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Abstract. This paper focuses on an application of membrane systems to

solve classification problems. Decision tree technique has been widely used to

construct classification models because such models can closely resemble human

reasoning and are easy to understand. A novel membrane computing-based de-

cision tree induction algorithm is developed in this paper. An extended tissue

membrane system with tree-like objects is considered as the computing frame-

work, in which each object in cells expresses a feasible decision tree and the

transformation-communication mechanism is applied to deal with the tree-like

objects. The extended tissue membrane system with tree-like objects can effi-

ciently induce a best decision tree model for a given data set. The proposed

decision tree induction algorithm is evaluated on some data sets and compared

with two classical methods.
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1. Introduction

Membrane computing, as a class of distributed parallel computing models, is in-
spired from the structure and functioning of living cells as well as the cooperation



Decision Tree Models Induced by Membrane Systems 229

of cell populations in tissues and organs [1, 2]. These membrane systems are known
as membrane systems and P systems. With variant mathematical and biological mo-
tivations, many variants of P systems were proposed [2–6] and their computational
power were investigated [7–12]. Usually, a membrane system can be characterized by
several components: membrane structure, objects, operations with objects, ways to
control the operations. In recent years, membrane systems have been used to solve a
lot of real-world problems, for example, optimization problems [13–17], fuzzy reason-
ing [18–20], fault diagnosis [21–23], image processing [24–26], robot control [27] and
ecology [28, 29]. Particularly, the object’s transformation-communication mechanism
has been developed to process different real-world problems.

Machine learning algorithms are divided into two main categories: unsupervised
learning (clustering) and supervised learning (classification). In recent years, the
application of membrane computing in data clustering has received a lot of atten-
tion. Clustering is such a process that partitions a data set into several clusters
such that patterns within the same cluster are more similar than those from different
clusters [30]. K-means algorithm is one of the most popular clustering algorithms.
However, there are some shortcomings: it easily falls into local minima and severely
depends on the initial solutions [31]. To overcome the shortcomings, the object’s
transformation-communication mechanism in membrane systems has been developed
to determine the global optimal cluster centers for data clustering problem. Huang et
al. [32] proposed a clustering algorithm based on membrane computing to solve the
clustering problem, called PSO-MC, which introduced the velocity-position model in
particle swarm optimization (PSO) as the object’s transformation mechanism. In
Jiang [33], genetic operations and simulated annealing were combined into the ob-
ject’s transformation mechanism of the presented clustering algorithm. Similarly, a
transformation mechanism based on genetic operations was developed according to
the used membrane structure for data clustering [34]. Combined with differential evo-
lution (DE) and the object’s communication mechanism, a clustering algorithm has
been present, called DE-MC [35]. Peng et al. [36] used an evolution-communication
membrane system to solve fuzzy clustering problem. In addition, a clustering algo-
rithm with hybrid evolutionary mechanisms has been reported in Peng [37]. These
clustering algorithms, as k-means algorithm, have a weakness: the number of clusters
should be given in advance. In recent, an extended membrane systems with active
membrane and a modified object representation have been applied to deal with auto
clustering problems [38,39].

This paper focuses on another class of machine learning problems, that is, clas-
sification problems. The decision tree technique has been widely used to build the
classification models. In comparison to “black-box” model such as artificial neural
network, decision tree has a high comprehensibility. For decision tree model, one or
more variables is tested in each node. Thus, the tree can be traversed from the left
subtree to the right subtree according to the test results. In the past, a lot of decision
tree induction algorithms have been proposed, for example, ID3, CRAT and C4.5 [40].
The induction algorithms are greedy local search algorithms, which construct deci-
sion trees in a top-down way. The motivation behind this work is to apply membrane
systems to develop a novel decision tree induction algorithm that can generate a best
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decision tree model for a data set. In this work, original tissue membrane system is
extended as a tissue membrane system with tree-like objects, and two transforma-
tion mechanisms that can deal with tree-like objects are developed based on subtrees
exchange to find a global optimal decision tree.

The rest of this paper is arranged as follows. An extended tissue membrane
system that can deal with tree-like objects is discussed in detail in Section 2. Section
3 describes the proposed decision tree induction algorithm. In Section 4, experimental
results carried out on some real-life data sets are presented. Finally, conclusions are
drawn in Section 5.

