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Abstract: We prove that if the f -sectional curvature at any point of a (2n + s)-dimensional metric
f -contact manifold satisfying the (κ, µ) nullity condition with n > 1 is independent of the f -section
at the point, then it is constant on the manifold. Moreover, we also prove that a non-normal metric
f -contact manifold satisfying the (κ, µ) nullity condition is of constant f -sectional curvature if and
only if µ = κ + 1 and we give an explicit expression for the curvature tensor field in such a case.
Finally, we present some examples.
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1. Introduction

Riemannian manifolds with a complementary structure adapted to the metric have been widely
studied, for instance, almost complex and almost contact manifolds. Both almost complex and almost
contact structures are particular cases of f -structures introduced by K. Yano [1].

A (2n + s)-dimensional Riemannian manifold (M, g) endowed with an f -structure f (that is,
a tensor field of type (1,1) and rank 2n satisfying f 3 + f = 0 [1]) is said to be a metric f -manifold if,
moreover, there exist s global vector fields ξ1, . . . , ξs on M (called structure vector fields) and s 1-foms
η1, . . . , ηs such that,

ηα(ξβ) = δ
β
α , f ξα = 0; ηα ◦ f = 0; (1)

f 2 = −I +
s

∑
α=1

ηα ⊗ ξα; (2)

g( f X, f Y) = g(X, Y)−
s

∑
α=1

ηα(X)ηα(Y), (3)

for any X, Y ∈ X (M) and α, β = 1, . . . , s. Let F be the 2-form on M defined by F(X, Y) = g(X, f Y),
for any X, Y ∈ X (M). Then, a metric f -manifold is said to be a metric f -contact manifold or an almost
S-manifold (see [2,3]) if F = dηα, for any α = 1, . . . , s and a normal metric f -contact manifold is said to
be an S-manifold (see [4] for more details and examples).

The study of metric f -manifolds was initiated by D.E. Blair, S.I. Goldberg, K. Yano and
J. Vanzura [4–6]. Later, J.L. Cabrerizo, L.M. Fernández and M. Fernández [2] studied metric f -contact
manifolds as well as K. Duggal, S. Ianus and A.M. Pastore [3] who called them almost S-manifolds.
For manifolds with an f -structure, D.E. Blair [4] introduced the notion of K-manifolds and their
particular cases of S-manifolds and C-manifolds and proved that the space of a principal toroidal
bundle over a Kaehler manifold is an S-manifold.
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Moreover, S-structures are a natural generalization of Sasakian structures. However, unlike Sasakian
manifolds, no S-structure can be realized on a simply connected compact manifold [7] (see also (Corollary
4.3, [8])). In [9], an example of an even dimensional principal toroidal bundle over a Kaehler manifold
which does not carry any Sasakian structure is presented and an S-structure on the even dimensional
manifold U(2) is constructed. Consequently and since it is well known that U(2) does not admit a Kaehler
structure, there exist manifolds such that the best structure which one can hope to obtain on them is an
S-structure. In this context, it seems to be necessary to generalize to the setting of metric f -manifolds the
concepts and results concerning almost contact geometry.

Following this idea, B. Capelletti Montano and L. Di Terlizzi generalize the concept of contact
metric manifolds such that the characteristic vector field belongs to the (κ, µ)-distribution, where κ

and µ are real constants, studied in [10] and classified in [11], to metric f -contact manifolds (see [12])
by defining f -(κ, µ) manifolds. The purpose of this paper is to find conditions which characterizes
f -(κ, µ) manifolds with constant f -sectional curvature. We shall prove that if the f -sectional curvature
at a point p of a (2n + s)-dimensional f -(κ, µ) manifold with n > 1 is independent of the f -section al p,
then it is constant on the manifold. This result is analogous to Schur’s lemma in Riemannian geometry
and extends a corresponding result on S-manifolds. Moreover, we shall also prove that an f -(κ, µ)

manifold which is not an S-manifold is of constant f -sectional curvature if and only if µ = κ + 1 and
an explicit expression for the curvature tensor field will be given.

These results generalize the corresponding ones in the case s = 1, that is, in contact geometry [13].
Finally, we shall present some examples as application of the above results.

