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We report two fundamental experiments on three-level quantum systems (qutrits). The first one tests the
simplest task for which quantum mechanics provides an advantage with respect to classical physics. The
quantum advantage is certified by the violation of Wright’s inequality, the simplest classical inequality
violated by quantum mechanics. In the second experiment, we obtain contextual correlations by
sequentially measuring pairs of compatible observables on a qutrit, and show the violation of Klyachko et
al’s inequality, the most fundamental noncontextuality inequality violated by qutrits. Our experiment tests
exactly Klyachko et al’s inequality, uses the same measurement procedure for each observable in every
context, and implements the sequential measurements in any possible order.

n classical physics, there is no contradiction in considering that systems like balls and coins have preestablished

properties like position and velocity that are independent of whether one actually measures them or not.

However, according to quantum mechanics, the results of experiments on systems such as atoms and photons
do not correspond to preestablished properties. A natural and fundamental question is: Which is the simplest
quantum system in which this difference between classical and quantum physics can be observed?

For instance, this difference is shown in the violation of Bell inequalities', which requires at least two
measurements on, at least, two separate subsystems, thus requiring a physical system of dimension four (i.e.,
with four perfectly distinguishable states). However, even before Bell inequalities were discovered, Kochen and
Specker**, and Bell® pointed out that the classical/quantum conflict occurs even in a simpler three-level quantum
system, or qutrit (e.g., a spin-1 particle). This implies that entanglement is not needed for the generation of
nonclassical correlations, since, by definition, a single qutrit cannot be in an entangled state. Indeed, by perform-
ing a sequence of compatible” measurements on the same single qutrit, contextual correlations can be obtained.

The classical/quantum conflict can be revealed even without correlations. The simplest test producing clas-
sically impossible results was first described by Wright® and is based on the probabilities of the results of five single
measurements on a qutrit. Later on, Klyachko ef al. derived a noncontextuality inequality (i.e., satisfied by all
theories in which the measurement results are independent of any compatible measurement) for qutrits using
correlations®. Klyachko et al’s inequality is the simplest noncontextuality inequality violated by quantum
mechanics, in the sense that there is no conflict for systems of lower dimension or with inequalities with fewer
terms. The conflict can be made independent of the initial quantum state of the system by considering more
complex inequalities'*".

Results

In this Letter we report experimental violations of both Wright’s and exactly Klyachko et al.’s inequality with
qutrits. We first introduce both inequalities and show that they are actually connected. Then, we describe the
experimental setups corresponding to each test. Finally, we present the experimental results and discuss them.

Wright’s inequality. Wright’s inequality® is the simplest classical inequality violated by quantum mechanics. It
can be proven that the simplest set of questions such that the sum of the probabilities of obtaining a yes answer is
higher in quantum mechanics than in classical physics is precisely the one in which 5 questions Q; are such that Q;
and Q;+ (with the sum modulo 5) are exclusive. Wright’s inequality can be formulated as a game. In each run of
the game, one of these questions is picked at random. The goal of the game is to obtain as many yes answers as
possible.

Below we give an example that illustrates an optimal classical strategy. The system is prepared in a random
mixture of 5 classical states 0, 1, 2, 3, and 4, and the player provides the following 5 yes-no questions: Qy = “0 or
1?27 (denoting the question “Is the system in one of the states 0 or 1?”), Q; = “20r3?”,Q, = “0or4?”, Qs = “lor
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2?2, and Qq = “3 or 4?”. If P(+1]|Q;) denotes the probability of
obtaining a yes answer when Q; is asked, then, in our example,
P(+1|Q))=2forany i = 0, ..., 4. Therefore, >i_ P(+1|Q;) =2.
It can be proven that no other preparation or set of classical questions
provides a better solution; for any set of 5 classical questions with the

previous exclusiveness constraints, the following inequality holds:
4
W:=> P(+1]Q)<2. (1)
i=0

The upper bound follows from the fact that the maximum number of
questions Q; that simultaneously can have a yes answer is 2.
Inequality (1) is Wright’s inequality.

According to quantum mechanics, the system can be in a super-
position of states and the questions can refer to such a superposition.
This provides an advantage. For example, the quantum system is
prepared in the qutrit state

W= (0.0.1) @)

and the questions correspond to the 5 operators Q; =2|v;){v;|—1,
which in quantum mechanics represent 5 observables with possible
outcomes +1 and —1 (corresponding to yes and no, respectively). Q;
and Q,+; are compatible and exclusive. Correspondingly, the 5 pro-
jectors |v;)(v;| are such that |v{v;| and |v;11)(v;+| are orthogonal.
Specifically, to obtain the maximum quantum value, we chose

(vo| =N (1,0,7), (3a)

(n1.4|=N (¢, £s,7), (3b)

(23| =N (C,FS.r), (3¢)

with r= feos(3), e=cos((), s=sin(), C=cos (), S=sin(),

N=1/V1+7% and 1 is the identity matrix. Then, quantum
mechanics predicts that

Wau=3_ ()’ = V5=2.236, (4)

which violates Wright’s inequality (1).

