈ IN−1
1 , i ∈ Iny1 , where

Ξj = B(cj)× · · · × B(cσ(j))× {0} × · · · × {0}︸ ︷︷ ︸
nb+1−σ(j−1) times

⊆ Rnx ,

with σ(j) = max(1, j − na).

PROOF. Provided that ŷ(j − 1|k + 1) = f̂(x(j − 2|k +

1, u(k+ j− 1)) and ŷ(j|k)) = f̂(x̂(j− 1|k), u(k+ j− 1)),
it can be derived that ∀i ∈ Iny1

|ŷi(j − 1|k + 1)− ŷi(j|k))| ≤
Li‖x̂(j − 2|k + 1)− x̂(j − 1|k)‖piX .

3 ‖·‖X is a norm for the state-space such that ‖x‖X = ‖(x, 0)‖W

Given that

x̂(j − 2|k + 1)− x̂(j − 1|k) =

[ŷ(j − 2|k + 1)− ŷ(j − 1|k), ŷ(j − 3|k + 1)− ŷ(j − 2|k),

. . . , ŷ(σ(j − 1)− 1|k + 1)− ŷ(σ(j − 1)|k), 0, . . . , 0] .

then x̂(j − 2|k + 1) − x̂(j − 1|k) ∈ Ξj−1. Assuming that
cj−1 is known,

‖x̂(j − 2|k + 1)− x̂(j − 1|k)‖X ≤ ‖Ξj−1‖X = rj−1,

which implies the stated result.

Remark 6 If the infinity norm is chosen as the norm of the
input space then

rj = max
s∈Ij

σ(j)

‖cs‖∞.

Based on the derived bounds on the prediction error, the
problem of robust constraint satisfaction is addressed by
means of a set of tightened constraints on the outputs [22],
computed offline for the maximum possible prediction error,
i.e. taking c1 = µ. These sets are defined as follows:

Yj = Y 	 B(dj), (15)

where

dj =

j∑
s=1

cs. (16)

These constraints sets will be used to prove recursive feasi-
bility of the controller, following standard procedures.

Lemma 2 The sets Yj are such that for all y ∈ Yj and for
all ∆y ∈ B(cj), y + ∆y ∈ Yj−1.

PROOF. Since for j ≥ 1, dj = dj−1 + cj , it follows that

B(dj) = B(dj−1)⊕ B(cj).

By definition,

y + ∆y ∈ Yj ⊕ B(cj) = Y 	 B(dj)⊕ B(cj),

and hence Yj = Y 	 B(dj) = Y 	 B(dj−1)	 B(cj), so

y + ∆y ∈ Yj ⊕ B(cj)

=Y 	 B(dj−1)	 B(cj)⊕ B(cj)

⊆Y 	 B(dj−1) = Yj−1.

In order to ensure that the proposed controller is feasible,
the tightened set of constraints must be non-empty along the
prediction horizon, as stated in the following assumption:

Assumption 3 The prediction horizonN and the estimation
error bound µ are such that the set YN is non-empty.
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Based on the previous definitions, the optimization problem
PN (x(k);D) of the proposed predictive controller is:

min
u

VN (x(k),u)

=

N−1∑
i=0

`(x̂(i|k), u(i)) + λVf (x̂(N |k)) (17a)

s.t. x̂(0|k) = x(k) (17b)
x̂(j + 1|k) = F̂ (x̂(j|k), u(j)), j ∈ IN−1

0 (17c)
ŷ(j|k) = Mx̂(j|k), j ∈ IN−1

0 (17d)
u(j) ∈ U , j ∈ IN−1

0 (17e)
ŷ(j|k) ∈ Yj , j ∈ IN−1

0 , (17f)

where λ ≥ 1 is a weighting parameter. Note that this prob-
lem is non-linear, non-convex and non-differentiable. Its in-
gredients are required to meet the following assumption,
which is similar to the standard MPC ones [22]:

Assumption 4

(1) The stage cost function `(·, ·) is a Hölder continuous
positive definite function such that `(·, ·) ≥ αy(‖x‖X )
for a certainK-function αy , and its Hölder parameters
are Lx and px.

(2) There exists a control law u = κf (x), a function Vf
and a level set Ωγ = {x : Vf (x) ≤ γ} ⊆ Rnx for
some γ > 0 such that for all x ∈ Ωγ the following
conditions hold:
(a) Vf is a Hölder continuous positive definite func-

tion, with Hölder constants LVf , pVf , such that

αf (‖x‖X ) ≤ Vf (x)≤ βf (‖x‖X ),

Vf (F̂ (x, κf (x)))− Vf (x)≤−`(x, κf (x)).

(b) κf (x) ∈ U , Mx ∈ YN .

