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Abstract- This paper presents the design of a complete RTU 
(Remote  Terminal  Unit)  with  a  System-on-Chip  solution  based 
completely on both open hardware and software platforms, and 
developed  in  conjunction  with  two  industrial  companies.  The 
target implementation of the embedded system is a Spartan family 
FPGA from Xilinx. The article presents the main features of the 
base system, which consists of the LEON microprocessor and a 
Linux  operating  system  distribution  (Debian)  running  on  it. 
Moreover,  it  shows  a  complete  example  of  how  to  add  new 
peripherals to the system. The peripheral that has been added is 
the UART 16550 compatible peripheral available in OpenCores. 
Given that the design has been prepared for the WishBone bus, it 
was necessary to adapt it to the APB bus within the LEON core. 
Furthermore, it has been adapted to work with the Linux driver 
for that UART to get a full coupling of peripheral with the system. 
The experimental results confirm the work done.

I. INTRODUCTION

Latest technological researches give rise to the development 
of  chips  for  high  density  integration  and  as  a  result  it  is 
possible to include an entire system on a single chip. This is 
known as SoC methodology. There are two technology options 
for SoC designs: FPGAs and ASICs. Implementing a SoC as 
an ASIC has the advantage of a better performance that can be 
achieved in terms of speed and power consumption. But from 
an industrial point of view the development and manufacture 
cost of ASICs is very high and it's only offset by large numbers 
of manufacturing. Instead, implementing a SoC on an FPGA, 
while it can decrease the performance, has a very similar cost 
per unit of the system manufactured. In addition, FPGAs have 
the advantage of being reconfigurable in real time, something 
that it's not possible with an ASIC, which allows the reuse of 
the same device for different tasks when each of those tasks do 
not require constant  attention. Thus, taking into account that 
most  of  the  industrial  applications  do  not  require  a  large 
number  of  units,  the  FPGA  becomes  a  very  appropriate 
solution for system implementation in these environments.

Moreover,  nearly  100%  of  the  SoC  are  built  around  a 
microprocessor  that  acts  as  the central  nucleus  of  the entire 
system. The choice of the microprocessor determines heavily 

it's  performance.  In  most  industrial  applications  is  not 
necessary to achieve a high processing capacity  but mainly a 
good reliability.  This means that the microprocessors that are 
used in such systems do not have to be very complex. There 
are a number of microprocessors that has been routinely used 
in the design of SoC solutions, both commercial cores, namely 
those that require the purchase of a license for its use, such as 
ARM [1], PowerPC [2], NIOS3 [3], MicroBlaze [4] or others, 
as  well  as  free  open  source  cores  such  as  LEON  [5]  or 
OpenRisc [6]. Commercial microprocessors are generally well 
tested and optimized, and have integrated tools that facilitate 
the  application  development  process.  However,  for  certain 
businesses  or  industries  the  high  cost  to  acquire  the  entire 
development  system  can  be  unfordable.  In  contrast,  open 
systems do not have the disadvantage of the cost. However, it 
is a widespread idea that it's very complex to work with these 
systems.

In  our  research  group  we  have  been  working  for  several 
years with open systems both from a hardware and a software 
perspective.  Currently,  we  have  a  development  platform for 
hardware  and  software  SoC  design  for  FPGAs  completely 
based  on open systems.  This  enables  us  to  ensure  that  it  is 
feasible to use such systems on industrial applications, assuring 
that the system have a development time and reliability more 
than acceptable on its final implementation.

Thus, in this study we pretend to show the work done on a 
project that aims to develop an embedded system to operate as 
a  remote  terminal  unit  (RTU)  for  a  network  of  industrials 
control application. 

This  project  is  supported  by  the   Andalusian  Regional 
Government  and  is  monitored  by  companies  of  our  local 
environment  as  Telvent  [7]  and  Guadaltel  [8].  Thus,  this 
platform  is  being  implemented  as  a  RTU  part  of  a 
comprehensive system of tracking and positioning, developed 
by Guadaltel. The RTU is intended to control the positioning 
through a GPS built into the system. For data communication 
both GSM and radio are used. Both GPS and communication 
systems will communicate with the microprocessor core of the 
RTU via a RS-232 port.