It can be proven that the simplest set of questions (such that any of
them belongs to an exclusive pair) and constraints for which
quantum mechanics provides an advantage is precisely the one in
which 5 questions Q; are such that Q; and Q;4 (with the sum modulo
5) are exclusive. It can also be proven that the simplest system with
quantum advantage has d = 3. Finally, it can be proven that the
maximum quantum violation (for any d) is precisely V5 (see
Supplemental Material).

Klyachko et al.’s noncontextuality inequality. The simplest experi-
ment showing contextual correlations in a qutrit is the violation of
Klyachko et al’s inequality”. This inequality defines the only nontrivial
facet of the polytope of classical (noncontextual) correlations, and
completely separates noncontextual from contextual correlations’.
The importance of observing contextual correlations between the
results of sequential measurements on the same qutrit comes from
the fact that these correlations cannot be attributed to entanglement,
since, by the definition of entanglement, a single qutrit cannot be in an
entangled state. This is not the case in recent experiments showing
quantum contextual correlations on two-qubit systems'*°.

To put Klyachko et al’s inequality in the frame of the classical
game introduced before, we now ask two questions Q; and Q;;, one
immediately after the other. By collecting all answers (yes, yes), (yes,
no), (no, yes), and (no, no), we can calculate the average of obtaining
the same results (i.e., Q;Q;+; = +1) or different results (i.e., Q;Q;+;
= —1). For our classical strategy, for each pair of exclusive questions
Q;and Q;41, we obtain (Q;Q;41) = — 2. In other words, when asking

Q; and Q;; sequentially, on average, 4 out of 5 times we obtain
different answers, and 1 out of 5 times we obtain equal answers. If
we now sum over all possible pairs Q;, Q;+, we obtain —3, which can
be proven to be the classical lower bound for the sum. Therefore,

K= Z (QiQis1)=—3, (5)

which is Klyachko et al.’s inequality’.

The maximum quantum violation of Klyachko et al.’s inequality
(5) is attained for the same qutrit state |i/) and observables Q; pro-
viding the maximum quantum violation of Wright’s inequality (1).
The maximum quantum violation (for any d) of inequality (5) is

Kqu=5—4v/5~ —3.944. (6)

We would like to note that Lapkiewicz et al.'” have recently per-
formed an experiment aiming to test a noncontextuality inequality
with 6 measurements and 6 correlations (4 of them contained in
Klyachko et al’s inequality, plus two more which, added up, act as
substitutes for the fifth correlation in Klyachko et al’s inequality).
However, the 6-correlation inequality tested is not a facet of the
simplest polytope of noncontextual correlations (i.e., it does not
belong to the simplest set of inequalities that separates noncontextual
from contextual correlations). Moreover, Lapkiewicz et al.’s experi-
ment cannot be considered a proper test of a noncontextuality
inequality, since the same observable is measured with different
setups in different contexts. In'’ it is left as an “open question”
whether any experimental apparatus can be designed to test exactly
Klyachko et al’s inequality. See the Supplemental Material for fur-
ther discussion.

Experiment 1 (see Fig. 1) tests the quantum violation of inequality
(1) and experiment 2 (see Fig. 2) tests the quantum violation of
inequality (5). In both experiments, the qutrit is defined by means
of the polarization and path degrees of freedom of a single photon.
The two spatial modes are labeled a and b and, by design, the polar-
ization in mode a is enforced to be horizontal (see Fig. 1). The
encoding is

|0>:|Hrb>9 |1>:‘V5b>5 |2>:|H’a>’ (7)
where H denotes horizontal polarization and V denotes vertical
polarization. To ensure that the system stays a qutrit, we make sure
that a potential | V, ) component is always associated to loss and thus
never expands the Hilbert space.

Experimental results. The experimental results for experiment 1
testing inequality (1) are shown in Table I and the obtained value
is W=2.2940.06. We observe a clear violation of inequality (1). It
can be noted that the obtained experimental value is slightly higher
than the maximum quantum value but in the range of the error bars.
This can be explained by the fact that the latter is obtained under the
assumption that the measured questions/operators are perfectly
exclusive, while perfect exclusiveness is difficult to guarantee experi-
mentally. In our implementation, a perfect question Q; would need
an interference visibility of 100% to guarantee a perfect exclusiveness
with Q;4+;. The main sources of systematic errors were the
imperfection of the polarization components and the limited preci-
sion of their settings. The errors AP, and APy, were respectively
deduced from propagated Poissonian counting statistics of the raw
detection events and the limited precision of the setting 0; of the
HWP plate. See the Supplemental Material for more details.

