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ABSTRACT 

 

The majority of solar thermal plants which produce electricity and 

deliver it to the grid use parabolic trough technology. As examples of 
large scale solar trough plants we can mention the SOLANA power 

station (280 MW of electricity power with 6 hour of thermal storage) or 

the 280 MW Mojave solar complex. 

As stated by the National American Academy and the European 

Commission, one of the main challenges is to improve the overall 
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efficiency of the solar energy plants. To address this challenge, advanced 

control techniques play a decisive role. 

This chapter presents a review of the main control techniques applied 

to parabolic solar trough plants as well as modeling approaches used to 

describe the behavior of these kind of plants. Since modeling a large scale 

solar plant very precisely would involve taking into account many 

elements which compose the plant, the resulting model can be very 

demanding from the computational time point of view. In this chapter, the 

general equations to model the solar plant are presented as well as a 

simple approach used for the commercial solar trough plants of Mojave. 

This approach provided a very good trade off between precision and 

complexity. 

As far as control algorithms are concerned, the chapter mainly 

focuses on the Model predictive control algorithm and optimization. The 

control objective of this kind of plants is explained and a description of 

several control strategies applied to solar trough plants is provided. A 

example of a model predictive control strategy applied to the old 

ACUREX solar collector field at the Plataforma Solar de Almería is 

given. However, the majority of the control strategies existing in the 

literature are applied to small scale solar trough plants. When dealing 

with large scale solar trough plants, new problems and challenges appear 

which have to be addressed. 

Current commercial solar trough plants have a considerable size and 

cover a vast extension. They pose additional challenges from the control 

and optimization point of view. New control algorithms have to be 

designed to address this issue. Due to the size of these plants, there can be 

groups of loops affected by different radiation levels due to passing 

clouds. Furthermore, the efficiency of the loops can be different because 

a group of them is cleaned and another is not. 

Some preliminary results published in the literature are reviewed and 

possible future directions for research are given. Additionally one 

illustrative example is provided to show the advantage of implementing 

advanced control strategies using a model of a large scale solar trough 

plant. 

 

Keywords: solar parabolic, model predictive control, large scale, 

modeling, optimization 
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ACRONYMS 

 

AC  Adaptive Control  

CC    Cascade-Control  

CSP  Concentrating Solar Power 

FLC  Fuzzy Logic Control 

FDMC  Filtered Dynamic Matrix Control  

FF    Feed-Forward 

GS    Gain-Scheduling  

GPC  Generalized Predictive Controller 

HTF  Heat Transfer Fluid 

IMC  Internal Model Control 

LQG  Linear Quadratic Gaussian Controller 

MPC  Model Predictive Control 

NNC  neural network controllers 

PDE  Partial Differential Equation 

PID  Proportional Integral Derivative Controller 

RC    Robust Control 

TES  Thermal Energy Storage 

TDC  Time Delay Compensation 

UKF  Unscented Kalman Filter 

 

 

INTRODUCTION 

 

The pressing need to reduce the impact of fossil fuels has increased the 

interest in tapping renewable energy sources. In particular, the use of solar 

energy has experienced a great impulse during the last two decades [1]. 

Governments are promoting the construction and exploitation of solar 

energy power plants around the world as a way to overcome the drawback 

of producing energy using exhaustible energy sources [2]. 

During the last decades, a high number of commercial solar power 

plants have been constructed and commissioned around the world. The 
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first commercial solar trough plants were the 30 MW SEGS plants in 

California (USA), commissioned in the 80s [3]. From 2000 onwards, the 

construction of commercial solar trough plants received a very important 

impulse. For example, we can find the four 50 MW trough plants Solaben 

I,II, III and VI in Extremadura (Spain) and the three 50 MW Solnova I, III 

and IV in Solucar in southern Spain commissioned in 2010 all of them 

owned by Atlantica Yield [4]. The 50 MW solar trough plants Andasol I, II 

and III owned by Cobra/ACS group were constructed in Guadix (Southern 

Spain) [5]. In the USA we can mention Solana and Mojave Solar parabolic 

trough plants constructed and operating in Arizona and California 

respectively [6, 7], each of 280 MW of electrical power production. 

Currently, there are many concentrating solar plants projects around the 

world. For example, the parabolic trough plant of Gulang of 100 MW of 

power with 7h of storage capacity [8]. 

One of the great challenges of the century, identified by the National 

Academy and the European Commission, is to make solar energy 

economical and competitive [9, 10]. To address this important topic, the 

application of advanced control strategies, optimization algorithms and the 

use of mathematical models to predict the plant evolution and adapting the 

production schedule can play a decisive role in improving the overall 

efficiency of the solar energy plants. Thus, the penetration of solar energy 

plants in the market can also be improved [11, 12]. 

Most of the research and the application of advanced control 

techniques have been carried out using the experimental ACUREX solar 

trough plant at the plataforma solar de Almería as a testbench [13]. This 

was an east-west oriented solar trough plants which was able to produce 

0.5 MW of electrical power [14]. In [15, 16] a review of some control 

strategies applied to the ACUREX solar field is presented. In [17], 

adaptative control and nonlinear schemes are described for the ACUREX 

solar field. In [18] a nonlinear neural predictive controller is developed and 

tested at the real ACUREX plant. In [19], a review of the application of 

linear and nonlinear model predictive control algorithms to the ACUREX 

plant is presented. In [20], the optimization of the operation procedures and 

control for a 50 MW solar trough plant is carried out. All the techniques 
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explained in the foregoing papers are applied to an experimental solar 

trough plant or to a mathematical model. However, there is a lack of 

experimental research applied to commercial solar trough plants. 

Current commercial solar trough cover vast extensions of land. For 

example, the two 140 MW solar trough plants of Mojave Alpha and Beta 

are composed of 282 loops each and cover about 700 hectares of land [21]. 