The development platform that is used to build this RTU is 
based  on  the  LEON  microprocessor.  On  top  of  this 
microprocessor  is  running  a  Linux  operating  system.  The 
LEON architecture it fully SPARC v8 compatible. This allow 
the implementation of a regular Linux distribution, like Debian 
[9],  on  an  embedded  system  based  on  the  LEON  core,  as 
described on some of our previous works [10]. This is a huge 
advantage  from  the  point  of  view  of  software  development 
because Debian Linux has a lot of software already developed 
and conforms a very easily deployable system. 

With  this  platform basis  (LEON microprocessor  + Linux-
Debian OS), the development of new peripherals for the system 
requires not only to have the hardware design, but also to build 
the kernel  driver  so the  OS can  actually  use  the  peripheral. 
Indeed, during the process of designing this RTU within this 
project,  there  was  a  need  to  incorporate  a  new driver  for  a 
standard RS-232 serial port, because the one that comes with 
the own LEON's  based Linux kernel  is  not  fully compatible 
and can not be used with physical devices for enhanced serial 
communications. In order to achieve this, it was decided to port 
an  open  design  of  the  controller  RS-232,  specifically,  one 
UART 16550 controller available in from OpenCores[11]. In 
order to include this design within our base platform, it  was 
necessary  to  perform  some  work  on  the  adaptation,  both 
hardware  and  software,  which  is  discussed  in  this  paper. 
Taking this into consideration, the organization of this paper is 
as follows: The next section is devoted to presenting the main 
features of the development platform based on LEON + Linux-
Debian. The third section shows the design methodology to be 

followed  in  order  to  adapt  the  UART  16550  IP  core  from 
OpenCores  into  our  development  platform.  In  the  fourth 
section, experimental results of the system implemented on the 
FPGA  are  shown.  The  final  section  summarizes  the  main 
conclusions of this work.

II. DEVELOPMENT WITH LEON MICROPROCESSOR CORE

LEON is a 32-bit microprocessor core which implements a 
RISC  architecture  conforming  to  the  SPARC  v8  definition 
[12].  It's  a  synthesizable  core  written  in  VHDL and can  be 
implemented both on FPGAs and ASICs. It's distributed under 
the terms of the GNU GPL license so it is an open hardware 
[13] and it is specifically designed for embedded applications.
It was originally developed by the European Space Agency and
nowadays it is maintained by Gaisler Research. Because of the
viral  nature  of  the  GPL  licensing  scheme,  Gaisler  recently
offers also an option to get a commercial license for LEON3 so
the  source  code  developed  within  a  project  with  this  core
doesn’t have to be distributed.

The  LEON3  32-bit  core  implements  the  full  SPARC  v8 
standard,  it uses big-endian byte ordering, has 32-bit internal 
registers,  72  different  instructions  in  3  different  instruction 
formats and 3 addressing modes (immediate, displacement and 
indexed). It  implements signed and unsigned multiply, divide 
and MAC operations and has a 7-stage instructions pipeline. It 
also  implements  two  separate  instruction  and  data  cache 
interfaces, known as Harvard Architecture [14].

Figure 1: LEON microprocessor system architecture 
(taken from [5])



A typical  LEON3 configuration  block  diagram for  a  SoC 
application is  shown in Figure  1.  Many of  those  blocks  are 
optional  and  can  be  removed  from the  model  our  concrete 
application implements.

The VHDL model  is  fully synthesizable  with most  of  the 
commonly synthesis tools, it  is very configurable and it uses 
the AMBA-2.0 AHB/APB on-chip buses, which makes it easy 
to extend its functionality. All this features makes LEON3 an 
ideal microprocessor for System-on-Chip applications.

SPARC v8 processor defines three main units, integer unit, 
floating-point unit and a custom co-processor, each one with its 
own 32-bit internal registers. The later two units are optional, 
not  mandatory  for  the  processor  to  be  SPARC  complaint. 
LEON3  implements  the  integer  unit  completely  and  the 
interfaces for the other two units in its core. LEON3 also can 
provide  a  generic  interface  for  a  custom  user-defined  co-
processor which will work in parallel with the main processor 
in order to increase performance.

LEON3 uses the AMBA-2.0 AHB [15] bus to connect  the 
main  processor  with  high-speed  controller  like  cache  and 
memory ones and other optional units like the onchip RAM or 
PCI or Ethernet interfaces.