2. Basic Definitions and Results

Let (M, f , ξ1, . . . , ξs, η1, . . . , ηs, g) be a metric f -manifold. The distribution on M spanned by the
structure vector fields is denoted byM and its complementary orthogonal distribution is denoted
by L. Consequently, TM = L⊕M. Moreover, if X ∈ L, then ηα(X) = 0, for any α = 1, . . . , s and if
X ∈ M, then f X = 0. From now on, we set ξ = ξ1 + · · ·+ ξs and η = η1 + · · ·+ ηs.

Since f is of rank 2n, then η1 ∧ · · · ∧ ηs ∧ Fn 6= 0 and, in particular, M is orientable. A metric
f -contact manifold is said to be a metric f -K-contact manifold if the structure vector fields are Killing
vector fields.

The f -structure f is said to be normal if

[ f , f ] + 2
s

∑
α=1

ξα⊗ dηα = 0,

where [ f , f ] denotes the Nijenhuis tensor of f given by

[ f , f ](X, Y) = f 2[X, Y]− f [ f X, Y]− f [X, f Y] + [ f X, f Y],

for any X, Y ∈ X (M).
On a metric f -contact manifold there are defined the (1,1)-tensor fields

hα =
1
2

Lξα
f , α = 1, . . . , s,

(see [2]), where Lξα
f is the Lie derivative of f in the direction ξα. These operators are self adjoint,

traceless, anticommute with f and

hαξβ = 0, ηα ◦ hβ = 0, α, β = 1, . . . , s. (4)

Moreover, the structure vector field ξa is a Killing vector field if and only if hα = 0
(Theorem 2.6, [2]).
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Given κ, µ two real constants, a metric f -contact manifold is said to verify the (κ, µ)-nullity
condition (see [12]) or to be a metric f -(κ, µ) manifold, if for each α ∈ {1, . . . , s} and X, Y ∈ X (M),

R(X, Y)ξα = κ
(

η(X) f 2Y− η(Y) f 2X
)
+ µ

(
η(Y)hαX− η(Y)hαY

)
, (5)

where R is denoting the curvature tensor field of g. B. Cappelletti Montano and L. Di Terlizzi [12]
proved that, in this context, κ ≤ 1 and, if κ < 1, any hα has eigenvalues 0,±

√
1− κ and h1 = · · · = hs.

Putting h as this common value and by using the symmetry properties of R and the symmetry
of f 2, (5) becomes

R(ξα, X)Y = κ
(

η(Y) f 2X− g(X, f 2Y)ξ
)
+ µ

(
g(X, hY)ξ − η(Y)hX

)
, (6)

for any α = 1, . . . , s.
Moreover, in this case where κ < 1, denoting by L+ and L− the n-dimensonal distributions of the

eigenspaces of λ =
√

1− κ and −λ, respectively, it is known (cf. [12]) that L+ and L− are mutually
ortogonal and, since f anticommutes with h, f (L+) = L− and f (L−) = L+.

In the same paper [12], it is also proved that a metric f -contact manifold is an S-manifold if and
only if κ = 1.

For later use, we recall that, from Lemma 2.7 of [12], in a metric f -contact manifold satisfying the
(κ, µ)-nullity condition,

R(X, Y) f Z = f R(X, Y)Z +
(

κ
(
η(Y)g( f X, Z)− η(X)g( f Y, Z)

)
+ µ

(
η(Y)g( f hX, Z)− η(X)g( f hY, Z)

))
ξ

+ s
(
− g(hY− f 2Y, Z)( f X + f hX) + g(hX− f 2X, Z)( f Y + f hY)

− g( f Y + f hY, Z)(hX− f 2X) + g( f X + f hX, Z)(hY− f 2Y)
)

+ η(Z)
(

κ
(
η(X) f Y− η(Y) f X

)
+ µ

(
η(X) f hY− η(Y) f hX

))
,

(7)

for any X, Y, Z ∈ X (M). Moreover, in the same conditions, if Q denotes the Ricci operator and κ < 1,
from Corollary 2.1 of [12]:

Q = s
(

2(1− n) + nµ
)

f 2 + s
(

2(n− 1) + µ
)

h + 2nκη ⊗ ξ. (8)

3. Main Theorems

With a technique similar to the one used by T. Koufogiorgos in (Theorem 4.1, [13]) (in case of metric
contact (κ, µ)-spaces, that is, in case of s = 1), we prove the following theorem, which generalizes both
(Theorem 4.1, [13]) and (Proposition 1.5, [14]) (see also (Theorem 2.1, [15])).

