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a b s t r a c t

In this paper we consider multifacility Huff facility location problem on networks. First, we introduce a
slight modification of the existing mixed integer nonlinear mathematical model and confirm its validity
by using the solver for nonlinear optimization, KNITRO. Second, since the problem is NP-hard, we
develop three methods that are based on three metaheuristic principles: Variable Neighborhood Search,
Simulated Annealing, and Multi-Start Local Search. Based on extensive computational experiments on
large size instances (up to 800 customers and 100 potential facilities), it appears that VNS based heuristic
outperforms the other two proposed methods.

& 2016 Published by Elsevier Ltd.
1. Introduction

Location optimization problems on a network in a competitive
environment have been extensively studied in operational
research. Hakimi [4] formulated the competitive problem under
the assumption that consumers deterministically choose the
nearest store. In the real world, this assumption is not always
acceptable because consumers do not usually choose the nearest
store, they rather choose probabilistically among several stores.
This probabilistic choice behavior is modeled by Huff, known as
the Huff model [5]. Huff formulated a model for capturing market
share, assuming that the probability of a consumer patronizing a
shopping center is proportional to its attractiveness and inversely
proportional to a power of the distance needed for a consumer to
reach it. Although the original Huff model was based on an
assumption that a market area is represented by a continuous
plane with Euclidean distance, Okabe and Kitamura [10] extended
it to the network Huff model by using the shortest path distance
on a network. Ghosh et al. [3] considered the problem under the
same assumption but for discrete demand (nodal demand). Oku-
nuki and Okabe [11] considered link based demand with slightly
changed objective function.
nn),
s (E. Carrizosa),
In this paper we apply the network Huff model to a competitive
location problem, optimizing new facility locations on a network.
We assume that new facilities can be located at any point on the
network, and that the demand is generated in the vertices. We
introduce a slight modification of the nonlinear mathematical
model proposed earlier in [13]. As a step forward with respect to
[13], we implemented the model. The implementation was per-
formed by KNITRO software package for solving nonlinear opti-
mization problems, and our computational experience is reported,
as well. We considered three different metaheuristics for solving
this problem: Variable Neighborhood Search, Simulated Annealing
and Multi-Start Local Search metaheuristics for solving this pro-
blem. An ampler number of test instances than in [12] is con-
sidered and detailed results of the extensive computational testing
are shown, as well.
2. Problem formulation

We assume that customers are located in the vertices of a
network N ¼ ðV ; EÞ, V ¼ fv1;…; vng, EDV2. The customers make
demand. Further, we assume that there are q facilities already
located on the network. The facilities provide service and satisfy
the demand. They are located at points y1;…; yq on network N .
Hence, the facility locations can be network vertices, as well as
other points along the edges. Adopting the notation that wi ¼wðviÞ
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is the demand associated with vertex vi, iAf1;…;ng, we assume
the following properties:

1. wiZ0 and
2.

Pn
i ¼ 1 wi ¼ 1.

The demand w may vary from one vertex to another one. For
instance, if the demand among the vertices is considered as a
random variable, its distribution can be uniform.

Our goal is to locate p new facilities x1;…; xp on the network,
which will respond to the demand made by customers, so that the
captured demand is maximal.

To state the above location optimization problem more expli-
citly, let us formulate the network Huff model on N . Firstly, let us
introduce facility attractiveness, a property assigned to each facility
in the system. Facility attractiveness of a specific facility is a scalar,
defining the power of the facility to attract customers. It is not
related to the location of a facility, yet, it reflects the rating of the
facility. It may be measured by the floor area, by the number of
services/items that specific facility offers, by the quality of service,
by the level of service updating or in any other predefined way.
Therefore, let us denote by ay1 ;…; ayq and ax1 ;…; axp the attrac-
tiveness of the existing and new facilities, respectively. In order to
unify the notations and to simplify formulas, let us denote by af j
either

� the attractiveness of the existing facility, when f � y and
jAf1;…; qg, or

� the attractiveness of the new facility, when f � x and
jAf1;…; pg,

located at point fj. Let dðvi; f jÞ be the distance from the customer
located in vertex vi to the facility at fj on network N . Let us now
introduce the distance deterrence function Fðdðvi; f jÞÞ which, actu-
ally, involves the distance dðvi; f jÞ between the customer in vi and
the facility at fj. The distance deterrence function is a mono-
tonically decreasing function with respect to dðvi; f jÞ. In his original
model, Huff specified the distance deterrence function F as a
power function, i.e.

Fðdðvi; f jÞÞ ¼ dðvi; f jÞ�λ; λ40: ð1Þ

Eventually, let Pðvi; f jÞ be the probability of a customer in vi
choosing facility at fj among the qþp possible facilities. On these
terms, the network Huff model is as follows:

Pðvi; f jÞ ¼
af jdðvi; f jÞ�λP
f k
af kdðvi; f kÞ�λ

: ð2Þ

Using the network Huff model, we proceed with formulating a
problem for obtaining the demand Dðf jÞ captured by facility at fj.
Let Dðvi; f jÞ be the demand in vi captured by facility at fj. Since the
Huff model gives the probability of the customer in vi choosing the
facility at fj, Dðvi; f jÞ is obtained from multiplying the probability
Pðvi; f jÞ by wðviÞ, i.e.

Dðvi; f jÞ ¼ Pðvi; f jÞwðviÞ ¼
af jdðvi; f jÞ�λP
f k
af kdðvi; f kÞ�λ

wðviÞ: ð3Þ

To obtain the demand Dðf jÞ captured by facility at fj, we need to
sum Eq. (3) over all vertices viAV , i.e.

Dðf jÞ ¼
X
vi AV

Dðvi; f jÞ ¼
X
vi AV

af j dðvi; f jÞ�λP
f k
af kdðvi; f kÞ�λ

wðviÞ: ð4Þ

With q existing facilities located at points y1;…; yq of network
N , we are supposed to locate p new facilities at points x1;…; xp in
order to compete them and capture maximal demand. The total
demand captured only by new facilities is given by the formula

Xp
j ¼ 1

DðxjÞ ¼
Xp
j ¼ 1

X
vi AV

axjdðvi; xjÞ�λP
f k
af kdðvi; f kÞ�λ

wðviÞ; ð5Þ

where f Afy; xg; kAf1;…; qg if f ¼ y, and kAf1;…; pg if f ¼ x. Since
it has to be maximal, the problem we have to solve is

max
x1 ;…;xp AN

Xp
j ¼ 1

X
vi AV

axjdðvi; xjÞ�λP
f k
af kdðvi; f kÞ�λ

wðviÞ: ð6Þ
3. A mathematical model for the Huff location problem

In this section we discuss the mathematical programming
model for the Huff location problem. Let V ¼ fv1;…; vng and E¼
fe1;…; emg be a vertex set and an edge set of a network, respec-
tively. If l : E⟶R is a weight function defining edge lengths, let
li ¼ lðeiÞ be the length of edge ei. Since the edge lengths of the
graph are known in advance as input data, all pair shortest path
distances can be precalculated and considered as input data, too.
Therefore, let dðvi; vjÞ be the shortest path distance between ver-
tices vi and vj, 8 i; jAf1;…;ng.

The location of any point of the graph is given by a triple
ðvj; vk; yÞ, where

� vj and vk are endpoints of edge containing the point,
� y is the relative position of the point on edge ðvj; vkÞwith respect

to edge end vj.

Let us assign a point to every pair of vertex v and edge
e¼ ðue; veÞ, so that being on the edge e, it is on the largest distance
from vertex v. In other words, the distance between the assigned
point and vertex v is larger than the distance between vertex v

and any other point on the edge e. Relative position Mve of this
point on the edge, with regard to preselected endpoint of the edge
e, can be expressed as a number from ½0;1�. Denote with distve the
distance between vertex v and the assigned point.

The location of these points are graph properties, therefore,
they can be precalculated and considered as input data, as well as
their distances distve from the corresponding vertex v.

Let us now introduce binary variables xfe (where f is a facility
and eAE is an edge) whose meaning is given with:

xfe ¼
1; if facility with index f is on edge e;

0; otherwise:

(
ð7Þ

Also, we introduce variables yf whose value is the relative position
of facility f on an edge chosen for the facility to be located on. In
this context, the shortest path distance dv;f between facility f on
edge e and vertex v is:

dv;f ¼ distve�jMve�yf j lðeÞ: ð8Þ

On the other hand, if facility f is not located on edge e0 then, the
distance between vertex v and facility f can be described with the
inequality:

dv;f Zdistve0 � jMve0 �yf j lðe0Þ�ð1�xfe0 ÞS; ð9Þ

where S is a very big number (for example, greater than the sum of
lengths of all edges in the graph).