The solar trough plant of SOLANA is even bigger: it covers about 780 

hectares of land and it consists of 808 loops [7]. Large scale solar plants 

pose new problems from the control and optimization point of view. New 

advanced control techniques have to be developed to cope with these 

issues. 

Developing of new advanced control strategies for large scale solar 

plants as well as optimizing power production is a very challenging topic. 

The Advanced Grant Optimal Control of solar energy systems 

(OCONTSOLAR) funded by the European Research Council aims at 

contributing to these problems. One of the main objectives of this project is 

to develop radically new model predictive control (MPC) algorithms which 

use mobile solar sensors to obtain estimations and predictions of solar 

radiation mapping [22]. The control strategies proposed in the literature to 

regulate the outlet temperature of the solar field around a desired set-point 

use the solar radiation measured by pyrheliometers. It is usually considered 

that this level of direct normal irradiance affects the whole solar field. For 

small solar fields such as the ACUREX plant, this assumption can be 

considered correct. But in large scale plants clouds may affect one part of 

the field whereas other parts are uncovered or viceversa [23]. Furthermore, 

the efficiency of the loops is usually considered the same for all the loops 

forming the plant. When there is a high number of loops, their efficiency 

can vary substantially if a set of them are cleaner or more affected by dust 

than the rest. The paradox is that the most efficient loops have to be 

defocused to avoid overheating problems causing energy losses [24]. 

To avoid this energy loss, the valves of the most efficient loops would 

have to be opened to increase the HTF flow. However, any movement of 

the valve in one of the loops will influence the flow of the rest of the loops. 

Loop valves are only used in current plants for steady state flow balancing. 
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A preliminary work has recently been published using a model of the 

ACUREX field as a test-bench [25]. The input valves of each loop were 

manipulated every 30 minutes, to compensate for the different optical 

efficiency of the loops. Results showed that energy losses are minimized 

by manipulating the input valves to distribute the flow. Because the most 

efficient loops have to receive a higher flow than the less efficient ones. In 

[26] a nonlinear model-based optimization control algorithm was presented 

to improve the thermal balance of the solar field. The algorithm was tested 

on a model of a 50 MW solar trough plant. The algorithm computed the 

aperture of the valves every 5 minutes and was compared to the case where 

the input valves were not manipulated. The thermal energy losses due to 

defocusing actions were significantly reduced, thus improving the 

efficiency of the plant. 

In this chapter, a simulation result showing the advantages of using 

advanced control techniques in large scale solar trough plants is presented. 

The optimization problem uses an unscented Kalman filter (UKF) to 

estimate the loop temperatures along the pipe and a concentrated parameter 

model is used to estimate loop efficiencies. Opening the input valves of the 

most efficient loops increases the incoming flow-rate and reduces the flow 

in the less efficient loops. This will prevent, in many cases, the activation 

of the defocus control, avoiding energy losses and minimizing the 

deterioration of actuators. Moreover, a loop clustering is implemented to 

avoid high computation times. Simulations carried out on a 50 MW solar 

trough plant model shows that energy gains are obtained when the 

proposed algorithm is applied [27]. 

The chapter is organized as follows: section 2 describes the modeling 

problem of solar trough plants and different modeling approaches. Section 

3 describes the main control objectives of a solar trough plant and reviews 

the main control strategies for solar trough plants. New problems 

appearing when controlling large scale solar trough plants are described. 

Section 4 presents an illustrative example of the advantages of the 

application of advanced control strategies to a 50 MW large scale solar 

trough plant. Finally, the chapter draws to a close with concluding remarks. 
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MODELING APPROACHES 

 

In this section, the general equations to model a solar trough field are 

presented. A review of the different modeling approaches for a solar trough 

plant is carried out. Finally, a simple way to model a large solar trough 

plant is presented using the Mojave solar trough plants [28] as an example. 

These kinds of models are useful for control design and optimization 

purposes. 

A solar trough plant consists of a set of solar collectors (see Figure 1) 

which heat up a heat transfer fluid, typically synthetic oil, by concentrating 

the solar radiation onto a metal tube. A power conversion system where the 

heated fluid is used in turbine to produce electricity. The plant is also 

composed of pipes and the oil pumps and thermal energy storages (TES) if 

available [1, 29]. This chapter focuses on solar trough plants without TES. 

The HTF is heated up in the solar field and then is delivered to the 

steam generator through the pipe connecting both (figure 2). The hot HTF 

delivers heat to the steam generator by means of a heat exchanger. The 

overheated steam is used by the turbine to produce electricity. 

 

 
Source: [30]. 

Figure 1. EUROTrough Prototype at the Plataforma Solar de Almería.  
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Figure 2. Solar plant scheme. 

Because the HTF transfers heat its temperature decreases. The steam 

generator returns the cold oil to the solar field to be heated up again. 

Models of solar trough plants can vary from simple models to very 

complex. Complex models have the advantage of a more detailed modeling 

but at the cost of a higher computational burden. In general, two points 

have to be considered: 

 

 To obtain complex models, a great amount of data is needed to 

identify all the model coefficients. If there are many coefficients to 

be identified, the resulting nonlinear optimization problem may be 

very difficult or even impossible to solve in an adequate time 

frame. Another important problem is that many coefficients may 

lead to over-fitting problems. A big amount of data with sufficient 

variability would be required. An adequate simplification is 

indispensable, since in real plants the measurable variables are 

limited and measurements of certain variables may not be 

available.  

 The computational time to simulate different environmental 

conditions and situations should be as fast as possible. If the 

computational time is high, the optimization required for tuning 

parameters is difficult and the commissioning of the controller 

may be delayed.  