The controller is derived from the receding horizon solu-
tion of (17). It follows a standard robust approach in which
the cost of the nominal predictions is minimized, while tak-
ing into account a tightened set of constraints to guarantee
recursive feasibility. The main difference with off-the-shelf
robust ISS formulations for nonlinear systems [16] is that
in these, either there are no constraints on the states in the
optimization problem, or a terminal constraint, based on a
certain robust positive invariant set, is added. In this con-
troller, although a terminal cost (based on a local controller
for the nominal model) is taken into account in the cost func-
tion, no terminal constraint is included. Thus, its design is
notably simplified since the calculation of a robust invariant
set is avoided, which was a hard task, as shown in [23]. In
this case, the calculation could have been even more diffi-
cult provided the lack of a explicit expression of the model
of the system.

Furthermore, an additional tuning parameter λ is added,
modifying the weight of the terminal cost in the objective

function. It is proven that this controller guarantees that the
closed-loop systems is ISS in a explicitly defined region of
the state space, which is enlarged by this weight.

Define the function

ν(c1) =

N∑
j=1

Lxr
px
j + λLVf r

pVf
N+1,

where rj is defined in Lemma 1 for c1, andLx, LVf in Ass. 4.

Assumption 5
The bound µ is such that the set Υ = {x : `(x, 0) ≤ ν(µ)}
is contained in Ωγ . The positive constants λ and φ are such
that λ ≥ 1 and `(x, 0) > φ for all x 6∈ Ωγ .

Remark 7 In a general setting, a condition to check if the
level set Υ is contained in Ωγ could be derived using the
supply K∞-functions that bound the cost functions given in
Assumption 4. In this case the condition would be:

ν(µ) ≤ αy(β−1
f (γ)). (18)

Another method could be using probabilistic validation by
means of randomized algorithms [24].

Lemma 3 Under Assumption 5, φ ≥ ν(µ).

PROOF. Since Υ ⊆ Ωγ , the constant φ can be taken as
φ ≥ minx∈X\Ωγ `(x, 0) ≥ minx∈X\Υ `(x, 0) ≥ ν(µ).

Let Γ define the following level set of the optimal cost func-
tion

Γ = {x : V ∗N (x) ≤ Nφ+ λγ}.
It is next proven that this set defines the region in which ISS
is guaranteed. Notice that this set is compact and non-empty.

Theorem 1 (ISS stability) Suppose that Assumptions 2, 3,
4 and 5 hold for the optimization problem PN (·). Let κN (x)
be the control law derived from the solution of PN (x;D) ap-
plied using a receding horizon policy. Then, for any x(0) ∈
Γ, the system controlled by the control law u(k) = κN (x(k))
is input-to-state stable w.r.t. the estimation error; and the
constraints are always satisfied, i.e. u(k) ∈ U , y(k) ∈ Y
and x(k) ∈ Γ,∀k.

PROOF. Assume that x(k) ∈ Γ. Then, it can be shown
that x∗(N |k) ∈ Ωγ [25]. Define the shifted sequence as
ū(k + 1) such that ū(j|k + 1) = u∗(j + 1|k) for j ∈ IN−2

0
and ū(N − 1|k + 1) = κf (x∗(N |k)).

Recursive feasibility: Assuming that x(k) ∈ Γ, it will be
proven that x(k+1) ∈ Γ. Since Γ is a subset of the feasibility
region of the optimization problem PN (x;D), the system is
recursively feasible.

Firstly, it will be shown that the solution ū(k+1) is a feasible
solution for x(k + 1). Given that x∗(N |k) ∈ Ωγ , from the
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feasibility of u∗(k) and assumption 4, it is immediate to
state that ū(j|k + 1) ∈ U for all j ∈ IN−1

0 .

From Lemma 1, ŷ(j|k+ 1)− y∗(j + 1|k) ∈ B(cj+1), ∀j ∈
IN−1
0 and from the feasibility of u∗(k). Thus, y∗(s|k) ∈ Ys

for s ∈ IN−1
0 and x∗(N |k) ∈ Ωλ, which implies that

y∗(N |k) = Mx∗(N |k) ∈ YN in virtue of assumption 4.2b.
Then, from Lemma 2, for all j ∈ IN−1

0 ,

ŷ(j|k + 1) ∈ Yj+1 ⊕ B(cj+1) ⊆ Yj .

Therefore the problem PN (x(k + 1);D) is feasible.

Next, it will be proven that x(k + 1) ∈ Γ. Since x(k) ∈ Γ,
V ∗N (x(k)) ≤ Nφ + λγ. Following standard arguments in
MPC [22] it can be proven that

VN (x∗(1|k), ū(k + 1))≤ V ∗N (x(k))− `(x(k), u(k))

≤Nφ+ λγ − `(x(k), u(k)).