Also, we must bound from above these distances in the fol-
lowing way:

dv;f rdistve0 � jMve0 �yf j lðe0Þþð1�xfe0 ÞS: ð10Þ
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Finally, we can formulate our problem in the following way:

max
f n1 ;…;f np AN

Xp
j ¼ 1

X
vi AV

af nj dðvi; f
n
j Þ�λ

P
f af dðvi; f Þ�λ

wðviÞ; ð11Þ

where f ni , iAf1;…;pg, are locations of new facilities on the graph,
af nj , jAf1;…; pg, related attractiveness, while f and af are facility
locations (either the existing or new ones) on the graph and
related attractiveness, respectively.

We have the following constraints:X
eAE

xf nj e ¼ 1 j¼ 1;2;…; p ð12Þ

dv;f nj Zdistve�jMve�yf nj j lðeÞ�ð1�xf nj eÞS; vAV ; eAE; j¼ 1;2;…;p

ð13Þ

dv;f nj rdistve�jMve�yf nj j lðeÞþð1�xf nj eÞS; vAV ; eAE; j¼ 1;2;…;p

ð14Þ

xf nj eAf0;1g; eAE; j¼ 1;2;…; p ð15Þ

yf nj A ½0;1�; j¼ 1;2;…; p: ð16Þ

Constraints (12) ensure that every facility is located. By using
constraints (13) and (14), we define the lower and the upper
bound on the distance between vertices and facilities.

Regarding complexity of the model we have the following
facts:

� We have p� jEj þpþjV j � p variables (p� jEj of them are
binary, while the others are continuous).

� There are pþ2� p� jV j � jEj constraints.
4. The metaheuristics and the applications to the Huff location
problem

4.1. Variable Neighborhood Search

Variable Neighborhood Search (VNS) [6,7,9] is a well known
metaheuristic method. It is designed for solving various optimi-
zation problems: continuous as well as combinatorial. The basic
idea of VNS metaheuristic is to use more than one neighborhood
structure and to proceed with their systematic change within a
local search. Unlike many other metaheuristics based on local
search methods, VNS does not follow a trajectory, but explores
increasingly distant neighborhoods of the current incumbent
solution. The search is recentered around a new solution if and
only if an improvement has been made with respect to the global
best solution. A local search routine is applied repeatedly to find
local optima, starting from these neighboring solutions.

Neighborhoods are usually ranked in such a way that intensi-
fication of the search around the current solution is followed
naturally by diversification. The level of intensification and the
level of diversification can be controlled by a few (easy to set)
parameters. We may view the VNS as a “shaking” process, where a
Fig. 1. Physical representation of facility Fi given with a pair ð0:25; ðu; vÞÞ.
movement to a neighborhood further from the current solution
corresponds to a harder shake. Unlike random restart, the VNS
allows a controlled increase in the level of the shake.

Therefore, to construct different neighborhood structures and
to perform a systematic search, there must be a way for finding the
distance between any two solutions, i.e., the solution space must
be supplied with some metric (or quasi-metric) and then, neigh-
borhood structures are derived (induced) from it. In the following
sections we answer this problem-specific question for our parti-
cular problem.

4.2. The application of VNS to the Huff network model

In order to implement VNS for the specific variant of the Huff
location problem, we need to define a solution representation, as
well as neighborhood structures and a local search strategy.

4.2.1. Solution space
A particular solution consists of the location set for the p new

facilities on the given network. The location of each facility is
uniquely determined by the edge, i.e. by the pair of vertices, and
the position on the edge. The position on the edge is given by 1-
dimension coordinate belonging to the ½0;1� interval with respect
to one of the vertices of the edge. Therefore, the location of the
particular facility is given by the ordered pair ðx; ðu; vÞÞ, where the
first entry of the pair refers to the position on the edge given by
the second entry. The position x is calculated with respect to the
first vertex of the pair referring to the edge. As an example, Fig. 1
shows facility Fi located with coordinate x¼0.25 on edge (u, v).
Since a particular solution consists of p facility locations, it will be
presented as a list ½ðx1; ðu1; v1ÞÞ;…; ðxp; ðup; vpÞÞ� of p ordered pairs
where the ith pair corresponds to the ith facility location.

4.2.2. Neighborhood structures
Let us now define a neighborhood structure in the solution

space we introduced. If s¼ ½ðx1; ðu1; v1ÞÞ;…; ðxp; ðup; vpÞÞ� is a solu-
tion, we may choose at random one of p facilities and move it to
some of the adjacent edges. Then, we perform local search on the
new edge by some of the well known line search techniques
(Dichotomous search, Fibonacci search, Golden-section search (see
more details of these methods in [1]), etc.) in order to reach the
location that improves the objective function the most. We call
this operation rank 1 stepping. Fig. 2 demonstrates a step of facility
Fi from edge ðui1 ;ui2 Þ to the adjacent edge ðui2 ;ui7 Þ. If we repeat this
operation k times, krp, we call it rank k stepping. We say that a
solution s0 is at the step-distance k from the solution s if s can be
transformed into s0 by applying the rank k stepping.

In order to improve the implementation performance, we have
introduced another type of neighborhood structures. If s¼ ½ðx1; ðu1;

v1ÞÞ;…; ðxp; ðup; vpÞÞ� is a solution, we may chose at random two of p
new facilities of the solution and swap their locations. We call this
operation rank 1 swapping. Fig. 3, for instance, demonstrates a
swap of facilities Fi on ðui1 ;ui2 Þ, and Fj on ðui1 ;ui3 Þ. If we repeat this
operation k times, ko⌊p=2c, we call it rank k swapping. We say
that a solution s0 is at the swap-distance k from the solution s if s
can be transformed into s0 by applying the rank k swapping. The
best results are obtained by combining these two types of neigh-
borhood structures.

4.2.3. Local search strategy
To complete the VNS implementation, we have to define a local

search strategy.
The first improvement local search strategy is performed:

starting from a solution s, we move a particular new facility from
its current position on an edge to an adjacent edge, while per-
forming a line search on the new edge. This process is repeated for
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Fig. 3. Rank 1 swapping of facilities Fi and Fj.

Fig. 2. Rank 1 stepping of facility Fi.
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all adjacent edges, or until on some edge, the improvement of the
objective function value is encountered. After repeating this step
for each of the p new facilities, the new solution corresponds to
the choice of p facilities where the best objective function value
(out of p) is found, and the local search continues from the so
obtained solution. We also introduce the best improvement local
search strategy: starting from a solution s, we move a particular
new facility from its current position on an edge to an adjacent
edge while performing some line search on the new edge. This
process is repeated for all the adjacent edges and the best
improvement of the objective function value (if there is any) is
stored. After repeating this for each of the p new facilities, the new
solution is defined by the best of p stored objective function values
and the corresponding positions of facilities. The local search
continues from this solution.

We have implemented and tested both local search strategies.
The experiments showed that there was not a significant
difference between solution improvements obtained either by the
first or the second strategy, but execution time for the first strategy
was notably shorter. Thus, we continued with the first strategy
since it is more suitable for our problem.

To make our algorithms more efficient, we introduced an
additional improvement in the search strategies. Namely, while
performing the experiments, we have noticed that the optimal
facility locations are close to the vertices of graphs. Therefore,
while performing line search on an edge, we first exploit the small
areas around vertices. In case the local optimum is not found, we
extend the searching area, and repeat the procedure, otherwise,
we stop. In the worst case, the whole edge is searched, decreasing
the time required for obtaining local optimum.

4.2.4. VNS algorithm for the Huff location model
Let us denote by Nk, k¼ 1;…; kmax a finite sequence of pre-

selected neighborhood structures, and by Nk(x) the set of feasible
solutions corresponding to the neighborhood structure Nk at the
point x, where x is a solution. Algorithm 1 demonstrates the
application of the basic VNS heuristic to the multifacility Huff
location model on a network.