2. Tissue membrane systems with tree-like objects

The goal of this paper is to apply membrane systems to generate a best decision
tree from a data set. It is well-known that classical decision tree induction algorithms,
such as ID3, CRAT and C4.5, use the top-down approach to build the decision tree
by testing variables on each node. Different from these induction methods, our idea
is to search for the optimal decision tree within the feasible solution space by using
the mechanisms of tissue membrane systems. Thus, this requires that the tissue
membrane system can express and process the tree-like data structure. However,
the existing tissue membrane systems are based on multisets of strings, so they are
not able to express and process the tree-like objects. Therefore, the classical tissue
membrane systems will be extended to propose an exended tissue membrane system
with tree-like objects.

The extended tissue membrane system with tree-like objects is defined as a con-
struct

Π = (w1, . . . , wq, R1, . . . , Rq, R
′, i0) (1)

where

(1) wi = {Tij |j = 1, 2, . . . , n} is a finite set of tree-like objects in cell i, where Tij is
a tree, i = 1, 2, . . . , q, j = 1, 2, . . . , n;

(2) Ri is a finite set of transformation rules of tree-like objects in cell i, which con-
sists of selection, crossover and mutation operations based on subtree exchange,
1 ≤ i ≤ q;

(3) R′ is a finite set of communication rules of the q cells, and the communication
rules are of forms (i, T1/T2, j) or (i, T/λ, 0), where T , T1 and T2 are the trees,
and λ is the empty object;

(4) i0 indicates the output region of the system.

The extended tissue membrane system consists of q cells labeled by 1, 2, . . . , q,
respectively. Figure 1 shows the membrane structure of the extended tissue membrane
system, in which the region labeled by 0 is the environment. Each cell contains one
or more objects, and each object expresses a tree. The tree-like objects in cells will
be changed by transformation rules during computation. Moreover, communication
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rules provides a mechanism to achieve the sharing of objects between the q cells. As
usual in membrane systems, the q cells as computing units work in parallel. When
the extended membrane system halts, the final result is stored in the output region.

1 2 q

0

Fig. 1. The extended membrane structure
of the used tissue membrane system.
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Fig. 2. An example of tree-like objects.

2.1. Tree-like objects

The extended tissue membrane system is considered to generate a decision tree,
so each object in the system is used to express a candidate tree for a data set. Figure
2 illustrates an example of an object, which represents a tree from the Pima data set.
Note that usual double linked list was used to implement the data structure of the
tree-like objects in this work.

Initially, the extended membrane system will randomly generate some initial ob-
jects, that is, some initial trees. When an object (tree) is generated, a subset is
selected randomly from a data set, and then a subtree is generated by C4.5 as the
object. It is important that objects in the cells should have enough diversity.

2.2. Transformation rules

In the extended tissue membrane system, three classical genetic operations are
introduced as transformation rules of objects, including selection, crossover and mu-
tation operations. However, the three genetic operations are extended in this work in
order to make them suitable to process the tree-like objects.
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Fig. 3. An example of the crossover operation for two tree-like objects.

Parent Child

Mutation

Fig. 4. An example of mutation operation for a tree-like object.

The selection operation reflects the principle of the survival of the fittest. In
this context, classical roulette method is used to select the objects (trees) that can
be processed by crossover and mutation operations. To apply the roulette method,
a criterion is required to evaluate each object in the cells, so it is regarded as the
object’s fitness function. The object’s evaluation criterion will be discussed below.
The crossover and mutation operations of objects are used to achieve the improve-
ment of objects (trees) in cells. To process the tree-like objects, however, classical
crossover and mutation operations will be extended. The extensions of the crossover
and mutation operations are realized based on subtree exchange.

Figure 3 illustrates the crossover operation of two tree-like objects. The crossover
operation is similar to classical crossover operation, but it is achieved based on sub-
tree exchange rather than string. Parent 1 and parent 2 are two objects and two
cross points are chosen in the two trees respectively, and then two subtrees that are
associated with the two cross points are exchanged.

