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Bubbling in Unbounded Coflowing Liquids
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An investigation of the stability of low density and viscosity fluid jets and spouts in unbounded
coflowing liquids is presented. A full parametrical analysis from low to high Weber and Reynolds
numbers shows that the presence of any fluid of finite density and viscosity inside the hollow jet elicits a
transition from an absolute to a convective instability at a finite value of the Weber number, for any value
of the Reynolds number. Below that critical value of the Weber number, the absolute character of the
instability leads to local breakup, and consequently to local bubbling. Experimental data support our
model.

DOI: 10.1103/PhysRevLett.96.124504 PACS numbers: 47.20.�k, 47.27.wg, 47.55.D�
Bubbles have always stimulated scientific curiosity
[e.g., [1] and references therein], but now microbubbles
have become a hot research icon [e.g., [2–8], and refer-
ences therein] for their increasing number of extraordinary
applications in the fields of biomedicine [e.g., in diagnosis,
as potential gene therapy vectors [2], to convey tiny
amounts of therapeutic gases in the bloodstream without
the risk of embolism, etc.], advanced physics studies [bub-
ble sonoluminiscence [9], damping agents in neutron spal-
lation sources, etc.], chemical engineering, and as a strong
allied in environmental protection [e.g., microbubble drag
reduction [3,10] in marine transport, dissolved air flotation
water depuration techniques, etc.].

The formation of micron-sized bubbles in a coflowing
liquid-gas stream forced through minute orifices and mi-
crofluidic contractions has been the subject of previous
experimental and theoretical studies [4–7,11]. In [6], the
authors showed that depending on the Weber or Reynolds
numbers range, monodisperse, bidisperse, or polydisperse
microbubbling may occur. Besides, in the low Reynolds
regime, both analytical [12] and experimental [13] studies
support the existence of steady solutions for the formation
of extremely thin and long fluid threads in a viscous
coflowing liquid flow. Yet, fundamental questions remain
unanswered: how stable is a long fluid filament in a co-
flowing liquid for any combination of densities, viscosities,
surface tension, and coflow velocity? Is there a bubbling/
jetting transition like in liquid jets [e.g., [14] ]?

To address these questions, we studied the convective or
absolute instability of capillary jets in a coflowing un-
bounded heavier and more viscous liquid medium, over a
wide range (6 orders of magnitude) from low to high
Reynolds (Re) and Weber (We) numbers. In contrast to
what occurs to liquid jets [15], we found that hollow jets
are absolutely unstable, leading to local bubbling for all
values of the Reynolds and Weber numbers of the coflow-
ing liquid. However, the presence of any other fluid with
finite viscosity and density inside the jet elicits a transition
of the instability from absolute to convective for a finite
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fRe;Weg pair. This transition corresponds to the bubbling-
jetting crisis similar to the dripping-jetting transition for
capillary liquid jets [14]. Experiments support our findings,
which delimit for the first time the wide parametrical realm
of microbubbling in unbounded coflowing liquids.

Theoretical model and dispersion relation.—We studied
the spatial-temporal response to small perturbations of an
infinite cylindrical jet of an incompressible fluid (density
�g and viscosity �g) with radius Rj in an immiscible
unbounded liquid of larger density �l and viscosity �l,
such that � � �l=�g > 10 and � � �l=�g > 10. � is the
surface tension between both fluids, which move with a
uniform velocity U relative to the observer in the z direc-
tion. Reynolds and Weber numbers are defined as Re �
�lURj=�l and We � �lU2Rj=�, respectively. We made
the small perturbations proportional to ei�kz�!t�, where
wave frequency !, time t, wave number k, and streamwise
coordinate z were made dimensionless with U=Rj, Rj=U,
1=Rj, and Rj, respectively. The general reader might go
directly to the theoretical results section.

The full conservation equations of mass and momentum
of the incompressible fluids flow relative to the observer
[see, for example, [15] ], together with the boundary con-
ditions at the jet surface (including normal and tangential
stress balance) and at infinity, lead to the following disper-
sion relation between the perturbation wavelength ! and
its wave number k:
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where ‘‘viscous’’ wave numbers are defined for both inner
fluid and outer liquid as

k2
g � k2 � iRe !̂; k2

l � k2 � i���1 Re !̂; (2)

and functions N and M are expressed as
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FIG. 1. Absolute or convective instability transition loci in the
fRe;Weg plane for different values of f�;�g. Regions below
(above) the curves correspond to absolutely (convectively) un-
stable configurations. The region of absolute (convective) insta-
bility corresponds to bubbling (jetting).
I0, I1,K0, andK1 stand for the modified Bessel functions of
order 0 and 1. Funada and Joseph [16] obtained an equiva-
lent expression for a temporal analysis. Here, consistently
with a spatial-temporal stability analysis, we considered
both k and ! to be complex variables. Following the well-
established spatial-temporal formalism [e.g., [17–21] ] to
describe the absolute or convective character of axisym-
metric instabilities in the fRe;We; �; �g parametrical
space of our problem, we sought solutions of d!=dk � 0
in our dispersion relation (1) with nonzero imaginary parts
of ! and k. We define the system to be absolutely unstable
if there is at least one solution of the dispersion equation
satisfying d!=dk � 0 (zero group velocity) with Im �k�<
0, and Im �!�> 0. Conversely, the system is convectively
unstable if all possible solutions of the dispersion equation
with zero group velocity have Im �k�< 0, and Im �!�< 0.
We applied special care to choose all solutions whose
spatial branches departing from the saddle point d!=dk �
0 originate from distinct halves of the k plane [[20],
p. 484], i.e., the only ones providing the absolute instability
growth rate.