Algorithm 1. Basic VNS algorithm for the Huff location model.
Procedure VNSFORHUFF (kmax)�

x’Initial SolutionðÞ;
Choose a stopping criterion;
repeat

k’1;
while krkmax do

x0’ShakingðNkðxÞÞ;
if RandomðÞrProbswap then

x″’SwapFirstImprovementLSðx0Þ;
��
else

x″’MoveFirstImprovementLSðx0Þ;
��
end
if x″ is better than x then

x’x″;

k’1;

�����
else

k’kþ1;
��
end

������������������������������
end

�������������������������������������
until stopping criterion is met;

return x;

�������������������������������������������������
21

Usually, the initial solution is determined by some constructive
heuristic, and then improved by local search before the beginning
of actual VNS procedure. In our case, the initial solution is gener-
ated randomly, and then improved by Fibonacci local search
method (for more details regarding Fibonacci search, see [1]). The
stopping criterion may be, e.g., a predetermined maximal allowed
CPU time, a maximal number of all iterations, or the iterations
between two improvements. Here the stopping criterion is max-
imal allowed CPU time. Often, successive neighborhoods Nk are
nested, but not necessarily. Let us note that the point x0 is gener-
ated at random in order to avoid cycling, which might occur if any
deterministic rule was used. Basic VNS is a simple metaheuristic
and its only parameter is kmax, the preselected number of neigh-
borhoods. However, for each particular problem, the solution
representation, the number and order of neighborhoods, and
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stopping criterion should be defined in a way to ensure efficient
execution of the search.

The results obtained by VNS are compared with the results
obtained by Simulated Annealing (SA) and Multi-Start Local Search
metaheuristics (MSLS).
4.3. Simulated Annealing

Simulated Annealing [8,2] is a stochastic metaheuristic
approach for solving optimization problems. It is inspired by the
annealing in metallurgy, a technique involving heating and con-
trolled cooling of a material in order to improve its crystal struc-
ture and reduce their defects. Each point s of the search space is
analogous to a state of some physical system, and the function E(s)
to be minimized is analogous to the internal energy of the system
in the particular state. The goal is to bring the system from the
initial state to a state with the minimum possible energy. At each
step, the SA metaheuristic considers some neighboring state s0 of
the current state s, and probabilistically decides whether to move
the system to state s0 or to stay in state s. These probabilities
ultimately lead the system to states of lower energy. Typically, this
step is repeated until the stopping criterion is met, which can be
reaching a state that is good enough for the application or the
exhaustion of the given computation budget. In order to apply the
SA to the Huff location model, we have to decide how to find an
initial solution, create the cooling schedule, choose the type of
neighborhood, predefine the acceptance probability and the
stopping criterion. The initial solution is generated at random.
After performing a series of preliminary experiments, we have
obtained a rough estimate of potentially good parameter values.
Therefore, we define the cooling schedule with decreasing the
temperature of 20 by multiplying it by 0.5 after each 50 iterations.
The neighboring solution is chosen by applying rank 1 stepping
strategy. The acceptance probability is given with eðEðs

0 Þ�EðsÞÞ=T ,
where T is current temperature. Eventually, the stopping criterion
is the maximal number of iterations.
Table 1
Comparison of VNS with first improvement local search and best improvement local se

Instance n q p VNS-fi

Best Avg. Std.

rat99 99 12 6 33.451 33.214 0.124
rat195 195 24 12 40.733 40.309 0.255
rat575 575 71 35 41.156 40.711 0.352
rat783 783 97 48 40.472 39.728 0.490
rat99 99 12 8 46.576 46.479 0.077
rat195 195 24 16 48.588 47.917 0.389
rat575 575 71 47 46.586 45.841 0.401
rat783 783 97 64 46.873 46.215 0.386
rat99 99 12 9 50.413 50.217 0.119
rat195 195 24 18 52.104 51.055 0.788
rat575 575 71 53 48.651 47.837 0.556
rat783 783 97 72 49.042 48.423 0.404
rat195 195 24 19 53.835 52.234 0.844
rat575 575 71 56 50.541 49.148 0.873
rat783 783 97 77 51.309 49.954 0.798
rat99 99 12 10 55.286 53.590 1.306
rat195 195 24 20 54.949 53.208 0.981
rat575 575 71 59 51.943 50.241 0.967
rat783 783 97 80 52.437 50.746 0.816
rat99 99 12 12 63.732 58.655 2.159
rat195 195 24 24 59.183 57.241 1.420
rat575 575 71 71 55.553 53.517 1.209
rat783 783 97 97 57.253 55.494 0.820
4.4. Multi-Start Local Search

Multi-Start Local Search [14] is an iterative approach where a
single iteration consists of generating a random solution, and
performing a local search strategy with the random solution as a
starting point. In case there was the improvement of the objective
function value, the incumbent is updated. Initial solution is gen-
erated randomly.

We apply a first improvement local search strategy. The best
improvement local search is time consuming:

� Neighborhoods are relatively big (especially Move
neighborhood).

� Exploring each neighbor is also relatively time consuming.

So, in the same time limit, the number of performed first
improvement local search may be much greater than the number
of best improvement local search. Intuitively, the chance to obtain
better solutions increases as the number of performed local search
increases.
5. Computational results

Since there is no set of benchmark problems for the Huff
location model, we have chosen the problems from the TSPLIB
library, where network dimension (number of nodes – customers)
varies from 100 to 800. The number q of the existing facilities
depends on the number of customers, so we generate instances
with different number of existing facilities ðqAQ ¼ n

20

� �
; n

15

� �
;

�
n
10

� �
; n

8

� �gÞ. The number p of new facilities, belonging to the set

P ¼ q
2

� �
; 3q

4

j k
; q

n o
, depends on the number of existing facilities, so

we define instances with different number of new facilities. In this
way, for each network and a set of existing facilities, three test
cases are made. The locations of the existing facilities are created
in the following way. Firstly, they were chosen randomly. Then, the
VNS method was applied with 10% of total running time planned
for the VNS algorithm execution for the particular test instance,
and with p set to 2q

3

j m
. In the end, randomly chosen p, out of q
arch.

VNS-bi Dev.

Time Best Avg. Std. Time

98.67 33.356 32.562 0.581 98.67 0.28
194.35 32.933 31.491 0.939 194.43 19.15
506.56 28.029 27.482 0.355 574.96 31.90
716.59 25.717 25.099 0.338 703.12 36.46
98.67 46.022 44.900 1.156 98.67 1.19
194.35 35.628 34.072 0.900 194.35 26.67
505.87 31.716 31.338 0.199 502.04 31.92
713.26 32.456 32.165 0.184 706.48 30.76
98.67 49.548 48.625 0.711 98.67 1.72
194.36 35.520 34.442 0.679 194.35 31.83
506.89 34.022 33.270 0.584 502.78 30.07
782.00 35.190 34.445 0.516 706.80 28.25
194.36 37.230 35.440 0.832 194.35 30.84
511.35 34.743 34.384 0.394 503.41 31.26
782.08 36.278 35.710 0.519 707.35 29.30
98.67 53.766 51.725 1.421 98.67 2.75
194.36 37.375 36.310 0.614 194.35 31.98
526.76 36.196 35.397 0.671 503.52 30.32
782.15 37.438 36.636 0.536 708.47 28.60
98.67 61.035 55.947 2.405 98.67 4.23
194.36 40.497 38.233 1.569 194.35 31.57
539.12 40.699 39.030 1.010 503.62 26.74
782.47 42.132 40.806 0.784 707.88 26.41
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existing facility locations, were switched with new facility loca-
tions, obtained by the VNS algorithm. The attractiveness of each
facility was chosen randomly.

Our experience shows that the best results are obtained if the
probability of choosing either stepping or swapping shaking
strategy is set to 0.5. Parameter kmax was set to p/2. Execution time
(in seconds) was set to the number of locations (customers).

5.1. Comparison of first and best improvement strategy for local
search

The first set of experiment is dedicated to comparing impact of
local search strategy (first improvement and best improvement)
on performance of complete Variable Neighborhood Search. In
order to compare, we execute 10 times two variants of Variable
Table 2
Comparison of VNS, SA and MSLS on test instances with q¼ n

20

� �
existing facilities.