The extended mutation operation based on tree-like objects are shown in Figure 4.
Different from classical mutation operation, the extended mutation operation is also
achieved by subtree exchange: two subtrees are chosen randomly in the parent object
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Fig. 5. The object’s communiction mechanisms (a) between two
cells and (b) between a cell and the environment.

(tree), and then the two subtrees are exchanged.

2.3. Communication rules

The extended communication rules are used to achieve the sharing of objects. As
usual, the tissue membrane system has communication rules of two types:

• Rule (i, T1/T2, j), where T1 and T2 are the objects in cell i and cell j, respec-
tively, i, j = 1, 2, . . . , q.
The rule indicates the communication between cell i and cell j shown in Fig-
ure 5(a). Object T1 in cell i is transmitted to cell j, and at the same time object
T2 in cell j is transmitted to cell i.

• Rule (i, T/λ, 0), where T is an objet in cell i and λ is the empty object, i =
1, 2, . . . , q.
The rule indicates the communication between cell i and the environment shown
in Figure 5(b). Object T in cell i is transmitted to the environment.

3. Proposed decision tree induction algorithm

The decision tree induction algorithm is designed to generate a decision tree from a
data set. The proposed decision tree induction algorithm is a novel algorithm inspired
from the mechanisms of tissue membrane systems. Different from classical top-down
induction algorithms such as ID3, CRAT and C4.5, the proposed induction algorithm
will use the extended tissue membrane system to search a global optimal decision tree
in solution space. Therefore, the extended tissue membrane system described above
is used as a computing framework, in which each object in cells expresses a candidate
decision tree. Starting from initial objects (trees), the membrane system constantly
uses the transformation-communication mechanism to improve the objects in the cells
until it halts.

During the computation, objects (trees) in cells are improved constantly. The
object’s improvement mechanism usually requires a criterion to evaluate each object in
the system. In this work, two measures, classification accuracy and tree’s complexity,
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are combined together as the object’s evaluation criterion. which can be defined by

J(T ) = C(T )− v · (S(T )− 1) (2)

where T is an object (tree) in cells; C(T ) is classification accuracy of the object (tree),
and S(T ) is the size of the tree; v is a factor to control the tree’s complexity (default
value is 0.001).

Based on the tissue membrane system, the proposed decision tree induction algo-
rithm can be described as follows.

program The_membrane_systems_based_decision_tree_induction_algorithm

input

Data set, D;

the number of cells, q;

the number of objects in each cell, n;

crossover and mutation probabilities, Pc and Pm;

the factor, v;

maximum iterative number, MaxIter;

output

the optimal decision tree in the output region, T;

begin

/*Initialize the objects in cells*/

for i=1 to q

for j=1 to n

Generate an initial object (tree) Tij by C.5;

end

end

Iter := 1;

repeat

for i=1 to q

/*The objects in cell i are evolved*/

Selection operation for the objects in cell i;

Crossover operation for the objects in cell i;

Mutation operation for the objects in cell i;

Evaluate objects in cell i by the criterion (2);

Truncation operation to retain the best n objects;

Communicate objects by communication rules;

Update T by using the best of objects in cell i;

end

Iter := Iter + 1;

until Iter > MaxIter

Export the optimal decision tree, T;

end

end.
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4. Experimental results and analysis

In order to evaluate the performance of the proposed decision tree induction al-
gorithm, ten real-life data sets from UCI repository [42] have been selected in the
experiment: Blance-Scale, Bupa, Cars, German, Glass, Heart, Pima, Sat, Vehicle and
Vote. The input parameters of the proposed algorithm are chosen as follows: the
number of cells is q = 5, the number of objects in each cell is n = 20, crossover and
mutation probabilities are pc = 0.8 and pm = 0.01, and control factor is v = 0.001.
The computing step number in the tissue membrane system is set to 1000.

The proposed algorithm was compared with two existing decision tree induction al-
gorithms: a classical decision tree algorithm C4.5 [41] and an evolutionary technique-
based decision tree induction algorithm GDT-MA [43]. The comparison includes two
metrics: classification accuracy and tree size. Classification accuracy is often used to
indicate the quality of a classifier: usually, the higher the accuracy, the better the
quality. On the other hand, it is hoped that the complexity of decision tree should be
as small as possible when the classification performance can be guaranteed. Consid-
ering some random factors in these algorithms, the average values obtained by them
on 10 runs are computed in terms of classification accuracy and tree size.