 

Complex models can be used to simulate and test the control strategies 

developed for the plant. 
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MATHEMATICAL MODELING OF THE  

SOLAR COLLECTOR FIELD 

 

In order to describe the dynamics of a solar collector field, two models 

are usually considered: the distributed parameter model and the 

concentrated parameter model [31, 32]. The distributed parameter model 

has the advantage of taking into account the spatial distribution of the loop 

while the concentrated parameter model is usually used for control 

purposes due to its simplicity. Both are described below: 

 

 

Distributed Parameter Model of a Loop 

 

The loop dynamics can be described by the following system of partial 

differential equations (PDE) describing the energy balance [16, 31]: 

 

𝜌𝑚𝐶𝑚𝐴𝑚
𝜕𝑇𝑚

𝜕𝑡
= 𝐼𝐾𝑜𝑝𝑡𝑐𝑜𝑠(𝜃)𝐺 − 𝐻𝑙𝐺(𝑇𝑚 − 𝑇𝑎) − 𝐿𝐻𝑡(𝑇𝑚 − 𝑇𝑓) (1) 

 

𝜌𝑓𝐶𝑓𝐴𝑓
𝜕𝑇𝑓

𝜕𝑡
+ 𝜌𝑓𝐶𝑓𝑞

𝜕𝑇𝑓

𝜕𝑥
= 𝐿𝐻𝑡(𝑇𝑚 − 𝑇𝑓) (2) 

 

where 𝑚 subindex refers to metal and 𝑓 subindex refers to a fluid. In Table 

1, parameters and their units are shown. 

 

Table 1. Parameters description 

 

Symbol Description Units 

t Time s 

x Space m 

𝜌 Density kgm−3 

𝐶 Specific heat capacity JK−1kg−1 

𝐴 Cross sectional area m2 

𝑇(𝑥, 𝑦) Temperature K,ºC 

𝑞(𝑡) HTF flow rate m3s−1 
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Table 1. (Continued) 

 

Symbol Description Units 

𝐼(𝑡) Direct Solar radiation Wm−2 

𝑐𝑜𝑠(𝜃) Geometric efficiency Unitless 

𝐾𝑜𝑝𝑡 Optical efficiency Unitless 

𝐺 Collector aperture m 

𝑇𝑎(𝑡) Ambient temperature K, ºC 

𝐻𝑙 Global coefficient of thermal loss Wm−2 ℃−1 

𝐿 Length of pipe line m 

𝐻𝑡(𝑡, 𝑇, 𝑞) Coefficient of heat transmission metal-fluid Wm−2 ℃−1 

𝑆 Total reflective surface m2 

𝐶𝑇(𝑡, 𝑇) Thermal capacity of the whole sector J/K 

𝐻𝑙𝑐 Lumped parameter model global coefficient of thermal 

loss 

Wm−2 ℃−1 

 

The optical efficiency (𝐾𝑜𝑝𝑡) takes into account elements such as 

reflectivity, metal absorptance, interception factor and others. All the 

equations for computing the parameters can be found in [34, 33]. 

The equations presented here are general and can be used for all kind 

of loops and collectors, Only the parameters change accordingly. The 

complete plant can be modeled by adding several loops in parallel. 

 

 

Concentrated Parameter Model 

 

A concentrated parameter model provides a lumped description of the 

loop [31]. The variation in the internal energy of the fluid can be described 

by the equation:  

 

𝐶𝑇
𝑑𝑇𝑜𝑢𝑡

𝑑𝑡
= 𝐾𝑜𝑝𝑡𝑐𝑜𝑠𝜙𝑆𝐼 − 𝑞𝐶𝑓𝜌𝑓(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) − 𝐻𝑙𝑐𝑆(�̅� − 𝑇𝑎)  (3) 

 

where 𝑞 is the HTF flow of the whole sector and 𝑇 and 𝑇𝑖𝑛 are the outlet 

and inlet oil temperatures of the model respectively. The outlet temperature 

of the lumped parameter model 𝑇 is the final average temperature of the 

sector and 𝑇𝑖𝑛 is the outlet temperature of the distributed parameter model. 
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The variable �̅� is the average value between inlet and outlet 

temperatures and 𝑇𝑎 is the ambient temperature. 𝐶𝑇 is the thermal capacity 

of the sector, 𝐾𝑜𝑝𝑡 is the optical efficiency (which incorporates the effects 

of mirror reflectivity, tube absorptance, and interception factor), 𝐼 is the 

direct solar irradiance and 𝑆 is the total reflective surface. 

 

 

SIMPLE MODELING APPROACH: MATHEMATICAL  

MODEL OF A LARGE SCALE SOLAR PLANT 

 

In this subsection, a simple approach to model large scale solar trough 

plant is presented. This approach is useful to obtain a simple model for 

tuning advance control strategies properly and is described in [28]. 

Since a commercial solar plant is composed of many loops (90 or 

more), simulating an exact model of the the plant would require 90 loops to 

be computed. In the case of the Mojave solar plants, which are composed 

of 282 loops each, the computational time required to simulate a few hours 

of operation would be too high to tune the parameters of a control strategy 

properly. 

If the models are used in an optimization algorithm, the computational 

time has to be drastically decreased. 

Since the control objective of this kind of plant is to regulate the 

average temperature of the loops and the thermal balance is achieved by 

manipulating the input valves, the approach is to model a given sector (a 

sector is a set of loops) as an equivalent loop. The main advantage of 

choosing this approach is its simplicity and a lower computational 

requirements. Furthermore, all the measurements needed are available: the 

average outlet temperature of the loops, the inlet temperature of the sector, 

the oil flow, the direct normal irradiance, the number of defocused 

collectors (to compute the overall optical efficiency) and the average 

reflectivity. The main drawback is that the spatial distribution of the sector 

is not modeled, but this issue is mitigated since we are modeling average 

temperatures. 
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Two assumptions are made: 

 

a) The dynamics of each sector is considered as a one equivalent 

loop, that is, all the loops forming the quadrant are considered to 

have the same efficient (the overall efficiency of the quadrant). 