Name n q p VNS SA

Best Avg. Std. Time Best Avg

gr120 120 6 3 34.92 34.78 0.07 119.00 34.82 34.5
gr229 229 11 5 41.48 41.38 0.07 228.00 41.38 40.6
gr431 431 21 10 36.76 36.47 0.20 430.01 36.96 36.6
gr666 666 33 16 43.11 42.59 0.36 665.03 41.80 41.0
lin105 105 5 2 36.56 36.52 0.02 104.00 36.56 36.4
lin318 318 15 7 33.17 32.92 0.17 317.00 33.29 32.9
pcb442 442 22 11 42.21 41.91 0.25 441.01 42.39 41.9
pr124 124 6 3 37.60 37.54 0.17 123.00 37.60 37.1
pr152 152 7 3 40.41 40.34 0.16 151.00 40.38 39.9
pr226 226 11 5 38.65 38.61 0.03 225.00 38.61 38.1
pr264 264 13 6 38.84 38.69 0.16 263.00 38.64 38.0
pr299 299 14 7 37.35 37.14 0.16 298.00 37.21 36.8
pr439 439 21 10 35.16 34.80 0.29 438.01 35.15 34.7
rat99 99 4 2 36.40 36.37 0.05 98.00 36.38 36.3
rat195 195 9 4 34.82 34.82 0.01 194.00 34.76 34.2
rat575 575 28 14 41.04 40.48 0.39 574.01 40.54 40.2
rat783 783 39 19 41.76 40.97 0.36 782.02 39.20 38.9
gr120 120 6 4 41.45 41.16 0.21 119.00 41.13 40.7
gr229 229 11 8 47.97 47.50 0.22 228.00 47.81 46.9
gr431 431 21 15 49.75 49.25 0.33 430.01 50.31 49.8
gr666 666 33 24 49.71 48.11 0.73 665.03 47.71 45.8
lin105 105 5 3 40.61 40.51 0.16 104.00 40.61 39.7
lin318 318 15 11 51.79 51.29 0.38 317.01 52.44 51.8
pcb442 442 22 16 49.63 48.23 1.04 441.02 49.37 47.9
pr124 124 6 4 42.29 42.26 0.08 123.00 42.21 41.7
pr152 152 7 5 49.74 49.64 0.13 151.00 49.50 48.8
pr226 226 11 8 57.37 57.10 0.17 225.00 57.08 56.4
pr264 264 13 9 45.83 45.56 0.27 263.00 46.16 45.3
pr299 299 14 10 44.57 44.30 0.15 298.01 44.61 44.1
pr439 439 21 15 47.09 46.43 0.39 438.01 47.32 46.5
rat99 99 4 3 48.50 48.39 0.05 98.00 49.46 49.2
rat195 195 9 6 46.23 46.10 0.09 194.00 46.20 45.6
rat575 575 28 21 53.03 51.25 0.93 574.02 50.72 48.9
rat783 783 39 29 51.31 49.57 0.99 782.03 49.86 47.7
gr120 120 6 6 54.87 51.59 2.33 119.00 54.54 51.0
gr229 229 11 11 63.51 57.40 2.89 228.00 63.44 57.3
gr431 431 21 21 59.44 56.99 1.87 430.02 59.99 56.6
gr666 666 33 33 56.47 54.73 1.77 665.04 55.42 52.9
lin105 105 5 5 57.43 52.68 3.63 104.00 56.96 51.7
lin318 318 15 15 61.68 58.40 1.83 317.01 61.10 57.2
pcb442 442 22 22 57.74 55.48 1.77 441.01 55.87 53.5
pr124 124 6 6 54.85 51.89 2.30 123.00 54.61 51.2
pr152 152 7 7 61.10 57.05 2.29 151.00 61.18 56.4
pr226 226 11 11 75.71 69.43 2.92 225.01 75.13 68.9
pr264 264 13 13 63.15 57.21 2.83 263.01 62.46 57.5
pr299 299 14 14 60.08 55.13 2.41 298.01 60.58 55.4
pr439 439 21 21 59.42 56.64 1.96 438.02 58.45 54.9
rat99 99 4 4 64.45 61.89 1.92 98.00 58.08 57.8
rat195 195 9 9 58.92 55.61 1.87 194.00 59.08 55.4
rat575 575 28 28 58.05 56.74 1.55 574.03 56.04 54.5
rat783 783 39 39 58.33 56.50 1.74 782.02 57.42 55.0

Average 48.87 47.42 0.92 320.60 48.40 46.7
Neighborhood Search (VNS with first improvement local search
and VNS with best improvement local search) on four instances of
different sizes (with different value of parameter p). Obtained
results are presented in Table 1. The first column of the table
contains instance name. The next three columns contain value for
n, q, and p, respectively. Columns 4–7 contain summary results for
VNS with first improvement local search (best results, average
results, standard deviation and average time). Next four columns
contain results obtained by VNS with best improvement local
search (the same order). The best and average results are pre-
sented as the percentage of the total demand serviced by new
facilities. The last column contains percentage deviation of best
result obtained by VNS based on best improvement from best
result obtained by VNS based on first improvement, for corre-
sponding instance. Percentage deviation is calculated by the
MSLS % dev.

. Std. Time Best Avg. Std. Time SA MSLS

3 0.46 119.40 31.82 30.99 0.48 120.02 0.30 8.88
7 0.57 228.24 34.89 33.68 0.58 229.15 0.23 15.88
7 0.23 430.14 25.91 25.66 0.25 432.59 �0.54 29.52
2 0.65 600.39 27.58 26.56 0.67 715.41 3.05 36.03
9 0.10 104.47 36.00 35.55 0.10 105.01 0.00 1.52
1 0.26 317.21 24.03 23.48 0.27 318.31 �0.36 27.55
3 0.28 441.12 33.10 32.18 0.29 444.19 �0.44 21.58
1 0.33 123.38 34.75 33.83 0.33 124.02 0.00 7.58
0 0.35 151.24 37.34 36.30 0.37 152.05 0.06 7.59
8 0.28 225.25 32.78 32.27 0.29 226.17 0.10 15.19
4 0.44 263.12 30.34 29.85 0.47 264.58 0.52 21.89
9 0.26 298.25 29.64 28.82 0.26 299.33 0.39 20.64
6 0.23 438.12 26.02 25.22 0.23 441.60 0.04 25.99
2 0.07 98.48 35.68 34.98 0.07 99.01 0.06 1.98
6 0.21 194.35 31.13 30.60 0.23 195.04 0.18 10.60
1 0.16 500.27 28.83 28.31 0.18 578.37 1.22 29.74
0 0.21 700.71 28.76 28.45 0.21 794.82 6.14 31.14
8 0.28 119.40 36.27 35.29 0.30 120.03 0.77 12.51
9 0.66 228.24 38.90 37.49 0.71 229.23 0.33 18.91
1 0.27 430.14 35.86 34.92 0.29 435.04 �1.13 27.92
1 1.31 600.68 30.85 29.07 1.39 677.97 4.02 37.93
3 0.80 104.47 37.41 36.51 0.83 105.02 0.00 7.88
8 0.29 317.21 37.75 37.33 0.30 318.83 �1.25 27.12
5 0.95 441.12 34.26 32.83 0.96 443.80 0.52 30.97
1 0.29 123.38 38.55 37.60 0.31 124.03 0.19 8.84
2 0.41 151.24 41.22 40.02 0.44 152.09 0.47 17.13
0 0.46 225.25 45.11 44.01 0.49 226.80 0.50 21.37
8 0.47 263.12 35.94 34.73 0.47 264.58 �0.74 21.57
7 0.23 298.25 32.51 31.85 0.25 299.74 �0.09 27.06
0 0.46 438.12 31.72 31.02 0.51 442.01 �0.49 32.65
0 0.13 98.67 46.37 46.02 0.13 99.02 �1.97 4.39
4 0.39 194.35 38.59 37.51 0.41 195.21 0.08 16.53
5 1.10 500.44 38.82 37.18 1.15 595.91 4.35 26.80
7 0.97 701.37 36.52 34.57 1.05 803.00 2.82 28.82
7 2.62 119.40 43.92 40.83 2.85 120.09 0.61 19.96
9 3.03 228.24 38.45 34.40 3.21 229.62 0.11 39.46
1 2.11 430.14 40.11 37.24 2.28 437.77 �0.93 32.52
5 1.94 601.18 28.14 26.56 2.12 739.52 1.87 50.18
8 3.57 104.47 40.30 36.23 3.57 105.04 0.81 29.83
1 1.78 317.21 47.58 44.31 1.94 321.95 0.93 22.85
0 1.95 441.12 36.88 34.94 2.10 454.84 3.24 36.13
7 2.54 123.38 43.19 40.51 2.64 124.07 0.44 21.26
9 2.29 151.24 44.50 40.72 2.45 152.24 �0.13 27.17
8 2.97 225.25 52.63 47.45 3.01 227.43 0.77 30.49
3 2.69 263.12 33.45 30.29 2.74 265.56 1.11 47.04
1 2.66 298.25 34.24 31.06 2.66 299.80 �0.84 43.00
6 2.19 438.12 43.30 40.04 2.40 459.92 1.63 27.13
1 0.23 98.67 52.82 52.09 0.25 99.03 9.88 18.05
9 1.97 194.35 46.94 43.27 2.09 195.36 �0.29 20.32
8 1.59 500.85 44.67 43.32 1.59 598.31 3.46 23.06
3 1.72 702.07 38.66 36.70 1.81 810.64 1.55 33.73

5 1.03 307.97 36.76 35.19 1.08 327.71 0.85 23.60



S. Grohmann et al. / Computers & Operations Research 78 (2017) 537–546 543
formula:

devðf fi; f biÞ ¼
f fi� f bi

f fi
� 100

where ffi is the best solution obtained by VNS based on first
improvement local search and fbi is the best solution obtained by
VNS based on best improvement.