Theorem 1. Let (M, f , ξ1, . . . , ξs, η1, . . . , ηs, g) be a (2n + s)-dimensional metric f -(κ, µ) manifold,
with n > 1. If for every point p ∈ M the f -sectional curvature at p is constant, then it is constant on
M (so, M is called a f -(κ, µ)-space-form) and the curvature tensor of M is given by
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4R(X, Y)Z = (H + 3s)
(

g( f 2Y, Z) f 2X− g( f 2X, Z) f 2Y
)
+ (H − s)

(
2g( f Y, X) f Z

+ g(X, f Z) f Y− g(Y, f Z) f X
)
− 2s

(
g(hX, Z)hY− g(hY, Z)hX

− g( f hX, Z) f hY + g( f hY, Z) f hX− 2g( f 2X, Z)hY + 2g( f 2Y, Z)hX

− 2g(hX, Z) f 2Y + 2g(hY, Z) f 2X
)
+ 4κ

(
η(X)η(Z) f 2Y

− η(X)g(Y, f 2Z)ξ − η(Y)η(Z) f 2X + η(Y)g(X, f 2Z)ξ
)

+ 4µ
(

η(Y)η(Z)hX− η(Y)g(X, hZ)ξ − η(X)η(Z)hY + η(X)g(Y, hZ)ξ
)

,

(9)

where H is the constant f -sectional curvature of M. In particular if κ < 1, then µ = κ + 1 and H = −s(2κ + 1).

Proof. For κ = 1, that is, when M is an S-manifold, the theorem is known (see (Proposition 1.5, [14])
and (Theorem 2.1, [15])). Thus, suppose κ < 1.

Let p ∈ M and X, Y ∈ Lp. Then, using basic curvature identities, Equations (4) and (7) and the
fact that M a is metric f -contact manifold, we obtain:

g(R(X, f X)Y, f Y) = − g(R( f X, Y)X, f Y)− g(R(Y, X) f X, f Y)

= g(R(X, f Y)Y, f X) + g( f R(X, Y)X, f Y)

+ s
(

g( f hX, X)g(hY, f Y)− g( f Y + f hY, X)g(hX + X, f Y)

− g(hY + Y, X)g( f X + f hX, f Y)

+ g(hX + X, X)g( f Y + f hY, f Y)
)

= g(R(X, f Y)Y, f X) + g(R(X, Y)X, Y) + s
(
− g( f hX, X)g( f hY, Y)

− g( f X, Y)2 + g( f hX, Y)2 − 2g(X, Y)g(hX, Y)− g(hX, Y)2

− g(X, Y)2 + g(X, hX)g(Y, Y) + g(X, hX)g(Y, hY)

+ g(X, X)g(Y, Y) + g(X, X)g(hY, Y)
)

.

(10)

Analogously we have

g(R(X, f Y)X, f Y) = g(R(X, f Y)Y, f X) + s
(

g(X, Y)2 − g(hX, Y)2

− g( f hX, X)g( f hY, Y)− g(X, X)g(Y, Y)− g(X, hX)g(Y, Y)

+ g(X, X)g(hY, Y) + g(X, hX)g(Y, hY) + g( f X, Y)2

+ g( f hX, Y)2 + 2g( f X, Y)g( f hX, Y)
)

,

(11)

g(R(Y, f X)Y, f X) = g(R(X, f Y)Y, f X) + s
(

g(X, Y)2 − g(hX, Y)2 − g(hX, Y)2

− g( f hX, X)g( f hY, Y) + g( f X, Y)2 + g( f hX, Y)2

− g(X, X)g(Y, Y)− 2g( f X, Y)g( f hX, Y)− g(X, X)g(hY, Y)

+ g(X, hX)g(Y, Y) + g(X, hX)g(Y, hY)
) (12)
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and:

g(R(X, Y) f X, f Y) = g(R(X, Y)X, Y) + s
(
− g(X, Y)2 − g(hX, Y)2 − 2g(X, Y)g(hX, Y)

+ g(X, X)g(Y, Y) + g(X, X)g(hY, Y) + g(X, hX)g(Y, Y)

+ g(X, hX)g(Y, hY) + g( f X, Y)2 + g( f hX, Y)2

− g( f hX, X)g( f hY, Y)
)

.