The experimental results for experiment 2 testing inequality (5)
are presented in Table II. The experimental results show a clear
violation of inequality (5), in good agreement with the quantum
mechanics prediction. The measurements are performed in all pos-
sible orders. Due to the experimental imperfections, our results show
a violation that slightly depends on the order.
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Figure 1| Experimental setup for experiment 1. (a) Scheme for single projective measurement Q;. The red and blue lamps correspond to unsuccessful
(no) and successful (yes) projection, respectively. (b) Setup for creating a qutrit and performing Q;. A pulse generator, P in the figure, is trigging the
attenuated diode laser in the source, S in the figure. The setup consists of a source of horizontally polarized single photons followed by a half wave
plate (HWP) and a polarizing beam splitter (PBS), allowing us to prepare any probability distribution of a photon in modes a and b. The orientation of the
HWP in mode b sets the polarization state of that mode. The output of the source is connected to the input of operator Q;, which has detectors in

its output. (c) Symbol definition of the optical elements used in the setup: polarizing beam splitter (PBS), mirror (M), half wave plate (HWP), quarter
wave plate (QWP), and single photon detector (D).
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Figure 2 | Experimental setup for experiment 2. (a) Scheme for the sequential measurement on pairwise compatible observables Q; and Q; ;. The
red and blue lamps correspond to the eigenvalues —1 (no) and +1 (yes), respectively. (b) Setup for performing the sequential measurements Q;and Q, ;.
The device for Q;is exactly the same as described in Fig. 1; the device for the second measurement Q; is also the same, except for a longer time delay of
2At. A click at the detectors at the time slots ty, #;, t,, and t; corresponds to, respectively, the answer (no, no), (yes, no), (no, yes), and (yes, yes). The
preparation of the qutrit state and the symbols are the same as in Fig. 1.
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Table I | Experimental results for the violation of inequality W <2,
the theoretical quantum bound for an ideal experiment is
Wam=v5=2.236. P(+1|Q) and P(+1|Q)es indicate the
theoretical value for an ideal experiment and the value obtained
in the experiment, respectively. APger, AP,s, and APy, indicate the
errors deduced from propagated Poissonian counting statistics of
the raw detection events, the limited precision of the setting 6; of
the HWP plate, and the total errors respectively

Q P(+] ‘ Qi)fh P(+] | Oi)exp A'Dsys A'Ddef A'Dfol
Qo 0.447 0.460 0.011 0.001 0.011
@ 0.447 0.454 0.011 0.001 0.011
Q, 0.447 0.460 0.011 0.002 0.011
Qs 0.447 0.461 0.011 0.001 0.011
Q4 0.447 0.457 0.011 0.001 0.011
w 2.236 2.29 0.055 0.003 0.06

The main source of systematic error was due to the optical inter-
ferometers involved in the measurements, the imperfect overlapping
and coupling of the light modes, and the polarization components.
Errors were inferred from propagated Poissonian counting statistics
of the raw detection events and from 10 measurement samples to
capture the error due to the drift over the measurement time. The
number of detected photons was approximately 3 X 10* per second
and the total measurement time for each of the 5 pairs of observables
was 1 s for each run. Our measurement procedure was to first cal-
ibrate the interferometers and then start the measurement where all
terms in (5) are measured one after the other. In Table II, the second
part has higher values than the first, since it was impossible to rep-
licate exactly the calibration of the interferometers between the two
runs.

Discussion

We have reported two experiments on qutrits showing nonclassical

properties. Unlike previous experiments on pairs of qubits'*™'¢, here

the nonclassical properties cannot be attributed to entanglement.
Experiment 1 tests Wright’s inequality®, which is the simplest

inequality based on outcome probabilities of 5 exclusive yes-no

Table Il | Experimental results for the violation of inequality x < 3,
the theoretical quantum bound for an ideal experiment is gy =
5—4y/5~—3.944. (Q; Qi+ 1)1 and (Q; Qi 1)exp indicate the theo-
retical value for an ideal experiment and the value obtained in
the experiment, respectively. A(Q; Qi1 1)dets A(Qj Qi+ 1)sys, and
AN Q; Qi1 1)1or indicate the errors deduced from propagated Pois-
sonian counting statistics of the raw detection events, the limited
precision of the setting of the polarization components, and the
total errors respectively