From this table we can conclude:

� VNS based on first improvement produces better solution on all
instances.

� Percentage deviation increases with increasing the size of an
instance.
Table 3
Comparison of VNS, SA and MSLS on test instances with q¼ n

15

� �
existing facilities.

Name n q p VNS SA

Best Avg. Std. Time Best Avg

gr120 120 8 4 31.26 31.22 0.13 119.00 31.25 30.8
gr229 229 15 7 39.12 38.94 0.16 228.00 39.01 38.7
gr431 431 28 14 39.37 38.67 0.45 430.01 39.33 39.0
gr666 666 44 22 40.22 39.08 0.63 665.04 37.30 36.6
lin105 105 7 3 23.40 22.96 0.29 104.00 22.81 22.5
lin318 318 21 10 42.48 42.18 0.24 317.00 42.76 42.3
pcb442 442 29 14 37.50 37.17 0.24 441.01 37.09 36.5
pr124 124 8 4 38.74 38.47 0.22 123.00 38.74 38.3
pr152 152 10 5 41.52 41.40 0.14 151.00 41.50 40.7
pr226 226 15 7 42.42 42.22 0.11 225.00 42.21 41.5
pr264 264 17 8 41.24 40.82 0.26 263.00 41.12 40.7
pr299 299 19 9 43.08 42.88 0.11 298.01 43.25 42.8
pr439 439 29 14 38.55 37.81 0.40 438.01 36.40 35.7
rat99 99 6 3 39.59 39.59 0.00 98.00 39.59 39.3
rat195 195 13 6 36.65 36.21 0.76 194.00 36.36 36.0
rat575 575 38 19 42.10 41.38 0.40 574.01 39.98 39.2
rat783 783 52 26 40.31 39.72 0.43 782.02 38.88 38.0
gr120 120 8 6 47.21 46.96 0.21 119.00 47.06 46.3
gr229 229 15 11 50.01 49.64 0.23 228.01 49.81 49.2
gr431 431 28 21 51.62 50.20 1.02 430.03 49.87 47.7
gr666 666 44 33 47.34 46.15 0.92 665.04 45.97 44.7
lin105 105 7 5 53.84 53.78 0.13 104.00 53.83 52.7
lin318 318 21 15 50.33 49.74 0.34 317.01 50.66 49.4
pcb442 442 29 21 49.86 49.38 0.40 441.02 47.45 46.4
pr124 124 8 6 46.96 46.73 0.17 123.00 46.59 46.1
pr152 152 10 7 47.18 46.97 0.28 151.00 46.77 46.3
pr226 226 15 11 54.65 54.00 0.42 225.01 54.51 53.6
pr264 264 17 12 53.87 53.07 0.47 263.01 54.23 53.2
pr299 299 19 14 53.02 51.37 1.30 298.01 53.81 51.4
pr439 439 29 21 52.06 50.88 0.72 438.01 48.49 47.5
rat99 99 6 4 49.64 49.42 0.34 98.00 49.64 49.0
rat195 195 13 9 48.76 47.52 1.75 194.00 48.51 48.2
rat575 575 38 28 51.46 50.07 0.60 574.03 50.24 48.4
rat783 783 52 39 49.63 48.35 0.73 782.02 48.89 47.2
gr120 120 8 8 60.58 55.64 2.84 119.00 60.80 55.0
gr229 229 15 15 60.60 57.12 1.74 228.00 60.56 57.0
gr431 431 28 28 58.85 56.40 1.81 430.05 57.05 54.2
gr666 666 44 44 53.06 51.97 0.75 665.03 53.37 51.7
lin105 105 7 7 66.73 62.49 2.55 104.00 66.60 61.5
lin318 318 21 21 58.48 56.85 1.57 317.02 57.73 54.8
pcb442 442 29 29 57.85 56.05 1.51 441.02 55.40 53.2
pr124 124 8 8 59.31 54.72 2.69 123.00 59.45 53.9
pr152 152 10 10 62.79 57.03 2.64 151.01 62.05 56.8
pr226 226 15 15 67.65 64.09 2.10 225.02 67.15 63.5
pr264 264 17 17 63.01 60.03 1.66 263.02 62.99 59.6
pr299 299 19 19 61.47 58.85 1.87 298.02 60.78 57.6
pr439 439 29 29 59.51 57.77 1.73 438.03 56.09 54.4
rat99 99 6 6 63.67 61.35 1.81 98.00 63.12 60.6
rat195 195 13 13 58.51 55.58 1.53 194.01 59.64 55.7
rat575 575 38 38 57.11 55.76 1.45 574.03 55.76 54.1
rat783 783 52 52 56.94 54.24 1.22 782.03 54.96 52.2

Average 49.83 48.45 0.91 320.60 49.16 47.5
� We suppose that with increasing the size of an instance, the size
of the neighborhood (which must be completely explored in
case of best improvement local search) also increases.

� For example,
○ network (instance) rat575 contains 575 vertices and 32848

edges,
○ average degree of vertex is 114,
○ each new facility contains in average 2� 114¼ 228 neighbors

in Move neighborhood,
○ there are between 35 and 71 new facilities (depending on

case), so number of neighbors in Move neighborhood is
between 8000 and 16,000.

Based on this results, we decided to use the first improvement
local search with VNS in the rest of our experiments.
MSLS % dev.

. Std. Time Best Avg. Std. Time SA MSLS

3 0.39 119.00 28.49 28.11 0.42 120.04 0.03 8.88
0 0.29 228.00 30.95 30.21 0.30 229.37 0.27 20.89
5 0.17 430.00 24.10 23.60 0.19 432.54 0.11 38.78
3 0.51 665.00 23.85 22.86 0.54 690.99 7.26 40.70
4 0.36 105.00 20.35 19.69 0.38 105.02 2.53 13.06
9 0.23 317.00 30.04 29.40 0.23 318.57 �0.66 29.30
2 0.42 441.00 26.09 25.77 0.46 447.01 1.12 30.42
1 0.29 123.00 34.97 34.14 0.31 124.03 0.00 9.74
2 0.42 151.00 34.26 34.14 0.43 152.07 0.04 17.49
9 0.51 225.00 31.87 31.13 0.55 226.26 0.48 24.88
4 0.29 263.00 30.37 29.82 0.30 264.53 0.30 26.36
1 0.38 298.00 32.75 32.57 0.39 300.94 �0.41 23.97
5 0.45 438.00 24.64 23.83 0.45 442.53 5.57 36.06
9 0.43 99.00 36.20 35.84 0.44 99.02 0.00 8.55
2 0.21 194.00 29.74 29.16 0.22 195.13 0.80 18.86
7 0.30 574.00 29.56 28.52 0.32 586.87 5.05 29.80
8 0.52 782.00 26.10 25.38 0.55 841.61 3.55 35.25
2 0.46 119.00 39.38 38.75 0.46 120.02 0.31 16.59
7 0.49 228.00 39.00 38.05 0.50 229.88 0.39 22.00
0 1.36 430.00 30.33 29.03 1.42 437.21 3.37 41.23
1 1.03 665.00 28.69 27.93 1.07 768.88 2.89 39.40
8 0.59 104.00 45.98 45.31 0.63 105.02 0.01 14.60
3 0.70 317.00 35.72 35.24 0.73 315.64 �0.66 29.02
7 0.73 441.00 35.26 34.59 0.74 456.93 4.82 29.29
5 0.35 123.00 39.67 39.44 0.37 124.06 0.78 15.52
1 0.41 151.00 37.06 36.88 0.44 152.03 0.87 21.44
5 0.51 225.00 39.65 38.73 0.53 226.50 0.26 27.45
8 0.37 263.00 38.29 37.09 0.39 265.07 �0.67 28.92
6 1.55 298.00 34.64 33.07 1.55 302.16 �1.48 34.67
1 0.78 438.00 34.76 33.40 0.86 441.68 6.85 33.23
4 0.48 99.00 43.00 42.49 0.51 99.02 0.00 13.39
2 0.20 194.00 37.22 36.01 0.21 195.11 0.50 23.67
8 0.87 574.00 33.67 32.75 0.92 595.96 2.36 34.56
2 1.15 782.00 31.12 30.13 1.24 913.06 1.47 37.29
3 3.19 119.00 46.54 42.02 3.49 120.24 �0.36 23.17
9 1.94 228.00 41.92 39.04 1.98 234.87 0.06 30.82
0 2.39 430.00 32.72 31.03 2.62 442.43 3.06 44.41
1 1.21 665.00 29.61 28.44 1.31 671.56 �0.58 44.20
2 2.78 104.00 56.57 52.18 3.03 105.20 0.19 15.23
2 2.30 317.00 41.74 40.53 2.41 317.34 1.28 28.63
0 1.81 441.00 43.59 41.42 1.82 462.80 4.25 24.65
5 2.90 123.00 43.96 40.32 3.09 124.02 �0.24 25.88
8 2.45 151.00 38.82 34.71 2.68 152.50 1.17 38.17
3 2.24 225.00 45.96 42.76 2.39 227.86 0.74 32.06
5 1.70 263.00 44.62 41.67 1.71 265.65 0.04 29.20
7 1.90 298.00 36.59 34.97 2.09 304.08 1.12 40.48
5 1.56 438.00 38.97 37.66 1.59 472.97 5.75 34.51
3 1.88 98.00 53.13 51.05 1.98 99.16 0.87 16.56
9 1.70 194.00 45.87 43.24 1.79 196.94 �1.93 21.61
2 1.46 574.00 36.31 34.83 1.58 703.19 2.37 36.42
4 1.43 782.00 33.39 31.53 1.53 901.99 3.48 41.37

