A computational approach to free divisors and logarithmic \mathcal{D} -modules

J.M. Ucha and F.J. Castro-Jiménez*

Abstract

We apply algorithmic techniques for comparing some \mathcal{D} -modules associated to a kind of divisors in \mathbb{C}^n .

Introduction

We will work on some (analytic) \mathcal{D} -modules associated to a germ of holomorphic function on \mathbb{C}^n . We propose four natural questions on the comparison of these \mathcal{D} -modules. Although our general settings are in the analytic category, we prove that if the input is a complex polynomial in n variables then the associated objects are computable.

Let us denote by $\mathcal{O} = \mathcal{O}_{\mathbf{C}^n}$ the sheaf of holomorphic functions on $X = \mathbf{C}^n$. Consider a point $x \in \mathbf{C}^n$. Denote by $Der(\mathcal{O}_x)$ the \mathcal{O}_x -module of \mathbf{C} -derivations of \mathcal{O}_x (the elements in $Der(\mathcal{O}_x)$ are called *vector fields*).

Let $D \subset X$ be a divisor and $x \in D$. A vector field $\delta \in Der(\mathcal{O}_x)$ is said to be logarithmic with respect to D if $\delta(f) = af$ for some $a \in \mathcal{O}_x$, where f is a local (reduced) equation of the germ $(D,x) \subset (\mathbb{C}^n,x)$. The \mathcal{O}_x -module of logarithmic vector fields (or logarithmic derivations) is denoted by $Der(\log D)_x$. This yields a \mathcal{O} -module sheaf denoted by $Der(\log D)$.

Definition 0.1. ([13]) The divisor D is said to be *free at the point* $x \in D$ if the \mathcal{O}_x -module $Der(\log D)_x$ is free. The divisor D is called *free* if it is free at each point $x \in D$.

Smooth divisors and normal crossing divisors are free. By [13] any reduced germ of plane curve $D \subset \mathbf{C}^2$ is a free divisor.

By Saito's criterium [13], $D \equiv (f = 0) \subset \mathbf{C}^n$ is free at a point x if and only if there exist n vector fields $\delta_i = \sum_{j=1}^n a_{ij} \partial_j$, $i = 1, \ldots, n$, such that $\det(a_{ij}) = uf$ where u is a unit in \mathcal{O}_x . Here ∂_j is the partial derivative $\frac{\partial}{\partial x_j}$ and a_{ij} is a holomorphic function in \mathcal{O}_x .

^{*}Partially supported by DGESIC and FQM-218.

1 Logarithmic \mathcal{D} -modules

Let us denote by $\mathcal{D} = \mathcal{D}_X$ the sheaf (of rings) of linear differential operators with holomorphic coefficients on $X = \mathbb{C}^n$.

A local section P of \mathcal{D} (i.e. a linear differential operator) is a finite sum $P = \sum_{\alpha} a_{\alpha} \partial^{\alpha}$ where $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbf{N}^n$, a_{α} is a local section of \mathcal{O} and $\partial = (\partial_1, \dots, \partial_n)$ with $\partial_i = \frac{\partial}{\partial x_i}$ in some local chart.

For any divisor $D \subset \mathbf{C}^n$ we denote by $\mathcal{O}[\star D]$ the sheaf of meromorphic functions with poles along D. It follows from the results of Bernstein-Björk ([1], [2]) on the existence of the b-function for each local equation f of D, that $\mathcal{O}[\star D]$ is a left coherent \mathcal{D} -module. Kashiwara proved that the dimension of its characteristic variety has dimension n and then that $\mathcal{O}[\star D]$ is holonomic, [11].

We follow [3] and [4] to define two \mathcal{D} -modules associated to any divisor D. We consider first the (left) ideal $I^{\log D} \subset \mathcal{D}$ generated by the logarithmic vector fields $Der(\log D)$ (see 0.1). On the other hand, in [15] (see also [9]) L. Narváez suggested the study of the (left) ideal in \mathcal{D} , denoted by $\widetilde{I}^{\log D}$, and generated by the set $\{\delta + a \mid \delta \in I^{\log D} \text{ and } \delta(f) = af\}$. Let us write $\widetilde{M}^{\log D} = \mathcal{D}/\widetilde{I}^{\log D}$.