Table 1 provides the comparison results of the three algorithms over ten data sets,
which are average accuracies and sizes of the 10 runs. The comparison results are
illustrated as follows:

• Blance-Scale. The proposed algorithm has the best classification accuracy and
the smallest size, 79.9 and 19.5. C4.5 has the worst classification performance.
GDT-MA is close to membrane systems in terms of accuracy, but its size is
greater than that of C4.5.

• Bupa. The proposed algorithm attains the highest classification accuracy and
the smallest size, 64.8 and 31.7. So it is the best of the three algorithms

• Cars. The proposed algorithm and GDT-MA have the same accuracy and size,
97.9 and 3, while the accuracy and size of C4.5 are 97.7 and 31 respectively.

• German. GDT-MA has the best accuracy and the smallest size. The proposed
algorithm is close to GDT-MA. C4.5 is worse than other two algorithms.

• Glass. The accuracy and size of the proposed algorithm are 66.5 and 34.9
respectively, so it is the best of the three algorithms.

• Heart. The accuracy and size of C4.5 are 77.1 and 22 respectively, so it attains
the best classification performance. The accuracy of the proposed algorithm is
slightly better than that of GDT-MA, but the size of the proposed algorithm is
smaller than that of GDT-MA.

• Pima. The accuracy of the proposed algorithm is slightly better than that of
GDT-MA and C4.5, but GDT-MA has the smallest size.
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• Sat. The accuracy of the proposed algorithm is 86.2, so it is the best in the
three algorithms. However, GDT-MA attains the smallest size, 18.9.

• Vehicle. C4.5 has the best classification accuracy because of its accuracy 72.7,
but it has the worst size, 138.6. The accuracy of the proposed algorithm is close
to that of C4.5. GDT-MA has the smallest size, 43.2.

• Vote. C4.5 attains the best classification accuracy and smallest size. The accu-
racy of the proposed algorithm is better than that of GDT-MA, and the size of
the proposed algorithm is smaller than that of GDT-MA.

Table 1. Comparison results of the proposed algorithm with two
decision tree induction algorithms

Data sets C4.5 GDT-MA Membrane systems

Accuracy Size Accuracy Size Accuracy Size

Blance-Scale 77.5 57 79.8 20.8 79.9 19.5

Bupa 64.7 44.6 63.7 33.6 64.8 31.7

Cars 97.7 31 97.9 3 97.9 3

German 73.7 77 74.2 18.4 74.1 18.6

Glass 62.5 39 66.2 35.3 66.5 34.9

Heart 77.1 22 76.5 29 76.9 24.8

Pima 74.6 40.6 74.2 14.8 74.8 17.3

Sat 85.5 435 83.8 18.9 86.2 22.5

Vehicle 72.7 138.6 71.1 43.2 72.5 45.9

Vote 97 5 96.2 10.9 96.8 7.4

5. Conclusions

This paper discussed an application of membrane systems in a classification prob-
lem: a tissue membrane system was considered to induce a decision tree for a data
set. A tissue membrane system with tree-like objects was developed, where three ge-
netic operations were extended as a transformation mechanism of the tree-like objects.
Based on tissue membrane system with tree-like objects, a decision tree induction al-
gorithm has been proposed to generate the optimal decision tree from data set. The
proposed algorithm was tested on ten real-life data sets and compared with two exist-
ing algorithms. The comparison results demonstrate the usefulness of the proposed
algorithm.
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[2] PĂUN GH., ROZENBERG G., SALOMAA A. (eds.), The Oxford Handbook of Mem-
brance Computing, Oxford University Press, New York (2010).

[3] PAN L., ALHAZOV A., ISHDORJ T., Further remarks on P systems with active mem-
branes, separation, merging, and release rules, Soft Computing, 9, pp. 686–690 (2005).

[4] PAN L. ZENG X., ZHANG X, JIANG Y., Spiking Neural P Systems with Weighted
Synapses, Neural Processing Letters, 35(1), pp. 13-27 (2012).
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