3 1.04 320.65 35.84 34.52 1.10 335.83 1.36 27.50
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5.2. Comparison with other methods

All three algorithms for solving the specific Huff location model
were implemented in C programming language on Linux platform.
The experiments have been run on the computer with the i686
Intel Core 2 Duo CPU E6750 at 2.66 GHz and 8 GB RAM. The
summary results based on ten executions of each method for each
test instance are presented in Tables 2 (instances with q¼ n

20

� �
existing facilities), 3 (instances with q¼ n

15

� �
existing facilities), 4

(instances with q¼ n
10

� �
existing facilities), and 5 (instances with

q¼ n
8

� �
existing facilities). The first column of these tables contains

the instance name. Next three columns contain information about
the instance (the number of vertices/customers (n), the number of
existing facilities (q), and the number of new facilities (p)). Next
four columns contain summary information for results obtained
Table 4
Comparison of VNS, SA and MSLS on test instances with q¼ n

10

� �
existing facilities.

Name n q p VNS SA

Best Avg. Std. Time Best Avg.

gr120 120 12 6 41.29 41.11 0.12 119.00 41.07 40.7
gr229 229 22 11 39.98 39.77 0.19 228.01 40.26 39.8
gr431 431 43 21 42.60 41.48 0.62 430.02 39.26 38.7
gr666 666 66 33 42.68 41.54 0.58 665.03 41.98 40.5
lin105 105 10 5 42.50 42.19 0.25 104.00 42.03 41.49
lin318 318 31 15 44.31 43.92 0.31 317.01 44.11 42.9
pcb442 442 44 22 41.22 40.65 0.39 441.01 38.81 38.3
pr124 124 12 6 35.71 35.49 0.20 123.00 35.63 34.8
pr152 152 15 7 36.06 35.75 0.22 151.00 35.68 35.11
pr226 226 22 11 45.66 45.40 0.18 225.01 45.45 44.5
pr264 264 26 13 42.07 41.36 0.41 263.01 41.70 41.06
pr299 299 29 14 42.77 42.24 0.38 298.01 42.41 41.66
pr439 439 43 21 43.40 42.62 0.48 438.03 40.03 39.2
rat99 99 9 4 35.38 35.21 0.10 98.00 35.51 35.12
rat195 195 19 9 40.10 39.80 0.21 194.00 40.48 39.7
rat575 575 57 28 43.47 42.87 0.38 574.02 42.00 41.03
rat783 783 78 39 38.59 36.81 1.58 782.03 38.32 35.9
gr120 120 12 9 48.68 48.55 0.12 119.00 50.57 50.2
gr229 229 22 16 46.89 46.42 0.26 228.01 46.31 44.9
gr431 431 43 32 51.57 50.74 0.60 430.02 49.89 47.04
gr666 666 66 49 52.70 51.89 0.73 665.04 49.60 47.76
lin105 105 10 7 51.92 51.86 0.14 104.00 52.57 51.92
lin318 318 31 23 52.12 51.55 0.26 317.01 49.75 47.64
pcb442 442 44 33 50.48 49.99 0.45 441.03 47.77 46.13
pr124 124 12 9 46.48 46.36 0.10 123.00 43.99 43.13
pr152 152 15 11 47.42 46.98 0.23 151.00 47.56 46.7
pr226 226 22 16 54.55 54.03 0.27 225.01 53.96 52.3
pr264 264 26 19 47.55 47.16 0.32 263.01 47.17 45.2
pr299 299 29 21 52.73 51.85 0.43 298.02 46.98 45.9
pr439 439 43 32 52.68 52.18 0.47 438.03 48.57 47.55
rat99 99 9 6 44.96 44.78 0.17 98.00 45.71 44.2
rat195 195 19 14 52.98 52.70 0.21 194.00 52.53 51.03
rat575 575 57 42 54.03 53.27 0.41 574.03 49.91 47.98
rat783 783 78 58 48.61 46.68 1.71 782.03 46.09 43.8
gr120 120 12 12 60.19 58.10 1.97 119.00 59.65 54.0
gr229 229 22 22 59.84 57.82 2.12 228.01 58.43 55.5
gr431 431 43 43 57.34 54.71 2.21 430.03 55.42 53.10
gr666 666 66 66 53.21 52.27 0.60 665.10 52.94 50.8
lin105 105 10 10 61.62 59.95 1.30 104.00 61.45 56.3
lin318 318 31 31 60.34 58.40 1.93 317.05 57.35 54.7
pcb442 442 44 44 55.05 53.34 1.45 441.02 53.43 51.95
pr124 124 12 12 54.84 52.30 1.99 123.01 59.78 53.0
pr152 152 15 15 59.29 57.26 1.61 151.01 60.40 57.34
pr226 226 22 22 63.84 61.74 1.86 225.03 58.16 56.7
pr264 264 26 26 58.73 57.31 1.67 263.02 55.34 53.5
pr299 299 29 29 59.50 57.05 2.08 298.02 55.58 53.0
pr439 439 43 43 57.42 55.99 1.31 438.03 55.59 52.6
rat99 99 9 9 63.98 59.60 2.69 98.00 64.94 59.0
rat195 195 19 19 59.65 57.80 1.81 194.01 59.14 56.4
rat575 575 57 57 55.97 54.09 1.32 574.03 55.84 52.9
rat783 783 78 78 55.00 52.96 1.28 782.01 49.65 47.31

Average 50.00 48.94 0.84 320.60 48.76 46.9
by Variable Neighborhood Search (best result, average result,
standard deviation, and average time for ten executions). The best
and average results are presented as the percentage of the total
demand captured by new facilities. Next four columns contain
summary information about results obtained by Simulated
Annealing (SA in the rest). Next four columns contain information
about results obtained by Multistart local search (MSLS in the
rest). Two last columns contain percentage deviation of best
solutions obtained by SA and MSLS from best solution obtained by
VNS, for corresponding instance.

All three methods were given the same total execution time for
a particular instance, depending on the size of the test instance.
The number of seconds allowed for an instance to run is set to the
number of vertices of the graph.

From these tables, we conclude the following:
MSLS % dev.