On the other hand, given x̃ = F̂ (x∗(N |k), κf (x∗(N |k)),

VN (x(k + 1), ū(k + 1))− VN (x∗(1|k), ū(k + 1)) =
N−1∑
i=0

(
`(x̂(i|k + 1), ū(i|k + 1))

−`(x∗(i+ 1|k), ū(i|k + 1))
)

+λ
(
Vf (x̂(N |k + 1))− Vf (x̃)

)
.

According to Lemma 1, it can be derived that for s ∈ IN1 ,
‖x̂(s − 1|k + 1) − x(s|k)‖X ≤ rs, with rs obtained for a
given c1. Then, for j ∈ IN1 and given c1 satisfying (12),

`(x̂(j − 1|k + 1), ū(j − 1|k + 1))

−`(x∗(j|k), ū(j − 1|k + 1))≤ Lxrpxj

and Vf (x̂(N |k + 1))− Vf (x̃) ≤ LVf r
pVf
N+1.

Therefore,

VN (x(k+ 1), ū(k+ 1))− VN (x∗(1|k), ū(k+ 1)) ≤ ν(c1).
(19)

To prove robust invariance the worst possible case has to be
considered, for which c1 = µ is taken. Hence, it has been
proven that

VN (x(k+1), ū(k+1)) ≤ ν(µ)+Nφ+λγ−`(x(k), u(k)).

Consider the case where x(k) ∈ Γ\Υ. Then `(x(k), u(k)) >
ν(µ). Hence, VN (x(k+1), ū(k+1)) ≤ ν(µ)+Nφ+λγ−
`(x(k), u(k)) ≤ Nφ+ λγ.

Given that V ∗N (x(k + 1)) ≤ VN (x(k + 1), ū(k + 1)) then
x(k + 1) ∈ Γ.

Consider now the case that x(k) ∈ Υ. Since Υ ⊆ Ωγ ,
x(k) ∈ Ωγ . With standard arguments in MPC [22], it can
be shown that V ∗N (x(k)) ≤ λVf (x(k)) ≤ λγ. Hence,

VN (x(k + 1), ū(k + 1))≤ ν(µ) + V ∗N (x(k))

−`(x(k), u(k))

≤ ν(µ) + λγ − `(x(k), u(k)),

since ν(µ) ≤ φ, VN (x(k+1), ū(k+1)) ≤ Nφ+λγ. Thus,
x(k + 1) ∈ Γ.

Input-to-state stability: Equation (19) can be rewritten as
follows, taking c1 = ep(k + 1) := |y(k + 1)− ŷ(1|k)|:

VN (x(k + 1), ū(k + 1))− VN (x∗(1|k), ū(k + 1))

≤ ν(ep(k + 1)). (20)

Then, following the previous steps, it can be derived that

V ∗N (x+ 1)≤ VN (x(k + 1), ū(k + 1)) (21)
≤ ν(ep(k + 1)) + V ∗N (x(k))− `(x(k), u(k)).

Thus, V ∗N (x) is an ISS Lyapunov function [16].

Remark 8 (Suboptimal case) The stability analysis can be
extended to the case in which the optimal solution of the
control problem is not found. Given an initial feasible solu-
tion of the control problem, if the optimiser is able to im-
prove the cost (even for a suboptimal solution of the prob-
lem), then the controller is able to maintain robust stability
while satisfying the constraints [22].

Remark 9 (Violation of Assumption 2) If the bound on
the prediction error is estimated from data (e.g. via cross-
validation), then the error could take a value larger than µ
for a certain period of time. In this case, the ISS prop-
erty (21) still holds as long as x(k) ∈ Γ for that period
of time. Notice that the ISS condition is derived from the
smoothness of the optimal cost function, which is an inher-
ent property of the proposed optimal control problem.

Remark 10 (Stability margin) Most of the robust con-
trollers for constrained systems exhibit an upper bound on
the estimation error to be solvable [16]. This is the so-
called stability margin. One of the main drawbacks of robust
predictive controllers is that this margin is typically quite
conservative, due to the open-loop nature of the predictions.
As a robust controller, our approach inherits this drawback.

4 Case study

In this section, the proposed controller is applied to a
continuously-stirred tank reactor [15], in which a reaction
A → B takes place. The system’s state is defined by the
concentration of the reactant, CA (mol/l), the temperature
in the tank, T (K), and the temperature of the coolant,
Tc (K). The state varies with respect to the control input,
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Fig. 2. Simulation obtained applying a sequence of chirp signals

which is the reference temperature of the coolant, Tr (K),
according to the following set of ordinary differential equa-
tions (ODEs), which will be used to simulate the system
but are assumed to be unknown:

dCA(t)

dt
=
q0

V
· (CAf − CA(t))

−k0 · e
(
− E
R·T (t)

)
· CA(t), (22a)

dT (t)

dt
=
q0

V
· (Tf − T (t))

+
(−∆Hr) · k0

ρ · Cp
· e
(
− E
R·T (t)

)
· CA(t)

+
U ·A

V · ρ · Cp
· (Tc(t)− T (t)), (22b)

dTc(t)

dt
=
Tr(t)− Tc(t)

τ
. (22c)

The parameters of the system can be found in [26], with
τ = 1.5 min. The sampling time is 30 s. The output is CA,
and its sensor has a 2.5% error margin, generated randomly
using an uniform distribution. The constraints are given by
0.38 ≤ CA ≤ 0.954 mol/l and 280 ≤ Tr ≤ 310 K. The
reference equilibrium point is given by C ref

A = 0.62 mol/l
and T ref

r = 304.5 K.