This assumption is based on the fact that the most efficient loops 

compensate the less efficient ones. The flow of this equivalent 

loop is considered to be the mean flow of the sector (flow divided 

by the number of loops). A distributed parameter model is used to 

model this equivalent loop. 

b) For sectors with a great number of loops although the average 

temperature of the quadrant has an additional dynamics due to 

different distances from the input of the sector to each loop and the 

different flows of each loop. This dynamics can be modeled as a 

lumped parameter model with a determined area, length and a 

thermal losses coefficient. The flow of this model is equal to the 

flow of the whole sector.  

 

This approach has demonstrated a good performance as shown below. 

All the parameters value, thermal losses and mathematical expressions can 

be found in [28]. All simulation results for these plants are scaled between 

0 and 1. The real data cannot be provided due to confidentiality and 

intellectual property issues. 

The considered solar trough plant is composed of six sectors: east (42 

loops), north-east (46 loops), north-west (38 loops), south-east (40 loops), 

south-west (38 loops) and west (78 loops). Figure 3 shows the comparison 

between the model output and the real average temperature of the Mojave 

Beta East sector. It is a transient day where passing clouds are affecting the 

sector. As can be seen, the dynamics of the model is quite similar to that of 

the real sector evolution. Mojave Alpha solar trough plant consists of four 

sectors: north-west (68 loops), north-east (20 loops), east (102 loops) and 

west (92 loops). Figure 4 presents the evolution of the Alpha North-East 

sector in a clear day of summer. As can be seen, the evolution of the model 

is very similar to that of the real sector.  
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Source [28]. 

Figure 3. Beta East sector, model vs. real evolution: (top) model (blue solid) and real 

(red dash-dotted); and (bottom) HTF flow. 

 
Source [28]. 

Figure 4. Alpha North-East sector, model vs. real evolution: (top) model (blue solid) 

and real (red dash-dotted); and (bottom) HTF flow.  



Antonio J. Gallego, Adolfo J. Sánchez and Eduardo F. Camacho 44 

The maximum error obtained is about a 5.8% which constitutes an 

acceptable result taking into account the simplifications. 

 

 

Mathematical Model of the Piping System 

 

The equations of all the pipes modeling are the same as those 

presented for the distributed parameter model, but considering the 

irradiance to be equal to 0.  

 

 
Source [28]. 

Figure 5. Mojave Beta, HTF temperature at the input of the steam generator: (top) 

model (solid blue) and real (red dash-dotted); and (bottom) HTF flow.  

The system of partial differential equations are given by Equations 

(4,5):  

 

𝜌𝑚𝐶𝑚𝐴𝑚
𝜕𝑇𝑚

𝜕𝑡
= −𝐻𝑙𝐺(𝑇𝑚 − 𝑇𝑎) − 𝐿𝐻𝑡(𝑇𝑚 − 𝑇𝑓)  (4) 
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𝜌𝑓𝐶𝑓𝐴𝑓
𝜕𝑇𝑓

𝜕𝑡
+ 𝜌𝑓𝐶𝑓𝑞

𝜕𝑇𝑓

𝜕𝑥
= 𝐿𝐻𝑡(𝑇𝑚 − 𝑇𝑓)  (5) 

 

The parameter to be identified are the cross sectional Area 𝐴𝑓, the total 

length of the pipe and the coefficient of the thermal losses 𝐻𝑙. 

Figure 5 shows a comparison between the model output of the pipe 

connecting the solar field and the steam generator, and the HTF 

temperature measured at the input of the steam generator. As can be seen, 

the model evolution is quite close to the real measurement. The maximum 

error is about 2.8%. 

 

 

Modeling of the Steam Generator Variables 

 

In this subsection, a procedure to obtain a model for the steam 

variables useful for simulation is described. 

To model a power block, many components have to be modeled. Thus, 

the model of this part is usually complicated and requires a great deal of 

data to obtain the models parameter [35]. The model of this part can be 

addressed by using simulation languages such as modelica if very detailed 

models are needed. In [36], a complex model developed in modelica of a 

CSP power plant is presented. In [37], a complex and detailed model 

developed in TRNSYS of the steam generator is presented to study the 

start-up stage. In [35], a complex model of a steam turbine is developed. 

The model parameters were identified using a genetic algorithm. 

This approach can be useful to obtain an exact model but more simple 

models are required to test and tune advanced control strategies. 

Furthermore, most of the data required for a more complex model are not 

available. 

To address this issue, a black-box approach is used here [38]. In this 

kind of models, the output is a function of the inputs, but the model 

structure is unknown a priori [39].  
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The model structure is chosen based on experience. Data for five days 

of operation are used to obtain the model parameter. The model output is 

then compared with all the data available to find if it works well in all 

conditions. The steam variables needed to simulate advanced control 

strategies are the following: steam temperature, high pressure, gross power, 

HTF return temperature, the steam temperature gradient and the 

superheating temperature. The models of these variables are explained 

below. 

Although the models structure are not known, to figure out what 

variables are more suitable to be included in a particular model structure, a 

correlation analysis was carried out. 

To illustrate the proposed procedure, the steam temperature model and 

the HP pressure model are presented. 

A first-order dynamic model is chosen for the steam temperature. The 

evolution of this model depends on the HTF temperature of the steam 

generator, the oil flow and the ambient temperature as follows (Equation 

(6)): 

 

𝑇𝑠𝑡𝑒𝑎𝑚(𝑘) = 𝑎1𝑇𝑠𝑡𝑒𝑎𝑚(𝑘 − 1) + 𝑎2𝑇𝐻𝑇𝐹 + 𝑎3𝑞𝐻𝑇𝐹𝑇𝐻𝑇𝐹 + 𝑎4(𝑇𝐻𝑇𝐹 − 𝑇𝑎)

+ 

 

+𝑎5(𝑇𝐻𝑇𝐹 − 𝑇𝑎)2 + 𝑎6  (6) 

 

𝑇𝑠𝑡𝑒𝑎𝑚(𝑘) is the steam temperature at instant 𝑘. 𝑇𝐻𝑇𝐹 is the HTF 

temperature at the input of the steam generator, 𝑞𝐻𝑇𝐹 is the oil flow 

reaching the steam generator and 𝑇𝑎 is the ambient temperature. 