We also used a spectral numerical code developed for
our problem. This code is a based on that developed in [22]
for the stability analysis of swirling flows in pipes. Here,
the linearized equations were discretized in the r direction
using Chebyshev spectral collocation points (ni points for
the inner fluid and ne points for the outer one). For a given
frequency !, we linearized the nonlinear (quadratic) ei-
genvalue problem for the wave number k using the linear
companion matrix method described in [23]. We solved
numerically the resulting linear eigenvalue problem with
the help of an eigenvalue solver subroutine (DGVCCG from
the IMSL library) which provides the entire spectrum of
eigenvalues and eigenfunctions. Spurious eigenvalues
were ruled out by comparing the computed spectra ob-
tained for different values of the number of collocation
points. The use of the numerical procedures allowed us:
(i) to check that both analytical and numerical techniques
render the same results, and (ii) to use the numerical
spectral technique in further studies to investigate the
influence of other effects not considered here, such as the
existence of other basic velocity profiles.

Theoretical results.—The causal link of the bubbling-
jetting transition with the onset of absolute instability is
already well established [see, for example, [21] and refer-
ences therein on this particular end]. Jetting occurs when
the jet is convectively unstable to all wave solutions, while
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bubbling is elicited by the absolutely unstable response to
at least one wave solution, whose amplitude grows locally
without bounds. Here, for the sake of brevity, we only re-
port the solution for each combination of fRe;We; �; �g
with the largest temporal growth rate Im �!�> 0, i.e., the
one that dominates the local breakup dynamics. In Fig. 1
we plotted the loci in the fRe;Weg plane for which Im �!�
changes its sign. The line formed by these points mark the
transition from a convective to an absolute (C=A) character
of the instability for a given set of values of f�;�g.

Circles in Fig. 1 show the critical We numbers found
with the numerical code for � � � � 1000 (we used ni �
31 and ne � 71 collocations points). There is a close
agreement with the results obtained by solving the analyti-
cal dispersion relation (1). From the results above, given
f�;�g, one obtains that for small Re the C=A transition
depends on the capillary number Ca �We=Re only. For
example, for � � �, this results in an expression for the
critical capillary number as Ca	 � 0:139�1=2 for � above
100. Below this critical capillary number, the instability is
absolute (bubbling).

In the asymptotic limit of vanishing viscosity and den-
sity of the inner fluid (�;�! 1), the jet is absolutely
unstable for any combination of values of the Reynolds and
Weber numbers, which means that bubbling will be the
norm for any finite Re and We. Alternatively, when the
viscosity and density of the inner fluid are nonzero, for any
finite value of the Reynolds number there is a finite value of
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FIG. 2. Bubbling to jetting. Liquid: ethanol-water (50=50% vv,
� � 0:002 Pa � s, � � 0:023 N �m�1), T � 28 �C. Orifice
diameter D � 200 �m. (a) Ql 
 13 mL=min , Qg 


0:65 mL=min ; (b) Ql 
 23 mL=min , Qg 
 0:25 mL=min ;
(c) Ql 
 23 mL=min , Qg 
 0:5 mL=min . The arrow indicates
the flow direction; i.e., the nozzle is at the left of the photo-
graphs.
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FIG. 3. Experimental values of fRe;Weg for four selected
liquids (circles: f� � 760; � � 68g; diamonds: f� � 800; � �
324g; triangles: f� � 850; � � 544g; squares: f� � 746; � �
139g) from data in Ref. [26], and their corresponding C=A
instability transition curve under the assumption that Rj  D.
The three square points (a), (b), and (c) correspond to the
experiments given in Figs. 2(a)–2(c), respectively.
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the Weber number at which the transition from absolute to
convective instability takes place. Analogies with other
capillary phenomena involving convective or absolute in-
stability can be found in the literature [see, for example,
[24,25] ]. From all these studies, one may conclude that the
absolute instability sets in when two circumstances coex-
ist: (i) the system is unstable to a range of perturbations
wavelengths, a feature that both convective and absolute
instabilities share, and (ii) the upstream propagation veloc-
ity of at least a certain perturbation waveform just over-
comes the convective velocity downstream. Consequently,
an increase of the Reynolds and Weber numbers would
foster a transition from absolute to convective instability
by favoring convective speed against capillary growth. Our
theoretical results agree with these general conclusions, as
long as the fluid surface supporting the waves does not
enclose a void (e.g., a hollow jet, with no fluid inside), i.e.,
as long as the capillary jet is filled with any fluid, which is
the physically realistic case. Like in other fundamental
phenomena in fluid dynamics (e.g., high Reynolds flows
versus potential flows), this raises a severe caution when
drawing physical conclusions from asymptotic limits out
of the full expressions (1)–(4).