Another  AMBA-2.0  bus  is  used  to  access  most  on-chip 
peripherals,  the APB bus. It's  optimized for simple operation 
and low-power consumption and it's connected to the AHB via 
the AHB/APB Bridge, which is the master of that bus. This bus 
is what we pretend to connect the UART 16550 core with.

LEON3  external  memory  access  is  provided  by  a 
programmable  memory  controller  with  interfaces  to  PROM, 
SRAM,  SSRAM,  DDR  &  SDRAM  chips,  providing  also 
memory mapped I/O operation.  The controller  can decode a 
map of up to 2 Gbytes.

Linux is supported in LEON by a particular release of the 
SnapGear Embedded Linux distribution, and it can be run two 
different  kernels,  regular  Linux  2.6  for  cores  with  Memory 
Management Unit (MMU) implemented in hardware, and also 
ucLinux  2.0,  a  modified  version  targeted  for  embedded 
processors  without  the  MMU.  It  includes  also  some  usual 
libraries and other tools to build embedded systems with Linux. 
It has support for the hardware multiplier/divider and also the 
hardware floating point unit.

On top of our core system we have implemented an open-
source Debian distribution with a Linux 2.6 kernel, with all the 
necessary drivers to interact with each single peripheral for the 
microprocessor. Finally, user-space applications running on the 
OS will interact with this system through the system calls the 
kernel and base libraries it provides. 

In order to get a full Linux distribution like Debian running 
on top of the FPGA development board, we have interfaced a 
Compact Flash card reader  to the FPGA and used it  via the 
standard IDE protocol as a regular hard disk, so the installation 
process worked the same as on a PC platform, and after that, 
also  the  regular  boot  process  for  everyday  use  during  the 
development of the whole application. The complete details for 

the process of integration of both Linux and LEON platforms is 
described in [10].

On  Figure  2 a  full  system  overview  is  shown,  from  the 
silicon pieces in the lower level up to the user applications on 
the top.

III. ADDING AN UART 16550 TO LEON PLATFORM

First of all, after some researching we decided to integrate an 
UART 16550 to LEON microprocessor to get a fully capable 
UART instead of the single one included in the core, and we 
planned to use one of freely available cores on the OpenCores 
community. In the first place, it should be necessary to adapt 
the UART 16550 from OpenCores to our SoC internal bus.

Most  peripherals  available  on  OpenCores  implement  the 
WishBone interconnection architecture,  a  open hardware bus 
solution, created and specified by OpenCores and commonly 
used  on  many  embedded  systems  applications.  But  LEON 
microprocessor, as mention before, uses the AMBA-2.0 AHB 
and APB buses internally.

In particular, we pretend to use the AMBA-APB bus for the 
new  UART  16550,  as  it  is  a  specific  bus  for  this  kind  of 
relatively  slow and  simple  peripherals.  The  architecture  and 
behavior of those buses are quite different in general, being the 
most complete and functional the WishBone, but in particular 
the writing and reading mechanism of the internal registers are 
very similar on AMBA-APB and WishBone. Both buses have a 

Figure 2: Hardware and Software global architecture



32-bit  address  bus  and  two  32-bit  independent  data  buses
independent for reading and writing operations with the target
peripheral.

In  order  to  create  an  interface  between  the  buses  it  is 
important to study the single transfer operations to peripherals 
on both buses. So, in example, a single read operation is shown 
in  Figure  3 and  Figure  4, for  Wishbone  and  AMBA-APB 
respectively.

After  a  preliminary  analysis,  it  is  clear  that  the  main 
difference between the two buses architecture lies in the signal 
ack_o from the WishBone bus. This signal  enables the slave 
bus  to  insert  waiting-cycles  in  the  operation,  i.e.  keep  the 

master device waiting for the acknowledgement from the slave 
peripheral until the operation ends.