There exists a natural morphism $\phi_D: \widetilde{M}^{\log D} \to \mathcal{O}[\star D]$ defined by $\phi_D(\overline{P}) = P(1/f)$ where \overline{P} denotes the class of the operator $P \in \mathcal{D}$ modulo \widetilde{I}^{\log} . The image of ϕ_D is $\mathcal{D}^{\frac{1}{f}}$, i.e. the \mathcal{D} -submodule of $\mathcal{O}[\star D]$ generated by 1/f.

As a natural question we ask for the relationship between $M^{\log D}$, $\widetilde{M}^{\log D}$ and $\mathcal{O}[\star D]$. We will listed below some partial answers to this question.

When D is defined by a polynomial $f \in \mathbf{C}[x_1, \dots, x_n]$, then the ideals $I^{\log D}$ and $\widetilde{I}^{\log D}$ are computable. We simply compute a system of generators (over the polynomial ring $\mathbf{C}[x_1, \dots, x_n]$) of syzygies of (f_1, \dots, f_n, f) where $f_i = \frac{\partial f}{\partial x_i}$. In this case both ideals $I^{\log D}$ and $\widetilde{I}^{\log D}$ are considered in the Weyl algebra $A_n(\mathbf{C})$, and this is enough because the inclusion $A_n(\mathbf{C}) \subset \mathcal{D}$ is flat.

We say that a free divisor D is of Spencer type if the complex

$$\mathcal{D} \otimes_{\mathcal{O}} \wedge^{\bullet} Der(\log D) \to M^{\log D} \to 0$$

(introduced in [4]) is a (locally) free resolution of $M^{\log D}$ and if this last \mathcal{D} -module is holonomic.

Theorem 1.1. [10] Suppose D is of Spencer type. Then $(M^{\log D})^* \simeq \widetilde{M}^{\log D}$.

Here $(M^{\log D})^*$ is the dual \mathcal{D} -module of $M^{\log D}$.

Theorem 1.2. ([15, 9]) In dimension 2. The morphism ϕ_D is an isomorphism if and only if D is a quasi-homogeneous plane curve.

Theorem 1.3. [10] Suppose the divisor $D \subset \mathbf{C}^n$ is free and locally quasi-homogeneous. Then the morphism ϕ_D is an isomorphism (so, $\widetilde{M}^{\log D}$ and $\mathcal{O}[\star D]$ are isomorphic as \mathcal{D} -modules).

2 Open problems trough a worked example

Here we will explicitly compare logarithmic \mathcal{D} -modules and $\mathcal{O}[\star D]$.

We will treat here the divisor $D \subset \mathbf{C}^3$ whose local equation at (0,0,0) is given by f=0 with

$$f = x(x^2 - y^3)(x^2 - zy^3).$$

This divisor is (globally) free and $\delta_1, \delta_2, \delta_3$ form a (global) basis of Der(log D), where

$$\begin{array}{rcl} \delta_1 & = & \frac{3}{2}x\partial_x + y\partial_y \\ \delta_2 & = & (y^3z - x^2)\partial_z \\ \delta_3 & = & (-\frac{1}{2}xy^2)\partial_x - \frac{1}{3}x^2\partial_y + (y^2z^2 - y^2z)\partial_z, \end{array}$$

whose coefficients verify that

$$\begin{vmatrix} \frac{3}{2}x & y & 0\\ 0 & 0 & y^3z - x^2\\ -\frac{1}{2}xy^2 & -\frac{1}{3}x^2 & y^2z^2 - y^2z \end{vmatrix} = -\frac{1}{2}f.$$

This last equality implies, by Saito's criterium [13], that $Der(\log D)$ is a free module (of rank 3) over the ring \mathcal{O} of convergent power series in 3 variables. In fact, the global $Der(\log D)$ is in this case a free module (of rank 3) over the ring R of polynomials in three variables and we have shown a basis. However, if a global divisor D in \mathbb{C}^3 (i.e. a divisor D defined by a polynomial f) is free at each point of \mathbb{C}^3 , it is locally free and then free over the polynomial ring, by Quillen-Suslin theorem. So, it is possible to find a global basis of $Der(\log f)$ as a R-module, using for example the Logar-Sturmfels algorithm.