Experimental testing.—Here we used the experiments
reported in Refs. [7,26], where a gaseous jet was pulled by
a stream of liquid flowing through a coaxial orifice of
diameter D (flow focusing technique). Both the liquid
and the gas issued from a stagnant region upstream of the
orifice, where pressure is kept constant and equal for both
fluids. The undisturbed gaseous jet diameter is calculated
under the assumption that the gas velocity inside the un-
disturbed gas jet does not depart significantly from that of
the coflowing liquid, which yields dj ’ �4Qg=��U��0:5. We
expect this approximation to be more accurate for smaller
jet radii. In fact, owing to the limited values of the inner
flow Reynolds number (here, from 5 to 50), a viscosity
dominated flow regime would be very soon reached inside
any developing jet, if such existed. Since the external
unperturbed pressure is constant in our model (and in the
experiments, after the exit orifice), any excess (defect)
from the plug flow coming from a negative (positive)
pressure gradient would involve a downstream increase
(decrease) of the jet radius, which immediately would
flatten the velocity profile by continuity arguments.

Although the onset of convective instability is often
blurred by unsteadiness and chaotic bubbling [e.g., [6] ],
we have occasionally observed in experiments what seems
a clear transition to jetting, as reported in Fig. 2. Note that
given � and �, for Re below 100, C=A transition depends
on the capillary number only; interestingly, in the experi-
ment of Fig. 2, capillary velocity �=�
 11:5 m � s�1

seems to be just overcome by convective speed U ’
4Ql=��D2� � 12:2 m � s�1 when jetting takes place
[Figs. 2(b) and 2(c)], while the former is larger than the
latter (U � 6:9 m � s�1) in Fig. 2(a) (bubbling), which
allows a range of capillary waves to propagate upstream.
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Although this is rather qualitative, it is consistent with our
theoretical findings and physical causality.

In Fig. 3 we plotted the experimental microbubbling
data points for three representative liquids (f� � 760; � �
68g, f� � 800; � � 324g, and f� � 850; � � 544g) from
Ref. [26], as well as the experiment of Fig. 2. Experimental
points are located below the calculated Weber numbers for
the transition from absolute to convective instability (i.e.,
they fall into the theoretical region of absolute instability).
This is believed to support our model and to strengthen the
causality linking absolute instability to bubbling.

It is worth emphasizing that the experimental issuing gas
jets very presumably broke up before reaching the relaxed
plug velocity profile in the bubbling regime. This fact does
not invalidate the main conclusions from this study: on the
contrary, for every bubbling experiment reported, if a gas
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FIG. 4. (1) and (2) illustrative experimental configuration to
produce a gas jet in an extensional viscous flow. A liquid
(glucose syrup � ’ 7 Pa � s) is forced to flow out of a capillary
tube with 1 mm O.D. Inside it, a concentric tube with 0.4 mm
O.D. feeds a continuous stream of gas. In this case, the liquid
domain is not infinite since the extensional flow is produced by
an external focusing gas forced through a 800 �m orifice
aligned with the concentric tubes at an offset adjustable distance
from 0.5 mm to 1 mm, as sketched [see Ref. [27] ]. The orifice is
bored in a 150 �m thick plate. The gas pressure drop through the
orifice is about 10 kPa. (3) A liquid jet with a gas core issuing
from the orifice, as seen downstream. In (3)-(I) the jet is con-
vectively unstable, while in (3)-(II) the jet ‘‘bubbles’’ right at the
nozzle exit, indicating absolute instability.
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jet would have developed, then it would have been abso-
lutely unstable and never observed (i.e., local bubbling
would be observed instead). This is fully consistent with
results plotted in Fig. 3, where parametrical inputs in the
absolute instability domain correspond to bubbling.

An important conclusion from this work is that a cylin-
drical gas spout in a high viscosity liquid moving with
speedU is absolutely unstable, preventing the formation of
long gas spouts, below a finite value of the Weber number
or, alternatively, below a finite value of the capillary num-
ber Ca �We=Re. Thus, the elegant steady solution found
by Zhang [12] for gas spouts entrained in extensional
viscous flows would exist as long as the outer liquid is
sufficiently viscous, provided that there is a minimum
finite capillary number for which the steady solution can
exist [12]. For Re 1, below the critical value of the
capillary number, the spouts formed by the extensional
flow in her solution would form a train of microbubbles,
a fact observed in related experiments (see Fig. 4). For
example, a hollow optical fiber with a cylindrical hole can
only be drawn if the Weber number is above the critical
one, or if there is an alternative mechanism providing local
stability. This mechanism may be a longitudinal positive
gradient of viscosity (e.g., the one due to ‘‘fiber quench-
ing,’’ when the glass solidifies) or an external negative
pressure gradient [a potential alternative in ultrahigh speed
fiber drawing, see Ref. [27] ].
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