However,  the  AMBA-APB bus  does  not  have  this  signal 
acknowledge,  so  every  operation  have  always  the  same 
duration. This implies that the master device never have to wait 
for the slave peripheral, which must end the operation within 
the clock cycles limitation without exception. This difference is 
essential when interfacing the communication between the two 
buses. Thus, the UART 16550 from OpenCores behaves as a 
bus slave peripheral on its operations, with the peculiarity that 
makes use of the signal acknowledge readings in the transfers, 
i.e. inserting wait states to the master. This UART behaviour
prevents  us  from doing  a  simple  signal  connection  between
both  buses,  only  supported  by  simple  combinational  logic.
Therefore, in order to fulfil the AMBA-APB bus specifications,
it  is  necessary  to  make  some  major  changes  in  the
implementation of the UART interfacing to Wishbone bus, so
we can remove the need for the insertion of the waiting states
cycles.

Reviewing  the  implementation  of  the  Wishbone  interface 
module in the UART core, we noticed that the main cause of 
these  undesired  wait  states  falls  on the  sampling of  all  the 
input  signals.  This  sampling  and  subsequent  storage  in 
intermediate  registers,  causes  a  single  clock  cycle  delay  at 
least. So we have to change this behaviour by eliminating this 
sampling, and taking immediately the data received when the 
control signals ask the peripheral to do so.

It is also necessary to do a second modification, because of 
the disparity between the size of the actual data bus (32-bits) 
and the size of the UART control registers (8-bits). So, in our 
design the byte address of each word is aligned with the least 
significant part of data bus. Thus, addressing for these registers 
will  be  made by  transferring  32  bits  in  each  access  and  so 
address for the next registered will be 4 bytes above. Therefore, 
on each access to our peripheral registers we have to ignore the 
two least significant bits of the address bus that arrives from 
the AMBA-APB.
From the  standpoint  of  hardware  description  language,  It  is 
necessary  to  modify  the  peripheral  core  to  include  a  higher 
level wrapper which supply this functionality. This entity will 
help us make sense of alignment between the signals of both 
buses and to generate information for Plug & Play system that 
LEON introduces. The majority of connections are conducted 
in a direct way, except for some control signals such as reset 
signal  to  be  inverted  or  the  generation  of  signals  stb_i and 
cyc_i,  which  control  the  transfer  cycle  and  the  cycle  bus 
respectively  and  will  be  produced  by  the  device  signal 
selection apb_psel.

Plug & Play information added to the system will enable the 
identification  and  allocation  map  directions  peripherals 
automatically.

Finally we must not forget connecting the interrupt signal of 
the UART with a free line of the interrupt controller system. 
In  the  software  side,  this  UART model  is  supported  by the 
regular Linux kernel driver called 8250.c. This driver is ready 
for  various  architectures  like  x86,  but  not  for  the  SPARC 
architecture,  implemented  by  the  Leon  microprocessor. 

Figure 3: WishBone Single-Read operation 
(taken from [16])

Figure 4: AMBA-APB Read operation 
(taken from [15])



Therefore it is necessary to modify and adapt the driver for an 
usable operation.

First, we must modify the building scripts within the kernel 
sources  to  allow  the  inclusion  of  this  driver  in  the 
configuration.  Once that  is  completed,  we have  to adapt  the 
driver source files, starting from the file of register definitions, 
called serial_reg.h. We must change de UART register offsets 
so it because the AMBA-APB to WishBone address adapter is 
routed with 2  bits displacement, as discused above, we have to 
update it for this purpose (multiplying each register address by 
four).

Moreover, the behaviour of this driver is to try to locate the 
UART peripheral  by probing  the  addressing  where  they are 
usually found for each system architecture. This information is 
contained  in  the  file  serial.h,  in  the  asm directory  of  the 
specific  architecture.  For  example,  for  x86  it  contains  four 
addresses  corresponding  to  the  ports  from COM1 to  COM4 
(called /dev/ttyS0 to S3 in Linux), with map addresses ranging 
from 0x3F8 for COM1 to 0x2E8 for COM4.

At  this  point  we should  choose  between  using  the  search 
functions  for  system  devices  provided  by  the  Plug  &  Play 
mechanism,  or  by  allocating  a  lookup  table  with  fixed 
addressing for our new UART 16550 peripheral. For simplicity 
the  second  option  was  implemented,  although  it  would  be 
relatively simple to use the first option.

The last source file to amend is the main source driver, the 
file  8250.c,  where,  first,  we had to change the functions for 
reading  and  writing  in  the  system  bus.  These  C  language 
functions we are changing are  outb and  inb, used for writing 
(and reading) bytes to (and from) I/O addressing. The changes 
are needed to fulfil the writing procedure on the AMBA-APB 
bus,  built  within  the  Leon  core.  These  functions  are  called 
leon_bypass_load_pa and  leon_bypass_store_pa which  are
located in the  leon.h  source file.  Its  main task is to perform
non-cached  32-bit  readings  and  writings  directly  on  the 
AMBA-APB bus.