To obtain $(M^{\log D})^* \simeq \widetilde{M}^{\log D}$ we have to follow two steps:

- Step 1: Check if $M^{\log D}$ is holonomic. This computation could be made with [14]. The interest of this question is evident: if $M^{\log D}$ is not holonomic, the computation of its dual could not be managed as we will do.
- Step 2: Compute a free resolution of $M^{\log D}$ with Gröbner basis computation of syzygies. Check if D is of Spencer type. If this happens then duality holds by [10].

We return to our example. It verifies these properties. The module $Syz(\delta_1, \delta_2, \delta_3)$ is generated by the syzygies obtained from the commutators $[\delta_i, \delta_j]$. We have $Syz(\delta_1, \delta_2\delta_3) = \langle \mathbf{s}_{12}, \mathbf{s}_{13}, \mathbf{s}_{23} \rangle$ where

$$\begin{array}{rcl} \mathbf{s}_{12} & = & (-\delta_2, \delta_1 - 3, 0) \\ \mathbf{s}_{13} & = & (-\delta_3, 0, \delta_1 - 2) \\ \mathbf{s}_{12} & = & (0, -\delta_3 - y^2 z, \delta_2). \end{array}$$

On the other hand, the module $Syz(\mathbf{s}_{12},\mathbf{s}_{13},\mathbf{s}_{23})$ is generated by the element \mathbf{r} :

$$\mathbf{r} = (-y^2z^2\partial_z + y^2z\partial_z + \frac{1}{2}xy^2\partial_x - y^2z + \frac{1}{3}x^2\partial_y, \quad y^3z\partial_z - x^2\partial_z, \quad -y\partial_y - \frac{3}{2}x\partial_x + 5).$$

This is the element required to have the Spencer type resolution so, as we have said, duality holds because our divisor f = 0 is of Spencer type.

As another consequence of this fact, we have in this example, by [4]

$$\Omega^{\bullet}(\log D) \simeq Sol(M^{\log D})$$

here $\Omega^{\bullet}(\log D)$ is the complex of logarithmic differential forms with respect to f and Sol() means the solution complex of the corresponding module.

Once duality is proved, a new problem is to obtain the least integer root α_0 of the b-function because $\mathcal{O}[\star D] \simeq \mathcal{D}1/f^{\alpha_0}$ [11]. If the least integer root is -1, then

$$\mathcal{O}[\star D] \simeq \mathcal{D} \cdot 1/f \simeq Ann_{\mathcal{D}}(1/f).$$

As in this example $\widetilde{I}^{\log D} = Ann_{\mathcal{D}}(1/f)$ then Logarithmic Comparison Theorem would hold:

$$\begin{split} &\Omega^{\bullet}[\star D] \simeq DR(\mathcal{O}[\star D]) \simeq DR(\widetilde{M}^{\log D}) \simeq \\ &\simeq DR((M^{\log D})^{*}) \simeq Sol(M^{\log D}) \simeq \Omega^{\bullet}(\log D) \end{split}$$

here DR() means the de Rham complex.

The computations of the global b-function of f and $Ann_{\mathcal{D}}(1/f)$ could be made with [14] again, that is, using the algorithms of [12].

So, as we have seen, the following problems arise naturally (for a general divisor D in \mathbb{C}^n):

- 1. If D is free, is $M^{\log D}$ holonomic?
- 2. If D is free, does $M^{\log D}$ admits a Spencer type resolution?
- 3. Are there free, not of Spencer type divisors such that duality holds?
- 4. When the ideals $\widetilde{I}^{\log D}$ and $Ann_{\mathcal{D}}(1/f)$ coincide?