In order to identify the system, several data sets are gen-
erated. The training data set is obtained using the follow-
ing input sequence of chirp signals: five chirp signals of
length 1000 min, initial and final frequencies of 1 mHz
and 0.15 Hz (respectively), amplitude 5 K, and centres start-
ing from 285 K with 5 K interval; followed by two chirp
signals of length 5000 min, centered in 295 K, 15 K of am-
plitude, and initial and final frequencies of 10 and 200 mHz
and 1 and 90 mHz, respectively, as represented in Figure 2.

Another data set is obtained to calculate µ via cross-
validation, applying a pseudorandom binary input sequence,
where Tr switches randomly between 280 and 310 K with
switching periods between 12 and 75 min.

Following standard cross-validation procedures [27], these
data sets are used to define a predictor for different values of
the memory horizons na and nb. Setting the prediction hori-
zon toN = 4 and applying LACKI [20] to calculate L while
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Fig. 3. Closed-loop output for 100 simulations of the ideal MPC
(top), the robust learning MPC for systems without output con-
straints (middle) and the proposed robust constrained learning
MPC (bottom). The grey band groups the trajectories, the blue
dashed line represents its mean, the green dotted one the reference
and the black dash-dotted one the constraints

fixing p = 1, the optimal na, nb are obtained minimising d4,
which is calculated using (16). The minimum is obtained
for na = nb = 2, for which L = 1.38, µ = 0.032 mol/l and
d4 = 0.22 mol/l.

Both the stage and the terminal cost of the MPC are defined
as follows, with xref = (yref, . . . , yref, uref, . . . , uref):

`(x, u) = ‖x− xref‖2Q + ‖u− uref‖2R, (23a)

Vf (x) = ‖x− xref‖2P . (23b)

Q is set to 100, R = 0.1, and λ = 10. Using the model
with na = nb = 2 the terminal cost is obtained solving a
LQR for the linearised model around the reference point.
To ensure robust stability (Theorem 1), Assumptions 2, 3,
4 and 5 must hold true. The prediction error was obtained
via cross-validation. The value of dN results in YN = {y :
0.60 ≤ y ≤ 0.73}. Following the procedure in section 3
and in [15] results in γ = 16796, ν(µ) = 53.553 and φ =
9.2189× 105, which satisfy all the assumptions.

The proposed controller is applied in 100 closed-loop sim-
ulations, subject to random noise. The results are shown in
the last row of Figure 3. Note that the output is steered to
the reference while the constraints are satisfied. The opti-
mization problem is solved in Matlab on an Intel® Core™
i7-6700HQ CPU @ 2.60 GHz 12GB RAM and each itera-
tion takes less than one second to complete, much shorter
than the 30 s required by the sampling time.
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In order to compare the proposed controller to other meth-
ods, the same setup is simulated with two different MPCs.
First, a controller derived from (17), but with the set of
ODEs (22) as the state-feedback prediction model, for which
µ is the maximum noise, 0.025 mol/l. This aims to resemble
the ideal case of perfect knowledge of the plant (result shown
in the first row of Fig. 3). As expected, the data-based con-
troller performs slower than the ideal since, unlike the latter,
an output-feedback uncertain framework is considered.

Second, the controller proposed in [15] is applied. It is based
on KI and guarantees closed-loop stability but does not take
into account output constraints, so as shown in the second
row of Fig. 3, the minimum CA limit is violated. To sum up,
the controller proposed in this paper is able to robustly satisfy
hard constraints in the outputs, learning the model from
input-output data with a closed-loop performance similar to
the ideal case.

5 Conclusion

A novel learning-based predictive controller capable of
ensuring robust stability without terminal constraint was
proposed and proven to be robustly stable (in the ISS sense)
and recursively feasible under some assumptions. The plant
model of this controller is learned from input-output data,
using the LACKI approach. Under assumptions on con-
servatism of estimated maximum bounds, tight bounds
on the effect of the multiple step look-ahead uncertainty
were derived and ISS stability was proven. Simulation of
a continuously-stirred tank reactor illustrated the practical
feasibility of the proposed controller.
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