A remarkable aspect is to modify the parameter that indicates 
the clock frequency that govern the UART, as it is typically 

fitted with 1.8432 MHz clock (limiting the top speed of  the 
UART to 115200 bauds), so that the driver assumes that it is 

set to that value. In our design it has been modified to 40 MHz, 
which is the main clock speed used by the SOC.

Finally, and perhaps the deepest change, was the bypass of 
routine for UART type auto detection, which is linked to the 
specific input-output addressing. This is done so because the 
UART16550 of OpenCores does not include a scratch register 
that is used by the driver solely for the purpose of determining 
the  exact  model  UART  available  on  the  system.  Thus,  we 
forced  the  driver  to  detect  the  UART  as  a  NS16550A 
compatible one.

IV.EXPERIMENTAL RESULTS

After  a  successful  compilation  and  installation,  the  Linux 
kernel  have  automatically  detected  and  configured  the  new 
device.  As  shown  on  Figure  6,  where  a  snapshot  of  debug 
information  is  included.  information  relating  to  the  UART 
shown by the Linux kernel in.

The results are quite satisfactory, taking all available features 
and  characteristics  of  UARTs  from  desktops,  such  as  flow 
control lines and modem interaction.

Sending and receiving is done in a proper manner on the full 
range  of  standard baudrates.  On Figure  5 we show a screen 
capture from the oscilloscope on the TX signal  while a byte 

Leon3Debian:~# dmesg | grep  "NS16550A" -C 5
grlib apbUART: system frequency: 40000 khz, baud rates: 38400 38400
ttyS0 at MMIO 0x80000100 (irq = 2) is a Leon
ttyS1 at MMIO 0x80000900 (irq = 3) is a Leon
Serial driver 16550 Opencore/APB, by D.T.E/U.S.
Looking for UART 2 as ttyS2: I/O address 0x80000c00
serial8250: ttyS2 at I/O 0x80000c00 (irq = 11) is a NS16550A
Looking for UART 3 as ttyS3: I/O address: 0x80000d00
serial8250: ttyS3 at I/O 0x80000d00 (irq = 13) is a NS16550A
loop: loaded (max 8 devices)
Probing GRETH Ethernet Core at 0x80000b00
10/100 GRETH Ethermac at [0x80000b00] irq 12. Running 100 Mbps full
duplex
PHY: Vendor 4de   Device e    Revision 2
Uniform Multi-Platform E-IDE driver Revision: 7.00alpha2
Leon3Debian:~#

Figure 6: Debugging information shown on system boot

Figure 5:  Tx signal on character transmission through the UART 16550.



was sent by the UART with a 115200 bauds configuration, 8 
data bits, no parity and 1 stop bit (that's 115200@8N1).

This  speed  can  indeed  be  easily  increasedby  writing  a 
smaller value in the register divider clock inside the UART.

V. CONCLUSIONS

This  paper  has  presented  the  development  of  a  hardware 
platform  implemented  on  FPGA.  The  main  feature  of  this 
platform  is  that  is  based  on  open  designs.  Specifically,  the 
central  part  of  the  system  is  the  soft  core  microprocessor 
LEON. On the software level, a Linux kernel it's running with 
the typical  software  installation of  a  full  Debian  distribution 
system. This adds another great feature to this platform, as you 
can get a lot of functional software in a simple way, by using 
the complete, but yet very easy to setup, installation procedure 
of these types of Linux distributions.

Moreover, it has been shown the method to be followed to 
add new peripherals on this platform introducing the example 
of the UART 16550. For this UART, we have employed an 
open hardware design, and we have presented the changes in 
the hardware and software that has been necessary to make it 
fully functional, including the operating system interfacing.

The  main  conclusion  to  highlight  from this  work  is  that, 
indeed,  it  is  feasible  to  use  open  designs  to  implement 
industrial  systems  with  the  advantages  that  comes  from the 
standpoint  of  the  cost  of  development  and  extended 
functionality without prejudice to the performance.
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