Complexity related problem.- Obtaining the *b*-function and the annihilator of $1/f^{\alpha}$ could be a problem of a big complexity. Try the family $x^p + y^q + xy^{q-1} + zx^r$ where $4 \le p < q \le r$.

Help.- When the complexity of obtaining the *b*-function or $Ann_{\mathcal{D}}(1/f)$ is intractable, we have an auxiliary tool to check if $\mathcal{O}[\star D] \simeq \widetilde{M}^{\log D}$: compute the $Ext^n_{\mathcal{D}}(\widetilde{M}^{\log D}, \mathcal{O})$ and try to find an argument to assure that is not zero. As $Ext^n_{\mathcal{D}}(\mathcal{O}[\star D], \mathcal{O}) = 0$ by the regularity of \mathcal{O} , this is an effective way to compare this modules. Sometimes the differential equations are not that difficult to solve! ([15]).

References

- [1] Bernstein, I. N., Analytic continuation of generalized functions with respect to a parameter, Functional Anal. and its Applications 6, (1972), p. 273-285
- [2] Björk, J-E. Rings of Differential Operators. North-Holland, Amsterdam 1979.
- [3] Calderón-Moreno, F.J. Operadores diferenciales logarítmicos con respecto a un divisor libre. Ph.D. Thesis. June 1997.
- [4] Calderón-Moreno, F.J. Logarithmic Differential Operators and Logarithmic De Rham Complexes relative to a Free Divisor. Ann. Sci. E.N.S., 4^e série, t. 32, 1999, p. 701-714.
- [5] Calderón-Moreno F.J., D. Mond, L. Narváez-Macarro and F.J. Castro-Jiménez. Logarithmic Cohomology of the Complement of a Plane Curve. Preprint, University of Warwick, 3/1999.
- [6] Calderón-Moreno, F.J. and Narváez-Macarro, L. Locally quasi-homogeneous free divisors are Koszul free. Prepub. Fac. Matemáticas, Univ. Sevilla, n. 56; Oct. 1999.
- [7] Calderón-Moreno, F.J. and Narváez-Macarro, L. The module Df^s for locally quasihomogeneous free divisors. Prepub. Dept. Álgebra, Univ. Sevilla, n. 4, May, 2000.
- [8] Castro-Jiménez, F.J., Mond, D. and Narváez-Macarro, L. Cohomology of the complement of a free divisor. Trans. Amer. Math. Soc. 348 (1996), no. 8, 3037–3049.
- [9] Castro-Jiménez, F.J., Ucha-Enríquez, J.M. Explicit comparison theorems for D-modules. To appear in Journal of Symbolic Computation.
- [10] Castro-Jiménez, F.J., Ucha-Enríquez, J.M. Free divisors and duality for *D-modules*. ArXiv.math.AG.0103085; March 14, 2001
- [11] Kashiwara, M. On the holonomic systems of linear differential equations II, Invent. Math., 49, 1978, 2, 121–135
- [12] Oaku, T. Algorithms for the b-function and D-modules associated with a polynomial. J. of Pure and Appl. Alg., 117 & 118:495-518, 1997.
- [13] Saito, K. Theory of logarithmic differential forms and logarithmic vector fields. J. Fac Sci. Univ. Tokyo 27:256-291, 1980.
- [14] Takayama, N. Kan: a system for computation in Algebraic Analysis. Source code available for Unix computers from ftp.math.kobe-u.ac.jp, 1991.
- [15] Ucha-Enríquez, J.M. Métodos constructivos en álgebras de operadores diferenciales. Tesis Doctoral, Universidad de Sevilla, 1999.
- F.J. Castro-Jiménez and J.M. Ucha; Depto. de Álgebra, University of Sevilla; Apdo. 1160, E-41080 SEVI-LLA (Spain); e-mail:{castro, ucha}@algebra.us.es