Std. Time Best Avg. Std. Time SA MSLS

6 0.25 119.00 33.46 32.55 0.30 120.13 0.55 18.98
4 0.40 228.00 27.39 26.95 0.46 230.05 �0.69 31.50
7 0.42 430.00 25.50 24.97 0.46 444.76 7.85 40.15
9 0.75 665.00 24.00 22.80 0.88 704.55 1.64 43.77

0.38 104.00 35.67 34.54 0.40 105.08 1.13 16.09
2 0.81 317.00 29.49 28.54 0.90 323.14 0.46 33.45
1 0.36 441.00 28.38 27.92 0.42 458.68 5.85 31.15
7 0.50 123.00 28.31 27.71 0.55 124.13 0.24 20.73

0.40 151.00 27.02 26.28 0.40 152.26 1.05 25.08
2 0.59 225.00 27.84 26.91 0.63 227.63 0.48 39.03

0.45 263.00 25.42 24.99 0.51 265.76 0.88 39.57
0.58 298.00 28.01 27.15 0.70 308.67 0.85 34.51

3 0.47 438.00 25.17 24.44 0.48 460.68 7.76 42.00
0.19 99.00 32.01 31.11 0.19 99.03 �0.38 9.54

7 0.42 194.00 29.70 28.90 0.46 195.40 �0.94 25.93
0.40 574.00 27.93 27.03 0.45 622.93 3.39 35.75

7 1.44 782.00 22.61 21.00 1.55 1117.47 0.70 41.41
5 0.21 119.00 40.14 39.57 0.24 120.29 �3.89 17.54
5 1.02 228.00 36.37 34.99 1.06 232.64 1.25 22.44

1.26 430.00 28.30 26.58 1.32 478.74 3.25 45.12
1.39 665.00 28.96 27.55 1.61 991.32 5.89 45.05
0.44 104.00 43.08 42.33 0.49 105.19 �1.24 17.03
1.16 317.00 32.75 31.07 1.20 329.74 4.55 37.16
1.02 441.00 31.16 30.09 1.14 472.87 5.37 38.27
0.65 123.00 31.81 30.83 0.73 124.48 5.36 31.56

1 0.38 151.00 37.64 36.43 0.43 152.47 �0.31 20.62
7 0.98 225.00 33.64 32.21 1.10 228.98 1.09 38.33
1 1.02 263.00 30.22 28.87 1.09 270.30 0.79 36.45
6 0.82 298.00 33.06 31.97 0.90 302.93 10.92 37.31

0.71 438.00 31.97 30.71 0.80 481.22 7.79 39.31
7 0.76 98.00 38.42 37.17 0.82 99.09 �1.67 14.54

0.97 194.00 38.06 36.25 1.09 196.40 0.85 28.16
0.99 574.00 31.26 29.82 1.08 695.14 7.64 42.15

8 1.40 782.01 27.75 26.23 1.40 1683.53 5.18 42.92
0 2.59 119.00 44.87 40.24 3.05 120.44 0.89 25.45
0 1.97 228.00 40.16 37.68 2.01 241.79 2.36 32.89

2.00 430.00 28.33 27.07 2.18 512.57 3.34 50.59
1 1.42 665.01 29.91 28.26 1.58 883.45 0.52 43.80
3 2.19 104.00 52.71 48.11 2.49 105.46 0.27 14.46
8 1.73 317.00 35.55 33.46 1.76 341.81 4.96 41.09

1.19 441.00 30.87 29.45 1.27 548.33 2.95 43.93
6 2.81 123.00 33.63 29.44 2.95 124.49 �9.00 38.68

1.64 151.00 40.18 37.57 1.89 152.40 �1.87 32.23
6 1.80 225.00 41.57 40.32 2.15 229.77 8.90 34.89
3 1.54 263.00 37.74 36.23 1.56 285.81 5.78 35.75
5 2.01 298.00 41.51 39.26 2.09 340.01 6.59 30.23
3 1.69 438.00 41.76 38.97 1.77 499.31 3.18 27.27
7 3.07 98.00 50.20 45.06 3.46 99.34 �1.49 21.54
1 1.66 194.00 38.98 36.53 1.97 202.96 0.87 34.66
6 1.39 574.01 32.73 30.77 1.40 779.75 0.23 41.52

1.37 782.01 31.89 29.91 1.38 2398.68 9.72 42.02

3 1.10 320.61 33.43 31.86 1.20 407.69 2.39 32.82



Table 5
Comparison of VNS, SA and MSLS on test instances with q¼ n

8

� �
existing facilities.

Name n q p VNS SA MSLS % dev.

Best Avg. Std. Time Best Avg. Std. Time Best Avg. Std. Time SA MSLS

gr120 120 15 7 37.26 37.18 0.07 119.40 37.00 36.47 0.27 119.40 29.83 29.37 0.29 119.40 0.71 19.95
gr229 229 28 14 41.01 40.60 0.28 228.24 41.26 40.59 0.39 228.24 28.67 27.65 0.43 228.24 �0.61 30.08
gr431 431 53 26 40.41 39.26 0.54 430.15 37.22 36.74 0.41 430.14 22.02 21.33 0.44 430.17 7.91 45.52
gr666 666 83 41 42.99 42.40 0.53 617.05 42.18 40.99 0.80 602.93 24.52 23.54 0.93 665.09 1.89 42.96
lin105 105 13 6 41.63 41.52 0.07 104.48 41.30 40.81 0.32 104.48 33.89 33.29 0.36 104.48 0.80 18.59
lin318 318 39 19 41.52 40.94 0.31 317.22 37.50 36.55 0.61 317.21 24.87 23.79 0.71 317.22 9.69 40.09
pcb442 442 55 27 41.76 41.29 0.27 441.13 39.43 38.85 0.41 441.12 25.94 25.28 0.47 441.16 5.58 37.88
pr124 124 15 7 29.77 29.62 0.12 123.38 29.45 29.05 0.37 123.38 23.65 22.97 0.38 123.38 1.07 20.54
pr152 152 19 9 41.05 40.83 0.26 151.24 40.84 40.30 0.35 151.24 28.44 27.99 0.39 151.24 0.52 30.71
pr226 226 28 14 44.64 44.24 0.22 225.26 44.38 43.47 0.59 225.25 27.52 26.55 0.62 225.26 0.56 38.34
pr264 264 33 16 42.33 41.56 0.44 263.14 37.67 37.25 0.26 263.12 22.63 21.95 0.30 263.14 11.02 46.53
pr299 299 37 18 43.56 43.01 0.42 298.27 42.71 41.21 0.83 298.25 27.67 26.39 0.97 298.27 1.95 36.48
pr439 439 54 27 41.33 40.28 0.40 438.15 38.52 37.39 0.56 438.12 23.84 22.75 0.57 438.15 6.80 42.32
rat99 99 12 6 33.45 33.21 0.12 98.67 33.08 32.47 0.39 98.67 27.59 26.74 0.42 98.67 1.12 17.52
rat195 195 24 12 40.73 40.31 0.26 194.35 40.40 40.09 0.38 194.35 29.11 28.88 0.39 194.35 0.81 28.53
rat575 575 71 35 41.16 40.71 0.35 506.56 41.61 40.07 0.66 501.88 25.25 23.99 0.68 539.45 �1.10 38.65
rat783 783 97 48 40.47 39.73 0.49 716.59 39.73 38.32 0.90 703.28 27.41 26.15 0.96 782.06 1.84 32.28
gr120 120 15 11 49.63 49.42 0.12 119.40 49.27 48.74 0.34 119.40 38.17 37.09 0.38 119.40 0.71 23.10
gr229 229 28 21 52.03 50.11 0.98 228.25 50.89 47.86 1.52 228.24 30.84 28.82 1.57 228.26 2.20 40.72
gr431 431 53 39 49.90 47.95 0.78 430.16 47.90 45.85 1.63 430.14 29.11 27.73 1.77 430.28 4.02 41.67
gr666 666 83 62 49.91 48.29 0.67 652.61 47.44 45.13 1.34 604.56 32.07 29.95 1.54 665.43 4.96 35.75
lin105 105 13 9 47.93 47.41 0.29 104.48 47.23 46.68 0.39 104.48 36.59 35.98 0.45 104.48 1.47 23.66
lin318 318 39 29 51.56 50.43 0.73 317.24 48.39 46.62 1.42 317.21 30.67 29.21 1.42 317.25 6.14 40.51
pcb442 442 55 41 50.01 48.86 0.54 441.15 47.91 46.74 0.66 441.12 30.87 30.00 0.69 441.20 4.20 38.26
pr124 124 15 11 51.42 50.87 0.32 123.38 50.32 49.82 0.46 123.38 37.10 36.55 0.52 123.38 2.14 27.85
pr152 152 19 14 52.32 51.09 0.89 151.25 51.70 50.68 0.73 151.24 33.66 32.50 0.84 151.25 1.18 35.67
pr226 226 28 21 56.17 54.74 1.00 225.26 52.95 50.55 1.47 225.25 30.48 28.76 1.50 225.27 5.73 45.73
pr264 264 33 24 52.72 51.44 0.86 263.13 48.71 46.95 0.88 263.12 30.43 28.93 0.94 263.21 7.60 42.28
pr299 299 37 27 53.11 50.83 1.25 298.28 49.75 47.22 1.09 298.25 32.50 30.33 1.21 298.26 6.34 38.81
pr439 439 54 40 49.58 48.44 0.61 438.15 47.50 45.65 1.13 438.13 30.06 28.81 1.26 438.16 4.20 39.36
rat99 99 12 9 50.41 50.22 0.12 98.67 49.78 48.93 0.74 98.67 39.45 38.07 0.76 98.67 1.26 21.76
rat195 195 24 18 52.10 51.06 0.79 194.36 51.94 50.37 0.84 194.35 36.13 34.94 0.96 194.36 0.32 30.67
rat575 575 71 53 48.65 47.84 0.56 506.89 47.87 45.37 1.37 504.00 30.86 28.82 1.56 574.32 1.61 36.58
rat783 783 97 72 49.04 48.42 0.40 782.00 45.13 43.55 0.88 710.88 35.63 34.34 1.01 782.62 7.98 27.34
gr120 120 15 15 62.01 58.35 1.69 119.40 62.06 58.14 1.85 119.40 38.17 35.55 2.17 119.40 �0.08 38.45
gr229 229 28 28 58.01 56.66 1.38 228.24 54.57 53.12 1.54 228.24 30.84 30.00 1.67 228.26 5.93 46.83
gr431 431 53 53 55.06 54.02 1.13 430.18 55.10 51.65 2.26 430.14 29.11 27.15 2.32 430.28 �0.07 47.14
gr666 666 83 83 57.12 55.19 1.03 665.41 49.00 47.05 1.13 607.30 32.07 30.45 1.23 665.43 14.21 43.85
lin105 105 13 13 62.68 58.01 2.05 104.48 61.41 57.22 2.03 104.48 36.59 33.50 2.22 104.48 2.04 41.62
lin318 318 39 39 57.72 56.39 1.46 317.22 55.00 52.79 1.39 317.21 30.67 29.25 1.61 317.25 4.71 46.86
pcb442 442 55 55 56.62 54.77 1.10 441.17 53.35 51.15 1.25 441.12 30.87 29.39 1.42 441.20 5.79 45.48
pr124 124 15 15 62.49 59.70 1.53 123.38 61.97 59.03 1.93 123.38 37.10 34.70 2.29 123.38 0.82 40.63
pr152 152 19 19 60.58 58.12 1.48 151.25 60.13 56.49 2.18 151.24 33.66 31.13 2.51 151.25 0.75 44.44
pr226 226 28 28 62.68 61.31 1.57 225.28 56.39 54.29 2.00 225.25 30.48 28.99 2.12 225.27 10.04 51.37
pr264 264 33 33 59.93 57.94 1.07 263.14 54.90 52.99 1.23 263.12 30.43 29.05 1.40 263.21 8.38 49.23
pr299 299 37 37 60.33 58.47 1.72 298.28 56.93 55.19 1.26 298.25 32.50 31.29 1.47 298.26 5.65 46.14
pr439 439 54 54 56.41 54.93 1.04 438.22 53.87 51.30 1.62 438.13 30.06 28.44 1.69 438.16 4.49 46.70
rat99 99 12 12 63.73 58.66 2.16 98.67 61.88 57.37 2.14 98.67 39.45 35.94 2.45 98.67 2.90 38.11
rat195 195 24 24 59.18 57.24 1.42 194.36 58.03 54.46 2.06 194.35 36.13 33.32 2.09 194.36 1.94 38.96
rat575 575 71 71 55.55 53.52 1.21 539.12 52.33 48.63 1.93 506.66 30.86 28.55 2.30 574.32 5.80 44.46
rat783 783 97 97 57.25 55.49 0.82 782.47 48.43 45.73 1.35 714.38 35.63 33.53 1.55 782.62 15.41 37.76