(13)

If H(p) denotes the value of the f -sectional curvature at p, then for any X, Y ∈ Lp:

g(R(X + Y, f X + f Y)(X + Y), f X + f Y) = −H(p)g(X + Y, X + Y)2,

g(R(X−Y, f X− f Y)(X−Y), f X− f Y) = −H(p)g(X−Y, X−Y)2.

Summing these equations and using (10), (11), (12), we get:

−H(p)
(

2g(X, Y)2 + g(X, X)g(Y, Y)
)
= 2g(R(X, f X)Y, f Y) + g(R(X, f Y)X, f Y)

+ 2g(R(X, f Y)Y, f X) + g(R(Y, f X)Y, f X)

= 3g(R(X, f Y)Y, f X) + g(R(X, Y)X, Y)

+ s
(
− 2g(hX, Y)2 − 2g(X, Y)g(hX, Y)

+ g(X, X)g(hY, Y) + g(Y, Y)g(hX, X)

+ 2g(hX, X)g(hY, Y) + 2g( f hX, Y)2

− 2g( f hX, X)g( f hY, Y)
)

.

(14)

Now we replace Y by f Y in the previous equation, obtaining

−H(p)
(

2g(X, f Y)2 + g(X, X)g(Y, Y)
)
= − 3g(R(X, Y) f Y, f X) + g(R(X, f Y)X, f Y)

+ s
(
− 2g( f hX, Y)2 + 2g(X, f Y)g( f hX, Y)

− g(X, X)g(hY, Y) + g(Y, Y)g(hX, X)

− 2g(hX, X)g(hY, Y) + 2g(hX, Y)2

+ 2g( f hX, X)g( f hY, Y)
)

= g(R(X, f Y)Y, f X) + 3g(R(X, Y)X, Y)+

+ s
(
− 2g(X, Y)2 − 2g(hX, Y)2

− 2g( f hX, X)g( f hY, Y) + 2g(X, X)g(Y, Y)

+ 3g(hX, X)g(Y, Y) + 3g(X, X)g(hY, Y)

+ 2g(hX, X)g(hY, Y)− 2g( f X, Y)2

+ 2g( f hX, Y)2 − 6g(X, Y)g(hX, Y)
)

,

(15)
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where we have used (3) and (4) for the first equality and (11) and (13) for the second. Combining (14)
and (15), we deduce:

4g(R(X, Y)Y, X) = (H(p) + 3s)
(

g(X, X)g(Y, Y)− g(X, Y)2
)
+ 3(H(p)− s)g(X, f Y)2

− 2s
(

g(hX, Y)2 + 4g(X, Y)g(hX, Y)− 2g(X, X)g(hY, Y)

− 2g(Y, Y)g(hX, X)− g(hX, X)g(hY, Y)− g( f hX, Y)2

+ g( f hX, Y)g( f hY, Y)
)

.

Now, using this identity in

g(R(X + Z, Y)Y, X + Z) = g(R(X, Y)Y, X) + g(R(Z, Y)Y, Z) + 2g(R(X, Y)Y, Z),

where X, Y, Z ∈ Lp, we obtain, by a straightforward calculation:

4g(R(X, Y)Y, Z) = (H(p) + 3s)
(

g(X, Z)g(Y, Y)− g(X, Y)g(Z, Y)
)

+ 3(H(p)− s)g(X, f Y)g(Z, f Y)− 2s
(

g(hX, Y)g(hZ, Y)

+ 2g(X, Y)g(hZ, Y) + 2g(Z, Y)g(hX, Y)− 2g(X, Z)g(hY, Y)

− 2g(Y, Y)g(hZ, X)− g(hX, Z)g(hY, Y)− g( f hX, Y)g( f hZ, Y)

+ g( f hX, Z)g( f hY, Y)
)

.

It is easy to check, by using the (5), that the previous equation also holds for any Z ∈ Tp M and
X, Y ∈ Lp. Thus, for each X, Y ∈ Lp:

4R(X, Y)Y = (H(p) + 3s)
(

g(Y, Y)X− g(X, Y)Y
)
+ 3(H(p)− s)g( f Y, X) f Y

− 2s
(

g(hX, Y)hY + 2g(X, Y)hY + 2g(hX, Y)Y− 2g(hY, Y)X

− 2g(Y, Y)hX− g(hY, Y)hX− g( f hX, Y) f hY + g( f hY, Y) f hX
)

.