Constants 𝑎1–𝑎6 have to be obtained. A comparison between the 

model and real data is shown in Figure 6 for Mojave Beta (Figure 6, top) 

and Mojave Alpha (Figure 6, bottom). As can be seen, the model evolution 

is quite close the real measurement. 
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One of the most important variables in the steam generator is the high 

steam pressure. This variable has to be supervised and controlled to avoid 

dangerous situations, including shutdowns of the plant. The structure of the 

model is chosen based on the fact that the steam pressure depends on the 

temperature and the flow. The model structure is as follows (Equation (7)): 

 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐻𝑃(𝑘) = 𝑎1𝑇𝑠𝑡𝑒𝑎𝑚 + 𝑎2𝑇𝑠𝑡𝑒𝑎𝑚
2 + 𝑎3𝑞𝐻𝑇𝐹𝑇𝐻𝑇𝐹 + 𝑎4  (7) 

 

 
Source [28]. 

Figure 6: Mojave Beta and Alpha: Steam temperature model: (top) Mojave Beta model 

showing real evolution (red dash-dotted) and model output (blue solid); and (bottom) 

Mojave Alpha model showing real evolution (red dash-dotted) and model output (blue 

solid). 

A comparison between real data and the model is shown below. Figure 

7 shows the comparison between the model and the measured HP Pressure 

for Mojave Beta (Figure 7, top) and Mojave Alpha (Figure 7, bottom). The 

model replicates properly the real pressure evolution in both cases. 
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Source [28]. 

Figure 7. Mojave Beta and Alpha: HP Pressure Model: (top) Mojave Beta model, 

showing real evolution (red dash-dotted) and model output (blue solid); and (bottom) 

Mojave Alpha model, showing real evolution (red dash-dotted) and model output (blue 

solid). 

 

CONTROL STRATEGIES FOR SOLAR PLANTS  

AND NEW CHALLENGES: A REVIEW 

 

In this section, a review on control strategies for solar trough plants is 

presented. 

The main control objective of this kind of plant is to regulate the solar 

field temperature (the outlet temperature of the solar field), around a 

desired set-point. Since the primary energy source, solar energy, cannot be 

manipulated, the oil flow q is used as a control signal. The set-point may 

change substantially throughout the daily operation due to changes in the 

production requirements, solar radiation conditions, solar hour etc [40]. 
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The activities performed by the control research community related to 

this field cover modeling, identification and simulation, classical 

proportional- integral-derivative control (PID), feedforward control (FF), 

model based predictive control (MPC), adaptive control (AC), gain-

scheduled control (GS), cascade control (CC), internal model control 

(IMC), time delay compensation (TDC), optimal control (LQG), nonlinear 

control (NC), robust control (RC), fuzzy logic control (FLC) and neural 

network controllers (NNC) [16]. This section focuses on Model Predictive 

control strategies applied to solar power plants. 

Many MPC controls strategies have been applied to solar trough 

plants. The main idea of a model predictive control strategy is to use a 

mathematical model of the plant to predict the output future evolution, and 

compute a sequence of control actions which minimizes a cost function 

subject to constraints. Then, the first element of the optimal sequence is 

applied and the optimization problem is solved again (receding horizon 

strategy) [41]. 

Most of the MPC control strategies were tested on the ACUREX solar 

collector field. They include, in general a feedforward term computed 

using the concentrated parameter model (equation (3)) [42] and [15]. In 

particular, the highly nonlinear dynamics of the distributed solar collector 

field hinders the application of fixed controller parameters. In [43], a gain 

scheduling generalized predictive controller (GPC) is designed for the 

ACUREX plant. This controller achieved a very good performance. In [44] 

a GPC control strategy which uses a nonlinear free response obtained with 

a simplified distributed parameter model is presented. That scheme 

achieves a good performance without using a feedforward term. In [45], a 

linear MPC controller is proposed for the SEGS plants. 

Since the distributed solar collector field possesses a highly nonlinear 

dynamics which changes with the operating conditions, adaptative, robust 

and nonlinear model predictive techniques have also been applied. In 

particular, in [46] an adaptative GPC is tested at the ACUREX solar field, 

the model parameters are obtained by means of an adaptation mechanism 

working online. In [47], a cascade controller is applied to the ACUREX 

field with good results. In [48], a variable sample time state-space 
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adaptative controller is proposed. The work developed by Lemos and 

coworkers collects extensively some of the adaptative schemes proposed 

for the ACUREX solar field [49]. 

More recently some adaptative and nonlinear schemes using state-

space models and parameter identification techniques such as the 

unscented Kalman filter (UKF) have been developed [50]. In [51], a 

nonlinear model is used for the MPC control strategy and the unscented 

Kalman filter is used to estimate optical efficiency, thermal losses and a 

free parameter by using a bilinear state-space Euler model. In [52], a robust 

tube-based MPC control technique is applied successfully to the ACUREX 

field. In [23], the UKF is used to estimate the metal-fluid temperature 

profiles and the effective solar radiation. In [53], a practical nonlinear 

MPC implementation is used to control the temperature of the ACUREX 

solar field. In [54], a non-linear adaptive constrained model-based 

predictive control scheme with steady-state offset compensation is 

developed and implemented. In [55], a nonlinear continuous-time 

generalized predictive control is applied to a solar power plant. In [56] the 

output temperature control of a solar collector field is presented using a 

Filtered Dynamic Matrix Control (FDMC). Results showed that if the 

strategy is properly tuned, it provides a similar performance to that 

obtained with nonlinear control strategies. 