QQi1 (QQi 1) (QiQi 1exp MQQys1)sys AMQIQys 1) det MQUQi 110t

(QuQ)) -0.798 -0.712 0.023 0.002 0.023
(QiQ) —-0.798 —-0.706 0.023 0.002 0.023
(QQs) —0.798 —0.704 0.023 0.002 0.022
(Q3Qq) —0.798 —0.708 0.023 0.002 0.022
(QsQ) —0.798 —-0.706 0.023 0.002 0.024
K -3.94 -3.53 0.115 0.005 0.11
Qi+ 1 Qi <Qi+ 1 Qi)fh <Qi+ 1 Qi)exp A<CDH~'I Qi)sys A<Oi+ 1 Qi)def A<QiQi+ 1 >Iof
(QiQyy —0.798 —-0.785 0.022 0.003 0.022
(QQ)) —0.798 —-0.781 0.023 0.003 0.023
(Q:Qp) —0.798 —0.774 0.023 0.003 0.023
(Q4Qs) —0.798 —-0.774 0.022 0.003 0.022
(iQq —-0.798 —-0.782 0.021 0.003 0.021
K -3.94 -3.90 0.115 0.006 0.11

questions, that provides a better-than-classical solution. Experi-
ment 2 tests Klyachko et al’s inequality’, which is the most fun-
damental correlation inequality satisfied by noncontextual theories
and violated by single qutrits. Unlike Lapkiewicz et al.’s experiment'”,
our experiment 2 tests exactly Klyachko et al’s inequality with 5
observables and 5 correlations, and tests the correlations in any
possible order. Unlike previous experiments with sequential mea-
surements on photons, in our experiment 2, the results of the sequen-
tial measurements are encoded in different time slots, avoiding much
more complicated alternatives'®, and allowing us to show that the
violation of the inequality does not depend on the order of the mea-
surements. Both experiments are of fundamental importance to
understand the difference between quantum and classical physics
in situations where entanglement is not present, and open the door
to new applications in quantum information processing based on
simple quantum systems.

Methods

Experiment 1. The setup in Fig. 1(b) allows for the preparation of all required states
and the projections on the eigenstates of all required operators. The questions Q; are
implemented through a time multiplexing scheme. A yes answer to Q; corresponds to
a successful projection and is indicated by the arrival time ¢; of the photon (or,
equivalently, by a blue lamp flashing; see Fig. 1), the no answer corresponds to an
unsuccessful projection and is indicated by the arrival time ¢, of the photon (or a red
lamp flashing; see Fig. 1).

The goal of the measurement is to distinguish the eigenstates corresponding to
different eigenvalues of Q;. Any qutrit pure state can be expressed as «|H, by + S|V, b)
+ y|H, a), where o, §, and y are complex numbers. To implement Q; we prepare the
eigenstate |v;), which corresponds to the positive eigenvalue. The polarization in
mode b will first be rotated to obtain the state 5’|V, b) + y|H, a) (this can always be
done, since the rotation of the polarization is performed only in mode b). Then, the
part of the state in mode a is transferred into mode b; this process also flips the
polarization. This leads to the state '|H, b) + |V, b). The state can now be rotated to
|H, b), which is coupled to a delay line adding a delay of At = 50 ns so that it can be
distinguished from the orthogonal states by the time slots ¢; and ¢,. All of the previous
steps (except for the time delay) are then performed in reverse order to reprepare the
eigenstate of the observable for further processing. A useful property of our imple-
mentation of the 5 operators Q; is that they are exactly the same, up to a half wave plate
rotation; see Fig. 1(b). To ask the question Q;, one rotates both the first and last half
wave plate by an angle 0; = 45°, 117°, 9%, 81°, and 153° for i = 0, 1, 2, 3, and 4,
respectively.

Experiment 2. When we perform two sequential measurements corresponding to
pairwise compatible observables Q; and Q;-, the first measurement is exactly the
same one as described above. The eigenstates of observable Q; with eigenvalue +1 or
—1 are again mapped to different time slots using the same time multiplexing
detection method. The setup for the second measurement is the same as that for the
first, except for the delay line, which is twice as long, i.e., 2At see Fig. 2(b). After
passing the devices for Q; and Q; 1, the photon can be registered by a detector at four
equally distributed time slots. These time slots are to, t; = to + At, t, = t, + 2At,and t5
= to + 3At, and correspond, respectively, to the answers (no, no), (yes, no), (no, yes),
and (yes, yes).

Another distinguishing feature of this approach is that it allows both the mea-
surement of Q; followed by Q;; 1, and also the measurement of Q;; followed by Q..
This allows us to test each of the correlations in inequality (5) in every possible order.

In both experiments, the single-photon source was a pulsed diode laser emitting at
780 nm with a pulse width of 3 ns and a repetition rate of 100 kHz; see Fig. 1(b) and
Fig. 2(b). The laser was attenuated so that the two-photon coincidences were neg-
ligible. The visibility ranges achieved were between 80% and 90% for each Q;. A
single-photon detector was placed in each output mode a and b. All detector signals
and timing trigger signals (which define the measurement time slots) were registered
using a multichannel coincidence logic with a time window of 1.7 ns.
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