Next, let X, Y, Z ∈ Lp. Then, using the above identity in

R(X, Y + Z)(Y + Z) = R(X, Y)Y + R(X, Y)Z + R(X, Z)Z + R(X, Z)Y,

we obtain:

4
(

R(X, Y)Z + R(X, Z)Y
)
= (H(p) + 3s)

(
2g(Y, Z)X− g(X, Y)Z− g(X, Z)Y

)
+ 3(H(p)− s)

(
g( f Y, X) f Z + g( f Z, X) f Y

)
− 2s

(
g(hX, Z)hY + 2g(X, Z)hY + g(hX, Y)hZ

+ 2g(X, Y)hZ + 2g(hX, Z)Y + 2g(hX, Y)Z

− 4g(hY, Z)X− 4g(Y, Z)hX− 2g(hY, Z)hX

− g( f hX, Y) f hZ− g( f hX, Z) f hY + 2g( f hY, Z) f hX
)

.

(16)



Mathematics 2020, 8, 891 7 of 11

Replacing X by Y and Y by −X in (16) we have:

4
(

R(X, Y)Z + R(Z, Y)X
)
= (H(p) + 3s)

(
− 2g(X, Z)Y + g(X, Y)Z + g(Y, Z)X

)
+ 3(H(p)− s)

(
− g( f X, Y) f Z− g( f Z, Y) f X

)
− 2s

(
− g(hY, Z)hX− 2g(Y, Z)hX− g(hY, X)hZ

− 2g(X, Y)hZ− 2g(hY, Z)X− 2g(X, hY)Z

+ 4g(hX, Z)Y + 4g(X, Z)hY + 2g(hX, Z)hY

+ g( f hY, X) f hZ + g( f hY, Z) f hX− 2g( f hX, Z) f hY
)

.

(17)

Summing (16) and (17) and by using the Bianchi’s first identity and the fact that f h is a symmetric
operator and f is antisymmetric, we obtain:

4R(X, Y)Z = (H(p) + 3s)
(

g(Y, Z)X− g(X, Z)Y
)
+ (H(p)− s)

(
2g( f Y, X) f Z

+ g( f Z, X) f Y + g( f Y, Z) f X
)
− 2s

(
g(hX, Z)hY + 2g(X, Z)hY

+ 2g(hX, Z)Y− 2g(hY, Z)X− 2g(Y, Z)hX− g(hY, Z)hX

− g( f hX, Z) f hY + g( f hY, Z) f hX
)

.

(18)

At this point, again one can easily check, using (5) and (4), that the above equation is also valid
for any Z ∈ Tp M and X, Y ∈ Lp. Now, we consider any X, Y, Z ∈ Tp M. We have that

X = XH +
s

∑
α=1

ηα(X)xiα, Y = YH +
s

∑
α=1

ηα(Y)xiα,

where XH , YH ∈ Lp and that:

R(X, Y)Z = R(XH , YH)Z +
s

∑
α=1

ηα(X)R(xiα, Y)Z +
s

∑
α=1

ηα(Y)R(XH , xiα)Z.

Consequently, using (18) and (6) in the above equation, we finally obtain (9).
Next, we prove that the f -sectional curvature of M is constant. Let {ei} be a local orthonormal

basis of tangent vector fields on U ⊂ M. Then, taking Y = Z = ei in (9) and summing over i we obtain
the following identity for the Ricci operator at p ∈ U,

2Q = −
(
(n + 1)H(p) + 3s(n− 1) + 2sκ

)
f 2 + 4κn η ⊗ ξ − 2s

(
2(1− n)− µ

)
h, (19)

where we have used (2), (1), (4), the antisymmetry of f and the fact that, since h is traceless, then,

Trh =
2n+s

∑
i=1

g(hei, ei) = 0

and:

Tr f h =
2n+s

∑
i=1

g( f hei, ei) = 0.