As a practical example of an MPC control strategy performance, in 

[57] a model predictive controller which uses a robust Luenberger observer 

was tested at the ACUREX plant. The idea is similar to that presented in 

[23], but the observer is a robust Luenberger observer. The main advantage 

is that using this approach, performance constraints can be imposed in the 

observer. The control scheme is shown in Figure 8. Every 𝑡𝑠 = 36 s, the 

data acquisition system receives measures from the field, which are used 

by the observer to obtain an estimate of the state vector. The next step 

consists in updating the linear matrices, computing the free response 

through the nonlinear model, and solving the MPC problem given by (8).  
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The resulting signal 𝑞𝑝𝑟𝑒𝑑 is then added to the feedforward signal 𝑞𝑓𝑓 

to obtain the oil flow setpoint for the pump. 

It is worth pointing out that besides being a component of the final 

control action 𝑞, the feedforward signal is needed for the prediction of the 

free response with the nonlinear PDE, considering a constant input flow 

along the control horizon. Such free response provides a kind of 

feedforward compensation. However, it is not sufficient to avoid the use of 

the feedforward block. Indeed, the MPC controller is linear: the forced 

response is computed by using a linear model and the MPC control signal 

𝑞𝑝𝑟𝑒𝑑 is obtained by solving a QP problem. 

 

min
Δ𝑢

𝐽(Δ𝑢, 𝑦(𝑡)) = ∑

𝑁𝑦

𝑘=0

(𝑦𝑡+𝑘|𝑡 − 𝑤𝑡+𝑘)𝑇𝑄(𝑦𝑡+𝑘|𝑡 − 𝑤𝑡+𝑘) + 

 

+ ∑𝑁𝑐
𝑘=0 Δ𝑢𝑡+𝑘

𝑇 𝑅Δ𝑢𝑡+𝑘  (8) 

 

s.t: 

 

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑡+𝑘|𝑡 ≤ 𝑦𝑚𝑎𝑥, 𝑘 = 1, … , 𝑁𝑦 

 

Δ𝑢𝑚𝑖𝑛 ≤ Δ𝑢𝑡+𝑘 ≤ Δ𝑢𝑚𝑎𝑥, 𝑘 = 1, … , 𝑁𝑐 

 

𝑈𝑚𝑖𝑛 ≤ 𝑈(𝑡 + 𝑘|𝑡) ≤ 𝑈𝑚𝑎𝑥 , 𝑘 = 1, … , 𝑁𝑐  

 

𝑈(𝑡 + 𝑘|𝑡) = 𝑈(𝑡 + 𝑘 − 1) + Δ𝑢(𝑡 + 𝑘 − 1), 𝑘 = 1, … , 𝑁𝑐 

 

𝑥(𝑡 + 𝑘 + 1|𝑡) = 𝐹(𝑥(𝑡 + 𝑘), 𝑈(𝑡 + 𝑘)), 𝑘 = 1, … , 𝑁𝑦 

 

𝑦(𝑡 + 𝑘) = 𝐻(𝑥(𝑘)), 𝑘 = 1, … , 𝑁𝑦 
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The real test was performed in a sunny day with scattered clouds 

which forced the first day of tests to end at about 14:00. The upper plot in 

Figure 9 shows the inlet and outlet oil temperatures, relative to the 

experiments carried out at the ACUREX field in 2013. The bottom plot in 

Figure 9 shows the direct solar radiation and the value of the input oil flow 

for the same day. After the plant starting procedure, at 12.6 h the test began 

with some setpoint changes for the outlet temperature. The controller 

achieved rise times of less than 3 minutes, and overshoots smaller than 2 

ºC during the test (about 15%). Notice that the temperature setpoint given 

at 12.6 h could not be reached because of the maximum input flow 

constraint (8.8 l/s). At 13.7 h there was a drop in the inlet temperature and 

the controller steers the outlet temperature to the reference. At the end of 

the test, several passing clouds affect the field and the temperature cannot 

reach the desired reference. 

 

 

Figure 8. Final Control Scheme.  
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Figure 9. Test carried out at the ACUREX field, 2013. 

The previous research work are mainly related to the control of the 

solar field temperature. However, one important topic is determinng which 

is the temperature producing the best yield, that is, the optimal operating 

temperature. In [58] and [14], hierarchical control strategies were presented 

consisting in two layer: the first layer computes the set-point for the solar 

field an the second layer is devoted to the control of the temperature. 

For a long time, the general feeling was that the best operating 

temperature was the highest. In [59] a hierarchical control strategy was 

presented and the procedure for obtaining the optimal operating 

temperature was developed. It was shown that the best operating 

temperature is not, in general, the highest but it depends on the 

environmental conditions and the state of the plant. 

More recently, several papers related to optimizing the plant operation 

have been published [60]. In [61], a model predictive control approach is 

proposed for scheduling of concentrating solar power plants with Thermal 

Energy Storage (TES). It uses forecasting to optimize the plant schedule. 

In [20], a study that focuses on the search for the optimal strategies of 
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operation by a mathematical model of a 50 MWe parabolic trough thermal 

power plant with thermal storage. The analysis of the different ways of 

operation throughout a whole year, including model verification via a 

currently operating plant, provides meaningful insights into the electricity 

generated. In [62], a scheduling strategy for concentrating solar power 

plants with thermal energy storage is studied. 

Currently, since the commercial solar trough plants cover vast land 

extensions, new challenges appear to the development of advanced control 

strategies. These challenges can be summed up as follows (but not limited 

to): 

 

 As stated in the introduction, the input valves of the loops can be 

manipulated to achieve a proper thermal balance and avoiding 

thermal losses of the most efficient loops due to defocusing actions 

[63]. Due to the high number of loops of commercial plants, the 

resulting control problem is a nonlinear optimization problem with 

many decision variables (90 or more) which is very difficult to be 

solved in real time.  