Average 50.17 48.88 0.78 315.06 48.12 46.35 1.07 308.92 31.02 29.60 1.18 320.22 3.948 37.348
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� VNS and SA significantly outperform MSLS (for example, aver-
age percentage deviation of results obtained by MSLS from
results obtained by VNS presented in Table 2 is 23.61).

� Results obtained by VNS are in average better than the results
obtained by SA (0.85 for instances with q¼ n

20

� �
existing facil-

ities, 2.39 for instances with q¼ n
10

� �
existing facilities).

� In general, the results do not depends on the number of existing
facilities (for example average of best results obtained by VNS
for instances with q¼ n

20

� �
is 48.868, while average of best

results obtained by VNS for instances with q¼ n
10

� �
is 49.999).

� Note that percentage of total demand assigned to new facilities
are greater than the percentage participation in total number of
facilities: for example average of best results obtained by VNS
for test instances with q¼ n

20

� �
and p¼ q

2

� �
is 38.249 while

percentage participation of new facilities is 33.333.
5.3. Statistical test

In order to confirm the superiority of the method based on VNS
over the method based on SA (taking into account that results
obtained by MSLS are significantly worse), we perform a statistical
test known as the Wilcoxon signed-rank test [16]. For this purpose
we compute the differences between the solutions obtained by the
two compared algorithms in each instance and then rank them
according to their absolute values. The sum of ranks for the
instances in which the first algorithm (i.e. algorithm based on
VNS) outperforms the second algorithm (algorithm based on SA) is
denoted as Rþ , while R� denotes the sum of ranks for the reverse
case. Ranks corresponding to zero differences are split evenly
among the sums. If minfRþ ;R� g is less than or equal to the critical



Table 6
Statistical comparison on used instances grouped according to proportion of the
existing facilities (critical value¼454).

Instance group Num. of inst. Rþ R� Sign.

q¼ n
20

� �
51 992 334 þ

q¼ n
15

� �
51 1108 218 þ

q¼ n
10

� �
51 1113 213 þ

q¼ n
8

� �
51 1305 21 þ
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value, this test detects significant differences between the algo-
rithms, which means that an algorithm outperforms its opponent.

Detailed results of this statistical test are given in Table 6. The
first column of Table 6 contains description of the group of
instances. The second column contains the number of instances in
the corresponding group. Columns 3 and 4 contain corresponding
sum of ranks (column 3 for VNS metaheuristic and column 4 for
SA). The last column indicates whether the Wilcoxon test found
statistical differences between these algorithms (þ if a significant
difference is found, and � otherwise).

Tests are performed on all instances examined above, with
significance level α¼ 0:05. The critical value is taken from statis-
tical tables. Critical value for each test is given in the caption of the
table. The results from Table 6 clearly confirm the superiority of
VNS approach over the SA approach.

5.4. Getting an exact solution

In order to check whether the proposed model for solving the
multifacility Huff location problem with nodal demands is correct,
we have implemented it in KNITRO, a software package for solving
nonlinear optimization problems exactly. It is a commercial soft-
ware developed by Ziena Optimization LLC. We have used
version 8.1.1.

We first tried to solve exactly a 20-node test instance derived
randomly from the 55-node data set of Swain [15]. The number of
edges, the number of existing facilities, and the number of new
facilities are set to 50, 5, and 3, respectively. After a day and a half
of execution, KNITRO solver finished its work with a message that
the node limit of the search tree has been reached. Thus, the
problem that could not be solved had the total number of variables
3� 50þ3þ20� 3¼ 213, while the total number of constraints
was 6003.

In order to get some conclusions regarding the size of instances
solvable by the solver, and also to check the correctness of our
mathematical model, we have tried with the smaller instance: the
number of nodes equals to 15; the number of edges equals to 37;
the number of existing facilities equals to 5, and the number of
new facilities equals to 3. This instance has 159 variables (111
binary ones) and 3333 constraints. KNITRO managed to get the
optimal solution value of 57.0360% captured demands after
11,224 s (more than 3 h). As a comparison, the VNS finds the same
optimal solution in just 1.73 s. The last experiment confirms that
our model is correct. Execution time by commercial solver (more
than 3 h) is really very large. Thus, developing heuristics for this
problem appears to be a good idea.
6. Conclusion and future lines

Although there are other approaches in modeling real world
competitive location situations, the advantage of the Huff location
model is its consumer psychology orientation. It allows taking into
consideration facility specific features, therefore, providing us with
the more refined model, which eventually implies increasing the
demand satisfiability. We have shown that VNS performs very well
in solving the multifacility Huff location problem with nodal
demand. We have shown in practice that the model we have
proposed is correct. Yet, obtaining exact solutions for the proposed
test instances is time consuming and, therefore, while dealing
with the nonlinear optimization problem with large scale solution
spaces, metaheuristics, as opposed to exact solving, are an inevi-
table approach.
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