Comparing (19) and (8) we have that

(n + 1)H(p) = s(n− 1− 2µn− 2κ) (20)
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and the f -sectional curvature is constant. By (Theorem 2.3, [12]) we know that

K(X, f X) = −s(κ + µ)
(

g(X, f 2X)
)2

= −s(κ + µ),

for any X ∈ L+ with g(X, X) = 1. Thus, Equation (20) becomes

−(n + 1)(κ + µ) = n− 1− 2µn− 2κ,

namely (κ − µ + 1)(n− 1) = 0. Hence, since n > 1, we have that µ = κ + 1 and H = −s(2κ + 1).

We observe that the condition n > 1 in the above theorem is necessary since, for n = 1, there are
examples of flat metric f -contact manifolds (see (Example 6.2, [16])) and hence of f -(κ, µ)-space-forms
with µ = 0 6= 1 = κ + 1.

Moreover, in the above theorem, we have proved that µ = κ + 1 when κ < 1, that is, if the
f -(κ, µ)-space-form is not an S-manifold. The converse is also true and we are going to prove that
if (M, f , ξ1, . . . , ξs, η1, . . . , ηs, g) (n > 1) is a metric f -contact manifold satisfying the (κ, κ + 1)-nullity
condition and it is not an S-manifold, that is, κ < 1, then it has constant f -sectional curvature.

To that end, firstly we state the following lemma which is proved by using (Theorem 2.2, [12]), (3)
and a long straightforward computation.

Lemma 1. Let M be an f -(κ, µ) manifold which is not an S-manifold. Let X ∈ L be a unit vector field and put
X = X+ + X−, where X+ ∈ L+ and X− ∈ L−. Then,

H(X) = −s(κ + µ) + 4s(κ − µ + 1)
(

g(X+, X+)g(X−, X−)− g(X+, f X−)2
)

, (21)

where H(X) = K(X, f X) denotes the f -sectional curvature determined by a unit vector field X ∈ L.

Thus, we have:

Theorem 2. Let (M, f , ξ1, . . . , ξs, η1, . . . , ηs, g) be a (2n + s)-dimensional f -(κ, µ) manifold with n > 1
which is not an S-manifold. Then, M is an f -(κ, µ)-space form if and only if µ = κ + 1.

Proof. We only need to prove that if µ = κ + 1, then M has constant f -sectional curvature.
But, from (21) we obtain H(X) = −s(2k + 1), for any unit vector field X ∈ L.

4. Examples

Example 1. Generalized S-space-forms. A metric f -manifold with two structure vector fields

(M, f , ξ1, ξ2, η1, η2, g),
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is said to be a generalized S-space form if there exist seven differentiable functions on M, F1, . . . , F7 such that
the curvature tensor field R of M satisfies

R(X, Y)Z =F1 {g(Y, Z)X− g(X, Z)Y}
+ F2 {g(X, f Z) f Y− g(Y, f Z) f X + 2g(X, f Y) f Z}
+ F3 {η1(X)η1(Z)Y− η1(Y)η1(Z)X + g(X, Z)η1(Y)ξ1 − g(Y, Z)η1(X)ξ1}
+ F4 {η2(X)η2(Z)Y− η2(Y)η2(Z)X + g(X, Z)η2(Y)ξ2 − g(Y, Z)η2(X)ξ2}
+ F5 {η1(X)η2(Z)Y− η1(Y)η2(Z)X + g(X, Z)η1(Y)ξ2 − g(Y, Z)η1(X)ξ2}
+ F6 {η2(X)η1(Z)Y− η2(Y)η1(Z)X + g(X, Z)η2(Y)ξ1 − g(Y, Z)η2(X)ξ1}
+ F7 {η1(X)η2(Y)η2(Z)ξ1 − η2(X)η1(Y)η2(Z)ξ1

+ η2(X)η1(Y)η1(Z)ξ2 − η1(X)η2(Y)η1(Z)ξ2} ,

(22)

for any X, Y, Z ∈ X (M) [17,18]. In this context, S-space-forms and C-space-forms are generalized
S-space-forms. Moreover, any pseudo-umbilical, totally umbilical or totally geodesic hypersurface isometrically
immersed in a generalized Sasakian-space-form [19] is also a generalized S-space-form.

Then, if M is also a metric f -contact manifold, a direct expansion from (22) shows that M is a f -(κ, µ)

manifold if F3 = F4, the functions F1 − F3, F5, F6, F3 − F7 are constant functions and F1 − F3 = −F5 = −F6 =

F3 − F7. In such a case, κ = F1 − F3 and µ = 0. Some examples of generalized S-space-forms satisfying these
conditions can be found in [17].