 Solar plants performance depends on multiple factors such as solar 

irradiance, ambient temperature, reflectivity of the collectors, 

operating temperatures of the different subsystems and many other 

operational and environmental variables. The main energy source, 

the solar irradiance, cannot be manipulated. Advanced control 

strategies requires the knowledge of solar radiation, but 

extrapolating the local measurement of pyrheliometers to the 

whole solar field is not reasonable. Scattered clouds may only 

affect the location where the sensor is placed, while the rest of the 

loop may be under the effect of intense DNI, or viceversa. 

Advanced control strategies require a solar radiation mapping or 

nowcasting to take anticipative actions.  

 Another important issue is to develop plant-wide dynamic online 

optimization methods for solar energy systems to achieve optimal 

operation while meeting internal and external constraints 

(dispatchability).  
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Some preliminary results have been published in [25, 27] where it has 

been demonstrated that, using model-based optimization for computing the 

input valves aperture can produce substantial gains in power production 

and the reduction of defocusing actions due to overheating problems. 

Another important issue in commercial plants is the operation under 

power limitation. In this case, the oil flow is limited by the gross power 

restriction and the temperature has to be controlled by defocusing the 

collectors. This is usually done in commercial plants by activating or 

deactivating the defocusing mechanism if the temperature is above a safety 

value. In [63] and [24] two model predictive control algorithms are 

proposed showing that the number of defocusing actions are drastically 

reduced thus, increasing the life of actuators, and avoiding that the HTF 

surpasses the safe temperature. 

 

 

THERMAL BALANCE OF A LARGE SCALE SOLAR  

TROUGH PLANT: AN EXAMPLE 

 

In this section, an example of the advantages provided by the 

application of advanced control strategies to a large scale solar trough 

plants is presented. The algorithm described here is tested on a model of a 

50 MW solar trough plant described thoroughly in [27, 63]. 

As mentioned above, the main control objective of a solar trough 

plants is to regulate the average temperature of all the loops around a 

desired set-point by manipulating the HTF flow. The large number of loops 

existing in current commercial solar plants and the vast extension of land 

covered make the estimation of the efficiency of every loop becomes a 

very difficult task. Parameters related to the optical efficiency such as 

reflectivity, metal absorptance, optical efficiency of the glass covering the 

metal tube may exhibit a great disparity. This difference in the loops 

efficiency the most efficient loops to reach very high temperatures and 

they have to be defocused to avoid overheating situations that degrade the 

HTF [25]. 
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The main idea is that the aperture of the solar field loops inlet valves is 

computed through a nonlinear optimization problem. Opening the input 

valves of the most efficient loops to increase the flow-rate and reducing the 

flow in the less efficient loops will improve the thermal balance of the 

solar field. The advantages of the proposed algorithm are the following 

[27]: 

 

 Achieving a better thermal balance of the field.  

 Reducing energy losses. Due to thermal balance defocusing 

actions will be reduced in many cases avoiding possible energy 

losses.  

 Reducing the deterioration of the actuators and structures by 

reducing the control actions.  

 

The control strategy applied to the solar field consists of two levels: 

the first one is a GS-GPC which controls the average of the outlet 

temperature of all loops. The GS-GPC control algorithm manipulates the 

flow-rate of the main pumps every 30 seconds to achieve this goal. The 

controller receives a desired set-point for the average temperature, obtains 

a linear model depending on the plant flow Q to predict the future 

evolution of the plant, and then computes a temperature reference for the 

feedforward compensator. The feedforward compensator uses this 

temperature reference and the measurable disturbances (inlet temperature 

𝑇𝑖𝑛, ambient temperature 𝑇𝑎 and the effective solar radiation 𝐼𝑒𝑓𝑓) to 

compute a flow reference for the plant [24, 27]. The scheme of this 

controller is shown in Figure 10, where 𝑄𝑓𝑓 represents the global flow-

rate provided by the controller (equal to 𝑞𝑓𝑓*N, where N = 90 loops in this 

particular plant) for the complete field and Q is the measured flow-rate. 

The second level computes the aperture of the inlet valves for 

achieving a better thermal balance of the field. This is carried out by 

solving a nonlinear optimization problem. 

The objective of the non-linear optimization is to obtain the values of 

the manipulated variables, apertures of the loops inlet valves, which make 

the field outlet temperature of the loops as homogeneous as possible. 
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Improving the thermal balance of the solar field avoids thermal energy 

losses produced by defocus actions. The general formulation of the 

nonlinear problem is presented in equation (9). The nonlinear optimization 

problem needs the estimation of the system states (metal-fluid 

temperatures) which is done by using an UKF algorithm. 

 

𝑚𝑖𝑛𝐽 = ∑
𝑁𝐿𝑜𝑜𝑝

𝑛=1 (∑𝑁2
𝑗=𝑁1

𝛿(𝑗)[�̂�𝑛(𝑡 + 𝑗|𝑡) − 𝑤(𝑡 + 𝑗)]2

+ ∑𝑁𝑢
𝑗=1 𝜆(𝑗)[Δ𝑢𝑛(𝑡 + 𝑗 − 1)]2)

𝑠. 𝑡:
𝑈𝑚𝑖𝑛 < 𝑈(𝑡 + 𝑗) < 𝑈𝑚𝑎𝑥

Δ𝑢𝑚𝑖𝑛 < Δ𝑢(𝑡 + 𝑗) < Δ𝑢𝑚𝑎𝑥

𝑥 = 𝑔(𝑥, 𝑈), 𝑦 = 𝑓(𝑥)

 (9) 

 

where �̂�𝑛(𝑡 + 𝑗|𝑡) is an optimum j step ahead prediction of the system 

output, 𝑁𝐿𝑜𝑜𝑝 is the number of loops, 𝑁𝑢 is the control horizon, 𝛿(𝑗) and 

𝜆(𝑗) are weighting sequences and 𝑤(𝑡 + 𝑗) is the future reference 

trajectory (set-point). Regarding the constraints, 𝑈𝑚𝑖𝑛 and 𝑈𝑚𝑎𝑥 are the 

minimum and maximum control signals while Δ𝑢𝑚𝑖𝑛 and Δ𝑢𝑚𝑎𝑥 are the 

minimum and maximum control signals increments. 

 

 

Figure 10. GS-GPC + FeedForward control scheme. 

Notice that the main objective of this strategy is not to track a given 

reference which is the main objective of the flow controller. The aim is 

minimizing the difference among the outlet temperatures of the loops in 

steady state. By minimizing those distances, the outlet temperatures of all 

loops become closer and the thermal disparity is minimized. The only 

constraint for this optimization is the minimum and maximum value for the 
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valves apertures, 𝑈𝑚𝑖𝑛 < 𝑈(𝑡 + 𝑗) < 𝑈𝑚𝑎𝑥. Since the evolution of the 

efficiency disparity is considered to be slow, the problem is solved every 

30 minutes. 

One important problem is that solving the optimization problem 

considering 90 decision variables is computationally demanding. To be 

able to solve the optimization problem within the time required, the 

number of decision variables has to be decreased. It has been found that 

Solving the problem with 10, 20 or 30 variables (valves) is feasible [27]. 

The solution proposed is grouping loops of similar efficiency using a 

clustering algorithm. The k-means algorithm has been used to obtain the 

clusters. The classical method uses an iterative heuristic technique by 

means of which the centroids of the clusters are obtained, known as 

Lloyd’s algorithm [64]. For the case of the solar plant, the main variables 

to cluster the loops are the loop outlet temperature and the estimated 

efficiency. Furthermore, in order to obtain a robust clustering, the defocus 

angle applied to every loop is also taken into account in the Euclidian 

distance calculation by the clustering technique. This helps to discriminate 

better if several loops have a similar outlet temperature and a similar 

estimated efficiency but may be defocusing with different angles. These 

loops can be grouped in the same cluster [27]. 

In the simulation case, the plant is affected by a stable radiation levels. 

The proposed strategy is tested with 10 and 20 decision variables (group of 

valves). The valves are grouped using the above-mentioned k-means 

clustering algorithm. Both scenarios are graphically and numerically 

compared to the case where no valve control is considered. A great 

disparity in the optical efficiency for all loops is considered. 

The case when no control of the input valves is considered is shown in 

Figures 11 and 12. In Figure 11 the temperatures and defocus angles of 

each of the 90 loops are shown. The disparity in the outlet temperatures of 

the loops is observed due to the different efficiencies. This will cause the 

loops with higher efficiency to be defocused in order to maintain safe loop 

temperatures. In spite of this, the global controller GS-GPC manages to 

regulate the average temperature around the desired set-point, but thermal 

losses due to defocus actions are produced. 
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Figure 11. Loops temperatures (top) and defocus angles (bottom) when there is no 

valve control under stable radiation.  
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Figure 12. Field outlet temperature (top) and field flow-rate/irradiance (bottom) (No 

valve control). 

Using the proposed strategy with 10 decision variables (10 cluster of 

valves), a thermal equilibrium of the field as seen in Figure 13 is obtained. 

The loops temperatures are concentrated in a much narrow range than the 

case without valve control, Figure 11. It can also be observed how the 

defocusing actions have diminished to a great extent compared to that of 

Figure 11 since the temperatures are now more homogeneous. An average 

temperature difference of 20∘C is reduced to a 4∘C approximately. This 

reduction of the defocusin actions constitutes a very good result: it saves 

energy because the total movement of the actuators are drastically reduced 

and also extends the life of the actuator. 
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Figure 13. Loops temperatures (top) and defocus angles (bottom) results of the valve 

control strategy for thermal balance with 10 clusters for a stable radiation.  
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Figure 14. Valve control actions for the 10 clusters simulations with stable radiation. 

  

Figure 15. Total travelled defocus angle: valve control (blue) vs no valve control (red). 
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Table 2. Number of defocus and valve actions, case 1  

(stable radiation) 

 

Control Defocusing Actions Valve Actions Total Traveled Degrees 

No Valve Control 20534 0 253.52 

Valve Control 10 579 420 19.97 

 

The control actions are shown in Figure 15 and the total travelled 

defocus angle is shown in Figure 15 for both cases: valve control and no 

valve control. 

Finally, Table 2 shows the numerical results where it can be seen that 

the number of actions and angles traveled with the thermal equilibrium has 

decreased considerably in the whole field. As can be seen, the number of 

defocusing actions is drastically reduced due to the better thermal balance 

achieved. 

This example shows that by using a clustering of 10 loops, the actions 

of the valves, calculated by the optimization process, considerably reduce 

the difference between the outlet temperature of loops. This results in a 

reduction of the defocus actions applied on the loops as well as possible 

energy losses due to defocusing 

 

 

CONCLUSION 

 

As stated by the National American Academy and the European 

Commission is to improve the overall efficiency of the solar energy plants. 

In order to address this challenge, advanced control techniques play a 

decisive role. 

In this chapter, within the framework of the OCONTSOLAR project, a 

review of the control techniques applied to parabolic solar trough plants as 

well as modeling approaches used to describe the behavior of these kind of 

plants has been presented. 
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The general equations to model a solar trough plants are described and 

a possible approach to model large solar field as an equivalent loop is 

presented. The example of the Mojave solar trough plants is provide. 

The second part presents a review of the control strategies applied to 

this kind of plants. The majority of the control strategies existing in the 

literature are applied to small scale solar trough plants. When dealing with 

large scale solar trough plants, new problems and challenges appear which 

have to be addressed. Those problems are described. 

Finally, one illustrative example is provided to show the advantage of 

implementing advanced control strategies using a model of a 50 MW solar 

trough plant. This example shows that by manipulating the input valves of 

the loops, a substantial reduction in the defocusing actions is attained 

minimizing the energy losses. 
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