Consequently, from Theorem 2 and (Theorem 4.3, [17]), we obtain:

Theorem 3. A generalized S-space form with two structure vector fields verifying the (κ, µ)-nullity condition
is a f -(κ, µ)-space-form if and only if it is either an S-space-form or κ = −1, µ = 0.

Example 2. Trans-S-manifolds. A (2n + s)-dimensional metric f -manifold M is said to be an almost
trans-S-manifold [20] if it satisfies

(∇X f )Y =
s

∑
i=1

[
αi{g( f X, f Y)ξi + ηi(Y) f 2X}

+ βi{g( f X, Y)ξi − ηi(Y) f X}
]
,

(23)

for certain smooth functions (called the characteristic functions) αi, βi, i = 1, . . . , s, on M and any
X, Y ∈ X (M). If, moreover, M is normal, then it is said to be a trans-S-manifold. The class of (almost)
trans-S-manifolds contains many sets of already studied metric f -manidols, like S-manifolds and C-manifolds
of D.E. Blair [4], homothetic s-contact Riemannian manifolds of I. Hasegawa, Y. Okuyama and T. Abe [21],
f -structures of Kenmotsu type of M. Falcitelli and A.M. Pastore [22] or Kenmotsu f -manifolds of L. Bhatt and
K.K. Dube [23] and A. Turgut Vanli and R. Sari [24]. More different examples are obtained in [20] by using
generalized D-conformal deformations and warped products.

On the other hand, for the curvature tensor field R of a metric f -K-contact manifold it is known that [2]

R(X, ξα)Y = −(∇X f )Y, (24)

for any X, Y ∈ X (M) and α = 1, . . . , s.
Consequently, from (23) and (24), we deduce that a metric f -K-contact manifold satisfies the (κ, µ)-nullity

condition if and only if α1 = · · · = αs = κ (and so, all the characteristic functions αi, i = 1, . . . , s are constant
functions) and β1 = · · · = βs = 0, for any µ.

Thus, from Theorem 2 and (Corollary 3.2, [20]) we can prove:
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Theorem 4. Let M be a trans-S-manifold, whit characteristic functions αi, βi, i = 1, . . . , s, which is also
a metric f -K-contact manifold. Then, M is an f -(κ, µ)-space-form if and only if it is either an S-space-form or
α1 = · · · = αs = κ, β1 = · · · = βs = 0 and µ = κ + 1.

Example 3. Given a (2n + s)-dimensional metric f -manifold

(M, f , ξ1, . . . , ξs, η1, . . . , ηs, g),

if we consider a D-homothetic deformation of constant a > 0

f̃ = f , ξ̃α =
1
a

ξα, η̃α = aηα, g̃ = ag + a(a− 1)
s

∑
α=1

ηα ⊗ ηα,

for any α = 1, . . . , s, then, it is easy to prove that (M, f̃ , ξ̃1, . . . , ξ̃s, η̃1, . . . , η̃s, g̃) is also a metric f -manifold.
Performing a D-homothetic deformation of constant a > 0 to a (2n + s)-dimensional (n > 1) metric

f -contact manifold M satisfying R(X, Y)ξα = 0 for any X, Y ∈ X (M) and α = 1, . . . , s (this manifold is
locally isometric to En+s× Sn, (Theorem 2.1, [25])), we obtain on M a metric f -(κ, µ)-structure with κ = (a2−
1)/a2 and µ = 2(a− 1)/a. Thus, the condition µ = κ + 1 is equivalent to a = 1/2. Then, from Theorem 2,
for a = 1/2, M is an f -(κ, µ)-space-form.

In case n = 1, from (Theorem 2.2, [25]), the condition R(X, Y)ξα = 0 implies that M is flat and so,
these manifolds are f -(κ, µ)-space-forms with κ = µ = 0. Performing a D-homothetic deformation of such
manifolds with constant a 6= 1/2, a 6= 1, we obtain examples of f -(κ, µ)-space-forms with non-zero f -sectional
curvature and µ 6= κ + 1. In fact, for the deformed manifold, κ = (a2 − 1)/a2, µ = 2(a − 1)/a and,
from (Theorem 2.3, [12]), H = −s(κ + µ) = −s(3a2 − 2a− 1)/a2.
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